1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include <kunit/visibility.h>
30
31 #include "internal.h"
32 #include "swap.h"
33
34 /**
35 * kfree_const - conditionally free memory
36 * @x: pointer to the memory
37 *
38 * Function calls kfree only if @x is not in .rodata section.
39 */
kfree_const(const void * x)40 void kfree_const(const void *x)
41 {
42 if (!is_kernel_rodata((unsigned long)x))
43 kfree(x);
44 }
45 EXPORT_SYMBOL(kfree_const);
46
47 /**
48 * kstrdup - allocate space for and copy an existing string
49 * @s: the string to duplicate
50 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
51 *
52 * Return: newly allocated copy of @s or %NULL in case of error
53 */
54 noinline
kstrdup(const char * s,gfp_t gfp)55 char *kstrdup(const char *s, gfp_t gfp)
56 {
57 size_t len;
58 char *buf;
59
60 if (!s)
61 return NULL;
62
63 len = strlen(s) + 1;
64 buf = kmalloc_track_caller(len, gfp);
65 if (buf)
66 memcpy(buf, s, len);
67 return buf;
68 }
69 EXPORT_SYMBOL(kstrdup);
70
71 /**
72 * kstrdup_const - conditionally duplicate an existing const string
73 * @s: the string to duplicate
74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75 *
76 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
77 * must not be passed to krealloc().
78 *
79 * Return: source string if it is in .rodata section otherwise
80 * fallback to kstrdup.
81 */
kstrdup_const(const char * s,gfp_t gfp)82 const char *kstrdup_const(const char *s, gfp_t gfp)
83 {
84 if (is_kernel_rodata((unsigned long)s))
85 return s;
86
87 return kstrdup(s, gfp);
88 }
89 EXPORT_SYMBOL(kstrdup_const);
90
91 /**
92 * kstrndup - allocate space for and copy an existing string
93 * @s: the string to duplicate
94 * @max: read at most @max chars from @s
95 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
96 *
97 * Note: Use kmemdup_nul() instead if the size is known exactly.
98 *
99 * Return: newly allocated copy of @s or %NULL in case of error
100 */
kstrndup(const char * s,size_t max,gfp_t gfp)101 char *kstrndup(const char *s, size_t max, gfp_t gfp)
102 {
103 size_t len;
104 char *buf;
105
106 if (!s)
107 return NULL;
108
109 len = strnlen(s, max);
110 buf = kmalloc_track_caller(len+1, gfp);
111 if (buf) {
112 memcpy(buf, s, len);
113 buf[len] = '\0';
114 }
115 return buf;
116 }
117 EXPORT_SYMBOL(kstrndup);
118
119 /**
120 * kmemdup - duplicate region of memory
121 *
122 * @src: memory region to duplicate
123 * @len: memory region length
124 * @gfp: GFP mask to use
125 *
126 * Return: newly allocated copy of @src or %NULL in case of error,
127 * result is physically contiguous. Use kfree() to free.
128 */
kmemdup_noprof(const void * src,size_t len,gfp_t gfp)129 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
130 {
131 void *p;
132
133 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
134 if (p)
135 memcpy(p, src, len);
136 return p;
137 }
138 EXPORT_SYMBOL(kmemdup_noprof);
139
140 /**
141 * kmemdup_array - duplicate a given array.
142 *
143 * @src: array to duplicate.
144 * @count: number of elements to duplicate from array.
145 * @element_size: size of each element of array.
146 * @gfp: GFP mask to use.
147 *
148 * Return: duplicated array of @src or %NULL in case of error,
149 * result is physically contiguous. Use kfree() to free.
150 */
kmemdup_array(const void * src,size_t count,size_t element_size,gfp_t gfp)151 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
152 {
153 return kmemdup(src, size_mul(element_size, count), gfp);
154 }
155 EXPORT_SYMBOL(kmemdup_array);
156
157 /**
158 * kvmemdup - duplicate region of memory
159 *
160 * @src: memory region to duplicate
161 * @len: memory region length
162 * @gfp: GFP mask to use
163 *
164 * Return: newly allocated copy of @src or %NULL in case of error,
165 * result may be not physically contiguous. Use kvfree() to free.
