1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include <cctype>
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "systemz-lower"
28
29 namespace {
30 // Represents a sequence for extracting a 0/1 value from an IPM result:
31 // (((X ^ XORValue) + AddValue) >> Bit)
32 struct IPMConversion {
IPMConversion__anonb5e4cdd20111::IPMConversion33 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
34 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
35
36 int64_t XORValue;
37 int64_t AddValue;
38 unsigned Bit;
39 };
40
41 // Represents information about a comparison.
42 struct Comparison {
Comparison__anonb5e4cdd20111::Comparison43 Comparison(SDValue Op0In, SDValue Op1In)
44 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
45
46 // The operands to the comparison.
47 SDValue Op0, Op1;
48
49 // The opcode that should be used to compare Op0 and Op1.
50 unsigned Opcode;
51
52 // A SystemZICMP value. Only used for integer comparisons.
53 unsigned ICmpType;
54
55 // The mask of CC values that Opcode can produce.
56 unsigned CCValid;
57
58 // The mask of CC values for which the original condition is true.
59 unsigned CCMask;
60 };
61 } // end anonymous namespace
62
63 // Classify VT as either 32 or 64 bit.
is32Bit(EVT VT)64 static bool is32Bit(EVT VT) {
65 switch (VT.getSimpleVT().SimpleTy) {
66 case MVT::i32:
67 return true;
68 case MVT::i64:
69 return false;
70 default:
71 llvm_unreachable("Unsupported type");
72 }
73 }
74
75 // Return a version of MachineOperand that can be safely used before the
76 // final use.
earlyUseOperand(MachineOperand Op)77 static MachineOperand earlyUseOperand(MachineOperand Op) {
78 if (Op.isReg())
79 Op.setIsKill(false);
80 return Op;
81 }
82
SystemZTargetLowering(const TargetMachine & tm)83 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm)
84 : TargetLowering(tm),
85 Subtarget(tm.getSubtarget<SystemZSubtarget>()) {
86 MVT PtrVT = getPointerTy();
87
88 // Set up the register classes.
89 if (Subtarget.hasHighWord())
90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91 else
92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97
98 // Compute derived properties from the register classes
99 computeRegisterProperties();
100
101 // Set up special registers.
102 setExceptionPointerRegister(SystemZ::R6D);
103 setExceptionSelectorRegister(SystemZ::R7D);
104 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
105
106 // TODO: It may be better to default to latency-oriented scheduling, however
107 // LLVM's current latency-oriented scheduler can't handle physreg definitions
108 // such as SystemZ has with CC, so set this to the register-pressure
109 // scheduler, because it can.
110 setSchedulingPreference(Sched::RegPressure);
111
112 setBooleanContents(ZeroOrOneBooleanContent);
113 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
114
115 // Instructions are strings of 2-byte aligned 2-byte values.
116 setMinFunctionAlignment(2);
117
118 // Handle operations that are handled in a similar way for all types.
119 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
120 I <= MVT::LAST_FP_VALUETYPE;
121 ++I) {
122 MVT VT = MVT::SimpleValueType(I);
123 if (isTypeLegal(VT)) {
124 // Lower SET_CC into an IPM-based sequence.
125 setOperationAction(ISD::SETCC, VT, Custom);
126
127 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
128 setOperationAction(ISD::SELECT, VT, Expand);
129
130 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
131 setOperationAction(ISD::SELECT_CC, VT, Custom);
132 setOperationAction(ISD::BR_CC, VT, Custom);
133 }
134 }
135
136 // Expand jump table branches as address arithmetic followed by an
137 // indirect jump.
138 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
139
140 // Expand BRCOND into a BR_CC (see above).
141 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
142
143 // Handle integer types.
144 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
145 I <= MVT::LAST_INTEGER_VALUETYPE;
146 ++I) {
147 MVT VT = MVT::SimpleValueType(I);
148 if (isTypeLegal(VT)) {
149 // Expand individual DIV and REMs into DIVREMs.
150 setOperationAction(ISD::SDIV, VT, Expand);
151 setOperationAction(ISD::UDIV, VT, Expand);
152 setOperationAction(ISD::SREM, VT, Expand);
153 setOperationAction(ISD::UREM, VT, Expand);
154 setOperationAction(ISD::SDIVREM, VT, Custom);
155 setOperationAction(ISD::UDIVREM, VT, Custom);
156
157 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
158 // stores, putting a serialization instruction after the stores.
159 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
160 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
161
162 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
163 // available, or if the operand is constant.
164 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
165
166 // No special instructions for these.
167 setOperationAction(ISD::CTPOP, VT, Expand);
168 setOperationAction(ISD::CTTZ, VT, Expand);
169 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
171 setOperationAction(ISD::ROTR, VT, Expand);
172
173 // Use *MUL_LOHI where possible instead of MULH*.
174 setOperationAction(ISD::MULHS, VT, Expand);
175 setOperationAction(ISD::MULHU, VT, Expand);
176 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
177 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
178
179 // Only z196 and above have native support for conversions to unsigned.
180 if (!Subtarget.hasFPExtension())
181 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182 }
183 }
184
185 // Type legalization will convert 8- and 16-bit atomic operations into
186 // forms that operate on i32s (but still keeping the original memory VT).
187 // Lower them into full i32 operations.
188 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
189 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
190 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
191 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
192 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
193 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
194 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
195 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
196 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
197 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
198 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
199 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
200
201 // z10 has instructions for signed but not unsigned FP conversion.
202 // Handle unsigned 32-bit types as signed 64-bit types.
203 if (!Subtarget.hasFPExtension()) {
204 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
205 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
206 }
207
208 // We have native support for a 64-bit CTLZ, via FLOGR.
209 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
210 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
211
212 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
213 setOperationAction(ISD::OR, MVT::i64, Custom);
214
215 // FIXME: Can we support these natively?
216 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
217 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
218 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
219
220 // We have native instructions for i8, i16 and i32 extensions, but not i1.
221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
222 for (MVT VT : MVT::integer_valuetypes()) {
223 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
226 }
227
228 // Handle the various types of symbolic address.
229 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
230 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
231 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
232 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
233 setOperationAction(ISD::JumpTable, PtrVT, Custom);
234
235 // We need to handle dynamic allocations specially because of the
236 // 160-byte area at the bottom of the stack.
237 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
238
239 // Use custom expanders so that we can force the function to use
240 // a frame pointer.
241 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
242 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
243
244 // Handle prefetches with PFD or PFDRL.
245 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
246
247 // Handle floating-point types.
248 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
249 I <= MVT::LAST_FP_VALUETYPE;
250 ++I) {
251 MVT VT = MVT::SimpleValueType(I);
252 if (isTypeLegal(VT)) {
253 // We can use FI for FRINT.
254 setOperationAction(ISD::FRINT, VT, Legal);
255
256 // We can use the extended form of FI for other rounding operations.
257 if (Subtarget.hasFPExtension()) {
258 setOperationAction(ISD::FNEARBYINT, VT, Legal);
259 setOperationAction(ISD::FFLOOR, VT, Legal);
260 setOperationAction(ISD::FCEIL, VT, Legal);
261 setOperationAction(ISD::FTRUNC, VT, Legal);
262 setOperationAction(ISD::FROUND, VT, Legal);
263 }
264
265 // No special instructions for these.
266 setOperationAction(ISD::FSIN, VT, Expand);
267 setOperationAction(ISD::FCOS, VT, Expand);
268 setOperationAction(ISD::FREM, VT, Expand);
269 }
270 }
271
272 // We have fused multiply-addition for f32 and f64 but not f128.
273 setOperationAction(ISD::FMA, MVT::f32, Legal);
274 setOperationAction(ISD::FMA, MVT::f64, Legal);
275 setOperationAction(ISD::FMA, MVT::f128, Expand);
276
277 // Needed so that we don't try to implement f128 constant loads using
278 // a load-and-extend of a f80 constant (in cases where the constant
279 // would fit in an f80).
280 for (MVT VT : MVT::fp_valuetypes())
281 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
282
283 // Floating-point truncation and stores need to be done separately.
284 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
285 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
286 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
287
288 // We have 64-bit FPR<->GPR moves, but need special handling for
289 // 32-bit forms.
290 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
291 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
292
293 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
294 // structure, but VAEND is a no-op.
295 setOperationAction(ISD::VASTART, MVT::Other, Custom);
296 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
297 setOperationAction(ISD::VAEND, MVT::Other, Expand);
298
299 // Codes for which we want to perform some z-specific combinations.
300 setTargetDAGCombine(ISD::SIGN_EXTEND);
301
302 // We want to use MVC in preference to even a single load/store pair.
303 MaxStoresPerMemcpy = 0;
304 MaxStoresPerMemcpyOptSize = 0;
305
306 // The main memset sequence is a byte store followed by an MVC.
307 // Two STC or MV..I stores win over that, but the kind of fused stores
308 // generated by target-independent code don't when the byte value is
309 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
310 // than "STC;MVC". Handle the choice in target-specific code instead.
311 MaxStoresPerMemset = 0;
312 MaxStoresPerMemsetOptSize = 0;
313 }
314
getSetCCResultType(LLVMContext &,EVT VT) const315 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
316 if (!VT.isVector())
317 return MVT::i32;
318 return VT.changeVectorElementTypeToInteger();
319 }
320
isFMAFasterThanFMulAndFAdd(EVT VT) const321 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
322 VT = VT.getScalarType();
323
324 if (!VT.isSimple())
325 return false;
326
327 switch (VT.getSimpleVT().SimpleTy) {
328 case MVT::f32:
329 case MVT::f64:
330 return true;
331 case MVT::f128:
332 return false;
333 default:
334 break;
335 }
336
337 return false;
338 }
339
isFPImmLegal(const APFloat & Imm,EVT VT) const340 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
341 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
342 return Imm.isZero() || Imm.isNegZero();
343 }
344
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const345 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
346 unsigned,
347 unsigned,
348 bool *Fast) const {
349 // Unaligned accesses should never be slower than the expanded version.
350 // We check specifically for aligned accesses in the few cases where
351 // they are required.
352 if (Fast)
353 *Fast = true;
354 return true;
355 }
356
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const357 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
358 Type *Ty) const {
359 // Punt on globals for now, although they can be used in limited
360 // RELATIVE LONG cases.
361 if (AM.BaseGV)
362 return false;
363
364 // Require a 20-bit signed offset.
365 if (!isInt<20>(AM.BaseOffs))
366 return false;
367
368 // Indexing is OK but no scale factor can be applied.
369 return AM.Scale == 0 || AM.Scale == 1;
370 }
371
isTruncateFree(Type * FromType,Type * ToType) const372 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
373 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
374 return false;
375 unsigned FromBits = FromType->getPrimitiveSizeInBits();
376 unsigned ToBits = ToType->getPrimitiveSizeInBits();
377 return FromBits > ToBits;
378 }
379
isTruncateFree(EVT FromVT,EVT ToVT) const380 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
381 if (!FromVT.isInteger() || !ToVT.isInteger())
382 return false;
383 unsigned FromBits = FromVT.getSizeInBits();
384 unsigned ToBits = ToVT.getSizeInBits();
385 return FromBits > ToBits;
386 }
387
388 //===----------------------------------------------------------------------===//
389 // Inline asm support
390 //===----------------------------------------------------------------------===//
391
392 TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const393 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
394 if (Constraint.size() == 1) {
395 switch (Constraint[0]) {
396 case 'a': // Address register
397 case 'd': // Data register (equivalent to 'r')
398 case 'f': // Floating-point register
399 case 'h': // High-part register
400 case 'r': // General-purpose register
401 return C_RegisterClass;
402
403 case 'Q': // Memory with base and unsigned 12-bit displacement
404 case 'R': // Likewise, plus an index
405 case 'S': // Memory with base and signed 20-bit displacement
406 case 'T': // Likewise, plus an index
407 case 'm': // Equivalent to 'T'.
408 return C_Memory;
409
410 case 'I': // Unsigned 8-bit constant
411 case 'J': // Unsigned 12-bit constant
412 case 'K': // Signed 16-bit constant
413 case 'L': // Signed 20-bit displacement (on all targets we support)
414 case 'M': // 0x7fffffff
415 return C_Other;
416
417 default:
418 break;
419 }
420 }
421 return TargetLowering::getConstraintType(Constraint);
422 }
423
424 TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const425 getSingleConstraintMatchWeight(AsmOperandInfo &info,
426 const char *constraint) const {
427 ConstraintWeight weight = CW_Invalid;
428 Value *CallOperandVal = info.CallOperandVal;
429 // If we don't have a value, we can't do a match,
430 // but allow it at the lowest weight.
431 if (!CallOperandVal)
432 return CW_Default;
433 Type *type = CallOperandVal->getType();
434 // Look at the constraint type.
