1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object
24 * offset in a subpage of a zspage
25 *
26 * Usage of struct page flags:
27 * PG_private: identifies the first component page
28 * PG_owner_priv_1: identifies the huge component page
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 /*
35 * lock ordering:
36 * page_lock
37 * pool->migrate_lock
38 * class->lock
39 * zspage->lock
40 */
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/sprintf.h>
58 #include <linux/shrinker.h>
59 #include <linux/types.h>
60 #include <linux/debugfs.h>
61 #include <linux/zsmalloc.h>
62 #include <linux/zpool.h>
63 #include <linux/migrate.h>
64 #include <linux/wait.h>
65 #include <linux/pagemap.h>
66 #include <linux/fs.h>
67 #include <linux/local_lock.h>
68
69 #define ZSPAGE_MAGIC 0x58
70
71 /*
72 * This must be power of 2 and greater than or equal to sizeof(link_free).
73 * These two conditions ensure that any 'struct link_free' itself doesn't
74 * span more than 1 page which avoids complex case of mapping 2 pages simply
75 * to restore link_free pointer values.
76 */
77 #define ZS_ALIGN 8
78
79 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
80
81 /*
82 * Object location (<PFN>, <obj_idx>) is encoded as
83 * a single (unsigned long) handle value.
84 *
85 * Note that object index <obj_idx> starts from 0.
86 *
87 * This is made more complicated by various memory models and PAE.
88 */
89
90 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
91 #ifdef MAX_PHYSMEM_BITS
92 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
93 #else
94 /*
95 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
96 * be PAGE_SHIFT
97 */
98 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
99 #endif
100 #endif
101
102 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
103
104 /*
105 * Head in allocated object should have OBJ_ALLOCATED_TAG
106 * to identify the object was allocated or not.
107 * It's okay to add the status bit in the least bit because
108 * header keeps handle which is 4byte-aligned address so we
109 * have room for two bit at least.
110 */
111 #define OBJ_ALLOCATED_TAG 1
112
113 #define OBJ_TAG_BITS 1
114 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
115
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118
119 #define HUGE_BITS 1
120 #define FULLNESS_BITS 4
121 #define CLASS_BITS 8
122 #define MAGIC_VAL_BITS 8
123
124 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
131
132 /*
133 * On systems with 4K page size, this gives 255 size classes! There is a
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 *
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
144 */
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
148
149 /*
150 * Pages are distinguished by the ratio of used memory (that is the ratio
151 * of ->inuse objects to all objects that page can store). For example,
152 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153 *
154 * The number of fullness groups is not random. It allows us to keep
155 * difference between the least busy page in the group (minimum permitted
156 * number of ->inuse objects) and the most busy page (maximum permitted
157 * number of ->inuse objects) at a reasonable value.
158 */
159 enum fullness_group {
160 ZS_INUSE_RATIO_0,
161 ZS_INUSE_RATIO_10,
162 /* NOTE: 8 more fullness groups here */
163 ZS_INUSE_RATIO_99 = 10,
164 ZS_INUSE_RATIO_100,
165 NR_FULLNESS_GROUPS,
166 };
167
168 enum class_stat_type {
169 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
171 ZS_OBJS_INUSE,
172 NR_CLASS_STAT_TYPES,
173 };
174
175 struct zs_size_stat {
176 unsigned long objs[NR_CLASS_STAT_TYPES];
177 };
178
179 #ifdef CONFIG_ZSMALLOC_STAT
180 static struct dentry *zs_stat_root;
181 #endif
182
183 static size_t huge_class_size;
184
185 struct size_class {
186 spinlock_t lock;
187 struct list_head fullness_list[NR_FULLNESS_GROUPS];
188 /*
189 * Size of objects stored in this class. Must be multiple
190 * of ZS_ALIGN.
191 */
192 int size;
193 int objs_per_zspage;
194 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
195 int pages_per_zspage;
196
197 unsigned int index;
198 struct zs_size_stat stats;
199 };
200
201 /*
202 * Placed within free objects to form a singly linked list.
203 * For every zspage, zspage->freeobj gives head of this list.
204 *
205 * This must be power of 2 and less than or equal to ZS_ALIGN
206 */
207 struct link_free {
208 union {
209 /*
210 * Free object index;
211 * It's valid for non-allocated object
212 */
213 unsigned long next;
214 /*
215 * Handle of allocated object.
216 */
217 unsigned long handle;
218 };
219 };
220
221 struct zs_pool {
222 const char *name;
223
224 struct size_class *size_class[ZS_SIZE_CLASSES];
225 struct kmem_cache *handle_cachep;
226 struct kmem_cache *zspage_cachep;
227
228 atomic_long_t pages_allocated;
229
230 struct zs_pool_stats stats;
231
232 /* Compact classes */
233 struct shrinker *shrinker;
234
235 #ifdef CONFIG_ZSMALLOC_STAT
236 struct dentry *stat_dentry;
237 #endif
238 #ifdef CONFIG_COMPACTION
239 struct work_struct free_work;
240 #endif
241 /* protect page/zspage migration */
242 rwlock_t migrate_lock;
243 atomic_t compaction_in_progress;
244 };
245
246 struct zspage {
247 struct {
248 unsigned int huge:HUGE_BITS;
249 unsigned int fullness:FULLNESS_BITS;
250 unsigned int class:CLASS_BITS + 1;
251 unsigned int magic:MAGIC_VAL_BITS;
252 };
253 unsigned int inuse;
254 unsigned int freeobj;
255 struct page *first_page;
256 struct list_head list; /* fullness list */
257 struct zs_pool *pool;
258 rwlock_t lock;
259 };
260
261 struct mapping_area {
262 local_lock_t lock;
263 char *vm_buf; /* copy buffer for objects that span pages */
264 char *vm_addr; /* address of kmap_atomic()'ed pages */
265 enum zs_mapmode vm_mm; /* mapping mode */
266 };
267
268 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)269 static void SetZsHugePage(struct zspage *zspage)
270 {
271 zspage->huge = 1;
272 }
273
ZsHugePage(struct zspage * zspage)274 static bool ZsHugePage(struct zspage *zspage)
275 {
276 return zspage->huge;
277 }
278
279 static void migrate_lock_init(struct zspage *zspage);
280 static void migrate_read_lock(struct zspage *zspage);
281 static void migrate_read_unlock(struct zspage *zspage);
282 static void migrate_write_lock(struct zspage *zspage);
283 static void migrate_write_unlock(struct zspage *zspage);
284
285 #ifdef CONFIG_COMPACTION
286 static void kick_deferred_free(struct zs_pool *pool);
287 static void init_deferred_free(struct zs_pool *pool);
288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289 #else
kick_deferred_free(struct zs_pool * pool)290 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)291 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)292 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
293 #endif
294
create_cache(struct zs_pool * pool)295 static int create_cache(struct zs_pool *pool)
296 {
297 char *name;
298
299 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
300 if (!name)
301 return -ENOMEM;
302 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
303 0, 0, NULL);
304 kfree(name);
305 if (!pool->handle_cachep)
306 return -EINVAL;
307
308 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
309 if (!name)
310 return -ENOMEM;
311 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
312 0, 0, NULL);
313 kfree(name);
314 if (!pool->zspage_cachep) {
315 kmem_cache_destroy(pool->handle_cachep);
316 pool->handle_cachep = NULL;
317 return -EINVAL;
318 }
319
320 return 0;
321 }
322
destroy_cache(struct zs_pool * pool)323 static void destroy_cache(struct zs_pool *pool)
324 {
325 kmem_cache_destroy(pool->handle_cachep);
326 kmem_cache_destroy(pool->zspage_cachep);
327 }
328
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)329 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
330 {
331 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
332 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
333 }
334
cache_free_handle(struct zs_pool * pool,unsigned long handle)335 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
336 {
337 kmem_cache_free(pool->handle_cachep, (void *)handle);
338 }
339
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)340 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
341 {
342 return kmem_cache_zalloc(pool->zspage_cachep,
343 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
344 }
345
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)346 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
347 {
348 kmem_cache_free(pool->zspage_cachep, zspage);
349 }
350
351 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)352 static void record_obj(unsigned long handle, unsigned long obj)
353 {
354 *(unsigned long *)handle = obj;
355 }
356
357 /* zpool driver */
358
359 #ifdef CONFIG_ZPOOL
360
zs_zpool_create(const char * name,gfp_t gfp)361 static void *zs_zpool_create(const char *name, gfp_t gfp)
362 {
363 /*
364 * Ignore global gfp flags: zs_malloc() may be invoked from
365 * different contexts and its caller must provide a valid
366 * gfp mask.