166 */
kvmemdup(const void * src,size_t len,gfp_t gfp)167 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
168 {
169 void *p;
170
171 p = kvmalloc(len, gfp);
172 if (p)
173 memcpy(p, src, len);
174 return p;
175 }
176 EXPORT_SYMBOL(kvmemdup);
177
178 /**
179 * kmemdup_nul - Create a NUL-terminated string from unterminated data
180 * @s: The data to stringify
181 * @len: The size of the data
182 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
183 *
184 * Return: newly allocated copy of @s with NUL-termination or %NULL in
185 * case of error
186 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)187 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
188 {
189 char *buf;
190
191 if (!s)
192 return NULL;
193
194 buf = kmalloc_track_caller(len + 1, gfp);
195 if (buf) {
196 memcpy(buf, s, len);
197 buf[len] = '\0';
198 }
199 return buf;
200 }
201 EXPORT_SYMBOL(kmemdup_nul);
202
203 static kmem_buckets *user_buckets __ro_after_init;
204
init_user_buckets(void)205 static int __init init_user_buckets(void)
206 {
207 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
208
209 return 0;
210 }
211 subsys_initcall(init_user_buckets);
212
213 /**
214 * memdup_user - duplicate memory region from user space
215 *
216 * @src: source address in user space
217 * @len: number of bytes to copy
218 *
219 * Return: an ERR_PTR() on failure. Result is physically
220 * contiguous, to be freed by kfree().
221 */
memdup_user(const void __user * src,size_t len)222 void *memdup_user(const void __user *src, size_t len)
223 {
224 void *p;
225
226 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
227 if (!p)
228 return ERR_PTR(-ENOMEM);
229
230 if (copy_from_user(p, src, len)) {
231 kfree(p);
232 return ERR_PTR(-EFAULT);
233 }
234
235 return p;
236 }
237 EXPORT_SYMBOL(memdup_user);
238
239 /**
240 * vmemdup_user - duplicate memory region from user space
241 *
242 * @src: source address in user space
243 * @len: number of bytes to copy
244 *
245 * Return: an ERR_PTR() on failure. Result may be not
246 * physically contiguous. Use kvfree() to free.
247 */
vmemdup_user(const void __user * src,size_t len)248 void *vmemdup_user(const void __user *src, size_t len)
249 {
250 void *p;
251
252 p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
253 if (!p)
254 return ERR_PTR(-ENOMEM);
255
256 if (copy_from_user(p, src, len)) {
257 kvfree(p);
258 return ERR_PTR(-EFAULT);
259 }
260
261 return p;
262 }
263 EXPORT_SYMBOL(vmemdup_user);
264
265 /**
266 * strndup_user - duplicate an existing string from user space
267 * @s: The string to duplicate
268 * @n: Maximum number of bytes to copy, including the trailing NUL.
269 *
270 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
271 */
strndup_user(const char __user * s,long n)272 char *strndup_user(const char __user *s, long n)
273 {
274 char *p;
275 long length;
276
277 length = strnlen_user(s, n);
278
279 if (!length)
280 return ERR_PTR(-EFAULT);
281
282 if (length > n)
283 return ERR_PTR(-EINVAL);
284
285 p = memdup_user(s, length);
286
287 if (IS_ERR(p))
288 return p;
289
290 p[length - 1] = '\0';
291
292 return p;
293 }
294 EXPORT_SYMBOL(strndup_user);
295
296 /**
297 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
298 *
299 * @src: source address in user space
300 * @len: number of bytes to copy
301 *
302 * Return: an ERR_PTR() on failure.
303 */
memdup_user_nul(const void __user * src,size_t len)304 void *memdup_user_nul(const void __user *src, size_t len)
305 {
306 char *p;
307
308 /*
309 * Always use GFP_KERNEL, since copy_from_user() can sleep and
310 * cause pagefault, which makes it pointless to use GFP_NOFS
311 * or GFP_ATOMIC.
312 */
313 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
314 if (!p)
315 return ERR_PTR(-ENOMEM);
316
317 if (copy_from_user(p, src, len)) {
318 kfree(p);
319 return ERR_PTR(-EFAULT);
320 }
321 p[len] = '\0';
322
323 return p;
324 }
325 EXPORT_SYMBOL(memdup_user_nul);
326
327 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)328 int vma_is_stack_for_current(struct vm_area_struct *vma)
329 {
330 struct task_struct * __maybe_unused t = current;
331
332 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
333 }
334
335 /*
336 * Change backing file, only valid to use during initial VMA setup.
