1 //===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements NewValueJump pass in Hexagon.
11 // Ideally, we should merge this as a Peephole pass prior to register
12 // allocation, but because we have a spill in between the feeder and new value
13 // jump instructions, we are forced to write after register allocation.
14 // Having said that, we should re-attempt to pull this earlier at some point
15 // in future.
16
17 // The basic approach looks for sequence of predicated jump, compare instruciton
18 // that genereates the predicate and, the feeder to the predicate. Once it finds
19 // all, it collapses compare and jump instruction into a new valu jump
20 // intstructions.
21 //
22 //
23 //===----------------------------------------------------------------------===//
24 #include "llvm/PassSupport.h"
25 #include "Hexagon.h"
26 #include "HexagonInstrInfo.h"
27 #include "HexagonMachineFunctionInfo.h"
28 #include "HexagonRegisterInfo.h"
29 #include "HexagonSubtarget.h"
30 #include "HexagonTargetMachine.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetRegisterInfo.h"
46 #include <map>
47 using namespace llvm;
48
49 #define DEBUG_TYPE "hexagon-nvj"
50
51 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
52
53 static cl::opt<int>
54 DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
55 "Maximum number of predicated jumps to be converted to New Value Jump"));
56
57 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
58 cl::ZeroOrMore, cl::init(false),
59 cl::desc("Disable New Value Jumps"));
60
61 namespace llvm {
62 void initializeHexagonNewValueJumpPass(PassRegistry&);
63 }
64
65
66 namespace {
67 struct HexagonNewValueJump : public MachineFunctionPass {
68 const HexagonInstrInfo *QII;
69 const HexagonRegisterInfo *QRI;
70
71 public:
72 static char ID;
73
HexagonNewValueJump__anon1ef955570111::HexagonNewValueJump74 HexagonNewValueJump() : MachineFunctionPass(ID) {
75 initializeHexagonNewValueJumpPass(*PassRegistry::getPassRegistry());
76 }
77
getAnalysisUsage__anon1ef955570111::HexagonNewValueJump78 void getAnalysisUsage(AnalysisUsage &AU) const override {
79 AU.addRequired<MachineBranchProbabilityInfo>();
80 MachineFunctionPass::getAnalysisUsage(AU);
81 }
82
getPassName__anon1ef955570111::HexagonNewValueJump83 const char *getPassName() const override {
84 return "Hexagon NewValueJump";
85 }
86
87 bool runOnMachineFunction(MachineFunction &Fn) override;
88
89 private:
90 /// \brief A handle to the branch probability pass.
91 const MachineBranchProbabilityInfo *MBPI;
92
93 };
94
95 } // end of anonymous namespace
96
97 char HexagonNewValueJump::ID = 0;
98
99 INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
100 "Hexagon NewValueJump", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)101 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
102 INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
103 "Hexagon NewValueJump", false, false)
104
105
106 // We have identified this II could be feeder to NVJ,
107 // verify that it can be.
108 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
109 const TargetRegisterInfo *TRI,
110 MachineBasicBlock::iterator II,
111 MachineBasicBlock::iterator end,
112 MachineBasicBlock::iterator skip,
113 MachineFunction &MF) {
114
115 // Predicated instruction can not be feeder to NVJ.
116 if (QII->isPredicated(II))
117 return false;
118
119 // Bail out if feederReg is a paired register (double regs in
120 // our case). One would think that we can check to see if a given
121 // register cmpReg1 or cmpReg2 is a sub register of feederReg
122 // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
123 // before the callsite of this function
124 // But we can not as it comes in the following fashion.
125 // %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
126 // %R0<def> = KILL %R0, %D0<imp-use,kill>
127 // %P0<def> = CMPEQri %R0<kill>, 0
128 // Hence, we need to check if it's a KILL instruction.
129 if (II->getOpcode() == TargetOpcode::KILL)
130 return false;
131
132
133 // Make sure there there is no 'def' or 'use' of any of the uses of
134 // feeder insn between it's definition, this MI and jump, jmpInst
135 // skipping compare, cmpInst.