367 */
368 return zs_create_pool(name);
369 }
370
zs_zpool_destroy(void * pool)371 static void zs_zpool_destroy(void *pool)
372 {
373 zs_destroy_pool(pool);
374 }
375
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)376 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
377 unsigned long *handle)
378 {
379 *handle = zs_malloc(pool, size, gfp);
380
381 if (IS_ERR_VALUE(*handle))
382 return PTR_ERR((void *)*handle);
383 return 0;
384 }
zs_zpool_free(void * pool,unsigned long handle)385 static void zs_zpool_free(void *pool, unsigned long handle)
386 {
387 zs_free(pool, handle);
388 }
389
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)390 static void *zs_zpool_map(void *pool, unsigned long handle,
391 enum zpool_mapmode mm)
392 {
393 enum zs_mapmode zs_mm;
394
395 switch (mm) {
396 case ZPOOL_MM_RO:
397 zs_mm = ZS_MM_RO;
398 break;
399 case ZPOOL_MM_WO:
400 zs_mm = ZS_MM_WO;
401 break;
402 case ZPOOL_MM_RW:
403 default:
404 zs_mm = ZS_MM_RW;
405 break;
406 }
407
408 return zs_map_object(pool, handle, zs_mm);
409 }
zs_zpool_unmap(void * pool,unsigned long handle)410 static void zs_zpool_unmap(void *pool, unsigned long handle)
411 {
412 zs_unmap_object(pool, handle);
413 }
414
zs_zpool_total_pages(void * pool)415 static u64 zs_zpool_total_pages(void *pool)
416 {
417 return zs_get_total_pages(pool);
418 }
419
420 static struct zpool_driver zs_zpool_driver = {
421 .type = "zsmalloc",
422 .owner = THIS_MODULE,
423 .create = zs_zpool_create,
424 .destroy = zs_zpool_destroy,
425 .malloc_support_movable = true,
426 .malloc = zs_zpool_malloc,
427 .free = zs_zpool_free,
428 .map = zs_zpool_map,
429 .unmap = zs_zpool_unmap,
430 .total_pages = zs_zpool_total_pages,
431 };
432
433 MODULE_ALIAS("zpool-zsmalloc");
434 #endif /* CONFIG_ZPOOL */
435
436 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
437 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
438 .lock = INIT_LOCAL_LOCK(lock),
439 };
440
is_first_page(struct page * page)441 static __maybe_unused int is_first_page(struct page *page)
442 {
443 return PagePrivate(page);
444 }
445
446 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)447 static inline int get_zspage_inuse(struct zspage *zspage)
448 {
449 return zspage->inuse;
450 }
451
452
mod_zspage_inuse(struct zspage * zspage,int val)453 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
454 {
455 zspage->inuse += val;
456 }
457
get_first_page(struct zspage * zspage)458 static inline struct page *get_first_page(struct zspage *zspage)
459 {
460 struct page *first_page = zspage->first_page;
461
462 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
463 return first_page;
464 }
465
466 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
467
get_first_obj_offset(struct page * page)468 static inline unsigned int get_first_obj_offset(struct page *page)
469 {
470 VM_WARN_ON_ONCE(!PageZsmalloc(page));
471 return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
472 }
473
set_first_obj_offset(struct page * page,unsigned int offset)474 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
475 {
476 /* With 24 bits available, we can support offsets into 16 MiB pages. */
477 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
478 VM_WARN_ON_ONCE(!PageZsmalloc(page));
479 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
480 page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
481 page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
482 }
483
get_freeobj(struct zspage * zspage)484 static inline unsigned int get_freeobj(struct zspage *zspage)
485 {
486 return zspage->freeobj;
487 }
488
set_freeobj(struct zspage * zspage,unsigned int obj)489 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
490 {
491 zspage->freeobj = obj;
492 }
493
zspage_class(struct zs_pool * pool,struct zspage * zspage)494 static struct size_class *zspage_class(struct zs_pool *pool,
495 struct zspage *zspage)
496 {
497 return pool->size_class[zspage->class];
498 }
499
500 /*
501 * zsmalloc divides the pool into various size classes where each
502 * class maintains a list of zspages where each zspage is divided
503 * into equal sized chunks. Each allocation falls into one of these
504 * classes depending on its size. This function returns index of the
505 * size class which has chunk size big enough to hold the given size.
506 */
get_size_class_index(int size)507 static int get_size_class_index(int size)
508 {
509 int idx = 0;
510
511 if (likely(size > ZS_MIN_ALLOC_SIZE))
512 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
513 ZS_SIZE_CLASS_DELTA);
514
515 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
516 }
517
class_stat_add(struct size_class * class,int type,unsigned long cnt)518 static inline void class_stat_add(struct size_class *class, int type,
519 unsigned long cnt)
520 {
521 class->stats.objs[type] += cnt;
522 }
523
class_stat_sub(struct size_class * class,int type,unsigned long cnt)524 static inline void class_stat_sub(struct size_class *class, int type,
525 unsigned long cnt)
526 {
527 class->stats.objs[type] -= cnt;
528 }
529
class_stat_read(struct size_class * class,int type)530 static inline unsigned long class_stat_read(struct size_class *class, int type)
531 {
532 return class->stats.objs[type];
533 }
534
535 #ifdef CONFIG_ZSMALLOC_STAT
536
zs_stat_init(void)537 static void __init zs_stat_init(void)
538 {
539 if (!debugfs_initialized()) {
540 pr_warn("debugfs not available, stat dir not created\n");
541 return;
542 }
543
544 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
545 }
546
zs_stat_exit(void)547 static void __exit zs_stat_exit(void)
548 {
549 debugfs_remove_recursive(zs_stat_root);
550 }
551
552 static unsigned long zs_can_compact(struct size_class *class);
553
zs_stats_size_show(struct seq_file * s,void * v)554 static int zs_stats_size_show(struct seq_file *s, void *v)
555 {
556 int i, fg;
557 struct zs_pool *pool = s->private;
558 struct size_class *class;
559 int objs_per_zspage;
560 unsigned long obj_allocated, obj_used, pages_used, freeable;
561 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
562 unsigned long total_freeable = 0;
563 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
564
565 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
566 "class", "size", "10%", "20%", "30%", "40%",
567 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
568 "obj_allocated", "obj_used", "pages_used",
569 "pages_per_zspage", "freeable");
570
571 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
572
573 class = pool->size_class[i];
574
575 if (class->index != i)
576 continue;
577
578 spin_lock(&class->lock);
579
580 seq_printf(s, " %5u %5u ", i, class->size);
581 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
582 inuse_totals[fg] += class_stat_read(class, fg);
583 seq_printf(s, "%9lu ", class_stat_read(class, fg));
584 }
585
586 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
587 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
588 freeable = zs_can_compact(class);
589 spin_unlock(&class->lock);
590
591 objs_per_zspage = class->objs_per_zspage;
592 pages_used = obj_allocated / objs_per_zspage *
593 class->pages_per_zspage;
594
595 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
596 obj_allocated, obj_used, pages_used,
597 class->pages_per_zspage, freeable);
598
599 total_objs += obj_allocated;
600 total_used_objs += obj_used;
601 total_pages += pages_used;
602 total_freeable += freeable;
603 }
604
605 seq_puts(s, "\n");
606 seq_printf(s, " %5s %5s ", "Total", "");
607
608 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
609 seq_printf(s, "%9lu ", inuse_totals[fg]);
610
611 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
612 total_objs, total_used_objs, total_pages, "",
613 total_freeable);
614
615 return 0;
616 }
617 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
618
zs_pool_stat_create(struct zs_pool * pool,const char * name)619 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
620 {
621 if (!zs_stat_root) {
622 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
623 return;
624 }
625
626 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
627
628 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
629 &zs_stats_size_fops);
630 }
631
zs_pool_stat_destroy(struct zs_pool * pool)632 static void zs_pool_stat_destroy(struct zs_pool *pool)
633 {
634 debugfs_remove_recursive(pool->stat_dentry);
635 }
636
637 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)638 static void __init zs_stat_init(void)
639 {
640 }
641
zs_stat_exit(void)642 static void __exit zs_stat_exit(void)
643 {
644 }
645
zs_pool_stat_create(struct zs_pool * pool,const char * name)646 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 {
648 }
649
zs_pool_stat_destroy(struct zs_pool * pool)650 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
651 {
652 }
653 #endif
654
655
656 /*
657 * For each size class, zspages are divided into different groups
658 * depending on their usage ratio. This function returns fullness
659 * status of the given page.