435 switch (*constraint) {
436 default:
437 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
438 break;
439
440 case 'a': // Address register
441 case 'd': // Data register (equivalent to 'r')
442 case 'h': // High-part register
443 case 'r': // General-purpose register
444 if (CallOperandVal->getType()->isIntegerTy())
445 weight = CW_Register;
446 break;
447
448 case 'f': // Floating-point register
449 if (type->isFloatingPointTy())
450 weight = CW_Register;
451 break;
452
453 case 'I': // Unsigned 8-bit constant
454 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
455 if (isUInt<8>(C->getZExtValue()))
456 weight = CW_Constant;
457 break;
458
459 case 'J': // Unsigned 12-bit constant
460 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
461 if (isUInt<12>(C->getZExtValue()))
462 weight = CW_Constant;
463 break;
464
465 case 'K': // Signed 16-bit constant
466 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
467 if (isInt<16>(C->getSExtValue()))
468 weight = CW_Constant;
469 break;
470
471 case 'L': // Signed 20-bit displacement (on all targets we support)
472 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
473 if (isInt<20>(C->getSExtValue()))
474 weight = CW_Constant;
475 break;
476
477 case 'M': // 0x7fffffff
478 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
479 if (C->getZExtValue() == 0x7fffffff)
480 weight = CW_Constant;
481 break;
482 }
483 return weight;
484 }
485
486 // Parse a "{tNNN}" register constraint for which the register type "t"
487 // has already been verified. MC is the class associated with "t" and
488 // Map maps 0-based register numbers to LLVM register numbers.
489 static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(const std::string & Constraint,const TargetRegisterClass * RC,const unsigned * Map)490 parseRegisterNumber(const std::string &Constraint,
491 const TargetRegisterClass *RC, const unsigned *Map) {
492 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
493 if (isdigit(Constraint[2])) {
494 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
495 unsigned Index = atoi(Suffix.c_str());
496 if (Index < 16 && Map[Index])
497 return std::make_pair(Map[Index], RC);
498 }
499 return std::make_pair(0U, nullptr);
500 }
501
502 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
getRegForInlineAsmConstraint(const std::string & Constraint,MVT VT) const503 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
504 if (Constraint.size() == 1) {
505 // GCC Constraint Letters
506 switch (Constraint[0]) {
507 default: break;
508 case 'd': // Data register (equivalent to 'r')
509 case 'r': // General-purpose register
510 if (VT == MVT::i64)
511 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
512 else if (VT == MVT::i128)
513 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
514 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
515
516 case 'a': // Address register
517 if (VT == MVT::i64)
518 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
519 else if (VT == MVT::i128)
520 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
521 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
522
523 case 'h': // High-part register (an LLVM extension)
524 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
525
526 case 'f': // Floating-point register
527 if (VT == MVT::f64)
528 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
529 else if (VT == MVT::f128)
530 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
531 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
532 }
533 }
534 if (Constraint[0] == '{') {
535 // We need to override the default register parsing for GPRs and FPRs
536 // because the interpretation depends on VT. The internal names of
537 // the registers are also different from the external names
538 // (F0D and F0S instead of F0, etc.).
539 if (Constraint[1] == 'r') {
540 if (VT == MVT::i32)
541 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
542 SystemZMC::GR32Regs);
543 if (VT == MVT::i128)
544 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
545 SystemZMC::GR128Regs);
546 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
547 SystemZMC::GR64Regs);
548 }
549 if (Constraint[1] == 'f') {
550 if (VT == MVT::f32)
551 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
552 SystemZMC::FP32Regs);
553 if (VT == MVT::f128)
554 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
555 SystemZMC::FP128Regs);
556 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
557 SystemZMC::FP64Regs);
558 }
559 }
560 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
561 }
562
563 void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const564 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
565 std::vector<SDValue> &Ops,
566 SelectionDAG &DAG) const {
567 // Only support length 1 constraints for now.
568 if (Constraint.length() == 1) {
569 switch (Constraint[0]) {
570 case 'I': // Unsigned 8-bit constant
571 if (auto *C = dyn_cast<ConstantSDNode>(Op))
572 if (isUInt<8>(C->getZExtValue()))
573 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
574 Op.getValueType()));
575 return;
576
577 case 'J': // Unsigned 12-bit constant
578 if (auto *C = dyn_cast<ConstantSDNode>(Op))
579 if (isUInt<12>(C->getZExtValue()))
580 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
581 Op.getValueType()));
582 return;
583
584 case 'K': // Signed 16-bit constant
585 if (auto *C = dyn_cast<ConstantSDNode>(Op))
586 if (isInt<16>(C->getSExtValue()))
587 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
588 Op.getValueType()));
589 return;
590
591 case 'L': // Signed 20-bit displacement (on all targets we support)
592 if (auto *C = dyn_cast<ConstantSDNode>(Op))
593 if (isInt<20>(C->getSExtValue()))
594 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
595 Op.getValueType()));
596 return;
597
598 case 'M': // 0x7fffffff
599 if (auto *C = dyn_cast<ConstantSDNode>(Op))
600 if (C->getZExtValue() == 0x7fffffff)
601 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
602 Op.getValueType()));
603 return;
604 }
605 }
606 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
607 }
608
609 //===----------------------------------------------------------------------===//
610 // Calling conventions
611 //===----------------------------------------------------------------------===//
612
613 #include "SystemZGenCallingConv.inc"
614
allowTruncateForTailCall(Type * FromType,Type * ToType) const615 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
616 Type *ToType) const {
617 return isTruncateFree(FromType, ToType);
618 }
619
mayBeEmittedAsTailCall(CallInst * CI) const620 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
621 if (!CI->isTailCall())
622 return false;
623 return true;
624 }
625
626 // Value is a value that has been passed to us in the location described by VA
627 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
628 // any loads onto Chain.
convertLocVTToValVT(SelectionDAG & DAG,SDLoc DL,CCValAssign & VA,SDValue Chain,SDValue Value)629 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
630 CCValAssign &VA, SDValue Chain,
631 SDValue Value) {
632 // If the argument has been promoted from a smaller type, insert an
633 // assertion to capture this.
634 if (VA.getLocInfo() == CCValAssign::SExt)
635 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
636 DAG.getValueType(VA.getValVT()));
637 else if (VA.getLocInfo() == CCValAssign::ZExt)
638 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
639 DAG.getValueType(VA.getValVT()));
640
641 if (VA.isExtInLoc())
642 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
643 else if (VA.getLocInfo() == CCValAssign::Indirect)
644 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
645 MachinePointerInfo(), false, false, false, 0);
646 else
647 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
648 return Value;
649 }
650
651 // Value is a value of type VA.getValVT() that we need to copy into
652 // the location described by VA. Return a copy of Value converted to
653 // VA.getValVT(). The caller is responsible for handling indirect values.
convertValVTToLocVT(SelectionDAG & DAG,SDLoc DL,CCValAssign & VA,SDValue Value)654 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
655 CCValAssign &VA, SDValue Value) {
656 switch (VA.getLocInfo()) {
657 case CCValAssign::SExt:
658 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
659 case CCValAssign::ZExt:
660 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
661 case CCValAssign::AExt:
662 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
663 case CCValAssign::Full:
664 return Value;
665 default:
666 llvm_unreachable("Unhandled getLocInfo()");
667 }
668 }
669
670 SDValue SystemZTargetLowering::
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const671 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
672 const SmallVectorImpl<ISD::InputArg> &Ins,
673 SDLoc DL, SelectionDAG &DAG,
674 SmallVectorImpl<SDValue> &InVals) const {
675 MachineFunction &MF = DAG.getMachineFunction();
676 MachineFrameInfo *MFI = MF.getFrameInfo();
677 MachineRegisterInfo &MRI = MF.getRegInfo();
678 SystemZMachineFunctionInfo *FuncInfo =
679 MF.getInfo<SystemZMachineFunctionInfo>();
680 auto *TFL = static_cast<const SystemZFrameLowering *>(
681 DAG.getSubtarget().getFrameLowering());
682
683 // Assign locations to all of the incoming arguments.
684 SmallVector<CCValAssign, 16> ArgLocs;
685 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
686 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
687
688 unsigned NumFixedGPRs = 0;
689 unsigned NumFixedFPRs = 0;
690 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
691 SDValue ArgValue;
692 CCValAssign &VA = ArgLocs[I];
693 EVT LocVT = VA.getLocVT();
694 if (VA.isRegLoc()) {
695 // Arguments passed in registers
696 const TargetRegisterClass *RC;
697 switch (LocVT.getSimpleVT().SimpleTy) {
698 default:
699 // Integers smaller than i64 should be promoted to i64.
700 llvm_unreachable("Unexpected argument type");
701 case MVT::i32:
702 NumFixedGPRs += 1;
703 RC = &SystemZ::GR32BitRegClass;
704 break;
705 case MVT::i64:
706 NumFixedGPRs += 1;
707 RC = &SystemZ::GR64BitRegClass;
708 break;
709 case MVT::f32:
710 NumFixedFPRs += 1;
711 RC = &SystemZ::FP32BitRegClass;
712 break;
713 case MVT::f64:
714 NumFixedFPRs += 1;
715 RC = &SystemZ::FP64BitRegClass;
716 break;
717 }
718
719 unsigned VReg = MRI.createVirtualRegister(RC);
720 MRI.addLiveIn(VA.getLocReg(), VReg);
721 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
722 } else {
723 assert(VA.isMemLoc() && "Argument not register or memory");
724
725 // Create the frame index object for this incoming parameter.
726 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
727 VA.getLocMemOffset(), true);
728
729 // Create the SelectionDAG nodes corresponding to a load
730 // from this parameter. Unpromoted ints and floats are
731 // passed as right-justified 8-byte values.
732 EVT PtrVT = getPointerTy();
733 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
734 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
735 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
736 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
737 MachinePointerInfo::getFixedStack(FI),
738 false, false, false, 0);
739 }
740
741 // Convert the value of the argument register into the value that's
742 // being passed.
743 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
744 }
745
746 if (IsVarArg) {
747 // Save the number of non-varargs registers for later use by va_start, etc.
748 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
749 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
750
751 // Likewise the address (in the form of a frame index) of where the
752 // first stack vararg would be. The 1-byte size here is arbitrary.
753 int64_t StackSize = CCInfo.getNextStackOffset();
754 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
755
756 // ...and a similar frame index for the caller-allocated save area
757 // that will be used to store the incoming registers.
758 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
759 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
760 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
761
762 // Store the FPR varargs in the reserved frame slots. (We store the
763 // GPRs as part of the prologue.)
764 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
765 SDValue MemOps[SystemZ::NumArgFPRs];
766 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
767 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
768 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
769 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
770 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
771 &SystemZ::FP64BitRegClass);
772 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
773 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
774 MachinePointerInfo::getFixedStack(FI),
775 false, false, 0);
776
777 }
778 // Join the stores, which are independent of one another.
779 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
780 makeArrayRef(&MemOps[NumFixedFPRs],
781 SystemZ::NumArgFPRs-NumFixedFPRs));
782 }
783 }
784
785 return Chain;
786 }
787
canUseSiblingCall(const CCState & ArgCCInfo,SmallVectorImpl<CCValAssign> & ArgLocs)788 static bool canUseSiblingCall(const CCState &ArgCCInfo,
789 SmallVectorImpl<CCValAssign> &ArgLocs) {
790 // Punt if there are any indirect or stack arguments, or if the call
791 // needs the call-saved argument register R6.
792 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
793 CCValAssign &VA = ArgLocs[I];
794 if (VA.getLocInfo() == CCValAssign::Indirect)
795 return false;
796 if (!VA.isRegLoc())
797 return false;
798 unsigned Reg = VA.getLocReg();
799 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
800 return false;
801 }
802 return true;
803 }
804
805 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const806 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
807 SmallVectorImpl<SDValue> &InVals) const {
808 SelectionDAG &DAG = CLI.DAG;
809 SDLoc &DL = CLI.DL;
810 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
811 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
812 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
813 SDValue Chain = CLI.Chain;
814 SDValue Callee = CLI.Callee;
815 bool &IsTailCall = CLI.IsTailCall;
816 CallingConv::ID CallConv = CLI.CallConv;
817 bool IsVarArg = CLI.IsVarArg;
818 MachineFunction &MF = DAG.getMachineFunction();
819 EVT PtrVT = getPointerTy();
820
821 // Analyze the operands of the call, assigning locations to each operand.
822 SmallVector<CCValAssign, 16> ArgLocs;
823 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
824 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
825
826 // We don't support GuaranteedTailCallOpt, only automatically-detected
827 // sibling calls.
828 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
829 IsTailCall = false;
830
831 // Get a count of how many bytes are to be pushed on the stack.
832 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
833
834 // Mark the start of the call.
835 if (!IsTailCall)
836 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
837 DL);
838
839 // Copy argument values to their designated locations.
840 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
841 SmallVector<SDValue, 8> MemOpChains;
842 SDValue StackPtr;
843 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
844 CCValAssign &VA = ArgLocs[I];
845 SDValue ArgValue = OutVals[I];
846
847 if (VA.getLocInfo() == CCValAssign::Indirect) {
848 // Store the argument in a stack slot and pass its address.
849 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
850 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
851 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
852 MachinePointerInfo::getFixedStack(FI),
853 false, false, 0));
854 ArgValue = SpillSlot;
855 } else
856 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
857
858 if (VA.isRegLoc())
859 // Queue up the argument copies and emit them at the end.
860 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
861 else {
862 assert(VA.isMemLoc() && "Argument not register or memory");
863
864 // Work out the address of the stack slot. Unpromoted ints and
865 // floats are passed as right-justified 8-byte values.