136 // Here's the example.
137 // r21=memub(r22+r24<<#0)
138 // p0 = cmp.eq(r21, #0)
139 // r4=memub(r3+r21<<#0)
140 // if (p0.new) jump:t .LBB29_45
141 // Without this check, it will be converted into
142 // r4=memub(r3+r21<<#0)
143 // r21=memub(r22+r24<<#0)
144 // p0 = cmp.eq(r21, #0)
145 // if (p0.new) jump:t .LBB29_45
146 // and result WAR hazards if converted to New Value Jump.
147
148 for (unsigned i = 0; i < II->getNumOperands(); ++i) {
149 if (II->getOperand(i).isReg() &&
150 (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
151 MachineBasicBlock::iterator localII = II;
152 ++localII;
153 unsigned Reg = II->getOperand(i).getReg();
154 for (MachineBasicBlock::iterator localBegin = localII;
155 localBegin != end; ++localBegin) {
156 if (localBegin == skip ) continue;
157 // Check for Subregisters too.
158 if (localBegin->modifiesRegister(Reg, TRI) ||
159 localBegin->readsRegister(Reg, TRI))
160 return false;
161 }
162 }
163 }
164 return true;
165 }
166
167 // These are the common checks that need to performed
168 // to determine if
169 // 1. compare instruction can be moved before jump.
170 // 2. feeder to the compare instruction can be moved before jump.
commonChecksToProhibitNewValueJump(bool afterRA,MachineBasicBlock::iterator MII)171 static bool commonChecksToProhibitNewValueJump(bool afterRA,
172 MachineBasicBlock::iterator MII) {
173
174 // If store in path, bail out.
175 if (MII->getDesc().mayStore())
176 return false;
177
178 // if call in path, bail out.
179 if (MII->getOpcode() == Hexagon::J2_call)
180 return false;
181
182 // if NVJ is running prior to RA, do the following checks.
183 if (!afterRA) {
184 // The following Target Opcode instructions are spurious
185 // to new value jump. If they are in the path, bail out.
186 // KILL sets kill flag on the opcode. It also sets up a
187 // single register, out of pair.
188 // %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
189 // %R0<def> = KILL %R0, %D0<imp-use,kill>
190 // %P0<def> = CMPEQri %R0<kill>, 0
191 // PHI can be anything after RA.
192 // COPY can remateriaze things in between feeder, compare and nvj.
193 if (MII->getOpcode() == TargetOpcode::KILL ||
194 MII->getOpcode() == TargetOpcode::PHI ||
195 MII->getOpcode() == TargetOpcode::COPY)
196 return false;
197
198 // The following pseudo Hexagon instructions sets "use" and "def"
199 // of registers by individual passes in the backend. At this time,
200 // we don't know the scope of usage and definitions of these
201 // instructions.
202 if (MII->getOpcode() == Hexagon::TFR_condset_ii ||
203 MII->getOpcode() == Hexagon::TFR_condset_ri ||
204 MII->getOpcode() == Hexagon::TFR_condset_ir ||
205 MII->getOpcode() == Hexagon::LDriw_pred ||
206 MII->getOpcode() == Hexagon::STriw_pred)
207 return false;
208 }
209
210 return true;
211 }
212
canCompareBeNewValueJump(const HexagonInstrInfo * QII,const TargetRegisterInfo * TRI,MachineBasicBlock::iterator II,unsigned pReg,bool secondReg,bool optLocation,MachineBasicBlock::iterator end,MachineFunction & MF)213 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
214 const TargetRegisterInfo *TRI,
215 MachineBasicBlock::iterator II,
216 unsigned pReg,
217 bool secondReg,
218 bool optLocation,
219 MachineBasicBlock::iterator end,
220 MachineFunction &MF) {
221
222 MachineInstr *MI = II;
223
224 // If the second operand of the compare is an imm, make sure it's in the
225 // range specified by the arch.