660 */
get_fullness_group(struct size_class * class,struct zspage * zspage)661 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
662 {
663 int inuse, objs_per_zspage, ratio;
664
665 inuse = get_zspage_inuse(zspage);
666 objs_per_zspage = class->objs_per_zspage;
667
668 if (inuse == 0)
669 return ZS_INUSE_RATIO_0;
670 if (inuse == objs_per_zspage)
671 return ZS_INUSE_RATIO_100;
672
673 ratio = 100 * inuse / objs_per_zspage;
674 /*
675 * Take integer division into consideration: a page with one inuse
676 * object out of 127 possible, will end up having 0 usage ratio,
677 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
678 */
679 return ratio / 10 + 1;
680 }
681
682 /*
683 * Each size class maintains various freelists and zspages are assigned
684 * to one of these freelists based on the number of live objects they
685 * have. This functions inserts the given zspage into the freelist
686 * identified by <class, fullness_group>.
687 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)688 static void insert_zspage(struct size_class *class,
689 struct zspage *zspage,
690 int fullness)
691 {
692 class_stat_add(class, fullness, 1);
693 list_add(&zspage->list, &class->fullness_list[fullness]);
694 zspage->fullness = fullness;
695 }
696
697 /*
698 * This function removes the given zspage from the freelist identified
699 * by <class, fullness_group>.
700 */
remove_zspage(struct size_class * class,struct zspage * zspage)701 static void remove_zspage(struct size_class *class, struct zspage *zspage)
702 {
703 int fullness = zspage->fullness;
704
705 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
706
707 list_del_init(&zspage->list);
708 class_stat_sub(class, fullness, 1);
709 }
710
711 /*
712 * Each size class maintains zspages in different fullness groups depending
713 * on the number of live objects they contain. When allocating or freeing
714 * objects, the fullness status of the page can change, for instance, from
715 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
716 * checks if such a status change has occurred for the given page and
717 * accordingly moves the page from the list of the old fullness group to that
718 * of the new fullness group.
719 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)720 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
721 {
722 int newfg;
723
724 newfg = get_fullness_group(class, zspage);
725 if (newfg == zspage->fullness)
726 goto out;
727
728 remove_zspage(class, zspage);
729 insert_zspage(class, zspage, newfg);
730 out:
731 return newfg;
732 }
733
get_zspage(struct page * page)734 static struct zspage *get_zspage(struct page *page)
735 {
736 struct zspage *zspage = (struct zspage *)page_private(page);
737
738 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
739 return zspage;
740 }
741
get_next_page(struct page * page)742 static struct page *get_next_page(struct page *page)
743 {
744 struct zspage *zspage = get_zspage(page);
745
746 if (unlikely(ZsHugePage(zspage)))
747 return NULL;
748
749 return (struct page *)page->index;
750 }
751
752 /**
753 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
754 * @obj: the encoded object value
755 * @page: page object resides in zspage
756 * @obj_idx: object index
757 */
obj_to_location(unsigned long obj,struct page ** page,unsigned int * obj_idx)758 static void obj_to_location(unsigned long obj, struct page **page,
759 unsigned int *obj_idx)
760 {
761 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
762 *obj_idx = (obj & OBJ_INDEX_MASK);
763 }
764
obj_to_page(unsigned long obj,struct page ** page)765 static void obj_to_page(unsigned long obj, struct page **page)
766 {
767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 }
769
770 /**
771 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
772 * @page: page object resides in zspage
773 * @obj_idx: object index
774 */
location_to_obj(struct page * page,unsigned int obj_idx)775 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
776 {
777 unsigned long obj;
778
779 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
780 obj |= obj_idx & OBJ_INDEX_MASK;
781
782 return obj;
783 }
784
handle_to_obj(unsigned long handle)785 static unsigned long handle_to_obj(unsigned long handle)
786 {
787 return *(unsigned long *)handle;
788 }
789
obj_allocated(struct page * page,void * obj,unsigned long * phandle)790 static inline bool obj_allocated(struct page *page, void *obj,
791 unsigned long *phandle)
792 {
793 unsigned long handle;
794 struct zspage *zspage = get_zspage(page);
795
796 if (unlikely(ZsHugePage(zspage))) {
797 VM_BUG_ON_PAGE(!is_first_page(page), page);
798 handle = page->index;
799 } else
800 handle = *(unsigned long *)obj;
801
802 if (!(handle & OBJ_ALLOCATED_TAG))
803 return false;
804
805 /* Clear all tags before returning the handle */
806 *phandle = handle & ~OBJ_TAG_MASK;
807 return true;
808 }
809
reset_page(struct page * page)810 static void reset_page(struct page *page)
811 {
812 __ClearPageMovable(page);
813 ClearPagePrivate(page);
814 set_page_private(page, 0);
815 page->index = 0;
816 __ClearPageZsmalloc(page);
817 }
818
trylock_zspage(struct zspage * zspage)819 static int trylock_zspage(struct zspage *zspage)
820 {
821 struct page *cursor, *fail;
822
823 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
824 get_next_page(cursor)) {
825 if (!trylock_page(cursor)) {
826 fail = cursor;
827 goto unlock;
828 }
829 }
830
831 return 1;
832 unlock:
833 for (cursor = get_first_page(zspage); cursor != fail; cursor =
834 get_next_page(cursor))
835 unlock_page(cursor);
836
837 return 0;
838 }
839
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)840 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
841 struct zspage *zspage)
842 {
843 struct page *page, *next;
844
845 assert_spin_locked(&class->lock);
846
847 VM_BUG_ON(get_zspage_inuse(zspage));
848 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
849
850 next = page = get_first_page(zspage);
851 do {
852 VM_BUG_ON_PAGE(!PageLocked(page), page);
853 next = get_next_page(page);
854 reset_page(page);
855 unlock_page(page);
856 dec_zone_page_state(page, NR_ZSPAGES);
857 put_page(page);
858 page = next;
859 } while (page != NULL);
860
861 cache_free_zspage(pool, zspage);
862
863 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
864 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
865 }
866
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)867 static void free_zspage(struct zs_pool *pool, struct size_class *class,
868 struct zspage *zspage)
869 {
870 VM_BUG_ON(get_zspage_inuse(zspage));
871 VM_BUG_ON(list_empty(&zspage->list));
872
873 /*
874 * Since zs_free couldn't be sleepable, this function cannot call
875 * lock_page. The page locks trylock_zspage got will be released
876 * by __free_zspage.
877 */
878 if (!trylock_zspage(zspage)) {
879 kick_deferred_free(pool);
880 return;
881 }
882
883 remove_zspage(class, zspage);
884 __free_zspage(pool, class, zspage);
885 }
886
887 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)888 static void init_zspage(struct size_class *class, struct zspage *zspage)
889 {
890 unsigned int freeobj = 1;
891 unsigned long off = 0;
892 struct page *page = get_first_page(zspage);
893
894 while (page) {
895 struct page *next_page;
896 struct link_free *link;
897 void *vaddr;
898
899 set_first_obj_offset(page, off);
900
901 vaddr = kmap_atomic(page);
902 link = (struct link_free *)vaddr + off / sizeof(*link);
903
904 while ((off += class->size) < PAGE_SIZE) {
905 link->next = freeobj++ << OBJ_TAG_BITS;
906 link += class->size / sizeof(*link);
907 }
908
909 /*
910 * We now come to the last (full or partial) object on this
911 * page, which must point to the first object on the next
912 * page (if present)
913 */
914 next_page = get_next_page(page);
915 if (next_page) {
916 link->next = freeobj++ << OBJ_TAG_BITS;
917 } else {
918 /*
919 * Reset OBJ_TAG_BITS bit to last link to tell
920 * whether it's allocated object or not.
921 */
922 link->next = -1UL << OBJ_TAG_BITS;
923 }
924 kunmap_atomic(vaddr);
925 page = next_page;
926 off %= PAGE_SIZE;
927 }
928
929 set_freeobj(zspage, 0);
930 }
931
create_page_chain(struct size_class * class,struct zspage * zspage,struct page * pages[])932 static void create_page_chain(struct size_class *class, struct zspage *zspage,
933 struct page *pages[])
934 {
935 int i;
936 struct page *page;
937 struct page *prev_page = NULL;
938 int nr_pages = class->pages_per_zspage;
939
940 /*
941 * Allocate individual pages and link them together as:
942 * 1. all pages are linked together using page->index
943 * 2. each sub-page point to zspage using page->private
944 *
945 * we set PG_private to identify the first page (i.e. no other sub-page
946 * has this flag set).