866 if (!StackPtr.getNode())
867 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
868 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
869 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
870 Offset += 4;
871 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
872 DAG.getIntPtrConstant(Offset));
873
874 // Emit the store.
875 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
876 MachinePointerInfo(),
877 false, false, 0));
878 }
879 }
880
881 // Join the stores, which are independent of one another.
882 if (!MemOpChains.empty())
883 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
884
885 // Accept direct calls by converting symbolic call addresses to the
886 // associated Target* opcodes. Force %r1 to be used for indirect
887 // tail calls.
888 SDValue Glue;
889 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
890 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
891 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
892 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
893 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
894 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
895 } else if (IsTailCall) {
896 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
897 Glue = Chain.getValue(1);
898 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
899 }
900
901 // Build a sequence of copy-to-reg nodes, chained and glued together.
902 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
903 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
904 RegsToPass[I].second, Glue);
905 Glue = Chain.getValue(1);
906 }
907
908 // The first call operand is the chain and the second is the target address.
909 SmallVector<SDValue, 8> Ops;
910 Ops.push_back(Chain);
911 Ops.push_back(Callee);
912
913 // Add argument registers to the end of the list so that they are
914 // known live into the call.
915 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
916 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
917 RegsToPass[I].second.getValueType()));
918
919 // Add a register mask operand representing the call-preserved registers.
920 const TargetRegisterInfo *TRI =
921 getTargetMachine().getSubtargetImpl()->getRegisterInfo();
922 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
923 assert(Mask && "Missing call preserved mask for calling convention");
924 Ops.push_back(DAG.getRegisterMask(Mask));
925
926 // Glue the call to the argument copies, if any.
927 if (Glue.getNode())
928 Ops.push_back(Glue);
929
930 // Emit the call.
931 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
932 if (IsTailCall)
933 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
934 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
935 Glue = Chain.getValue(1);
936
937 // Mark the end of the call, which is glued to the call itself.
938 Chain = DAG.getCALLSEQ_END(Chain,
939 DAG.getConstant(NumBytes, PtrVT, true),
940 DAG.getConstant(0, PtrVT, true),
941 Glue, DL);
942 Glue = Chain.getValue(1);
943
944 // Assign locations to each value returned by this call.
945 SmallVector<CCValAssign, 16> RetLocs;
946 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
947 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
948
949 // Copy all of the result registers out of their specified physreg.
950 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
951 CCValAssign &VA = RetLocs[I];
952
953 // Copy the value out, gluing the copy to the end of the call sequence.
954 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
955 VA.getLocVT(), Glue);
956 Chain = RetValue.getValue(1);
957 Glue = RetValue.getValue(2);
958
959 // Convert the value of the return register into the value that's
960 // being returned.
961 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
962 }
963
964 return Chain;
965 }
966
967 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc DL,SelectionDAG & DAG) const968 SystemZTargetLowering::LowerReturn(SDValue Chain,
969 CallingConv::ID CallConv, bool IsVarArg,
970 const SmallVectorImpl<ISD::OutputArg> &Outs,
971 const SmallVectorImpl<SDValue> &OutVals,
972 SDLoc DL, SelectionDAG &DAG) const {
973 MachineFunction &MF = DAG.getMachineFunction();
974
975 // Assign locations to each returned value.
976 SmallVector<CCValAssign, 16> RetLocs;
977 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
978 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
979
980 // Quick exit for void returns
981 if (RetLocs.empty())
982 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
983
984 // Copy the result values into the output registers.
985 SDValue Glue;
986 SmallVector<SDValue, 4> RetOps;
987 RetOps.push_back(Chain);
988 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
989 CCValAssign &VA = RetLocs[I];
990 SDValue RetValue = OutVals[I];
991
992 // Make the return register live on exit.
993 assert(VA.isRegLoc() && "Can only return in registers!");
994
995 // Promote the value as required.
996 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
997
998 // Chain and glue the copies together.
999 unsigned Reg = VA.getLocReg();
1000 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1001 Glue = Chain.getValue(1);
1002 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1003 }
1004
1005 // Update chain and glue.
1006 RetOps[0] = Chain;
1007 if (Glue.getNode())
1008 RetOps.push_back(Glue);
1009
1010 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1011 }
1012
1013 SDValue SystemZTargetLowering::
prepareVolatileOrAtomicLoad(SDValue Chain,SDLoc DL,SelectionDAG & DAG) const1014 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
1015 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1016 }
1017
1018 // CC is a comparison that will be implemented using an integer or
1019 // floating-point comparison. Return the condition code mask for
1020 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
1021 // unsigned comparisons and clear for signed ones. In the floating-point
1022 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
CCMaskForCondCode(ISD::CondCode CC)1023 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1024 #define CONV(X) \
1025 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1026 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1027 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1028
1029 switch (CC) {
1030 default:
1031 llvm_unreachable("Invalid integer condition!");
1032
1033 CONV(EQ);
1034 CONV(NE);
1035 CONV(GT);
1036 CONV(GE);
1037 CONV(LT);
1038 CONV(LE);
1039
1040 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1041 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1042 }
1043 #undef CONV
1044 }
1045
1046 // Return a sequence for getting a 1 from an IPM result when CC has a
1047 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1048 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1049 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1050 // Deal with cases where the result can be taken directly from a bit
1051 // of the IPM result.
1052 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1053 return IPMConversion(0, 0, SystemZ::IPM_CC);
1054 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1055 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1056
1057 // Deal with cases where we can add a value to force the sign bit
1058 // to contain the right value. Putting the bit in 31 means we can
1059 // use SRL rather than RISBG(L), and also makes it easier to get a
1060 // 0/-1 value, so it has priority over the other tests below.
1061 //
1062 // These sequences rely on the fact that the upper two bits of the
1063 // IPM result are zero.
1064 uint64_t TopBit = uint64_t(1) << 31;
1065 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1066 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1067 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1068 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1069 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1070 | SystemZ::CCMASK_1
1071 | SystemZ::CCMASK_2)))
1072 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1073 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1074 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1075 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1076 | SystemZ::CCMASK_2
1077 | SystemZ::CCMASK_3)))
1078 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1079
1080 // Next try inverting the value and testing a bit. 0/1 could be
1081 // handled this way too, but we dealt with that case above.
1082 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1083 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1084
1085 // Handle cases where adding a value forces a non-sign bit to contain
1086 // the right value.
1087 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1088 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1089 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1090 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1091
1092 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1093 // can be done by inverting the low CC bit and applying one of the
1094 // sign-based extractions above.
1095 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1096 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1097 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1098 return IPMConversion(1 << SystemZ::IPM_CC,
1099 TopBit - (3 << SystemZ::IPM_CC), 31);
1100 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1101 | SystemZ::CCMASK_1
1102 | SystemZ::CCMASK_3)))
1103 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1104 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1105 | SystemZ::CCMASK_2
1106 | SystemZ::CCMASK_3)))
1107 return IPMConversion(1 << SystemZ::IPM_CC,
1108 TopBit - (1 << SystemZ::IPM_CC), 31);
1109
1110 llvm_unreachable("Unexpected CC combination");
1111 }
1112
1113 // If C can be converted to a comparison against zero, adjust the operands
1114 // as necessary.
adjustZeroCmp(SelectionDAG & DAG,Comparison & C)1115 static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
1116 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1117 return;
1118
1119 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1120 if (!ConstOp1)
1121 return;
1122
1123 int64_t Value = ConstOp1->getSExtValue();
1124 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1125 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1126 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1127 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1128 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1129 C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
1130 }
1131 }
1132
1133 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1134 // adjust the operands as necessary.
adjustSubwordCmp(SelectionDAG & DAG,Comparison & C)1135 static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
1136 // For us to make any changes, it must a comparison between a single-use
1137 // load and a constant.
1138 if (!C.Op0.hasOneUse() ||
1139 C.Op0.getOpcode() != ISD::LOAD ||
1140 C.Op1.getOpcode() != ISD::Constant)
1141 return;
1142
1143 // We must have an 8- or 16-bit load.
1144 auto *Load = cast<LoadSDNode>(C.Op0);
1145 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1146 if (NumBits != 8 && NumBits != 16)
1147 return;
1148
1149 // The load must be an extending one and the constant must be within the
1150 // range of the unextended value.
1151 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1152 uint64_t Value = ConstOp1->getZExtValue();
1153 uint64_t Mask = (1 << NumBits) - 1;
1154 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1155 // Make sure that ConstOp1 is in range of C.Op0.
1156 int64_t SignedValue = ConstOp1->getSExtValue();
1157 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1158 return;
1159 if (C.ICmpType != SystemZICMP::SignedOnly) {
1160 // Unsigned comparison between two sign-extended values is equivalent
1161 // to unsigned comparison between two zero-extended values.
1162 Value &= Mask;
1163 } else if (NumBits == 8) {
1164 // Try to treat the comparison as unsigned, so that we can use CLI.
1165 // Adjust CCMask and Value as necessary.
1166 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1167 // Test whether the high bit of the byte is set.
1168 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1169 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1170 // Test whether the high bit of the byte is clear.
1171 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1172 else
1173 // No instruction exists for this combination.
1174 return;
1175 C.ICmpType = SystemZICMP::UnsignedOnly;
1176 }
1177 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1178 if (Value > Mask)
1179 return;
1180 assert(C.ICmpType == SystemZICMP::Any &&
1181 "Signedness shouldn't matter here.");
1182 } else
1183 return;
1184
1185 // Make sure that the first operand is an i32 of the right extension type.
1186 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1187 ISD::SEXTLOAD :
1188 ISD::ZEXTLOAD);
1189 if (C.Op0.getValueType() != MVT::i32 ||
1190 Load->getExtensionType() != ExtType)
1191 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1192 Load->getChain(), Load->getBasePtr(),
1193 Load->getPointerInfo(), Load->getMemoryVT(),
1194 Load->isVolatile(), Load->isNonTemporal(),
1195 Load->isInvariant(), Load->getAlignment());
1196
1197 // Make sure that the second operand is an i32 with the right value.
1198 if (C.Op1.getValueType() != MVT::i32 ||
1199 Value != ConstOp1->getZExtValue())
1200 C.Op1 = DAG.getConstant(Value, MVT::i32);
1201 }
1202
1203 // Return true if Op is either an unextended load, or a load suitable
1204 // for integer register-memory comparisons of type ICmpType.
isNaturalMemoryOperand(SDValue Op,unsigned ICmpType)1205 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1206 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1207 if (Load) {
1208 // There are no instructions to compare a register with a memory byte.
1209 if (Load->getMemoryVT() == MVT::i8)
1210 return false;
1211 // Otherwise decide on extension type.
1212 switch (Load->getExtensionType()) {
1213 case ISD::NON_EXTLOAD:
1214 return true;
1215 case ISD::SEXTLOAD:
1216 return ICmpType != SystemZICMP::UnsignedOnly;
1217 case ISD::ZEXTLOAD:
1218 return ICmpType != SystemZICMP::SignedOnly;
1219 default:
1220 break;
1221 }
1222 }
1223 return false;
1224 }
1225
1226 // Return true if it is better to swap the operands of C.
shouldSwapCmpOperands(const Comparison & C)1227 static bool shouldSwapCmpOperands(const Comparison &C) {
1228 // Leave f128 comparisons alone, since they have no memory forms.
1229 if (C.Op0.getValueType() == MVT::f128)
1230 return false;
1231
1232 // Always keep a floating-point constant second, since comparisons with
1233 // zero can use LOAD TEST and comparisons with other constants make a
1234 // natural memory operand.
1235 if (isa<ConstantFPSDNode>(C.Op1))
1236 return false;
1237
1238 // Never swap comparisons with zero since there are many ways to optimize
1239 // those later.
1240 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1241 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1242 return false;
1243
1244 // Also keep natural memory operands second if the loaded value is
1245 // only used here. Several comparisons have memory forms.
1246 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1247 return false;
1248
1249 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1250 // In that case we generally prefer the memory to be second.
1251 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1252 // The only exceptions are when the second operand is a constant and
1253 // we can use things like CHHSI.
1254 if (!ConstOp1)
1255 return true;
1256 // The unsigned memory-immediate instructions can handle 16-bit
1257 // unsigned integers.
1258 if (C.ICmpType != SystemZICMP::SignedOnly &&
1259 isUInt<16>(ConstOp1->getZExtValue()))
1260 return false;
1261 // The signed memory-immediate instructions can handle 16-bit
1262 // signed integers.
1263 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1264 isInt<16>(ConstOp1->getSExtValue()))
1265 return false;
1266 return true;
1267 }
1268
1269 // Try to promote the use of CGFR and CLGFR.