337 */
vma_set_file(struct vm_area_struct * vma,struct file * file)338 void vma_set_file(struct vm_area_struct *vma, struct file *file)
339 {
340 /* Changing an anonymous vma with this is illegal */
341 get_file(file);
342 swap(vma->vm_file, file);
343 fput(file);
344 }
345 EXPORT_SYMBOL(vma_set_file);
346
347 #ifndef STACK_RND_MASK
348 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
349 #endif
350
randomize_stack_top(unsigned long stack_top)351 unsigned long randomize_stack_top(unsigned long stack_top)
352 {
353 unsigned long random_variable = 0;
354
355 if (current->flags & PF_RANDOMIZE) {
356 random_variable = get_random_long();
357 random_variable &= STACK_RND_MASK;
358 random_variable <<= PAGE_SHIFT;
359 }
360 #ifdef CONFIG_STACK_GROWSUP
361 return PAGE_ALIGN(stack_top) + random_variable;
362 #else
363 return PAGE_ALIGN(stack_top) - random_variable;
364 #endif
365 }
366
367 /**
368 * randomize_page - Generate a random, page aligned address
369 * @start: The smallest acceptable address the caller will take.
370 * @range: The size of the area, starting at @start, within which the
371 * random address must fall.
372 *
373 * If @start + @range would overflow, @range is capped.
374 *
375 * NOTE: Historical use of randomize_range, which this replaces, presumed that
376 * @start was already page aligned. We now align it regardless.
377 *
378 * Return: A page aligned address within [start, start + range). On error,
379 * @start is returned.
380 */
randomize_page(unsigned long start,unsigned long range)381 unsigned long randomize_page(unsigned long start, unsigned long range)
382 {
383 if (!PAGE_ALIGNED(start)) {
384 range -= PAGE_ALIGN(start) - start;
385 start = PAGE_ALIGN(start);
386 }
387
388 if (start > ULONG_MAX - range)
389 range = ULONG_MAX - start;
390
391 range >>= PAGE_SHIFT;
392
393 if (range == 0)
394 return start;
395
396 return start + (get_random_long() % range << PAGE_SHIFT);
397 }
398
399 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)400 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
401 {
402 /* Is the current task 32bit ? */
403 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
404 return randomize_page(mm->brk, SZ_32M);
405
406 return randomize_page(mm->brk, SZ_1G);
407 }
408
arch_mmap_rnd(void)409 unsigned long arch_mmap_rnd(void)
410 {
411 unsigned long rnd;
412
413 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
414 if (is_compat_task())
415 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
416 else
417 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
418 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
419
420 return rnd << PAGE_SHIFT;
421 }
422
mmap_is_legacy(struct rlimit * rlim_stack)423 static int mmap_is_legacy(struct rlimit *rlim_stack)
424 {
425 if (current->personality & ADDR_COMPAT_LAYOUT)
426 return 1;
427
428 /* On parisc the stack always grows up - so a unlimited stack should
429 * not be an indicator to use the legacy memory layout. */
430 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
431 !IS_ENABLED(CONFIG_STACK_GROWSUP))
432 return 1;
433
434 return sysctl_legacy_va_layout;
435 }
436
437 /*
438 * Leave enough space between the mmap area and the stack to honour ulimit in
439 * the face of randomisation.
440 */
441 #define MIN_GAP (SZ_128M)
442 #define MAX_GAP (STACK_TOP / 6 * 5)
443
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)444 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
445 {
446 #ifdef CONFIG_STACK_GROWSUP
447 /*
448 * For an upwards growing stack the calculation is much simpler.
449 * Memory for the maximum stack size is reserved at the top of the
450 * task. mmap_base starts directly below the stack and grows
451 * downwards.
452 */
453 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
454 #else
455 unsigned long gap = rlim_stack->rlim_cur;
456 unsigned long pad = stack_guard_gap;
457
458 /* Account for stack randomization if necessary */
459 if (current->flags & PF_RANDOMIZE)
460 pad += (STACK_RND_MASK << PAGE_SHIFT);
461
462 /* Values close to RLIM_INFINITY can overflow. */
463 if (gap + pad > gap)
464 gap += pad;
465
466 if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
467 gap = MIN_GAP;
468 else if (gap > MAX_GAP)
469 gap = MAX_GAP;
470
471 return PAGE_ALIGN(STACK_TOP - gap - rnd);
472 #endif
473 }
474
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)475 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
476 {
477 unsigned long random_factor = 0UL;
478
479 if (current->flags & PF_RANDOMIZE)
480 random_factor = arch_mmap_rnd();
481
482 if (mmap_is_legacy(rlim_stack)) {
483 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
484 clear_bit(MMF_TOPDOWN, &mm->flags);
485 } else {
486 mm->mmap_base = mmap_base(random_factor, rlim_stack);
487 set_bit(MMF_TOPDOWN, &mm->flags);
488 }
489 }
490 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)491 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
492 {
493 mm->mmap_base = TASK_UNMAPPED_BASE;
494 clear_bit(MMF_TOPDOWN, &mm->flags);
495 }
496 #endif
497 #ifdef CONFIG_MMU
498 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
499 #endif
500
501 /**
502 * __account_locked_vm - account locked pages to an mm's locked_vm
503 * @mm: mm to account against
504 * @pages: number of pages to account
505 * @inc: %true if @pages should be considered positive, %false if not
506 * @task: task used to check RLIMIT_MEMLOCK
507 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
508 *
509 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
510 * that mmap_lock is held as writer.