947 */
948 for (i = 0; i < nr_pages; i++) {
949 page = pages[i];
950 set_page_private(page, (unsigned long)zspage);
951 page->index = 0;
952 if (i == 0) {
953 zspage->first_page = page;
954 SetPagePrivate(page);
955 if (unlikely(class->objs_per_zspage == 1 &&
956 class->pages_per_zspage == 1))
957 SetZsHugePage(zspage);
958 } else {
959 prev_page->index = (unsigned long)page;
960 }
961 prev_page = page;
962 }
963 }
964
965 /*
966 * Allocate a zspage for the given size class
967 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)968 static struct zspage *alloc_zspage(struct zs_pool *pool,
969 struct size_class *class,
970 gfp_t gfp)
971 {
972 int i;
973 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
974 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
975
976 if (!zspage)
977 return NULL;
978
979 zspage->magic = ZSPAGE_MAGIC;
980 migrate_lock_init(zspage);
981
982 for (i = 0; i < class->pages_per_zspage; i++) {
983 struct page *page;
984
985 page = alloc_page(gfp);
986 if (!page) {
987 while (--i >= 0) {
988 dec_zone_page_state(pages[i], NR_ZSPAGES);
989 __ClearPageZsmalloc(pages[i]);
990 __free_page(pages[i]);
991 }
992 cache_free_zspage(pool, zspage);
993 return NULL;
994 }
995 __SetPageZsmalloc(page);
996
997 inc_zone_page_state(page, NR_ZSPAGES);
998 pages[i] = page;
999 }
1000
1001 create_page_chain(class, zspage, pages);
1002 init_zspage(class, zspage);
1003 zspage->pool = pool;
1004 zspage->class = class->index;
1005
1006 return zspage;
1007 }
1008
find_get_zspage(struct size_class * class)1009 static struct zspage *find_get_zspage(struct size_class *class)
1010 {
1011 int i;
1012 struct zspage *zspage;
1013
1014 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1015 zspage = list_first_entry_or_null(&class->fullness_list[i],
1016 struct zspage, list);
1017 if (zspage)
1018 break;
1019 }
1020
1021 return zspage;
1022 }
1023
__zs_cpu_up(struct mapping_area * area)1024 static inline int __zs_cpu_up(struct mapping_area *area)
1025 {
1026 /*
1027 * Make sure we don't leak memory if a cpu UP notification
1028 * and zs_init() race and both call zs_cpu_up() on the same cpu
1029 */
1030 if (area->vm_buf)
1031 return 0;
1032 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1033 if (!area->vm_buf)
1034 return -ENOMEM;
1035 return 0;
1036 }
1037
__zs_cpu_down(struct mapping_area * area)1038 static inline void __zs_cpu_down(struct mapping_area *area)
1039 {
1040 kfree(area->vm_buf);
1041 area->vm_buf = NULL;
1042 }
1043
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1044 static void *__zs_map_object(struct mapping_area *area,
1045 struct page *pages[2], int off, int size)
1046 {
1047 int sizes[2];
1048 void *addr;
1049 char *buf = area->vm_buf;
1050
1051 /* disable page faults to match kmap_atomic() return conditions */
1052 pagefault_disable();
1053
1054 /* no read fastpath */
1055 if (area->vm_mm == ZS_MM_WO)
1056 goto out;
1057
1058 sizes[0] = PAGE_SIZE - off;
1059 sizes[1] = size - sizes[0];
1060
1061 /* copy object to per-cpu buffer */
1062 addr = kmap_atomic(pages[0]);
1063 memcpy(buf, addr + off, sizes[0]);
1064 kunmap_atomic(addr);
1065 addr = kmap_atomic(pages[1]);
1066 memcpy(buf + sizes[0], addr, sizes[1]);
1067 kunmap_atomic(addr);
1068 out:
1069 return area->vm_buf;
1070 }
1071
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1072 static void __zs_unmap_object(struct mapping_area *area,
1073 struct page *pages[2], int off, int size)
1074 {
1075 int sizes[2];
1076 void *addr;
1077 char *buf;
1078
1079 /* no write fastpath */
1080 if (area->vm_mm == ZS_MM_RO)
1081 goto out;
1082
1083 buf = area->vm_buf;
1084 buf = buf + ZS_HANDLE_SIZE;
1085 size -= ZS_HANDLE_SIZE;
1086 off += ZS_HANDLE_SIZE;
1087
1088 sizes[0] = PAGE_SIZE - off;
1089 sizes[1] = size - sizes[0];
1090
1091 /* copy per-cpu buffer to object */
1092 addr = kmap_atomic(pages[0]);
1093 memcpy(addr + off, buf, sizes[0]);
1094 kunmap_atomic(addr);
1095 addr = kmap_atomic(pages[1]);
1096 memcpy(addr, buf + sizes[0], sizes[1]);
1097 kunmap_atomic(addr);
1098
1099 out:
1100 /* enable page faults to match kunmap_atomic() return conditions */
1101 pagefault_enable();
1102 }
1103
zs_cpu_prepare(unsigned int cpu)1104 static int zs_cpu_prepare(unsigned int cpu)
1105 {
1106 struct mapping_area *area;
1107
1108 area = &per_cpu(zs_map_area, cpu);
1109 return __zs_cpu_up(area);
1110 }
1111
zs_cpu_dead(unsigned int cpu)1112 static int zs_cpu_dead(unsigned int cpu)
1113 {
1114 struct mapping_area *area;
1115
1116 area = &per_cpu(zs_map_area, cpu);
1117 __zs_cpu_down(area);
1118 return 0;
1119 }
1120
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1121 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1122 int objs_per_zspage)
1123 {
1124 if (prev->pages_per_zspage == pages_per_zspage &&
1125 prev->objs_per_zspage == objs_per_zspage)
1126 return true;
1127
1128 return false;
1129 }
1130
zspage_full(struct size_class * class,struct zspage * zspage)1131 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1132 {
1133 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1134 }
1135
zspage_empty(struct zspage * zspage)1136 static bool zspage_empty(struct zspage *zspage)
1137 {
1138 return get_zspage_inuse(zspage) == 0;
1139 }
1140
1141 /**
1142 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1143 * that hold objects of the provided size.
1144 * @pool: zsmalloc pool to use
1145 * @size: object size
1146 *
1147 * Context: Any context.
1148 *
1149 * Return: the index of the zsmalloc &size_class that hold objects of the
1150 * provided size.
1151 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1152 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1153 {
1154 struct size_class *class;
1155
1156 class = pool->size_class[get_size_class_index(size)];
1157
1158 return class->index;
1159 }
1160 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1161
zs_get_total_pages(struct zs_pool * pool)1162 unsigned long zs_get_total_pages(struct zs_pool *pool)
1163 {
1164 return atomic_long_read(&pool->pages_allocated);
1165 }
1166 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1167
1168 /**
1169 * zs_map_object - get address of allocated object from handle.
1170 * @pool: pool from which the object was allocated
1171 * @handle: handle returned from zs_malloc
1172 * @mm: mapping mode to use
1173 *
1174 * Before using an object allocated from zs_malloc, it must be mapped using
1175 * this function. When done with the object, it must be unmapped using
1176 * zs_unmap_object.
1177 *
1178 * Only one object can be mapped per cpu at a time. There is no protection
1179 * against nested mappings.
1180 *
1181 * This function returns with preemption and page faults disabled.
1182 */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1183 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1184 enum zs_mapmode mm)
1185 {
1186 struct zspage *zspage;
1187 struct page *page;
1188 unsigned long obj, off;
1189 unsigned int obj_idx;
1190
1191 struct size_class *class;
1192 struct mapping_area *area;
1193 struct page *pages[2];
1194 void *ret;
1195
1196 /*
1197 * Because we use per-cpu mapping areas shared among the
1198 * pools/users, we can't allow mapping in interrupt context
1199 * because it can corrupt another users mappings.
1200 */
1201 BUG_ON(in_interrupt());
1202
1203 /* It guarantees it can get zspage from handle safely */
1204 read_lock(&pool->migrate_lock);
1205 obj = handle_to_obj(handle);
1206 obj_to_location(obj, &page, &obj_idx);
1207 zspage = get_zspage(page);
1208
1209 /*
1210 * migration cannot move any zpages in this zspage. Here, class->lock
1211 * is too heavy since callers would take some time until they calls
1212 * zs_unmap_object API so delegate the locking from class to zspage
1213 * which is smaller granularity.