1270 unsigned Opcode0 = C.Op0.getOpcode();
1271 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1272 return true;
1273 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1274 return true;
1275 if (C.ICmpType != SystemZICMP::SignedOnly &&
1276 Opcode0 == ISD::AND &&
1277 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1278 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1279 return true;
1280
1281 return false;
1282 }
1283
1284 // Return a version of comparison CC mask CCMask in which the LT and GT
1285 // actions are swapped.
reverseCCMask(unsigned CCMask)1286 static unsigned reverseCCMask(unsigned CCMask) {
1287 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1288 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1289 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1290 (CCMask & SystemZ::CCMASK_CMP_UO));
1291 }
1292
1293 // Check whether C tests for equality between X and Y and whether X - Y
1294 // or Y - X is also computed. In that case it's better to compare the
1295 // result of the subtraction against zero.
adjustForSubtraction(SelectionDAG & DAG,Comparison & C)1296 static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
1297 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1298 C.CCMask == SystemZ::CCMASK_CMP_NE) {
1299 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1300 SDNode *N = *I;
1301 if (N->getOpcode() == ISD::SUB &&
1302 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1303 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1304 C.Op0 = SDValue(N, 0);
1305 C.Op1 = DAG.getConstant(0, N->getValueType(0));
1306 return;
1307 }
1308 }
1309 }
1310 }
1311
1312 // Check whether C compares a floating-point value with zero and if that
1313 // floating-point value is also negated. In this case we can use the
1314 // negation to set CC, so avoiding separate LOAD AND TEST and
1315 // LOAD (NEGATIVE/COMPLEMENT) instructions.
adjustForFNeg(Comparison & C)1316 static void adjustForFNeg(Comparison &C) {
1317 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1318 if (C1 && C1->isZero()) {
1319 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1320 SDNode *N = *I;
1321 if (N->getOpcode() == ISD::FNEG) {
1322 C.Op0 = SDValue(N, 0);
1323 C.CCMask = reverseCCMask(C.CCMask);
1324 return;
1325 }
1326 }
1327 }
1328 }
1329
1330 // Check whether C compares (shl X, 32) with 0 and whether X is
1331 // also sign-extended. In that case it is better to test the result
1332 // of the sign extension using LTGFR.
1333 //
1334 // This case is important because InstCombine transforms a comparison
1335 // with (sext (trunc X)) into a comparison with (shl X, 32).
adjustForLTGFR(Comparison & C)1336 static void adjustForLTGFR(Comparison &C) {
1337 // Check for a comparison between (shl X, 32) and 0.
1338 if (C.Op0.getOpcode() == ISD::SHL &&
1339 C.Op0.getValueType() == MVT::i64 &&
1340 C.Op1.getOpcode() == ISD::Constant &&
1341 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1342 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1343 if (C1 && C1->getZExtValue() == 32) {
1344 SDValue ShlOp0 = C.Op0.getOperand(0);
1345 // See whether X has any SIGN_EXTEND_INREG uses.
1346 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1347 SDNode *N = *I;
1348 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1349 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1350 C.Op0 = SDValue(N, 0);
1351 return;
1352 }
1353 }
1354 }
1355 }
1356 }
1357
1358 // If C compares the truncation of an extending load, try to compare
1359 // the untruncated value instead. This exposes more opportunities to
1360 // reuse CC.
adjustICmpTruncate(SelectionDAG & DAG,Comparison & C)1361 static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
1362 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1363 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1364 C.Op1.getOpcode() == ISD::Constant &&
1365 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1366 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1367 if (L->getMemoryVT().getStoreSizeInBits()
1368 <= C.Op0.getValueType().getSizeInBits()) {
1369 unsigned Type = L->getExtensionType();
1370 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1371 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1372 C.Op0 = C.Op0.getOperand(0);
1373 C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
1374 }
1375 }
1376 }
1377 }
1378
1379 // Return true if shift operation N has an in-range constant shift value.
1380 // Store it in ShiftVal if so.
isSimpleShift(SDValue N,unsigned & ShiftVal)1381 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1382 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1383 if (!Shift)
1384 return false;
1385
1386 uint64_t Amount = Shift->getZExtValue();
1387 if (Amount >= N.getValueType().getSizeInBits())
1388 return false;
1389
1390 ShiftVal = Amount;
1391 return true;
1392 }
1393
1394 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1395 // instruction and whether the CC value is descriptive enough to handle
1396 // a comparison of type Opcode between the AND result and CmpVal.
1397 // CCMask says which comparison result is being tested and BitSize is
1398 // the number of bits in the operands. If TEST UNDER MASK can be used,
1399 // return the corresponding CC mask, otherwise return 0.
getTestUnderMaskCond(unsigned BitSize,unsigned CCMask,uint64_t Mask,uint64_t CmpVal,unsigned ICmpType)1400 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1401 uint64_t Mask, uint64_t CmpVal,
1402 unsigned ICmpType) {
1403 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1404
1405 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1406 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1407 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1408 return 0;
1409
1410 // Work out the masks for the lowest and highest bits.
1411 unsigned HighShift = 63 - countLeadingZeros(Mask);
1412 uint64_t High = uint64_t(1) << HighShift;
1413 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1414
1415 // Signed ordered comparisons are effectively unsigned if the sign
1416 // bit is dropped.
1417 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1418
1419 // Check for equality comparisons with 0, or the equivalent.
1420 if (CmpVal == 0) {
1421 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1422 return SystemZ::CCMASK_TM_ALL_0;
1423 if (CCMask == SystemZ::CCMASK_CMP_NE)
1424 return SystemZ::CCMASK_TM_SOME_1;
1425 }
1426 if (EffectivelyUnsigned && CmpVal <= Low) {
1427 if (CCMask == SystemZ::CCMASK_CMP_LT)
1428 return SystemZ::CCMASK_TM_ALL_0;
1429 if (CCMask == SystemZ::CCMASK_CMP_GE)
1430 return SystemZ::CCMASK_TM_SOME_1;
1431 }
1432 if (EffectivelyUnsigned && CmpVal < Low) {
1433 if (CCMask == SystemZ::CCMASK_CMP_LE)
1434 return SystemZ::CCMASK_TM_ALL_0;
1435 if (CCMask == SystemZ::CCMASK_CMP_GT)
1436 return SystemZ::CCMASK_TM_SOME_1;
1437 }
1438
1439 // Check for equality comparisons with the mask, or the equivalent.
1440 if (CmpVal == Mask) {
1441 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1442 return SystemZ::CCMASK_TM_ALL_1;
1443 if (CCMask == SystemZ::CCMASK_CMP_NE)
1444 return SystemZ::CCMASK_TM_SOME_0;
1445 }
1446 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1447 if (CCMask == SystemZ::CCMASK_CMP_GT)
1448 return SystemZ::CCMASK_TM_ALL_1;
1449 if (CCMask == SystemZ::CCMASK_CMP_LE)
1450 return SystemZ::CCMASK_TM_SOME_0;
1451 }
1452 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1453 if (CCMask == SystemZ::CCMASK_CMP_GE)
1454 return SystemZ::CCMASK_TM_ALL_1;
1455 if (CCMask == SystemZ::CCMASK_CMP_LT)
1456 return SystemZ::CCMASK_TM_SOME_0;
1457 }
1458
1459 // Check for ordered comparisons with the top bit.
1460 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1461 if (CCMask == SystemZ::CCMASK_CMP_LE)
1462 return SystemZ::CCMASK_TM_MSB_0;
1463 if (CCMask == SystemZ::CCMASK_CMP_GT)
1464 return SystemZ::CCMASK_TM_MSB_1;
1465 }
1466 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1467 if (CCMask == SystemZ::CCMASK_CMP_LT)
1468 return SystemZ::CCMASK_TM_MSB_0;
1469 if (CCMask == SystemZ::CCMASK_CMP_GE)
1470 return SystemZ::CCMASK_TM_MSB_1;
1471 }
1472
1473 // If there are just two bits, we can do equality checks for Low and High
1474 // as well.
1475 if (Mask == Low + High) {
1476 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1477 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1478 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1479 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1480 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1481 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1482 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1483 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1484 }
1485
1486 // Looks like we've exhausted our options.
1487 return 0;
1488 }
1489
1490 // See whether C can be implemented as a TEST UNDER MASK instruction.
1491 // Update the arguments with the TM version if so.
adjustForTestUnderMask(SelectionDAG & DAG,Comparison & C)1492 static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
1493 // Check that we have a comparison with a constant.
1494 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1495 if (!ConstOp1)
1496 return;
1497 uint64_t CmpVal = ConstOp1->getZExtValue();
1498
1499 // Check whether the nonconstant input is an AND with a constant mask.
1500 Comparison NewC(C);
1501 uint64_t MaskVal;
1502 ConstantSDNode *Mask = nullptr;
1503 if (C.Op0.getOpcode() == ISD::AND) {
1504 NewC.Op0 = C.Op0.getOperand(0);
1505 NewC.Op1 = C.Op0.getOperand(1);
1506 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
1507 if (!Mask)
1508 return;
1509 MaskVal = Mask->getZExtValue();
1510 } else {
1511 // There is no instruction to compare with a 64-bit immediate
1512 // so use TMHH instead if possible. We need an unsigned ordered
1513 // comparison with an i64 immediate.
1514 if (NewC.Op0.getValueType() != MVT::i64 ||
1515 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
1516 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
1517 NewC.ICmpType == SystemZICMP::SignedOnly)
1518 return;
1519 // Convert LE and GT comparisons into LT and GE.
1520 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
1521 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
1522 if (CmpVal == uint64_t(-1))
1523 return;
1524 CmpVal += 1;
1525 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1526 }
1527 // If the low N bits of Op1 are zero than the low N bits of Op0 can
1528 // be masked off without changing the result.
1529 MaskVal = -(CmpVal & -CmpVal);
1530 NewC.ICmpType = SystemZICMP::UnsignedOnly;
1531 }
1532
1533 // Check whether the combination of mask, comparison value and comparison
1534 // type are suitable.
1535 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
1536 unsigned NewCCMask, ShiftVal;
1537 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1538 NewC.Op0.getOpcode() == ISD::SHL &&
1539 isSimpleShift(NewC.Op0, ShiftVal) &&
1540 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1541 MaskVal >> ShiftVal,
1542 CmpVal >> ShiftVal,
1543 SystemZICMP::Any))) {
1544 NewC.Op0 = NewC.Op0.getOperand(0);
1545 MaskVal >>= ShiftVal;
1546 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
1547 NewC.Op0.getOpcode() == ISD::SRL &&
1548 isSimpleShift(NewC.Op0, ShiftVal) &&
1549 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
1550 MaskVal << ShiftVal,
1551 CmpVal << ShiftVal,
1552 SystemZICMP::UnsignedOnly))) {
1553 NewC.Op0 = NewC.Op0.getOperand(0);
1554 MaskVal <<= ShiftVal;
1555 } else {
1556 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
1557 NewC.ICmpType);
1558 if (!NewCCMask)
1559 return;
1560 }
1561
1562 // Go ahead and make the change.
1563 C.Opcode = SystemZISD::TM;
1564 C.Op0 = NewC.Op0;
1565 if (Mask && Mask->getZExtValue() == MaskVal)
1566 C.Op1 = SDValue(Mask, 0);
1567 else
1568 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
1569 C.CCValid = SystemZ::CCMASK_TM;
1570 C.CCMask = NewCCMask;
1571 }
1572
1573 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
getCmp(SelectionDAG & DAG,SDValue CmpOp0,SDValue CmpOp1,ISD::CondCode Cond)1574 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1575 ISD::CondCode Cond) {
1576 Comparison C(CmpOp0, CmpOp1);
1577 C.CCMask = CCMaskForCondCode(Cond);
1578 if (C.Op0.getValueType().isFloatingPoint()) {
1579 C.CCValid = SystemZ::CCMASK_FCMP;
1580 C.Opcode = SystemZISD::FCMP;
1581 adjustForFNeg(C);
1582 } else {
1583 C.CCValid = SystemZ::CCMASK_ICMP;
1584 C.Opcode = SystemZISD::ICMP;
1585 // Choose the type of comparison. Equality and inequality tests can
1586 // use either signed or unsigned comparisons. The choice also doesn't
1587 // matter if both sign bits are known to be clear. In those cases we
1588 // want to give the main isel code the freedom to choose whichever
1589 // form fits best.