511 *
512 * Return:
513 * * 0 on success
514 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
515 */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)516 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
517 struct task_struct *task, bool bypass_rlim)
518 {
519 unsigned long locked_vm, limit;
520 int ret = 0;
521
522 mmap_assert_write_locked(mm);
523
524 locked_vm = mm->locked_vm;
525 if (inc) {
526 if (!bypass_rlim) {
527 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
528 if (locked_vm + pages > limit)
529 ret = -ENOMEM;
530 }
531 if (!ret)
532 mm->locked_vm = locked_vm + pages;
533 } else {
534 WARN_ON_ONCE(pages > locked_vm);
535 mm->locked_vm = locked_vm - pages;
536 }
537
538 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
539 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
540 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
541 ret ? " - exceeded" : "");
542
543 return ret;
544 }
545 EXPORT_SYMBOL_GPL(__account_locked_vm);
546
547 /**
548 * account_locked_vm - account locked pages to an mm's locked_vm
549 * @mm: mm to account against, may be NULL
550 * @pages: number of pages to account
551 * @inc: %true if @pages should be considered positive, %false if not
552 *
553 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
554 *
555 * Return:
556 * * 0 on success, or if mm is NULL
557 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
558 */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)559 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
560 {
561 int ret;
562
563 if (pages == 0 || !mm)
564 return 0;
565
566 mmap_write_lock(mm);
567 ret = __account_locked_vm(mm, pages, inc, current,
568 capable(CAP_IPC_LOCK));
569 mmap_write_unlock(mm);
570
571 return ret;
572 }
573 EXPORT_SYMBOL_GPL(account_locked_vm);
574
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)575 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
576 unsigned long len, unsigned long prot,
577 unsigned long flag, unsigned long pgoff)
578 {
579 unsigned long ret;
580 struct mm_struct *mm = current->mm;
581 unsigned long populate;
582 LIST_HEAD(uf);
583
584 ret = security_mmap_file(file, prot, flag);
585 if (!ret) {
586 if (mmap_write_lock_killable(mm))
587 return -EINTR;
588 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
589 &uf);
590 mmap_write_unlock(mm);
591 userfaultfd_unmap_complete(mm, &uf);
592 if (populate)
593 mm_populate(ret, populate);
594 }
595 return ret;
596 }
597
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)598 unsigned long vm_mmap(struct file *file, unsigned long addr,
599 unsigned long len, unsigned long prot,
600 unsigned long flag, unsigned long offset)
601 {
602 if (unlikely(offset + PAGE_ALIGN(len) < offset))
603 return -EINVAL;
604 if (unlikely(offset_in_page(offset)))
605 return -EINVAL;
606
607 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
608 }
609 EXPORT_SYMBOL(vm_mmap);
610
kmalloc_gfp_adjust(gfp_t flags,size_t size)611 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
612 {
613 /*
614 * We want to attempt a large physically contiguous block first because
615 * it is less likely to fragment multiple larger blocks and therefore
616 * contribute to a long term fragmentation less than vmalloc fallback.
617 * However make sure that larger requests are not too disruptive - no
618 * OOM killer and no allocation failure warnings as we have a fallback.
619 */
620 if (size > PAGE_SIZE) {
621 flags |= __GFP_NOWARN;
622
623 if (!(flags & __GFP_RETRY_MAYFAIL))
624 flags |= __GFP_NORETRY;
625
626 /* nofail semantic is implemented by the vmalloc fallback */
627 flags &= ~__GFP_NOFAIL;
628 }
629
630 return flags;
631 }
632
633 /**
634 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
635 * failure, fall back to non-contiguous (vmalloc) allocation.
636 * @size: size of the request.
637 * @b: which set of kmalloc buckets to allocate from.
638 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
639 * @node: numa node to allocate from
640 *
641 * Uses kmalloc to get the memory but if the allocation fails then falls back
642 * to the vmalloc allocator. Use kvfree for freeing the memory.
643 *
644 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
645 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
646 * preferable to the vmalloc fallback, due to visible performance drawbacks.