1214 */
1215 migrate_read_lock(zspage);
1216 read_unlock(&pool->migrate_lock);
1217
1218 class = zspage_class(pool, zspage);
1219 off = offset_in_page(class->size * obj_idx);
1220
1221 local_lock(&zs_map_area.lock);
1222 area = this_cpu_ptr(&zs_map_area);
1223 area->vm_mm = mm;
1224 if (off + class->size <= PAGE_SIZE) {
1225 /* this object is contained entirely within a page */
1226 area->vm_addr = kmap_atomic(page);
1227 ret = area->vm_addr + off;
1228 goto out;
1229 }
1230
1231 /* this object spans two pages */
1232 pages[0] = page;
1233 pages[1] = get_next_page(page);
1234 BUG_ON(!pages[1]);
1235
1236 ret = __zs_map_object(area, pages, off, class->size);
1237 out:
1238 if (likely(!ZsHugePage(zspage)))
1239 ret += ZS_HANDLE_SIZE;
1240
1241 return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(zs_map_object);
1244
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1245 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1246 {
1247 struct zspage *zspage;
1248 struct page *page;
1249 unsigned long obj, off;
1250 unsigned int obj_idx;
1251
1252 struct size_class *class;
1253 struct mapping_area *area;
1254
1255 obj = handle_to_obj(handle);
1256 obj_to_location(obj, &page, &obj_idx);
1257 zspage = get_zspage(page);
1258 class = zspage_class(pool, zspage);
1259 off = offset_in_page(class->size * obj_idx);
1260
1261 area = this_cpu_ptr(&zs_map_area);
1262 if (off + class->size <= PAGE_SIZE)
1263 kunmap_atomic(area->vm_addr);
1264 else {
1265 struct page *pages[2];
1266
1267 pages[0] = page;
1268 pages[1] = get_next_page(page);
1269 BUG_ON(!pages[1]);
1270
1271 __zs_unmap_object(area, pages, off, class->size);
1272 }
1273 local_unlock(&zs_map_area.lock);
1274
1275 migrate_read_unlock(zspage);
1276 }
1277 EXPORT_SYMBOL_GPL(zs_unmap_object);
1278
1279 /**
1280 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1281 * zsmalloc &size_class.
1282 * @pool: zsmalloc pool to use
1283 *
1284 * The function returns the size of the first huge class - any object of equal
1285 * or bigger size will be stored in zspage consisting of a single physical
1286 * page.
1287 *
1288 * Context: Any context.
1289 *
1290 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1291 */
zs_huge_class_size(struct zs_pool * pool)1292 size_t zs_huge_class_size(struct zs_pool *pool)
1293 {
1294 return huge_class_size;
1295 }
1296 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1297
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1298 static unsigned long obj_malloc(struct zs_pool *pool,
1299 struct zspage *zspage, unsigned long handle)
1300 {
1301 int i, nr_page, offset;
1302 unsigned long obj;
1303 struct link_free *link;
1304 struct size_class *class;
1305
1306 struct page *m_page;
1307 unsigned long m_offset;
1308 void *vaddr;
1309
1310 class = pool->size_class[zspage->class];
1311 obj = get_freeobj(zspage);
1312
1313 offset = obj * class->size;
1314 nr_page = offset >> PAGE_SHIFT;
1315 m_offset = offset_in_page(offset);
1316 m_page = get_first_page(zspage);
1317
1318 for (i = 0; i < nr_page; i++)
1319 m_page = get_next_page(m_page);
1320
1321 vaddr = kmap_atomic(m_page);
1322 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1323 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1324 if (likely(!ZsHugePage(zspage)))
1325 /* record handle in the header of allocated chunk */
1326 link->handle = handle | OBJ_ALLOCATED_TAG;
1327 else
1328 /* record handle to page->index */
1329 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1330
1331 kunmap_atomic(vaddr);
1332 mod_zspage_inuse(zspage, 1);
1333
1334 obj = location_to_obj(m_page, obj);
1335 record_obj(handle, obj);
1336
1337 return obj;
1338 }
1339
1340
1341 /**
1342 * zs_malloc - Allocate block of given size from pool.
1343 * @pool: pool to allocate from
1344 * @size: size of block to allocate
1345 * @gfp: gfp flags when allocating object
1346 *
1347 * On success, handle to the allocated object is returned,
1348 * otherwise an ERR_PTR().
1349 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1350 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1351 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1352 {
1353 unsigned long handle;
1354 struct size_class *class;
1355 int newfg;
1356 struct zspage *zspage;
1357
1358 if (unlikely(!size))
1359 return (unsigned long)ERR_PTR(-EINVAL);
1360
1361 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1362 return (unsigned long)ERR_PTR(-ENOSPC);
1363
1364 handle = cache_alloc_handle(pool, gfp);
1365 if (!handle)
1366 return (unsigned long)ERR_PTR(-ENOMEM);
1367
1368 /* extra space in chunk to keep the handle */
1369 size += ZS_HANDLE_SIZE;
1370 class = pool->size_class[get_size_class_index(size)];
1371
1372 /* class->lock effectively protects the zpage migration */
1373 spin_lock(&class->lock);
1374 zspage = find_get_zspage(class);
1375 if (likely(zspage)) {
1376 obj_malloc(pool, zspage, handle);
1377 /* Now move the zspage to another fullness group, if required */
1378 fix_fullness_group(class, zspage);
1379 class_stat_add(class, ZS_OBJS_INUSE, 1);
1380
1381 goto out;
1382 }
1383
1384 spin_unlock(&class->lock);
1385
1386 zspage = alloc_zspage(pool, class, gfp);
1387 if (!zspage) {
1388 cache_free_handle(pool, handle);
1389 return (unsigned long)ERR_PTR(-ENOMEM);
1390 }
1391
1392 spin_lock(&class->lock);
1393 obj_malloc(pool, zspage, handle);
1394 newfg = get_fullness_group(class, zspage);
1395 insert_zspage(class, zspage, newfg);
1396 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1397 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1398 class_stat_add(class, ZS_OBJS_INUSE, 1);
1399
1400 /* We completely set up zspage so mark them as movable */
1401 SetZsPageMovable(pool, zspage);
1402 out:
1403 spin_unlock(&class->lock);
1404
1405 return handle;
1406 }
1407 EXPORT_SYMBOL_GPL(zs_malloc);
1408
obj_free(int class_size,unsigned long obj)1409 static void obj_free(int class_size, unsigned long obj)
1410 {
1411 struct link_free *link;
1412 struct zspage *zspage;
1413 struct page *f_page;
1414 unsigned long f_offset;
1415 unsigned int f_objidx;
1416 void *vaddr;
1417
1418 obj_to_location(obj, &f_page, &f_objidx);
1419 f_offset = offset_in_page(class_size * f_objidx);
1420 zspage = get_zspage(f_page);
1421
1422 vaddr = kmap_atomic(f_page);
1423 link = (struct link_free *)(vaddr + f_offset);
1424
1425 /* Insert this object in containing zspage's freelist */
1426 if (likely(!ZsHugePage(zspage)))
1427 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1428 else
1429 f_page->index = 0;
1430 set_freeobj(zspage, f_objidx);
1431
1432 kunmap_atomic(vaddr);
1433 mod_zspage_inuse(zspage, -1);
1434 }
1435
zs_free(struct zs_pool * pool,unsigned long handle)1436 void zs_free(struct zs_pool *pool, unsigned long handle)
1437 {
1438 struct zspage *zspage;
1439 struct page *f_page;
1440 unsigned long obj;
1441 struct size_class *class;
1442 int fullness;
1443
1444 if (IS_ERR_OR_NULL((void *)handle))
1445 return;
1446
1447 /*
1448 * The pool->migrate_lock protects the race with zpage's migration
1449 * so it's safe to get the page from handle.