1590 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1591 C.CCMask == SystemZ::CCMASK_CMP_NE ||
1592 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
1593 C.ICmpType = SystemZICMP::Any;
1594 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
1595 C.ICmpType = SystemZICMP::UnsignedOnly;
1596 else
1597 C.ICmpType = SystemZICMP::SignedOnly;
1598 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
1599 adjustZeroCmp(DAG, C);
1600 adjustSubwordCmp(DAG, C);
1601 adjustForSubtraction(DAG, C);
1602 adjustForLTGFR(C);
1603 adjustICmpTruncate(DAG, C);
1604 }
1605
1606 if (shouldSwapCmpOperands(C)) {
1607 std::swap(C.Op0, C.Op1);
1608 C.CCMask = reverseCCMask(C.CCMask);
1609 }
1610
1611 adjustForTestUnderMask(DAG, C);
1612 return C;
1613 }
1614
1615 // Emit the comparison instruction described by C.
emitCmp(SelectionDAG & DAG,SDLoc DL,Comparison & C)1616 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
1617 if (C.Opcode == SystemZISD::ICMP)
1618 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
1619 DAG.getConstant(C.ICmpType, MVT::i32));
1620 if (C.Opcode == SystemZISD::TM) {
1621 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1622 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
1623 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
1624 DAG.getConstant(RegisterOnly, MVT::i32));
1625 }
1626 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
1627 }
1628
1629 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
1630 // 64 bits. Extend is the extension type to use. Store the high part
1631 // in Hi and the low part in Lo.
lowerMUL_LOHI32(SelectionDAG & DAG,SDLoc DL,unsigned Extend,SDValue Op0,SDValue Op1,SDValue & Hi,SDValue & Lo)1632 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1633 unsigned Extend, SDValue Op0, SDValue Op1,
1634 SDValue &Hi, SDValue &Lo) {
1635 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1636 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1637 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1638 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1639 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1640 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1641 }
1642
1643 // Lower a binary operation that produces two VT results, one in each
1644 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
1645 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1646 // on the extended Op0 and (unextended) Op1. Store the even register result
1647 // in Even and the odd register result in Odd.
lowerGR128Binary(SelectionDAG & DAG,SDLoc DL,EVT VT,unsigned Extend,unsigned Opcode,SDValue Op0,SDValue Op1,SDValue & Even,SDValue & Odd)1648 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1649 unsigned Extend, unsigned Opcode,
1650 SDValue Op0, SDValue Op1,
1651 SDValue &Even, SDValue &Odd) {
1652 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1653 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1654 SDValue(In128, 0), Op1);
1655 bool Is32Bit = is32Bit(VT);
1656 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
1657 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
1658 }
1659
1660 // Return an i32 value that is 1 if the CC value produced by Glue is
1661 // in the mask CCMask and 0 otherwise. CC is known to have a value
1662 // in CCValid, so other values can be ignored.
emitSETCC(SelectionDAG & DAG,SDLoc DL,SDValue Glue,unsigned CCValid,unsigned CCMask)1663 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
1664 unsigned CCValid, unsigned CCMask) {
1665 IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
1666 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
1667
1668 if (Conversion.XORValue)
1669 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
1670 DAG.getConstant(Conversion.XORValue, MVT::i32));
1671
1672 if (Conversion.AddValue)
1673 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
1674 DAG.getConstant(Conversion.AddValue, MVT::i32));
1675
1676 // The SHR/AND sequence should get optimized to an RISBG.
1677 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
1678 DAG.getConstant(Conversion.Bit, MVT::i32));
1679 if (Conversion.Bit != 31)
1680 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
1681 DAG.getConstant(1, MVT::i32));
1682 return Result;
1683 }
1684
lowerSETCC(SDValue Op,SelectionDAG & DAG) const1685 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
1686 SelectionDAG &DAG) const {
1687 SDValue CmpOp0 = Op.getOperand(0);
1688 SDValue CmpOp1 = Op.getOperand(1);
1689 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1690 SDLoc DL(Op);
1691
1692 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1693 SDValue Glue = emitCmp(DAG, DL, C);
1694 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1695 }
1696
lowerBR_CC(SDValue Op,SelectionDAG & DAG) const1697 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1698 SDValue Chain = Op.getOperand(0);
1699 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1700 SDValue CmpOp0 = Op.getOperand(2);
1701 SDValue CmpOp1 = Op.getOperand(3);
1702 SDValue Dest = Op.getOperand(4);
1703 SDLoc DL(Op);
1704
1705 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1706 SDValue Glue = emitCmp(DAG, DL, C);
1707 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1708 Chain, DAG.getConstant(C.CCValid, MVT::i32),
1709 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
1710 }
1711
1712 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
1713 // allowing Pos and Neg to be wider than CmpOp.
isAbsolute(SDValue CmpOp,SDValue Pos,SDValue Neg)1714 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
1715 return (Neg.getOpcode() == ISD::SUB &&
1716 Neg.getOperand(0).getOpcode() == ISD::Constant &&
1717 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
1718 Neg.getOperand(1) == Pos &&
1719 (Pos == CmpOp ||
1720 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
1721 Pos.getOperand(0) == CmpOp)));
1722 }
1723
1724 // Return the absolute or negative absolute of Op; IsNegative decides which.
getAbsolute(SelectionDAG & DAG,SDLoc DL,SDValue Op,bool IsNegative)1725 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
1726 bool IsNegative) {
1727 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
1728 if (IsNegative)
1729 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
1730 DAG.getConstant(0, Op.getValueType()), Op);
1731 return Op;
1732 }
1733
lowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const1734 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1735 SelectionDAG &DAG) const {
1736 SDValue CmpOp0 = Op.getOperand(0);
1737 SDValue CmpOp1 = Op.getOperand(1);
1738 SDValue TrueOp = Op.getOperand(2);
1739 SDValue FalseOp = Op.getOperand(3);
1740 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1741 SDLoc DL(Op);
1742
1743 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
1744
1745 // Check for absolute and negative-absolute selections, including those
1746 // where the comparison value is sign-extended (for LPGFR and LNGFR).
1747 // This check supplements the one in DAGCombiner.
1748 if (C.Opcode == SystemZISD::ICMP &&
1749 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
1750 C.CCMask != SystemZ::CCMASK_CMP_NE &&
1751 C.Op1.getOpcode() == ISD::Constant &&
1752 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1753 if (isAbsolute(C.Op0, TrueOp, FalseOp))
1754 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
1755 if (isAbsolute(C.Op0, FalseOp, TrueOp))
1756 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
1757 }
1758
1759 SDValue Glue = emitCmp(DAG, DL, C);
1760
1761 // Special case for handling -1/0 results. The shifts we use here
1762 // should get optimized with the IPM conversion sequence.
1763 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
1764 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
1765 if (TrueC && FalseC) {
1766 int64_t TrueVal = TrueC->getSExtValue();
1767 int64_t FalseVal = FalseC->getSExtValue();
1768 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
1769 // Invert the condition if we want -1 on false.
1770 if (TrueVal == 0)
1771 C.CCMask ^= C.CCValid;
1772 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
1773 EVT VT = Op.getValueType();
1774 // Extend the result to VT. Upper bits are ignored.
1775 if (!is32Bit(VT))
1776 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
1777 // Sign-extend from the low bit.
1778 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
1779 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
1780 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
1781 }
1782 }
1783
1784 SmallVector<SDValue, 5> Ops;
1785 Ops.push_back(TrueOp);
1786 Ops.push_back(FalseOp);
1787 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32));
1788 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32));
1789 Ops.push_back(Glue);
1790
1791 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1792 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
1793 }
1794
lowerGlobalAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const1795 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1796 SelectionDAG &DAG) const {
1797 SDLoc DL(Node);
1798 const GlobalValue *GV = Node->getGlobal();
1799 int64_t Offset = Node->getOffset();
1800 EVT PtrVT = getPointerTy();
1801 Reloc::Model RM = DAG.getTarget().getRelocationModel();
1802 CodeModel::Model CM = DAG.getTarget().getCodeModel();
1803
1804 SDValue Result;
1805 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1806 // Assign anchors at 1<<12 byte boundaries.
1807 uint64_t Anchor = Offset & ~uint64_t(0xfff);
1808 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
1809 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1810
1811 // The offset can be folded into the address if it is aligned to a halfword.
1812 Offset -= Anchor;
1813 if (Offset != 0 && (Offset & 1) == 0) {
1814 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
1815 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
1816 Offset = 0;
1817 }
1818 } else {
1819 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1820 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1821 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1822 MachinePointerInfo::getGOT(), false, false, false, 0);
1823 }
1824
1825 // If there was a non-zero offset that we didn't fold, create an explicit
1826 // addition for it.
1827 if (Offset != 0)
1828 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1829 DAG.getConstant(Offset, PtrVT));
1830
1831 return Result;
1832 }
1833
lowerGlobalTLSAddress(GlobalAddressSDNode * Node,SelectionDAG & DAG) const1834 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1835 SelectionDAG &DAG) const {
1836 SDLoc DL(Node);
1837 const GlobalValue *GV = Node->getGlobal();
1838 EVT PtrVT = getPointerTy();
1839 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
1840
1841 if (model != TLSModel::LocalExec)
1842 llvm_unreachable("only local-exec TLS mode supported");
1843
1844 // The high part of the thread pointer is in access register 0.
1845 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1846 DAG.getConstant(0, MVT::i32));
1847 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1848
1849 // The low part of the thread pointer is in access register 1.
1850 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1851 DAG.getConstant(1, MVT::i32));
1852 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1853
1854 // Merge them into a single 64-bit address.
1855 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1856 DAG.getConstant(32, PtrVT));
1857 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1858
1859 // Get the offset of GA from the thread pointer.
1860 SystemZConstantPoolValue *CPV =
1861 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1862
1863 // Force the offset into the constant pool and load it from there.
1864 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1865 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1866 CPAddr, MachinePointerInfo::getConstantPool(),
1867 false, false, false, 0);
1868
1869 // Add the base and offset together.
1870 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1871 }
1872
lowerBlockAddress(BlockAddressSDNode * Node,SelectionDAG & DAG) const1873 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1874 SelectionDAG &DAG) const {
1875 SDLoc DL(Node);
1876 const BlockAddress *BA = Node->getBlockAddress();
1877 int64_t Offset = Node->getOffset();
1878 EVT PtrVT = getPointerTy();
1879
1880 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1881 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1882 return Result;
1883 }
1884
lowerJumpTable(JumpTableSDNode * JT,SelectionDAG & DAG) const1885 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1886 SelectionDAG &DAG) const {
1887 SDLoc DL(JT);
1888 EVT PtrVT = getPointerTy();
1889 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1890
1891 // Use LARL to load the address of the table.
1892 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1893 }
1894
lowerConstantPool(ConstantPoolSDNode * CP,SelectionDAG & DAG) const1895 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1896 SelectionDAG &DAG) const {
1897 SDLoc DL(CP);
1898 EVT PtrVT = getPointerTy();
1899
1900 SDValue Result;
1901 if (CP->isMachineConstantPoolEntry())
1902 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1903 CP->getAlignment());
1904 else
1905 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1906 CP->getAlignment(), CP->getOffset());
1907
1908 // Use LARL to load the address of the constant pool entry.
1909 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1910 }
1911
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const1912 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1913 SelectionDAG &DAG) const {
1914 SDLoc DL(Op);
1915 SDValue In = Op.getOperand(0);
1916 EVT InVT = In.getValueType();
1917 EVT ResVT = Op.getValueType();
1918
1919 if (InVT == MVT::i32 && ResVT == MVT::f32) {
1920 SDValue In64;
1921 if (Subtarget.hasHighWord()) {
1922 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
1923 MVT::i64);
1924 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1925 MVT::i64, SDValue(U64, 0), In);
1926 } else {
1927 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1928 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
1929 DAG.getConstant(32, MVT::i64));
1930 }
1931 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
1932 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
1933 DL, MVT::f32, Out64);
1934 }
1935 if (InVT == MVT::f32 && ResVT == MVT::i32) {
1936 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1937 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
1938 MVT::f64, SDValue(U64, 0), In);
1939 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
1940 if (Subtarget.hasHighWord())
1941 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
1942 MVT::i32, Out64);
1943 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
1944 DAG.getConstant(32, MVT::i64));
1945 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1946 }
1947 llvm_unreachable("Unexpected bitcast combination");
1948 }
1949
lowerVASTART(SDValue Op,SelectionDAG & DAG) const1950 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1951 SelectionDAG &DAG) const {
1952 MachineFunction &MF = DAG.getMachineFunction();
1953 SystemZMachineFunctionInfo *FuncInfo =
1954 MF.getInfo<SystemZMachineFunctionInfo>();
1955 EVT PtrVT = getPointerTy();
1956
1957 SDValue Chain = Op.getOperand(0);
1958 SDValue Addr = Op.getOperand(1);
1959 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1960 SDLoc DL(Op);
1961
1962 // The initial values of each field.
1963 const unsigned NumFields = 4;
1964 SDValue Fields[NumFields] = {
1965 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1966 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1967 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1968 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1969 };
1970
1971 // Store each field into its respective slot.
1972 SDValue MemOps[NumFields];
1973 unsigned Offset = 0;
1974 for (unsigned I = 0; I < NumFields; ++I) {
1975 SDValue FieldAddr = Addr;
1976 if (Offset != 0)
1977 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1978 DAG.getIntPtrConstant(Offset));
1979 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1980 MachinePointerInfo(SV, Offset),
1981 false, false, 0);
1982 Offset += 8;
1983 }
1984 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1985 }
1986
lowerVACOPY(SDValue Op,SelectionDAG & DAG) const1987 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1988 SelectionDAG &DAG) const {
1989 SDValue Chain = Op.getOperand(0);
1990 SDValue DstPtr = Op.getOperand(1);
1991 SDValue SrcPtr = Op.getOperand(2);
1992 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1993 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1994 SDLoc DL(Op);
1995
1996 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1997 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1998 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1999 }
2000
2001 SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const2002 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2003 SDValue Chain = Op.getOperand(0);
2004 SDValue Size = Op.getOperand(1);
2005 SDLoc DL(Op);
2006
2007 unsigned SPReg = getStackPointerRegisterToSaveRestore();
2008
2009 // Get a reference to the stack pointer.
2010 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2011
2012 // Get the new stack pointer value.
2013 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
2014
2015 // Copy the new stack pointer back.