226 if (!secondReg) {
227 int64_t v = MI->getOperand(2).getImm();
228
229 if (!(isUInt<5>(v) ||
230 ((MI->getOpcode() == Hexagon::C2_cmpeqi ||
231 MI->getOpcode() == Hexagon::C2_cmpgti) &&
232 (v == -1))))
233 return false;
234 }
235
236 unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
237 cmpReg1 = MI->getOperand(1).getReg();
238
239 if (secondReg) {
240 cmpOp2 = MI->getOperand(2).getReg();
241
242 // Make sure that that second register is not from COPY
243 // At machine code level, we don't need this, but if we decide
244 // to move new value jump prior to RA, we would be needing this.
245 MachineRegisterInfo &MRI = MF.getRegInfo();
246 if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
247 MachineInstr *def = MRI.getVRegDef(cmpOp2);
248 if (def->getOpcode() == TargetOpcode::COPY)
249 return false;
250 }
251 }
252
253 // Walk the instructions after the compare (predicate def) to the jump,
254 // and satisfy the following conditions.
255 ++II ;
256 for (MachineBasicBlock::iterator localII = II; localII != end;
257 ++localII) {
258
259 // Check 1.
260 // If "common" checks fail, bail out.
261 if (!commonChecksToProhibitNewValueJump(optLocation, localII))
262 return false;
263
264 // Check 2.
265 // If there is a def or use of predicate (result of compare), bail out.
266 if (localII->modifiesRegister(pReg, TRI) ||
267 localII->readsRegister(pReg, TRI))
268 return false;
269
270 // Check 3.
271 // If there is a def of any of the use of the compare (operands of compare),
272 // bail out.
273 // Eg.
274 // p0 = cmp.eq(r2, r0)
275 // r2 = r4
276 // if (p0.new) jump:t .LBB28_3
277 if (localII->modifiesRegister(cmpReg1, TRI) ||
278 (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
279 return false;
280 }
281 return true;
282 }
283
284 // Given a compare operator, return a matching New Value Jump
285 // compare operator. Make sure that MI here is included in
286 // HexagonInstrInfo.cpp::isNewValueJumpCandidate
getNewValueJumpOpcode(MachineInstr * MI,int reg,bool secondRegNewified,MachineBasicBlock * jmpTarget,const MachineBranchProbabilityInfo * MBPI)287 static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
288 bool secondRegNewified,
289 MachineBasicBlock *jmpTarget,
290 const MachineBranchProbabilityInfo
291 *MBPI) {
292 bool taken = false;
293 MachineBasicBlock *Src = MI->getParent();
294 const BranchProbability Prediction =
295 MBPI->getEdgeProbability(Src, jmpTarget);
296
297 if (Prediction >= BranchProbability(1,2))
298 taken = true;
299
300 switch (MI->getOpcode()) {
301 case Hexagon::C2_cmpeq:
302 return taken ? Hexagon::CMPEQrr_t_Jumpnv_t_V4
303 : Hexagon::CMPEQrr_t_Jumpnv_nt_V4;
304
305 case Hexagon::C2_cmpeqi: {
306 if (reg >= 0)
307 return taken ? Hexagon::CMPEQri_t_Jumpnv_t_V4
308 : Hexagon::CMPEQri_t_Jumpnv_nt_V4;
309 else
310 return taken ? Hexagon::CMPEQn1_t_Jumpnv_t_V4
311 : Hexagon::CMPEQn1_t_Jumpnv_nt_V4;
312 }
313
314 case Hexagon::C2_cmpgt: {
315 if (secondRegNewified)
316 return taken ? Hexagon::CMPLTrr_t_Jumpnv_t_V4
317 : Hexagon::CMPLTrr_t_Jumpnv_nt_V4;
318 else
319 return taken ? Hexagon::CMPGTrr_t_Jumpnv_t_V4
320 : Hexagon::CMPGTrr_t_Jumpnv_nt_V4;
321 }
322
323 case Hexagon::C2_cmpgti: {
324 if (reg >= 0)
325 return taken ? Hexagon::CMPGTri_t_Jumpnv_t_V4
326 : Hexagon::CMPGTri_t_Jumpnv_nt_V4;
327 else
328 return taken ? Hexagon::CMPGTn1_t_Jumpnv_t_V4
329 : Hexagon::CMPGTn1_t_Jumpnv_nt_V4;
330 }
331
332 case Hexagon::C2_cmpgtu: {
333 if (secondRegNewified)