1450 */
1451 read_lock(&pool->migrate_lock);
1452 obj = handle_to_obj(handle);
1453 obj_to_page(obj, &f_page);
1454 zspage = get_zspage(f_page);
1455 class = zspage_class(pool, zspage);
1456 spin_lock(&class->lock);
1457 read_unlock(&pool->migrate_lock);
1458
1459 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1460 obj_free(class->size, obj);
1461
1462 fullness = fix_fullness_group(class, zspage);
1463 if (fullness == ZS_INUSE_RATIO_0)
1464 free_zspage(pool, class, zspage);
1465
1466 spin_unlock(&class->lock);
1467 cache_free_handle(pool, handle);
1468 }
1469 EXPORT_SYMBOL_GPL(zs_free);
1470
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1471 static void zs_object_copy(struct size_class *class, unsigned long dst,
1472 unsigned long src)
1473 {
1474 struct page *s_page, *d_page;
1475 unsigned int s_objidx, d_objidx;
1476 unsigned long s_off, d_off;
1477 void *s_addr, *d_addr;
1478 int s_size, d_size, size;
1479 int written = 0;
1480
1481 s_size = d_size = class->size;
1482
1483 obj_to_location(src, &s_page, &s_objidx);
1484 obj_to_location(dst, &d_page, &d_objidx);
1485
1486 s_off = offset_in_page(class->size * s_objidx);
1487 d_off = offset_in_page(class->size * d_objidx);
1488
1489 if (s_off + class->size > PAGE_SIZE)
1490 s_size = PAGE_SIZE - s_off;
1491
1492 if (d_off + class->size > PAGE_SIZE)
1493 d_size = PAGE_SIZE - d_off;
1494
1495 s_addr = kmap_atomic(s_page);
1496 d_addr = kmap_atomic(d_page);
1497
1498 while (1) {
1499 size = min(s_size, d_size);
1500 memcpy(d_addr + d_off, s_addr + s_off, size);
1501 written += size;
1502
1503 if (written == class->size)
1504 break;
1505
1506 s_off += size;
1507 s_size -= size;
1508 d_off += size;
1509 d_size -= size;
1510
1511 /*
1512 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1513 * calls must occurs in reverse order of calls to kmap_atomic().
1514 * So, to call kunmap_atomic(s_addr) we should first call
1515 * kunmap_atomic(d_addr). For more details see
1516 * Documentation/mm/highmem.rst.
1517 */
1518 if (s_off >= PAGE_SIZE) {
1519 kunmap_atomic(d_addr);
1520 kunmap_atomic(s_addr);
1521 s_page = get_next_page(s_page);
1522 s_addr = kmap_atomic(s_page);
1523 d_addr = kmap_atomic(d_page);
1524 s_size = class->size - written;
1525 s_off = 0;
1526 }
1527
1528 if (d_off >= PAGE_SIZE) {
1529 kunmap_atomic(d_addr);
1530 d_page = get_next_page(d_page);
1531 d_addr = kmap_atomic(d_page);
1532 d_size = class->size - written;
1533 d_off = 0;
1534 }
1535 }
1536
1537 kunmap_atomic(d_addr);
1538 kunmap_atomic(s_addr);
1539 }
1540
1541 /*
1542 * Find alloced object in zspage from index object and
1543 * return handle.
1544 */
find_alloced_obj(struct size_class * class,struct page * page,int * obj_idx)1545 static unsigned long find_alloced_obj(struct size_class *class,
1546 struct page *page, int *obj_idx)
1547 {
1548 unsigned int offset;
1549 int index = *obj_idx;
1550 unsigned long handle = 0;
1551 void *addr = kmap_atomic(page);
1552
1553 offset = get_first_obj_offset(page);
1554 offset += class->size * index;
1555
1556 while (offset < PAGE_SIZE) {
1557 if (obj_allocated(page, addr + offset, &handle))
1558 break;
1559
1560 offset += class->size;
1561 index++;
1562 }
1563
1564 kunmap_atomic(addr);
1565
1566 *obj_idx = index;
1567
1568 return handle;
1569 }
1570
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1571 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1572 struct zspage *dst_zspage)
1573 {
1574 unsigned long used_obj, free_obj;
1575 unsigned long handle;
1576 int obj_idx = 0;
1577 struct page *s_page = get_first_page(src_zspage);
1578 struct size_class *class = pool->size_class[src_zspage->class];
1579
1580 while (1) {
1581 handle = find_alloced_obj(class, s_page, &obj_idx);
1582 if (!handle) {
1583 s_page = get_next_page(s_page);
1584 if (!s_page)
1585 break;
1586 obj_idx = 0;
1587 continue;
1588 }
1589
1590 used_obj = handle_to_obj(handle);
1591 free_obj = obj_malloc(pool, dst_zspage, handle);
1592 zs_object_copy(class, free_obj, used_obj);
1593 obj_idx++;
1594 obj_free(class->size, used_obj);
1595
1596 /* Stop if there is no more space */
1597 if (zspage_full(class, dst_zspage))
1598 break;
1599
1600 /* Stop if there are no more objects to migrate */
1601 if (zspage_empty(src_zspage))
1602 break;
1603 }
1604 }
1605
isolate_src_zspage(struct size_class * class)1606 static struct zspage *isolate_src_zspage(struct size_class *class)
1607 {
1608 struct zspage *zspage;
1609 int fg;
1610
1611 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1612 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1613 struct zspage, list);
1614 if (zspage) {
1615 remove_zspage(class, zspage);
1616 return zspage;
1617 }
1618 }
1619
1620 return zspage;
1621 }
1622
isolate_dst_zspage(struct size_class * class)1623 static struct zspage *isolate_dst_zspage(struct size_class *class)
1624 {
1625 struct zspage *zspage;
1626 int fg;
1627
1628 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1629 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1630 struct zspage, list);
1631 if (zspage) {
1632 remove_zspage(class, zspage);
1633 return zspage;
1634 }
1635 }
1636
1637 return zspage;
1638 }
1639
1640 /*
1641 * putback_zspage - add @zspage into right class's fullness list
1642 * @class: destination class
1643 * @zspage: target page
1644 *
1645 * Return @zspage's fullness status
1646 */
putback_zspage(struct size_class * class,struct zspage * zspage)1647 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1648 {
1649 int fullness;
1650
1651 fullness = get_fullness_group(class, zspage);
1652 insert_zspage(class, zspage, fullness);
1653
1654 return fullness;
1655 }
1656
1657 #ifdef CONFIG_COMPACTION
1658 /*
1659 * To prevent zspage destroy during migration, zspage freeing should
1660 * hold locks of all pages in the zspage.
1661 */
lock_zspage(struct zspage * zspage)1662 static void lock_zspage(struct zspage *zspage)
1663 {
1664 struct page *curr_page, *page;
1665
1666 /*
1667 * Pages we haven't locked yet can be migrated off the list while we're
1668 * trying to lock them, so we need to be careful and only attempt to
1669 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1670 * may no longer belong to the zspage. This means that we may wait for
1671 * the wrong page to unlock, so we must take a reference to the page
1672 * prior to waiting for it to unlock outside migrate_read_lock().
1673 */
1674 while (1) {
1675 migrate_read_lock(zspage);
1676 page = get_first_page(zspage);
1677 if (trylock_page(page))
1678 break;
1679 get_page(page);
1680 migrate_read_unlock(zspage);
1681 wait_on_page_locked(page);
1682 put_page(page);
1683 }
1684
1685 curr_page = page;
1686 while ((page = get_next_page(curr_page))) {
1687 if (trylock_page(page)) {
1688 curr_page = page;
1689 } else {
1690 get_page(page);
1691 migrate_read_unlock(zspage);
1692 wait_on_page_locked(page);
1693 put_page(page);
1694 migrate_read_lock(zspage);
1695 }
1696 }
1697 migrate_read_unlock(zspage);
1698 }
1699 #endif /* CONFIG_COMPACTION */
1700
migrate_lock_init(struct zspage * zspage)1701 static void migrate_lock_init(struct zspage *zspage)
1702 {
1703 rwlock_init(&zspage->lock);
1704 }
1705
migrate_read_lock(struct zspage * zspage)1706 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1707 {
1708 read_lock(&zspage->lock);
1709 }
1710
migrate_read_unlock(struct zspage * zspage)1711 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1712 {
1713 read_unlock(&zspage->lock);
1714 }
1715
migrate_write_lock(struct zspage * zspage)1716 static void migrate_write_lock(struct zspage *zspage)
1717 {
1718 write_lock(&zspage->lock);
1719 }
1720
migrate_write_unlock(struct zspage * zspage)1721 static void migrate_write_unlock(struct zspage *zspage)
1722 {
1723 write_unlock(&zspage->lock);
1724 }
1725
1726 #ifdef CONFIG_COMPACTION
1727
1728 static const struct movable_operations zsmalloc_mops;
1729
replace_sub_page(struct size_class * class,struct zspage * zspage,struct page * newpage,struct page * oldpage)1730 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1731 struct page *newpage, struct page *oldpage)
1732 {
1733 struct page *page;
1734 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1735 int idx = 0;
1736
1737 page = get_first_page(zspage);
1738 do {
1739 if (page == oldpage)
1740 pages[idx] = newpage;
1741 else
1742 pages[idx] = page;
1743 idx++;
1744 } while ((page = get_next_page(page)) != NULL);
1745
1746 create_page_chain(class, zspage, pages);
1747 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1748 if (unlikely(ZsHugePage(zspage)))
1749 newpage->index = oldpage->index;
1750 __SetPageMovable(newpage, &zsmalloc_mops);
1751 }
1752
zs_page_isolate(struct page * page,isolate_mode_t mode)1753 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1754 {
1755 /*
1756 * Page is locked so zspage couldn't be destroyed. For detail, look at
1757 * lock_zspage in free_zspage.