2016 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2017
2018 // The allocated data lives above the 160 bytes allocated for the standard
2019 // frame, plus any outgoing stack arguments. We don't know how much that
2020 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2021 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2022 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2023
2024 SDValue Ops[2] = { Result, Chain };
2025 return DAG.getMergeValues(Ops, DL);
2026 }
2027
lowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2028 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2029 SelectionDAG &DAG) const {
2030 EVT VT = Op.getValueType();
2031 SDLoc DL(Op);
2032 SDValue Ops[2];
2033 if (is32Bit(VT))
2034 // Just do a normal 64-bit multiplication and extract the results.
2035 // We define this so that it can be used for constant division.
2036 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2037 Op.getOperand(1), Ops[1], Ops[0]);
2038 else {
2039 // Do a full 128-bit multiplication based on UMUL_LOHI64:
2040 //
2041 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2042 //
2043 // but using the fact that the upper halves are either all zeros
2044 // or all ones:
2045 //
2046 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2047 //
2048 // and grouping the right terms together since they are quicker than the
2049 // multiplication:
2050 //
2051 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2052 SDValue C63 = DAG.getConstant(63, MVT::i64);
2053 SDValue LL = Op.getOperand(0);
2054 SDValue RL = Op.getOperand(1);
2055 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2056 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2057 // UMUL_LOHI64 returns the low result in the odd register and the high
2058 // result in the even register. SMUL_LOHI is defined to return the
2059 // low half first, so the results are in reverse order.
2060 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2061 LL, RL, Ops[1], Ops[0]);
2062 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2063 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2064 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2065 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2066 }
2067 return DAG.getMergeValues(Ops, DL);
2068 }
2069
lowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const2070 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2071 SelectionDAG &DAG) const {
2072 EVT VT = Op.getValueType();
2073 SDLoc DL(Op);
2074 SDValue Ops[2];
2075 if (is32Bit(VT))
2076 // Just do a normal 64-bit multiplication and extract the results.
2077 // We define this so that it can be used for constant division.
2078 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2079 Op.getOperand(1), Ops[1], Ops[0]);
2080 else
2081 // UMUL_LOHI64 returns the low result in the odd register and the high
2082 // result in the even register. UMUL_LOHI is defined to return the
2083 // low half first, so the results are in reverse order.
2084 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2085 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2086 return DAG.getMergeValues(Ops, DL);
2087 }
2088
lowerSDIVREM(SDValue Op,SelectionDAG & DAG) const2089 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2090 SelectionDAG &DAG) const {
2091 SDValue Op0 = Op.getOperand(0);
2092 SDValue Op1 = Op.getOperand(1);
2093 EVT VT = Op.getValueType();
2094 SDLoc DL(Op);
2095 unsigned Opcode;
2096
2097 // We use DSGF for 32-bit division.
2098 if (is32Bit(VT)) {
2099 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
2100 Opcode = SystemZISD::SDIVREM32;
2101 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
2102 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
2103 Opcode = SystemZISD::SDIVREM32;
2104 } else
2105 Opcode = SystemZISD::SDIVREM64;
2106
2107 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
2108 // input is "don't care". The instruction returns the remainder in
2109 // the even register and the quotient in the odd register.
2110 SDValue Ops[2];
2111 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
2112 Op0, Op1, Ops[1], Ops[0]);
2113 return DAG.getMergeValues(Ops, DL);
2114 }
2115
lowerUDIVREM(SDValue Op,SelectionDAG & DAG) const2116 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
2117 SelectionDAG &DAG) const {
2118 EVT VT = Op.getValueType();
2119 SDLoc DL(Op);
2120
2121 // DL(G) uses a double-width dividend, so we need to clear the even
2122 // register in the GR128 input. The instruction returns the remainder
2123 // in the even register and the quotient in the odd register.
2124 SDValue Ops[2];
2125 if (is32Bit(VT))
2126 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
2127 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2128 else
2129 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
2130 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2131 return DAG.getMergeValues(Ops, DL);
2132 }
2133
lowerOR(SDValue Op,SelectionDAG & DAG) const2134 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
2135 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
2136
2137 // Get the known-zero masks for each operand.
2138 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
2139 APInt KnownZero[2], KnownOne[2];
2140 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
2141 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
2142
2143 // See if the upper 32 bits of one operand and the lower 32 bits of the
2144 // other are known zero. They are the low and high operands respectively.
2145 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
2146 KnownZero[1].getZExtValue() };
2147 unsigned High, Low;
2148 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
2149 High = 1, Low = 0;
2150 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
2151 High = 0, Low = 1;
2152 else
2153 return Op;
2154
2155 SDValue LowOp = Ops[Low];
2156 SDValue HighOp = Ops[High];
2157
2158 // If the high part is a constant, we're better off using IILH.
2159 if (HighOp.getOpcode() == ISD::Constant)
2160 return Op;
2161
2162 // If the low part is a constant that is outside the range of LHI,
2163 // then we're better off using IILF.
2164 if (LowOp.getOpcode() == ISD::Constant) {
2165 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
2166 if (!isInt<16>(Value))
2167 return Op;
2168 }
2169
2170 // Check whether the high part is an AND that doesn't change the
2171 // high 32 bits and just masks out low bits. We can skip it if so.
2172 if (HighOp.getOpcode() == ISD::AND &&
2173 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
2174 SDValue HighOp0 = HighOp.getOperand(0);
2175 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
2176 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
2177 HighOp = HighOp0;
2178 }
2179
2180 // Take advantage of the fact that all GR32 operations only change the
2181 // low 32 bits by truncating Low to an i32 and inserting it directly
2182 // using a subreg. The interesting cases are those where the truncation
2183 // can be folded.
2184 SDLoc DL(Op);
2185 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
2186 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
2187 MVT::i64, HighOp, Low32);
2188 }
2189
2190 // Op is an atomic load. Lower it into a normal volatile load.
lowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const2191 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
2192 SelectionDAG &DAG) const {
2193 auto *Node = cast<AtomicSDNode>(Op.getNode());
2194 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
2195 Node->getChain(), Node->getBasePtr(),
2196 Node->getMemoryVT(), Node->getMemOperand());
2197 }
2198
2199 // Op is an atomic store. Lower it into a normal volatile store followed
2200 // by a serialization.
lowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const2201 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
2202 SelectionDAG &DAG) const {
2203 auto *Node = cast<AtomicSDNode>(Op.getNode());
2204 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
2205 Node->getBasePtr(), Node->getMemoryVT(),
2206 Node->getMemOperand());
2207 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
2208 Chain), 0);
2209 }
2210
2211 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
2212 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
lowerATOMIC_LOAD_OP(SDValue Op,SelectionDAG & DAG,unsigned Opcode) const2213 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
2214 SelectionDAG &DAG,
2215 unsigned Opcode) const {
2216 auto *Node = cast<AtomicSDNode>(Op.getNode());
2217
2218 // 32-bit operations need no code outside the main loop.
2219 EVT NarrowVT = Node->getMemoryVT();
2220 EVT WideVT = MVT::i32;
2221 if (NarrowVT == WideVT)
2222 return Op;
2223
2224 int64_t BitSize = NarrowVT.getSizeInBits();
2225 SDValue ChainIn = Node->getChain();
2226 SDValue Addr = Node->getBasePtr();
2227 SDValue Src2 = Node->getVal();
2228 MachineMemOperand *MMO = Node->getMemOperand();
2229 SDLoc DL(Node);
2230 EVT PtrVT = Addr.getValueType();
2231
2232 // Convert atomic subtracts of constants into additions.
2233 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
2234 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
2235 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
2236 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
2237 }
2238
2239 // Get the address of the containing word.
2240 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2241 DAG.getConstant(-4, PtrVT));
2242
2243 // Get the number of bits that the word must be rotated left in order
2244 // to bring the field to the top bits of a GR32.
2245 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2246 DAG.getConstant(3, PtrVT));
2247 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2248
2249 // Get the complementing shift amount, for rotating a field in the top
2250 // bits back to its proper position.
2251 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2252 DAG.getConstant(0, WideVT), BitShift);
2253
2254 // Extend the source operand to 32 bits and prepare it for the inner loop.
2255 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
2256 // operations require the source to be shifted in advance. (This shift
2257 // can be folded if the source is constant.) For AND and NAND, the lower
2258 // bits must be set, while for other opcodes they should be left clear.
2259 if (Opcode != SystemZISD::ATOMIC_SWAPW)
2260 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
2261 DAG.getConstant(32 - BitSize, WideVT));
2262 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
2263 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
2264 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
2265 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
2266
2267 // Construct the ATOMIC_LOADW_* node.
2268 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2269 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
2270 DAG.getConstant(BitSize, WideVT) };
2271 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
2272 NarrowVT, MMO);
2273
2274 // Rotate the result of the final CS so that the field is in the lower
2275 // bits of a GR32, then truncate it.
2276 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
2277 DAG.getConstant(BitSize, WideVT));
2278 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
2279
2280 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
2281 return DAG.getMergeValues(RetOps, DL);
2282 }
2283
2284 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
2285 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
2286 // operations into additions.
lowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const2287 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
2288 SelectionDAG &DAG) const {
2289 auto *Node = cast<AtomicSDNode>(Op.getNode());
2290 EVT MemVT = Node->getMemoryVT();
2291 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
2292 // A full-width operation.
2293 assert(Op.getValueType() == MemVT && "Mismatched VTs");
2294 SDValue Src2 = Node->getVal();
2295 SDValue NegSrc2;
2296 SDLoc DL(Src2);
2297
2298 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
2299 // Use an addition if the operand is constant and either LAA(G) is
2300 // available or the negative value is in the range of A(G)FHI.
2301 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
2302 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
2303 NegSrc2 = DAG.getConstant(Value, MemVT);
2304 } else if (Subtarget.hasInterlockedAccess1())
2305 // Use LAA(G) if available.
2306 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
2307 Src2);
2308
2309 if (NegSrc2.getNode())
2310 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
2311 Node->getChain(), Node->getBasePtr(), NegSrc2,
2312 Node->getMemOperand(), Node->getOrdering(),
2313 Node->getSynchScope());
2314
2315 // Use the node as-is.
2316 return Op;
2317 }
2318
2319 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2320 }
2321
2322 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
2323 // into a fullword ATOMIC_CMP_SWAPW operation.
lowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const2324 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
2325 SelectionDAG &DAG) const {
2326 auto *Node = cast<AtomicSDNode>(Op.getNode());
2327
2328 // We have native support for 32-bit compare and swap.
2329 EVT NarrowVT = Node->getMemoryVT();
2330 EVT WideVT = MVT::i32;
2331 if (NarrowVT == WideVT)
2332 return Op;
2333
2334 int64_t BitSize = NarrowVT.getSizeInBits();
2335 SDValue ChainIn = Node->getOperand(0);
2336 SDValue Addr = Node->getOperand(1);
2337 SDValue CmpVal = Node->getOperand(2);
2338 SDValue SwapVal = Node->getOperand(3);
2339 MachineMemOperand *MMO = Node->getMemOperand();
2340 SDLoc DL(Node);
2341 EVT PtrVT = Addr.getValueType();
2342
2343 // Get the address of the containing word.
2344 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
2345 DAG.getConstant(-4, PtrVT));
2346
2347 // Get the number of bits that the word must be rotated left in order
2348 // to bring the field to the top bits of a GR32.
2349 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
2350 DAG.getConstant(3, PtrVT));
2351 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
2352
2353 // Get the complementing shift amount, for rotating a field in the top
2354 // bits back to its proper position.
2355 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
2356 DAG.getConstant(0, WideVT), BitShift);
2357
2358 // Construct the ATOMIC_CMP_SWAPW node.
2359 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
2360 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
2361 NegBitShift, DAG.getConstant(BitSize, WideVT) };
2362 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
2363 VTList, Ops, NarrowVT, MMO);
2364 return AtomicOp;
2365 }
2366
lowerSTACKSAVE(SDValue Op,SelectionDAG & DAG) const2367 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
2368 SelectionDAG &DAG) const {
2369 MachineFunction &MF = DAG.getMachineFunction();
2370 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2371 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
2372 SystemZ::R15D, Op.getValueType());
2373 }
2374
lowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const2375 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
2376 SelectionDAG &DAG) const {
2377 MachineFunction &MF = DAG.getMachineFunction();
2378 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
2379 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
2380 SystemZ::R15D, Op.getOperand(1));
2381 }
2382
lowerPREFETCH(SDValue Op,SelectionDAG & DAG) const2383 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
2384 SelectionDAG &DAG) const {
2385 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2386 if (!IsData)
2387 // Just preserve the chain.