334 return taken ? Hexagon::CMPLTUrr_t_Jumpnv_t_V4
335 : Hexagon::CMPLTUrr_t_Jumpnv_nt_V4;
336 else
337 return taken ? Hexagon::CMPGTUrr_t_Jumpnv_t_V4
338 : Hexagon::CMPGTUrr_t_Jumpnv_nt_V4;
339 }
340
341 case Hexagon::C2_cmpgtui:
342 return taken ? Hexagon::CMPGTUri_t_Jumpnv_t_V4
343 : Hexagon::CMPGTUri_t_Jumpnv_nt_V4;
344
345 default:
346 llvm_unreachable("Could not find matching New Value Jump instruction.");
347 }
348 // return *some value* to avoid compiler warning
349 return 0;
350 }
351
runOnMachineFunction(MachineFunction & MF)352 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
353
354 DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
355 << "********** Function: "
356 << MF.getName() << "\n");
357
358 #if 0
359 // for now disable this, if we move NewValueJump before register
360 // allocation we need this information.
361 LiveVariables &LVs = getAnalysis<LiveVariables>();
362 #endif
363
364 QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
365 QRI = static_cast<const HexagonRegisterInfo *>(
366 MF.getSubtarget().getRegisterInfo());
367 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
368
369 if (!QRI->Subtarget.hasV4TOps() ||
370 DisableNewValueJumps) {
371 return false;
372 }
373
374 int nvjCount = DbgNVJCount;
375 int nvjGenerated = 0;
376
377 // Loop through all the bb's of the function
378 for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
379 MBBb != MBBe; ++MBBb) {
380 MachineBasicBlock* MBB = MBBb;
381
382 DEBUG(dbgs() << "** dumping bb ** "
383 << MBB->getNumber() << "\n");
384 DEBUG(MBB->dump());
385 DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
386 bool foundJump = false;
387 bool foundCompare = false;
388 bool invertPredicate = false;
389 unsigned predReg = 0; // predicate reg of the jump.
390 unsigned cmpReg1 = 0;
391 int cmpOp2 = 0;
392 bool MO1IsKill = false;
393 bool MO2IsKill = false;
394 MachineBasicBlock::iterator jmpPos;
395 MachineBasicBlock::iterator cmpPos;
396 MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
397 MachineBasicBlock *jmpTarget = nullptr;
398 bool afterRA = false;
399 bool isSecondOpReg = false;
400 bool isSecondOpNewified = false;
401 // Traverse the basic block - bottom up
402 for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
403 MII != E;) {
404 MachineInstr *MI = --MII;
405 if (MI->isDebugValue()) {
406 continue;
407 }
408
409 if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
410 break;
411
412 DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
413
414 if (!foundJump &&
415 (MI->getOpcode() == Hexagon::J2_jumpt ||
416 MI->getOpcode() == Hexagon::J2_jumpf ||
417 MI->getOpcode() == Hexagon::J2_jumptnewpt ||
418 MI->getOpcode() == Hexagon::J2_jumptnew ||
419 MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
420 MI->getOpcode() == Hexagon::J2_jumpfnew)) {
421 // This is where you would insert your compare and
422 // instr that feeds compare
423 jmpPos = MII;
424 jmpInstr = MI;
425 predReg = MI->getOperand(0).getReg();
426 afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
427
428 // If ifconverter had not messed up with the kill flags of the
429 // operands, the following check on the kill flag would suffice.
430 // if(!jmpInstr->getOperand(0).isKill()) break;
431
432 // This predicate register is live out out of BB
433 // this would only work if we can actually use Live
434 // variable analysis on phy regs - but LLVM does not
435 // provide LV analysis on phys regs.