647 *
648 * Return: pointer to the allocated memory of %NULL in case of failure
649 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)650 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
651 {
652 void *ret;
653
654 /*
655 * It doesn't really make sense to fallback to vmalloc for sub page
656 * requests
657 */
658 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
659 kmalloc_gfp_adjust(flags, size),
660 node);
661 if (ret || size <= PAGE_SIZE)
662 return ret;
663
664 /* non-sleeping allocations are not supported by vmalloc */
665 if (!gfpflags_allow_blocking(flags))
666 return NULL;
667
668 /* Don't even allow crazy sizes */
669 if (unlikely(size > INT_MAX)) {
670 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
671 return NULL;
672 }
673
674 /*
675 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
676 * since the callers already cannot assume anything
677 * about the resulting pointer, and cannot play
678 * protection games.
679 */
680 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
681 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
682 node, __builtin_return_address(0));
683 }
684 EXPORT_SYMBOL(__kvmalloc_node_noprof);
685
686 /**
687 * kvfree() - Free memory.
688 * @addr: Pointer to allocated memory.
689 *
690 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
691 * It is slightly more efficient to use kfree() or vfree() if you are certain
692 * that you know which one to use.
693 *
694 * Context: Either preemptible task context or not-NMI interrupt.
695 */
kvfree(const void * addr)696 void kvfree(const void *addr)
697 {
698 if (is_vmalloc_addr(addr))
699 vfree(addr);
700 else
701 kfree(addr);
702 }
703 EXPORT_SYMBOL(kvfree);
704
705 /**
706 * kvfree_sensitive - Free a data object containing sensitive information.
707 * @addr: address of the data object to be freed.
708 * @len: length of the data object.
709 *
710 * Use the special memzero_explicit() function to clear the content of a
711 * kvmalloc'ed object containing sensitive data to make sure that the
712 * compiler won't optimize out the data clearing.
713 */
kvfree_sensitive(const void * addr,size_t len)714 void kvfree_sensitive(const void *addr, size_t len)
715 {
716 if (likely(!ZERO_OR_NULL_PTR(addr))) {
717 memzero_explicit((void *)addr, len);
718 kvfree(addr);
719 }
720 }
721 EXPORT_SYMBOL(kvfree_sensitive);
722
723 /**
724 * kvrealloc - reallocate memory; contents remain unchanged
725 * @p: object to reallocate memory for
726 * @size: the size to reallocate
727 * @flags: the flags for the page level allocator
728 *
729 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
730 * and @p is not a %NULL pointer, the object pointed to is freed.
731 *
732 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
733 * initial memory allocation, every subsequent call to this API for the same
734 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
735 * __GFP_ZERO is not fully honored by this API.
736 *
737 * In any case, the contents of the object pointed to are preserved up to the
738 * lesser of the new and old sizes.
739 *
740 * This function must not be called concurrently with itself or kvfree() for the
741 * same memory allocation.
742 *
743 * Return: pointer to the allocated memory or %NULL in case of error
744 */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)745 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
746 {
747 void *n;
748
749 if (is_vmalloc_addr(p))
750 return vrealloc_noprof(p, size, flags);
751
752 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
753 if (!n) {
754 /* We failed to krealloc(), fall back to kvmalloc(). */
755 n = kvmalloc_noprof(size, flags);
756 if (!n)
757 return NULL;
758
759 if (p) {
760 /* We already know that `p` is not a vmalloc address. */
761 kasan_disable_current();
762 memcpy(n, kasan_reset_tag(p), ksize(p));
763 kasan_enable_current();
764
765 kfree(p);
766 }
767 }
768
769 return n;
770 }
771 EXPORT_SYMBOL(kvrealloc_noprof);
772
773 /**
774 * __vmalloc_array - allocate memory for a virtually contiguous array.
775 * @n: number of elements.
776 * @size: element size.
777 * @flags: the type of memory to allocate (see kmalloc).
778 */
__vmalloc_array_noprof(size_t n,size_t size,gfp_t flags)779 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
780 {
781 size_t bytes;
782
783 if (unlikely(check_mul_overflow(n, size, &bytes)))
784 return NULL;
785 return __vmalloc_noprof(bytes, flags);
786 }
787 EXPORT_SYMBOL(__vmalloc_array_noprof);
788
789 /**
790 * vmalloc_array - allocate memory for a virtually contiguous array.
791 * @n: number of elements.
792 * @size: element size.
793 */
vmalloc_array_noprof(size_t n,size_t size)794 void *vmalloc_array_noprof(size_t n, size_t size)
795 {
796 return __vmalloc_array_noprof(n, size, GFP_KERNEL);
797 }
798 EXPORT_SYMBOL(vmalloc_array_noprof);
799
800 /**
801 * __vcalloc - allocate and zero memory for a virtually contiguous array.