2388 return Op.getOperand(0);
2389
2390 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2391 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
2392 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
2393 SDValue Ops[] = {
2394 Op.getOperand(0),
2395 DAG.getConstant(Code, MVT::i32),
2396 Op.getOperand(1)
2397 };
2398 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
2399 Node->getVTList(), Ops,
2400 Node->getMemoryVT(), Node->getMemOperand());
2401 }
2402
LowerOperation(SDValue Op,SelectionDAG & DAG) const2403 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
2404 SelectionDAG &DAG) const {
2405 switch (Op.getOpcode()) {
2406 case ISD::BR_CC:
2407 return lowerBR_CC(Op, DAG);
2408 case ISD::SELECT_CC:
2409 return lowerSELECT_CC(Op, DAG);
2410 case ISD::SETCC:
2411 return lowerSETCC(Op, DAG);
2412 case ISD::GlobalAddress:
2413 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
2414 case ISD::GlobalTLSAddress:
2415 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
2416 case ISD::BlockAddress:
2417 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
2418 case ISD::JumpTable:
2419 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
2420 case ISD::ConstantPool:
2421 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
2422 case ISD::BITCAST:
2423 return lowerBITCAST(Op, DAG);
2424 case ISD::VASTART:
2425 return lowerVASTART(Op, DAG);
2426 case ISD::VACOPY:
2427 return lowerVACOPY(Op, DAG);
2428 case ISD::DYNAMIC_STACKALLOC:
2429 return lowerDYNAMIC_STACKALLOC(Op, DAG);
2430 case ISD::SMUL_LOHI:
2431 return lowerSMUL_LOHI(Op, DAG);
2432 case ISD::UMUL_LOHI:
2433 return lowerUMUL_LOHI(Op, DAG);
2434 case ISD::SDIVREM:
2435 return lowerSDIVREM(Op, DAG);
2436 case ISD::UDIVREM:
2437 return lowerUDIVREM(Op, DAG);
2438 case ISD::OR:
2439 return lowerOR(Op, DAG);
2440 case ISD::ATOMIC_SWAP:
2441 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2442 case ISD::ATOMIC_STORE:
2443 return lowerATOMIC_STORE(Op, DAG);
2444 case ISD::ATOMIC_LOAD:
2445 return lowerATOMIC_LOAD(Op, DAG);
2446 case ISD::ATOMIC_LOAD_ADD:
2447 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2448 case ISD::ATOMIC_LOAD_SUB:
2449 return lowerATOMIC_LOAD_SUB(Op, DAG);
2450 case ISD::ATOMIC_LOAD_AND:
2451 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2452 case ISD::ATOMIC_LOAD_OR:
2453 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2454 case ISD::ATOMIC_LOAD_XOR:
2455 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2456 case ISD::ATOMIC_LOAD_NAND:
2457 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2458 case ISD::ATOMIC_LOAD_MIN:
2459 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2460 case ISD::ATOMIC_LOAD_MAX:
2461 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2462 case ISD::ATOMIC_LOAD_UMIN:
2463 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2464 case ISD::ATOMIC_LOAD_UMAX:
2465 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2466 case ISD::ATOMIC_CMP_SWAP:
2467 return lowerATOMIC_CMP_SWAP(Op, DAG);
2468 case ISD::STACKSAVE:
2469 return lowerSTACKSAVE(Op, DAG);
2470 case ISD::STACKRESTORE:
2471 return lowerSTACKRESTORE(Op, DAG);
2472 case ISD::PREFETCH:
2473 return lowerPREFETCH(Op, DAG);
2474 default:
2475 llvm_unreachable("Unexpected node to lower");
2476 }
2477 }
2478
getTargetNodeName(unsigned Opcode) const2479 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2480 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2481 switch (Opcode) {
2482 OPCODE(RET_FLAG);
2483 OPCODE(CALL);
2484 OPCODE(SIBCALL);
2485 OPCODE(PCREL_WRAPPER);
2486 OPCODE(PCREL_OFFSET);
2487 OPCODE(IABS);
2488 OPCODE(ICMP);
2489 OPCODE(FCMP);
2490 OPCODE(TM);
2491 OPCODE(BR_CCMASK);
2492 OPCODE(SELECT_CCMASK);
2493 OPCODE(ADJDYNALLOC);
2494 OPCODE(EXTRACT_ACCESS);
2495 OPCODE(UMUL_LOHI64);
2496 OPCODE(SDIVREM64);
2497 OPCODE(UDIVREM32);
2498 OPCODE(UDIVREM64);
2499 OPCODE(MVC);
2500 OPCODE(MVC_LOOP);
2501 OPCODE(NC);
2502 OPCODE(NC_LOOP);
2503 OPCODE(OC);
2504 OPCODE(OC_LOOP);
2505 OPCODE(XC);
2506 OPCODE(XC_LOOP);
2507 OPCODE(CLC);
2508 OPCODE(CLC_LOOP);
2509 OPCODE(STRCMP);
2510 OPCODE(STPCPY);
2511 OPCODE(SEARCH_STRING);
2512 OPCODE(IPM);
2513 OPCODE(SERIALIZE);
2514 OPCODE(ATOMIC_SWAPW);
2515 OPCODE(ATOMIC_LOADW_ADD);
2516 OPCODE(ATOMIC_LOADW_SUB);
2517 OPCODE(ATOMIC_LOADW_AND);
2518 OPCODE(ATOMIC_LOADW_OR);
2519 OPCODE(ATOMIC_LOADW_XOR);
2520 OPCODE(ATOMIC_LOADW_NAND);
2521 OPCODE(ATOMIC_LOADW_MIN);
2522 OPCODE(ATOMIC_LOADW_MAX);
2523 OPCODE(ATOMIC_LOADW_UMIN);
2524 OPCODE(ATOMIC_LOADW_UMAX);
2525 OPCODE(ATOMIC_CMP_SWAPW);
2526 OPCODE(PREFETCH);
2527 }
2528 return nullptr;
2529 #undef OPCODE
2530 }
2531
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2532 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
2533 DAGCombinerInfo &DCI) const {
2534 SelectionDAG &DAG = DCI.DAG;
2535 unsigned Opcode = N->getOpcode();
2536 if (Opcode == ISD::SIGN_EXTEND) {
2537 // Convert (sext (ashr (shl X, C1), C2)) to
2538 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
2539 // cheap as narrower ones.
2540 SDValue N0 = N->getOperand(0);
2541 EVT VT = N->getValueType(0);
2542 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
2543 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2544 SDValue Inner = N0.getOperand(0);
2545 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
2546 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
2547 unsigned Extra = (VT.getSizeInBits() -
2548 N0.getValueType().getSizeInBits());
2549 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
2550 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
2551 EVT ShiftVT = N0.getOperand(1).getValueType();
2552 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
2553 Inner.getOperand(0));
2554 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
2555 DAG.getConstant(NewShlAmt, ShiftVT));
2556 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
2557 DAG.getConstant(NewSraAmt, ShiftVT));
2558 }
2559 }
2560 }
2561 }
2562 return SDValue();
2563 }
2564
2565 //===----------------------------------------------------------------------===//
2566 // Custom insertion
2567 //===----------------------------------------------------------------------===//
2568
2569 // Create a new basic block after MBB.
emitBlockAfter(MachineBasicBlock * MBB)2570 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2571 MachineFunction &MF = *MBB->getParent();
2572 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2573 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
2574 return NewMBB;
2575 }
2576
2577 // Split MBB after MI and return the new block (the one that contains
2578 // instructions after MI).
splitBlockAfter(MachineInstr * MI,MachineBasicBlock * MBB)2579 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2580 MachineBasicBlock *MBB) {
2581 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2582 NewMBB->splice(NewMBB->begin(), MBB,
2583 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
2584 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2585 return NewMBB;
2586 }
2587
2588 // Split MBB before MI and return the new block (the one that contains MI).
splitBlockBefore(MachineInstr * MI,MachineBasicBlock * MBB)2589 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2590 MachineBasicBlock *MBB) {
2591 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2592 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
2593 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2594 return NewMBB;
2595 }
2596
2597 // Force base value Base into a register before MI. Return the register.
forceReg(MachineInstr * MI,MachineOperand & Base,const SystemZInstrInfo * TII)2598 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2599 const SystemZInstrInfo *TII) {
2600 if (Base.isReg())
2601 return Base.getReg();
2602
2603 MachineBasicBlock *MBB = MI->getParent();
2604 MachineFunction &MF = *MBB->getParent();
2605 MachineRegisterInfo &MRI = MF.getRegInfo();
2606
2607 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2608 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2609 .addOperand(Base).addImm(0).addReg(0);
2610 return Reg;
2611 }
2612
2613 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2614 MachineBasicBlock *
emitSelect(MachineInstr * MI,MachineBasicBlock * MBB) const2615 SystemZTargetLowering::emitSelect(MachineInstr *MI,
2616 MachineBasicBlock *MBB) const {
2617 const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2618 MBB->getParent()->getSubtarget().getInstrInfo());
2619
2620 unsigned DestReg = MI->getOperand(0).getReg();
2621 unsigned TrueReg = MI->getOperand(1).getReg();
2622 unsigned FalseReg = MI->getOperand(2).getReg();
2623 unsigned CCValid = MI->getOperand(3).getImm();
2624 unsigned CCMask = MI->getOperand(4).getImm();
2625 DebugLoc DL = MI->getDebugLoc();
2626
2627 MachineBasicBlock *StartMBB = MBB;
2628 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
2629 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2630
2631 // StartMBB:
2632 // BRC CCMask, JoinMBB
2633 // # fallthrough to FalseMBB
2634 MBB = StartMBB;
2635 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2636 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2637 MBB->addSuccessor(JoinMBB);
2638 MBB->addSuccessor(FalseMBB);
2639
2640 // FalseMBB:
2641 // # fallthrough to JoinMBB
2642 MBB = FalseMBB;
2643 MBB->addSuccessor(JoinMBB);
2644
2645 // JoinMBB:
2646 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2647 // ...
2648 MBB = JoinMBB;
2649 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
2650 .addReg(TrueReg).addMBB(StartMBB)
2651 .addReg(FalseReg).addMBB(FalseMBB);
2652
2653 MI->eraseFromParent();
2654 return JoinMBB;
2655 }
2656
2657 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2658 // StoreOpcode is the store to use and Invert says whether the store should
2659 // happen when the condition is false rather than true. If a STORE ON
2660 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
2661 MachineBasicBlock *
emitCondStore(MachineInstr * MI,MachineBasicBlock * MBB,unsigned StoreOpcode,unsigned STOCOpcode,bool Invert) const2662 SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2663 MachineBasicBlock *MBB,
2664 unsigned StoreOpcode, unsigned STOCOpcode,
2665 bool Invert) const {
2666 const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>(
2667 MBB->getParent()->getSubtarget().getInstrInfo());
2668
2669 unsigned SrcReg = MI->getOperand(0).getReg();
2670 MachineOperand Base = MI->getOperand(1);
2671 int64_t Disp = MI->getOperand(2).getImm();
2672 unsigned IndexReg = MI->getOperand(3).getReg();
2673 unsigned CCValid = MI->getOperand(4).getImm();
2674 unsigned CCMask = MI->getOperand(5).getImm();
2675 DebugLoc DL = MI->getDebugLoc();
2676
2677 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2678
2679 // Use STOCOpcode if possible. We could use different store patterns in
2680 // order to avoid matching the index register, but the performance trade-offs
2681 // might be more complicated in that case.
2682 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
2683 if (Invert)
2684 CCMask ^= CCValid;
2685 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
2686 .addReg(SrcReg).addOperand(Base).addImm(Disp)
2687 .addImm(CCValid).addImm(CCMask);
2688 MI->eraseFromParent();
2689 return MBB;
2690 }
2691
2692 // Get the condition needed to branch around the store.
2693 if (!Invert)
2694 CCMask ^= CCValid;
2695
2696 MachineBasicBlock *StartMBB = MBB;
2697 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
2698 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2699
2700 // StartMBB:
2701 // BRC CCMask, JoinMBB
2702 // # fallthrough to FalseMBB
2703 MBB = StartMBB;
2704 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2705 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
2706 MBB->addSuccessor(JoinMBB);
2707 MBB->addSuccessor(FalseMBB);
2708
2709 // FalseMBB:
2710 // store %SrcReg, %Disp(%Index,%Base)
2711 // # fallthrough to JoinMBB
2712 MBB = FalseMBB;
2713 BuildMI(MBB, DL, TII->get(StoreOpcode))
2714 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2715 MBB->addSuccessor(JoinMBB);
2716
2717 MI->eraseFromParent();
2718 return JoinMBB;
2719 }
2720
2721 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2722 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
2723 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2724 // BitSize is the width of the field in bits, or 0 if this is a partword
2725 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2726 // is one of the operands. Invert says whether the field should be
2727 // inverted after performing BinOpcode (e.g. for NAND).
2728 MachineBasicBlock *
emitAtomicLoadBinary(MachineInstr * MI,MachineBasicBlock * MBB,unsigned BinOpcode,unsigned BitSize,bool Invert) const2729 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2730 MachineBasicBlock *MBB,
2731 unsigned BinOpcode,
2732 unsigned BitSize,
2733 bool Invert) const {
2734 MachineFunction &MF = *MBB->getParent();
2735 const SystemZInstrInfo *TII =
2736 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
2737 MachineRegisterInfo &MRI = MF.getRegInfo();
2738 bool IsSubWord = (BitSize < 32);
2739
2740 // Extract the operands. Base can be a register or a frame index.
2741 // Src2 can be a register or immediate.
2742 unsigned Dest = MI->getOperand(0).getReg();
2743 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2744 int64_t Disp = MI->getOperand(2).getImm();
2745 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
2746 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2747 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2748 DebugLoc DL = MI->getDebugLoc();
2749 if (IsSubWord)
2750 BitSize = MI->getOperand(6).getImm();
2751
2752 // Subword operations use 32-bit registers.