1758 */
1759 VM_BUG_ON_PAGE(PageIsolated(page), page);
1760
1761 return true;
1762 }
1763
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1764 static int zs_page_migrate(struct page *newpage, struct page *page,
1765 enum migrate_mode mode)
1766 {
1767 struct zs_pool *pool;
1768 struct size_class *class;
1769 struct zspage *zspage;
1770 struct page *dummy;
1771 void *s_addr, *d_addr, *addr;
1772 unsigned int offset;
1773 unsigned long handle;
1774 unsigned long old_obj, new_obj;
1775 unsigned int obj_idx;
1776
1777 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1778
1779 /* We're committed, tell the world that this is a Zsmalloc page. */
1780 __SetPageZsmalloc(newpage);
1781
1782 /* The page is locked, so this pointer must remain valid */
1783 zspage = get_zspage(page);
1784 pool = zspage->pool;
1785
1786 /*
1787 * The pool migrate_lock protects the race between zpage migration
1788 * and zs_free.
1789 */
1790 write_lock(&pool->migrate_lock);
1791 class = zspage_class(pool, zspage);
1792
1793 /*
1794 * the class lock protects zpage alloc/free in the zspage.
1795 */
1796 spin_lock(&class->lock);
1797 /* the migrate_write_lock protects zpage access via zs_map_object */
1798 migrate_write_lock(zspage);
1799
1800 offset = get_first_obj_offset(page);
1801 s_addr = kmap_atomic(page);
1802
1803 /*
1804 * Here, any user cannot access all objects in the zspage so let's move.
1805 */
1806 d_addr = kmap_atomic(newpage);
1807 copy_page(d_addr, s_addr);
1808 kunmap_atomic(d_addr);
1809
1810 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1811 addr += class->size) {
1812 if (obj_allocated(page, addr, &handle)) {
1813
1814 old_obj = handle_to_obj(handle);
1815 obj_to_location(old_obj, &dummy, &obj_idx);
1816 new_obj = (unsigned long)location_to_obj(newpage,
1817 obj_idx);
1818 record_obj(handle, new_obj);
1819 }
1820 }
1821 kunmap_atomic(s_addr);
1822
1823 replace_sub_page(class, zspage, newpage, page);
1824 /*
1825 * Since we complete the data copy and set up new zspage structure,
1826 * it's okay to release migration_lock.
1827 */
1828 write_unlock(&pool->migrate_lock);
1829 spin_unlock(&class->lock);
1830 migrate_write_unlock(zspage);
1831
1832 get_page(newpage);
1833 if (page_zone(newpage) != page_zone(page)) {
1834 dec_zone_page_state(page, NR_ZSPAGES);
1835 inc_zone_page_state(newpage, NR_ZSPAGES);
1836 }
1837
1838 reset_page(page);
1839 put_page(page);
1840
1841 return MIGRATEPAGE_SUCCESS;
1842 }
1843
zs_page_putback(struct page * page)1844 static void zs_page_putback(struct page *page)
1845 {
1846 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1847 }
1848
1849 static const struct movable_operations zsmalloc_mops = {
1850 .isolate_page = zs_page_isolate,
1851 .migrate_page = zs_page_migrate,
1852 .putback_page = zs_page_putback,
1853 };
1854
1855 /*
1856 * Caller should hold page_lock of all pages in the zspage
1857 * In here, we cannot use zspage meta data.
1858 */
async_free_zspage(struct work_struct * work)1859 static void async_free_zspage(struct work_struct *work)
1860 {
1861 int i;
1862 struct size_class *class;
1863 struct zspage *zspage, *tmp;
1864 LIST_HEAD(free_pages);
1865 struct zs_pool *pool = container_of(work, struct zs_pool,
1866 free_work);
1867
1868 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1869 class = pool->size_class[i];
1870 if (class->index != i)
1871 continue;
1872
1873 spin_lock(&class->lock);
1874 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1875 &free_pages);
1876 spin_unlock(&class->lock);
1877 }
1878
1879 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1880 list_del(&zspage->list);
1881 lock_zspage(zspage);
1882
1883 class = zspage_class(pool, zspage);
1884 spin_lock(&class->lock);
1885 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1886 __free_zspage(pool, class, zspage);
1887 spin_unlock(&class->lock);
1888 }
1889 };
1890
kick_deferred_free(struct zs_pool * pool)1891 static void kick_deferred_free(struct zs_pool *pool)
1892 {
1893 schedule_work(&pool->free_work);
1894 }
1895
zs_flush_migration(struct zs_pool * pool)1896 static void zs_flush_migration(struct zs_pool *pool)
1897 {
1898 flush_work(&pool->free_work);
1899 }
1900
init_deferred_free(struct zs_pool * pool)1901 static void init_deferred_free(struct zs_pool *pool)
1902 {
1903 INIT_WORK(&pool->free_work, async_free_zspage);
1904 }
1905
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1906 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1907 {
1908 struct page *page = get_first_page(zspage);
1909
1910 do {
1911 WARN_ON(!trylock_page(page));
1912 __SetPageMovable(page, &zsmalloc_mops);
1913 unlock_page(page);
1914 } while ((page = get_next_page(page)) != NULL);
1915 }
1916 #else
zs_flush_migration(struct zs_pool * pool)1917 static inline void zs_flush_migration(struct zs_pool *pool) { }
1918 #endif
1919
1920 /*
1921 *
1922 * Based on the number of unused allocated objects calculate
1923 * and return the number of pages that we can free.
1924 */
zs_can_compact(struct size_class * class)1925 static unsigned long zs_can_compact(struct size_class *class)
1926 {
1927 unsigned long obj_wasted;
1928 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1929 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1930
1931 if (obj_allocated <= obj_used)
1932 return 0;
1933
1934 obj_wasted = obj_allocated - obj_used;
1935 obj_wasted /= class->objs_per_zspage;
1936
1937 return obj_wasted * class->pages_per_zspage;
1938 }
1939
__zs_compact(struct zs_pool * pool,struct size_class * class)1940 static unsigned long __zs_compact(struct zs_pool *pool,
1941 struct size_class *class)
1942 {
1943 struct zspage *src_zspage = NULL;
1944 struct zspage *dst_zspage = NULL;
1945 unsigned long pages_freed = 0;
1946
1947 /*
1948 * protect the race between zpage migration and zs_free
1949 * as well as zpage allocation/free
1950 */
1951 write_lock(&pool->migrate_lock);
1952 spin_lock(&class->lock);
1953 while (zs_can_compact(class)) {
1954 int fg;
1955
1956 if (!dst_zspage) {
1957 dst_zspage = isolate_dst_zspage(class);
1958 if (!dst_zspage)
1959 break;
1960 }
1961
1962 src_zspage = isolate_src_zspage(class);
1963 if (!src_zspage)
1964 break;
1965
1966 migrate_write_lock(src_zspage);
1967 migrate_zspage(pool, src_zspage, dst_zspage);
1968 migrate_write_unlock(src_zspage);
1969
1970 fg = putback_zspage(class, src_zspage);
1971 if (fg == ZS_INUSE_RATIO_0) {
1972 free_zspage(pool, class, src_zspage);
1973 pages_freed += class->pages_per_zspage;
1974 }
1975 src_zspage = NULL;
1976
1977 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1978 || rwlock_is_contended(&pool->migrate_lock)) {
1979 putback_zspage(class, dst_zspage);
1980 dst_zspage = NULL;
1981
1982 spin_unlock(&class->lock);
1983 write_unlock(&pool->migrate_lock);
1984 cond_resched();
1985 write_lock(&pool->migrate_lock);
1986 spin_lock(&class->lock);
1987 }
1988 }
1989
1990 if (src_zspage)
1991 putback_zspage(class, src_zspage);
1992
1993 if (dst_zspage)
1994 putback_zspage(class, dst_zspage);
1995
1996 spin_unlock(&class->lock);
1997 write_unlock(&pool->migrate_lock);
1998
1999 return pages_freed;
2000 }
2001
zs_compact(struct zs_pool * pool)2002 unsigned long zs_compact(struct zs_pool *pool)
2003 {
2004 int i;
2005 struct size_class *class;
2006 unsigned long pages_freed = 0;
2007
2008 /*
2009 * Pool compaction is performed under pool->migrate_lock so it is basically
2010 * single-threaded. Having more than one thread in __zs_compact()
2011 * will increase pool->migrate_lock contention, which will impact other
2012 * zsmalloc operations that need pool->migrate_lock.