802 * @n: number of elements.
803 * @size: element size.
804 * @flags: the type of memory to allocate (see kmalloc).
805 */
__vcalloc_noprof(size_t n,size_t size,gfp_t flags)806 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
807 {
808 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
809 }
810 EXPORT_SYMBOL(__vcalloc_noprof);
811
812 /**
813 * vcalloc - allocate and zero memory for a virtually contiguous array.
814 * @n: number of elements.
815 * @size: element size.
816 */
vcalloc_noprof(size_t n,size_t size)817 void *vcalloc_noprof(size_t n, size_t size)
818 {
819 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
820 }
821 EXPORT_SYMBOL(vcalloc_noprof);
822
folio_anon_vma(struct folio * folio)823 struct anon_vma *folio_anon_vma(struct folio *folio)
824 {
825 unsigned long mapping = (unsigned long)folio->mapping;
826
827 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
828 return NULL;
829 return (void *)(mapping - PAGE_MAPPING_ANON);
830 }
831
832 /**
833 * folio_mapping - Find the mapping where this folio is stored.
834 * @folio: The folio.
835 *
836 * For folios which are in the page cache, return the mapping that this
837 * page belongs to. Folios in the swap cache return the swap mapping
838 * this page is stored in (which is different from the mapping for the
839 * swap file or swap device where the data is stored).
840 *
841 * You can call this for folios which aren't in the swap cache or page
842 * cache and it will return NULL.
843 */
folio_mapping(struct folio * folio)844 struct address_space *folio_mapping(struct folio *folio)
845 {
846 struct address_space *mapping;
847
848 /* This happens if someone calls flush_dcache_page on slab page */
849 if (unlikely(folio_test_slab(folio)))
850 return NULL;
851
852 if (unlikely(folio_test_swapcache(folio)))
853 return swap_address_space(folio->swap);
854
855 mapping = folio->mapping;
856 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
857 return NULL;
858
859 return mapping;
860 }
861 EXPORT_SYMBOL(folio_mapping);
862
863 /**
864 * folio_copy - Copy the contents of one folio to another.
865 * @dst: Folio to copy to.
866 * @src: Folio to copy from.
867 *
868 * The bytes in the folio represented by @src are copied to @dst.
869 * Assumes the caller has validated that @dst is at least as large as @src.
870 * Can be called in atomic context for order-0 folios, but if the folio is
871 * larger, it may sleep.
872 */
folio_copy(struct folio * dst,struct folio * src)873 void folio_copy(struct folio *dst, struct folio *src)
874 {
875 long i = 0;
876 long nr = folio_nr_pages(src);
877
878 for (;;) {
879 copy_highpage(folio_page(dst, i), folio_page(src, i));
880 if (++i == nr)
881 break;
882 cond_resched();
883 }
884 }
885 EXPORT_SYMBOL(folio_copy);
886
folio_mc_copy(struct folio * dst,struct folio * src)887 int folio_mc_copy(struct folio *dst, struct folio *src)
888 {
889 long nr = folio_nr_pages(src);
890 long i = 0;
891
892 for (;;) {
893 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
894 return -EHWPOISON;
895 if (++i == nr)
896 break;
897 cond_resched();
898 }
899
900 return 0;
901 }
902 EXPORT_SYMBOL(folio_mc_copy);
903
904 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
905 int sysctl_overcommit_ratio __read_mostly = 50;
906 unsigned long sysctl_overcommit_kbytes __read_mostly;
907 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
908 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
909 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
910
overcommit_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)911 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
912 size_t *lenp, loff_t *ppos)
913 {
914 int ret;
915
916 ret = proc_dointvec(table, write, buffer, lenp, ppos);
917 if (ret == 0 && write)
918 sysctl_overcommit_kbytes = 0;
919 return ret;
920 }
921
sync_overcommit_as(struct work_struct * dummy)922 static void sync_overcommit_as(struct work_struct *dummy)
923 {
924 percpu_counter_sync(&vm_committed_as);
925 }
926
overcommit_policy_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)927 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
928 size_t *lenp, loff_t *ppos)
929 {
930 struct ctl_table t;
931 int new_policy = -1;
932 int ret;
933
934 /*
935 * The deviation of sync_overcommit_as could be big with loose policy
936 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
937 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
938 * with the strict "NEVER", and to avoid possible race condition (even
939 * though user usually won't too frequently do the switching to policy
940 * OVERCOMMIT_NEVER), the switch is done in the following order:
941 * 1. changing the batch
942 * 2. sync percpu count on each CPU
943 * 3. switch the policy
944 */
945 if (write) {
946 t = *table;
947 t.data = &new_policy;
948 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
949 if (ret || new_policy == -1)
950 return ret;
951
952 mm_compute_batch(new_policy);
953 if (new_policy == OVERCOMMIT_NEVER)
954 schedule_on_each_cpu(sync_overcommit_as);
955 sysctl_overcommit_memory = new_policy;
956 } else {
957 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
958 }
959
960 return ret;
961 }
962
overcommit_kbytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)963 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
964 size_t *lenp, loff_t *ppos)
965 {
966 int ret;
967
968 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
969 if (ret == 0 && write)
970 sysctl_overcommit_ratio = 0;
971 return ret;
972 }
973
974 /*
975 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
976 */
vm_commit_limit(void)977 unsigned long vm_commit_limit(void)
978 {
979 unsigned long allowed;
980
981 if (sysctl_overcommit_kbytes)
982 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
983 else
984 allowed = ((totalram_pages() - hugetlb_total_pages())
985 * sysctl_overcommit_ratio / 100);
986 allowed += total_swap_pages;
987
988 return allowed;
989 }
990
991 /*
992 * Make sure vm_committed_as in one cacheline and not cacheline shared with
993 * other variables. It can be updated by several CPUs frequently.