436 //if(LVs.isLiveOut(predReg, *MBB)) break;
437
438 // Get all the successors of this block - which will always
439 // be 2. Check if the predicate register is live in in those
440 // successor. If yes, we can not delete the predicate -
441 // I am doing this only because LLVM does not provide LiveOut
442 // at the BB level.
443 bool predLive = false;
444 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
445 SIE = MBB->succ_end(); SI != SIE; ++SI) {
446 MachineBasicBlock* succMBB = *SI;
447 if (succMBB->isLiveIn(predReg)) {
448 predLive = true;
449 }
450 }
451 if (predLive)
452 break;
453
454 jmpTarget = MI->getOperand(1).getMBB();
455 foundJump = true;
456 if (MI->getOpcode() == Hexagon::J2_jumpf ||
457 MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
458 MI->getOpcode() == Hexagon::J2_jumpfnew) {
459 invertPredicate = true;
460 }
461 continue;
462 }
463
464 // No new value jump if there is a barrier. A barrier has to be in its
465 // own packet. A barrier has zero operands. We conservatively bail out
466 // here if we see any instruction with zero operands.
467 if (foundJump && MI->getNumOperands() == 0)
468 break;
469
470 if (foundJump &&
471 !foundCompare &&
472 MI->getOperand(0).isReg() &&
473 MI->getOperand(0).getReg() == predReg) {
474
475 // Not all compares can be new value compare. Arch Spec: 7.6.1.1
476 if (QII->isNewValueJumpCandidate(MI)) {
477
478 assert((MI->getDesc().isCompare()) &&
479 "Only compare instruction can be collapsed into New Value Jump");
480 isSecondOpReg = MI->getOperand(2).isReg();
481
482 if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
483 afterRA, jmpPos, MF))
484 break;
485
486 cmpInstr = MI;
487 cmpPos = MII;
488 foundCompare = true;
489
490 // We need cmpReg1 and cmpOp2(imm or reg) while building
491 // new value jump instruction.
492 cmpReg1 = MI->getOperand(1).getReg();
493 if (MI->getOperand(1).isKill())
494 MO1IsKill = true;
495
496 if (isSecondOpReg) {
497 cmpOp2 = MI->getOperand(2).getReg();
498 if (MI->getOperand(2).isKill())
499 MO2IsKill = true;
500 } else
501 cmpOp2 = MI->getOperand(2).getImm();
502 continue;
503 }
504 }
505
506 if (foundCompare && foundJump) {
507
508 // If "common" checks fail, bail out on this BB.
509 if (!commonChecksToProhibitNewValueJump(afterRA, MII))
510 break;
511
512 bool foundFeeder = false;
513 MachineBasicBlock::iterator feederPos = MII;
514 if (MI->getOperand(0).isReg() &&
515 MI->getOperand(0).isDef() &&
516 (MI->getOperand(0).getReg() == cmpReg1 ||
517 (isSecondOpReg &&
518 MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
519
520 unsigned feederReg = MI->getOperand(0).getReg();
521
522 // First try to see if we can get the feeder from the first operand
523 // of the compare. If we can not, and if secondOpReg is true
524 // (second operand of the compare is also register), try that one.
525 // TODO: Try to come up with some heuristic to figure out which
526 // feeder would benefit.
527
528 if (feederReg == cmpReg1) {
529 if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
530 if (!isSecondOpReg)
531 break;
532 else
533 continue;
534 } else
535 foundFeeder = true;
536 }
537
538 if (!foundFeeder &&
539 isSecondOpReg &&
540 feederReg == (unsigned) cmpOp2)
541 if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
542 break;
543
544 if (isSecondOpReg) {
545 // In case of CMPLT, or CMPLTU, or EQ with the second register
546 // to newify, swap the operands.