2013 */
2014 if (atomic_xchg(&pool->compaction_in_progress, 1))
2015 return 0;
2016
2017 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2018 class = pool->size_class[i];
2019 if (class->index != i)
2020 continue;
2021 pages_freed += __zs_compact(pool, class);
2022 }
2023 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2024 atomic_set(&pool->compaction_in_progress, 0);
2025
2026 return pages_freed;
2027 }
2028 EXPORT_SYMBOL_GPL(zs_compact);
2029
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2030 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2031 {
2032 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2033 }
2034 EXPORT_SYMBOL_GPL(zs_pool_stats);
2035
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2036 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2037 struct shrink_control *sc)
2038 {
2039 unsigned long pages_freed;
2040 struct zs_pool *pool = shrinker->private_data;
2041
2042 /*
2043 * Compact classes and calculate compaction delta.
2044 * Can run concurrently with a manually triggered
2045 * (by user) compaction.
2046 */
2047 pages_freed = zs_compact(pool);
2048
2049 return pages_freed ? pages_freed : SHRINK_STOP;
2050 }
2051
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2052 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2053 struct shrink_control *sc)
2054 {
2055 int i;
2056 struct size_class *class;
2057 unsigned long pages_to_free = 0;
2058 struct zs_pool *pool = shrinker->private_data;
2059
2060 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2061 class = pool->size_class[i];
2062 if (class->index != i)
2063 continue;
2064
2065 pages_to_free += zs_can_compact(class);
2066 }
2067
2068 return pages_to_free;
2069 }
2070
zs_unregister_shrinker(struct zs_pool * pool)2071 static void zs_unregister_shrinker(struct zs_pool *pool)
2072 {
2073 shrinker_free(pool->shrinker);
2074 }
2075
zs_register_shrinker(struct zs_pool * pool)2076 static int zs_register_shrinker(struct zs_pool *pool)
2077 {
2078 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2079 if (!pool->shrinker)
2080 return -ENOMEM;
2081
2082 pool->shrinker->scan_objects = zs_shrinker_scan;
2083 pool->shrinker->count_objects = zs_shrinker_count;
2084 pool->shrinker->batch = 0;
2085 pool->shrinker->private_data = pool;
2086
2087 shrinker_register(pool->shrinker);
2088
2089 return 0;
2090 }
2091
calculate_zspage_chain_size(int class_size)2092 static int calculate_zspage_chain_size(int class_size)
2093 {
2094 int i, min_waste = INT_MAX;
2095 int chain_size = 1;
2096
2097 if (is_power_of_2(class_size))
2098 return chain_size;
2099
2100 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2101 int waste;
2102
2103 waste = (i * PAGE_SIZE) % class_size;
2104 if (waste < min_waste) {
2105 min_waste = waste;
2106 chain_size = i;
2107 }
2108 }
2109
2110 return chain_size;
2111 }
2112
2113 /**
2114 * zs_create_pool - Creates an allocation pool to work from.
2115 * @name: pool name to be created
2116 *
2117 * This function must be called before anything when using
2118 * the zsmalloc allocator.
2119 *
2120 * On success, a pointer to the newly created pool is returned,
2121 * otherwise NULL.
2122 */
zs_create_pool(const char * name)2123 struct zs_pool *zs_create_pool(const char *name)
2124 {
2125 int i;
2126 struct zs_pool *pool;
2127 struct size_class *prev_class = NULL;
2128
2129 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2130 if (!pool)
2131 return NULL;
2132
2133 init_deferred_free(pool);
2134 rwlock_init(&pool->migrate_lock);
2135 atomic_set(&pool->compaction_in_progress, 0);
2136
2137 pool->name = kstrdup(name, GFP_KERNEL);
2138 if (!pool->name)
2139 goto err;
2140
2141 if (create_cache(pool))
2142 goto err;
2143
2144 /*
2145 * Iterate reversely, because, size of size_class that we want to use
2146 * for merging should be larger or equal to current size.
2147 */
2148 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2149 int size;
2150 int pages_per_zspage;
2151 int objs_per_zspage;
2152 struct size_class *class;
2153 int fullness;
2154
2155 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2156 if (size > ZS_MAX_ALLOC_SIZE)
2157 size = ZS_MAX_ALLOC_SIZE;
2158 pages_per_zspage = calculate_zspage_chain_size(size);
2159 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2160
2161 /*
2162 * We iterate from biggest down to smallest classes,
2163 * so huge_class_size holds the size of the first huge
2164 * class. Any object bigger than or equal to that will
2165 * endup in the huge class.
2166 */
2167 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2168 !huge_class_size) {
2169 huge_class_size = size;
2170 /*
2171 * The object uses ZS_HANDLE_SIZE bytes to store the
2172 * handle. We need to subtract it, because zs_malloc()
2173 * unconditionally adds handle size before it performs
2174 * size class search - so object may be smaller than
2175 * huge class size, yet it still can end up in the huge
2176 * class because it grows by ZS_HANDLE_SIZE extra bytes
2177 * right before class lookup.
2178 */
2179 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2180 }
2181
2182 /*
2183 * size_class is used for normal zsmalloc operation such
2184 * as alloc/free for that size. Although it is natural that we
2185 * have one size_class for each size, there is a chance that we
2186 * can get more memory utilization if we use one size_class for
2187 * many different sizes whose size_class have same
2188 * characteristics. So, we makes size_class point to
2189 * previous size_class if possible.
2190 */
2191 if (prev_class) {
2192 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2193 pool->size_class[i] = prev_class;
2194 continue;
2195 }
2196 }
2197
2198 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2199 if (!class)
2200 goto err;
2201
2202 class->size = size;
2203 class->index = i;
2204 class->pages_per_zspage = pages_per_zspage;
2205 class->objs_per_zspage = objs_per_zspage;
2206 spin_lock_init(&class->lock);
2207 pool->size_class[i] = class;
2208
2209 fullness = ZS_INUSE_RATIO_0;
2210 while (fullness < NR_FULLNESS_GROUPS) {
2211 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2212 fullness++;
2213 }
2214
2215 prev_class = class;
2216 }
2217
2218 /* debug only, don't abort if it fails */
2219 zs_pool_stat_create(pool, name);
2220
2221 /*
2222 * Not critical since shrinker is only used to trigger internal
2223 * defragmentation of the pool which is pretty optional thing. If
2224 * registration fails we still can use the pool normally and user can
2225 * trigger compaction manually. Thus, ignore return code.
2226 */
2227 zs_register_shrinker(pool);
2228
2229 return pool;
2230
2231 err:
2232 zs_destroy_pool(pool);
2233 return NULL;
2234 }
2235 EXPORT_SYMBOL_GPL(zs_create_pool);
2236
zs_destroy_pool(struct zs_pool * pool)2237 void zs_destroy_pool(struct zs_pool *pool)
2238 {
2239 int i;
2240
2241 zs_unregister_shrinker(pool);
2242 zs_flush_migration(pool);
2243 zs_pool_stat_destroy(pool);
2244
2245 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2246 int fg;
2247 struct size_class *class = pool->size_class[i];
2248
2249 if (!class)
2250 continue;
2251
2252 if (class->index != i)
2253 continue;
2254
2255 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2256 if (list_empty(&class->fullness_list[fg]))
2257 continue;
2258
2259 pr_err("Class-%d fullness group %d is not empty\n",
2260 class->size, fg);
2261 }
2262 kfree(class);
2263 }
2264
2265 destroy_cache(pool);
2266 kfree(pool->name);
2267 kfree(pool);
2268 }
2269 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2270
zs_init(void)2271 static int __init zs_init(void)
2272 {
2273 int ret;
2274
2275 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2276 zs_cpu_prepare, zs_cpu_dead);
2277 if (ret)
2278 goto out;
2279
2280 #ifdef CONFIG_ZPOOL
2281 zpool_register_driver(&zs_zpool_driver);
2282 #endif
2283
2284 zs_stat_init();
2285
2286 return 0;
2287
2288 out:
2289 return ret;
2290 }
2291
zs_exit(void)2292 static void __exit zs_exit(void)
2293 {
2294 #ifdef CONFIG_ZPOOL
2295 zpool_unregister_driver(&zs_zpool_driver);
2296 #endif
2297 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2298
2299 zs_stat_exit();
2300 }
2301
2302 module_init(zs_init);
2303 module_exit(zs_exit);
2304
2305 MODULE_LICENSE("Dual BSD/GPL");
2306 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2307 MODULE_DESCRIPTION("zsmalloc memory allocator");
2308