994 */
995 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
996
997 /*
998 * The global memory commitment made in the system can be a metric
999 * that can be used to drive ballooning decisions when Linux is hosted
1000 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
1001 * balancing memory across competing virtual machines that are hosted.
1002 * Several metrics drive this policy engine including the guest reported
1003 * memory commitment.
1004 *
1005 * The time cost of this is very low for small platforms, and for big
1006 * platform like a 2S/36C/72T Skylake server, in worst case where
1007 * vm_committed_as's spinlock is under severe contention, the time cost
1008 * could be about 30~40 microseconds.
1009 */
vm_memory_committed(void)1010 unsigned long vm_memory_committed(void)
1011 {
1012 return percpu_counter_sum_positive(&vm_committed_as);
1013 }
1014 EXPORT_SYMBOL_GPL(vm_memory_committed);
1015
1016 /*
1017 * Check that a process has enough memory to allocate a new virtual
1018 * mapping. 0 means there is enough memory for the allocation to
1019 * succeed and -ENOMEM implies there is not.
1020 *
1021 * We currently support three overcommit policies, which are set via the
1022 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
1023 *
1024 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1025 * Additional code 2002 Jul 20 by Robert Love.
1026 *
1027 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1028 *
1029 * Note this is a helper function intended to be used by LSMs which
1030 * wish to use this logic.
1031 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1032 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1033 {
1034 long allowed;
1035 unsigned long bytes_failed;
1036
1037 vm_acct_memory(pages);
1038
1039 /*
1040 * Sometimes we want to use more memory than we have
1041 */
1042 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1043 return 0;
1044
1045 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1046 if (pages > totalram_pages() + total_swap_pages)
1047 goto error;
1048 return 0;
1049 }
1050
1051 allowed = vm_commit_limit();
1052 /*
1053 * Reserve some for root
1054 */
1055 if (!cap_sys_admin)
1056 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1057
1058 /*
1059 * Don't let a single process grow so big a user can't recover
1060 */
1061 if (mm) {
1062 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1063
1064 allowed -= min_t(long, mm->total_vm / 32, reserve);
1065 }
1066
1067 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1068 return 0;
1069 error:
1070 bytes_failed = pages << PAGE_SHIFT;
1071 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1072 __func__, current->pid, current->comm, bytes_failed);
1073 vm_unacct_memory(pages);
1074
1075 return -ENOMEM;
1076 }
1077
1078 /**
1079 * get_cmdline() - copy the cmdline value to a buffer.
1080 * @task: the task whose cmdline value to copy.
1081 * @buffer: the buffer to copy to.
1082 * @buflen: the length of the buffer. Larger cmdline values are truncated
1083 * to this length.
1084 *
1085 * Return: the size of the cmdline field copied. Note that the copy does
1086 * not guarantee an ending NULL byte.
1087 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)1088 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1089 {
1090 int res = 0;
1091 unsigned int len;
1092 struct mm_struct *mm = get_task_mm(task);
1093 unsigned long arg_start, arg_end, env_start, env_end;
1094 if (!mm)
1095 goto out;
1096 if (!mm->arg_end)
1097 goto out_mm; /* Shh! No looking before we're done */
1098
1099 spin_lock(&mm->arg_lock);
1100 arg_start = mm->arg_start;
1101 arg_end = mm->arg_end;
1102 env_start = mm->env_start;
1103 env_end = mm->env_end;
1104 spin_unlock(&mm->arg_lock);
1105
1106 len = arg_end - arg_start;
1107
1108 if (len > buflen)
1109 len = buflen;
1110
1111 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1112
1113 /*
1114 * If the nul at the end of args has been overwritten, then
1115 * assume application is using setproctitle(3).