547 if (cmpInstr->getOpcode() == Hexagon::C2_cmpeq &&
548 feederReg == (unsigned) cmpOp2) {
549 unsigned tmp = cmpReg1;
550 bool tmpIsKill = MO1IsKill;
551 cmpReg1 = cmpOp2;
552 MO1IsKill = MO2IsKill;
553 cmpOp2 = tmp;
554 MO2IsKill = tmpIsKill;
555 }
556
557 // Now we have swapped the operands, all we need to check is,
558 // if the second operand (after swap) is the feeder.
559 // And if it is, make a note.
560 if (feederReg == (unsigned)cmpOp2)
561 isSecondOpNewified = true;
562 }
563
564 // Now that we are moving feeder close the jump,
565 // make sure we are respecting the kill values of
566 // the operands of the feeder.
567
568 bool updatedIsKill = false;
569 for (unsigned i = 0; i < MI->getNumOperands(); i++) {
570 MachineOperand &MO = MI->getOperand(i);
571 if (MO.isReg() && MO.isUse()) {
572 unsigned feederReg = MO.getReg();
573 for (MachineBasicBlock::iterator localII = feederPos,
574 end = jmpPos; localII != end; localII++) {
575 MachineInstr *localMI = localII;
576 for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
577 MachineOperand &localMO = localMI->getOperand(j);
578 if (localMO.isReg() && localMO.isUse() &&
579 localMO.isKill() && feederReg == localMO.getReg()) {
580 // We found that there is kill of a use register
581 // Set up a kill flag on the register
582 localMO.setIsKill(false);
583 MO.setIsKill();
584 updatedIsKill = true;
585 break;
586 }
587 }
588 if (updatedIsKill) break;
589 }
590 }
591 if (updatedIsKill) break;
592 }
593
594 MBB->splice(jmpPos, MI->getParent(), MI);
595 MBB->splice(jmpPos, MI->getParent(), cmpInstr);
596 DebugLoc dl = MI->getDebugLoc();
597 MachineInstr *NewMI;
598
599 assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
600 "This compare is not a New Value Jump candidate.");
601 unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
602 isSecondOpNewified,
603 jmpTarget, MBPI);
604 if (invertPredicate)
605 opc = QII->getInvertedPredicatedOpcode(opc);
606
607 if (isSecondOpReg)
608 NewMI = BuildMI(*MBB, jmpPos, dl,
609 QII->get(opc))
610 .addReg(cmpReg1, getKillRegState(MO1IsKill))
611 .addReg(cmpOp2, getKillRegState(MO2IsKill))
612 .addMBB(jmpTarget);
613
614 else if ((cmpInstr->getOpcode() == Hexagon::C2_cmpeqi ||
615 cmpInstr->getOpcode() == Hexagon::C2_cmpgti) &&
616 cmpOp2 == -1 )
617 // Corresponding new-value compare jump instructions don't have the
618 // operand for -1 immediate value.
619 NewMI = BuildMI(*MBB, jmpPos, dl,
620 QII->get(opc))
621 .addReg(cmpReg1, getKillRegState(MO1IsKill))
622 .addMBB(jmpTarget);
623
624 else
625 NewMI = BuildMI(*MBB, jmpPos, dl,
626 QII->get(opc))
627 .addReg(cmpReg1, getKillRegState(MO1IsKill))
628 .addImm(cmpOp2)
629 .addMBB(jmpTarget);
630
631 assert(NewMI && "New Value Jump Instruction Not created!");
632 (void)NewMI;
633 if (cmpInstr->getOperand(0).isReg() &&
634 cmpInstr->getOperand(0).isKill())
635 cmpInstr->getOperand(0).setIsKill(false);
636 if (cmpInstr->getOperand(1).isReg() &&
637 cmpInstr->getOperand(1).isKill())
638 cmpInstr->getOperand(1).setIsKill(false);
639 cmpInstr->eraseFromParent();
640 jmpInstr->eraseFromParent();
641 ++nvjGenerated;
642 ++NumNVJGenerated;
643 break;
644 }
645 }
646 }
647 }
648
649 return true;
650
651 }
652
createHexagonNewValueJump()653 FunctionPass *llvm::createHexagonNewValueJump() {
654 return new HexagonNewValueJump();
655 }
656