1116 */
1117 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1118 len = strnlen(buffer, res);
1119 if (len < res) {
1120 res = len;
1121 } else {
1122 len = env_end - env_start;
1123 if (len > buflen - res)
1124 len = buflen - res;
1125 res += access_process_vm(task, env_start,
1126 buffer+res, len,
1127 FOLL_FORCE);
1128 res = strnlen(buffer, res);
1129 }
1130 }
1131 out_mm:
1132 mmput(mm);
1133 out:
1134 return res;
1135 }
1136
memcmp_pages(struct page * page1,struct page * page2)1137 int __weak memcmp_pages(struct page *page1, struct page *page2)
1138 {
1139 char *addr1, *addr2;
1140 int ret;
1141
1142 addr1 = kmap_local_page(page1);
1143 addr2 = kmap_local_page(page2);
1144 ret = memcmp(addr1, addr2, PAGE_SIZE);
1145 kunmap_local(addr2);
1146 kunmap_local(addr1);
1147 return ret;
1148 }
1149
1150 #ifdef CONFIG_PRINTK
1151 /**
1152 * mem_dump_obj - Print available provenance information
1153 * @object: object for which to find provenance information.
1154 *
1155 * This function uses pr_cont(), so that the caller is expected to have
1156 * printed out whatever preamble is appropriate. The provenance information
1157 * depends on the type of object and on how much debugging is enabled.
1158 * For example, for a slab-cache object, the slab name is printed, and,
1159 * if available, the return address and stack trace from the allocation
1160 * and last free path of that object.
1161 */
mem_dump_obj(void * object)1162 void mem_dump_obj(void *object)
1163 {
1164 const char *type;
1165
1166 if (kmem_dump_obj(object))
1167 return;
1168
1169 if (vmalloc_dump_obj(object))
1170 return;
1171
1172 if (is_vmalloc_addr(object))
1173 type = "vmalloc memory";
1174 else if (virt_addr_valid(object))
1175 type = "non-slab/vmalloc memory";
1176 else if (object == NULL)
1177 type = "NULL pointer";
1178 else if (object == ZERO_SIZE_PTR)
1179 type = "zero-size pointer";
1180 else
1181 type = "non-paged memory";
1182
1183 pr_cont(" %s\n", type);
1184 }
1185 EXPORT_SYMBOL_GPL(mem_dump_obj);
1186 #endif
1187
1188 /*
1189 * A driver might set a page logically offline -- PageOffline() -- and
1190 * turn the page inaccessible in the hypervisor; after that, access to page
1191 * content can be fatal.
1192 *
1193 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1194 * pages after checking PageOffline(); however, these PFN walkers can race
1195 * with drivers that set PageOffline().
1196 *
1197 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1198 * synchronize with such drivers, achieving that a page cannot be set
1199 * PageOffline() while frozen.
1200 *
1201 * page_offline_begin()/page_offline_end() is used by drivers that care about
1202 * such races when setting a page PageOffline().
1203 */
1204 static DECLARE_RWSEM(page_offline_rwsem);
1205
page_offline_freeze(void)1206 void page_offline_freeze(void)
1207 {
1208 down_read(&page_offline_rwsem);
1209 }
1210
page_offline_thaw(void)1211 void page_offline_thaw(void)
1212 {
1213 up_read(&page_offline_rwsem);
1214 }
1215
page_offline_begin(void)1216 void page_offline_begin(void)
1217 {
1218 down_write(&page_offline_rwsem);
1219 }
1220 EXPORT_SYMBOL(page_offline_begin);
1221
page_offline_end(void)1222 void page_offline_end(void)
1223 {
1224 up_write(&page_offline_rwsem);
1225 }
1226 EXPORT_SYMBOL(page_offline_end);
1227
1228 #ifndef flush_dcache_folio
flush_dcache_folio(struct folio * folio)1229 void flush_dcache_folio(struct folio *folio)
1230 {
1231 long i, nr = folio_nr_pages(folio);
1232
1233 for (i = 0; i < nr; i++)
1234 flush_dcache_page(folio_page(folio, i));
1235 }
1236 EXPORT_SYMBOL(flush_dcache_folio);
1237 #endif
1238