2753 const TargetRegisterClass *RC = (BitSize <= 32 ?
2754 &SystemZ::GR32BitRegClass :
2755 &SystemZ::GR64BitRegClass);
2756 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2757 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2758
2759 // Get the right opcodes for the displacement.
2760 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2761 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2762 assert(LOpcode && CSOpcode && "Displacement out of range");
2763
2764 // Create virtual registers for temporary results.
2765 unsigned OrigVal = MRI.createVirtualRegister(RC);
2766 unsigned OldVal = MRI.createVirtualRegister(RC);
2767 unsigned NewVal = (BinOpcode || IsSubWord ?
2768 MRI.createVirtualRegister(RC) : Src2.getReg());
2769 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2770 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2771
2772 // Insert a basic block for the main loop.
2773 MachineBasicBlock *StartMBB = MBB;
2774 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2775 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2776
2777 // StartMBB:
2778 // ...
2779 // %OrigVal = L Disp(%Base)
2780 // # fall through to LoopMMB
2781 MBB = StartMBB;
2782 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2783 .addOperand(Base).addImm(Disp).addReg(0);
2784 MBB->addSuccessor(LoopMBB);
2785
2786 // LoopMBB:
2787 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2788 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2789 // %RotatedNewVal = OP %RotatedOldVal, %Src2
2790 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2791 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2792 // JNE LoopMBB
2793 // # fall through to DoneMMB
2794 MBB = LoopMBB;
2795 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2796 .addReg(OrigVal).addMBB(StartMBB)
2797 .addReg(Dest).addMBB(LoopMBB);
2798 if (IsSubWord)
2799 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2800 .addReg(OldVal).addReg(BitShift).addImm(0);
2801 if (Invert) {
2802 // Perform the operation normally and then invert every bit of the field.
2803 unsigned Tmp = MRI.createVirtualRegister(RC);
2804 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2805 .addReg(RotatedOldVal).addOperand(Src2);
2806 if (BitSize <= 32)
2807 // XILF with the upper BitSize bits set.
2808 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
2809 .addReg(Tmp).addImm(-1U << (32 - BitSize));
2810 else {
2811 // Use LCGR and add -1 to the result, which is more compact than
2812 // an XILF, XILH pair.
2813 unsigned Tmp2 = MRI.createVirtualRegister(RC);
2814 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2815 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2816 .addReg(Tmp2).addImm(-1);
2817 }
2818 } else if (BinOpcode)
2819 // A simply binary operation.
2820 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2821 .addReg(RotatedOldVal).addOperand(Src2);
2822 else if (IsSubWord)
2823 // Use RISBG to rotate Src2 into position and use it to replace the
2824 // field in RotatedOldVal.
2825 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2826 .addReg(RotatedOldVal).addReg(Src2.getReg())
2827 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2828 if (IsSubWord)
2829 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2830 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2831 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2832 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2833 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2834 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2835 MBB->addSuccessor(LoopMBB);
2836 MBB->addSuccessor(DoneMBB);
2837
2838 MI->eraseFromParent();
2839 return DoneMBB;
2840 }
2841
2842 // Implement EmitInstrWithCustomInserter for pseudo
2843 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
2844 // instruction that should be used to compare the current field with the
2845 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
2846 // for when the current field should be kept. BitSize is the width of
2847 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2848 MachineBasicBlock *
emitAtomicLoadMinMax(MachineInstr * MI,MachineBasicBlock * MBB,unsigned CompareOpcode,unsigned KeepOldMask,unsigned BitSize) const2849 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2850 MachineBasicBlock *MBB,
2851 unsigned CompareOpcode,
2852 unsigned KeepOldMask,
2853 unsigned BitSize) const {
2854 MachineFunction &MF = *MBB->getParent();
2855 const SystemZInstrInfo *TII =
2856 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
2857 MachineRegisterInfo &MRI = MF.getRegInfo();
2858 bool IsSubWord = (BitSize < 32);
2859
2860 // Extract the operands. Base can be a register or a frame index.
2861 unsigned Dest = MI->getOperand(0).getReg();
2862 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2863 int64_t Disp = MI->getOperand(2).getImm();
2864 unsigned Src2 = MI->getOperand(3).getReg();
2865 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2866 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2867 DebugLoc DL = MI->getDebugLoc();
2868 if (IsSubWord)
2869 BitSize = MI->getOperand(6).getImm();
2870
2871 // Subword operations use 32-bit registers.
2872 const TargetRegisterClass *RC = (BitSize <= 32 ?
2873 &SystemZ::GR32BitRegClass :
2874 &SystemZ::GR64BitRegClass);
2875 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2876 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2877
2878 // Get the right opcodes for the displacement.
2879 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2880 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2881 assert(LOpcode && CSOpcode && "Displacement out of range");
2882
2883 // Create virtual registers for temporary results.
2884 unsigned OrigVal = MRI.createVirtualRegister(RC);
2885 unsigned OldVal = MRI.createVirtualRegister(RC);
2886 unsigned NewVal = MRI.createVirtualRegister(RC);
2887 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2888 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2889 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2890
2891 // Insert 3 basic blocks for the loop.
2892 MachineBasicBlock *StartMBB = MBB;
2893 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2894 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2895 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2896 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2897
2898 // StartMBB:
2899 // ...
2900 // %OrigVal = L Disp(%Base)
2901 // # fall through to LoopMMB
2902 MBB = StartMBB;
2903 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2904 .addOperand(Base).addImm(Disp).addReg(0);
2905 MBB->addSuccessor(LoopMBB);
2906
2907 // LoopMBB:
2908 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2909 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2910 // CompareOpcode %RotatedOldVal, %Src2
2911 // BRC KeepOldMask, UpdateMBB
2912 MBB = LoopMBB;
2913 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2914 .addReg(OrigVal).addMBB(StartMBB)
2915 .addReg(Dest).addMBB(UpdateMBB);
2916 if (IsSubWord)
2917 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2918 .addReg(OldVal).addReg(BitShift).addImm(0);
2919 BuildMI(MBB, DL, TII->get(CompareOpcode))
2920 .addReg(RotatedOldVal).addReg(Src2);
2921 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2922 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2923 MBB->addSuccessor(UpdateMBB);
2924 MBB->addSuccessor(UseAltMBB);
2925
2926 // UseAltMBB:
2927 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2928 // # fall through to UpdateMMB
2929 MBB = UseAltMBB;
2930 if (IsSubWord)
2931 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2932 .addReg(RotatedOldVal).addReg(Src2)
2933 .addImm(32).addImm(31 + BitSize).addImm(0);
2934 MBB->addSuccessor(UpdateMBB);
2935
2936 // UpdateMBB:
2937 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2938 // [ %RotatedAltVal, UseAltMBB ]
2939 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2940 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2941 // JNE LoopMBB
2942 // # fall through to DoneMMB
2943 MBB = UpdateMBB;
2944 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2945 .addReg(RotatedOldVal).addMBB(LoopMBB)
2946 .addReg(RotatedAltVal).addMBB(UseAltMBB);
2947 if (IsSubWord)
2948 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2949 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2950 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2951 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2952 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2953 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2954 MBB->addSuccessor(LoopMBB);
2955 MBB->addSuccessor(DoneMBB);
2956
2957 MI->eraseFromParent();
2958 return DoneMBB;
2959 }
2960
2961 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2962 // instruction MI.
2963 MachineBasicBlock *
emitAtomicCmpSwapW(MachineInstr * MI,MachineBasicBlock * MBB) const2964 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2965 MachineBasicBlock *MBB) const {
2966 MachineFunction &MF = *MBB->getParent();
2967 const SystemZInstrInfo *TII =
2968 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
2969 MachineRegisterInfo &MRI = MF.getRegInfo();
2970
2971 // Extract the operands. Base can be a register or a frame index.
2972 unsigned Dest = MI->getOperand(0).getReg();
2973 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2974 int64_t Disp = MI->getOperand(2).getImm();
2975 unsigned OrigCmpVal = MI->getOperand(3).getReg();
2976 unsigned OrigSwapVal = MI->getOperand(4).getReg();
2977 unsigned BitShift = MI->getOperand(5).getReg();
2978 unsigned NegBitShift = MI->getOperand(6).getReg();
2979 int64_t BitSize = MI->getOperand(7).getImm();
2980 DebugLoc DL = MI->getDebugLoc();
2981
2982 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2983
2984 // Get the right opcodes for the displacement.
2985 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
2986 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2987 assert(LOpcode && CSOpcode && "Displacement out of range");
2988
2989 // Create virtual registers for temporary results.
2990 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
2991 unsigned OldVal = MRI.createVirtualRegister(RC);
2992 unsigned CmpVal = MRI.createVirtualRegister(RC);
2993 unsigned SwapVal = MRI.createVirtualRegister(RC);
2994 unsigned StoreVal = MRI.createVirtualRegister(RC);
2995 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
2996 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
2997 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2998
2999 // Insert 2 basic blocks for the loop.
3000 MachineBasicBlock *StartMBB = MBB;
3001 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3002 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3003 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
3004
3005 // StartMBB:
3006 // ...
3007 // %OrigOldVal = L Disp(%Base)
3008 // # fall through to LoopMMB
3009 MBB = StartMBB;
3010 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
3011 .addOperand(Base).addImm(Disp).addReg(0);
3012 MBB->addSuccessor(LoopMBB);
3013
3014 // LoopMBB:
3015 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
3016 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
3017 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
3018 // %Dest = RLL %OldVal, BitSize(%BitShift)
3019 // ^^ The low BitSize bits contain the field
3020 // of interest.
3021 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
3022 // ^^ Replace the upper 32-BitSize bits of the
3023 // comparison value with those that we loaded,
3024 // so that we can use a full word comparison.
3025 // CR %Dest, %RetryCmpVal
3026 // JNE DoneMBB
3027 // # Fall through to SetMBB
3028 MBB = LoopMBB;
3029 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
3030 .addReg(OrigOldVal).addMBB(StartMBB)
3031 .addReg(RetryOldVal).addMBB(SetMBB);
3032 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
3033 .addReg(OrigCmpVal).addMBB(StartMBB)
3034 .addReg(RetryCmpVal).addMBB(SetMBB);
3035 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
3036 .addReg(OrigSwapVal).addMBB(StartMBB)
3037 .addReg(RetrySwapVal).addMBB(SetMBB);
3038 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
3039 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
3040 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
3041 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3042 BuildMI(MBB, DL, TII->get(SystemZ::CR))
3043 .addReg(Dest).addReg(RetryCmpVal);
3044 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3045 .addImm(SystemZ::CCMASK_ICMP)
3046 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
3047 MBB->addSuccessor(DoneMBB);
3048 MBB->addSuccessor(SetMBB);
3049
3050 // SetMBB:
3051 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
3052 // ^^ Replace the upper 32-BitSize bits of the new
3053 // value with those that we loaded.
3054 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
3055 // ^^ Rotate the new field to its proper position.
3056 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
3057 // JNE LoopMBB
3058 // # fall through to ExitMMB
3059 MBB = SetMBB;
3060 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
3061 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
3062 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
3063 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
3064 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
3065 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
3066 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3067 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
3068 MBB->addSuccessor(LoopMBB);
3069 MBB->addSuccessor(DoneMBB);
3070
3071 MI->eraseFromParent();
3072 return DoneMBB;
3073 }
3074
3075 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
3076 // if the high register of the GR128 value must be cleared or false if
3077 // it's "don't care". SubReg is subreg_l32 when extending a GR32
3078 // and subreg_l64 when extending a GR64.
3079 MachineBasicBlock *
emitExt128(MachineInstr * MI,MachineBasicBlock * MBB,bool ClearEven,unsigned SubReg) const3080 SystemZTargetLowering::emitExt128(MachineInstr *MI,
3081 MachineBasicBlock *MBB,
3082 bool ClearEven, unsigned SubReg) const {
3083 MachineFunction &MF = *MBB->getParent();
3084 const SystemZInstrInfo *TII =
3085 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
3086 MachineRegisterInfo &MRI = MF.getRegInfo();
3087 DebugLoc DL = MI->getDebugLoc();
3088
3089 unsigned Dest = MI->getOperand(0).getReg();
3090 unsigned Src = MI->getOperand(1).getReg();
3091 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3092
3093 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
3094 if (ClearEven) {
3095 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
3096 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
3097
3098 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
3099 .addImm(0);
3100 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
3101 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
3102 In128 = NewIn128;
3103 }
3104 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
3105 .addReg(In128).addReg(Src).addImm(SubReg);
3106
3107 MI->eraseFromParent();
3108 return MBB;
3109 }
3110
3111 MachineBasicBlock *
emitMemMemWrapper(MachineInstr * MI,MachineBasicBlock * MBB,unsigned Opcode) const3112 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
3113 MachineBasicBlock *MBB,
3114 unsigned Opcode) const {
3115 MachineFunction &MF = *MBB->getParent();
3116 const SystemZInstrInfo *TII =
3117 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
3118 MachineRegisterInfo &MRI = MF.getRegInfo();
3119 DebugLoc DL = MI->getDebugLoc();
3120
3121 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
3122 uint64_t DestDisp = MI->getOperand(1).getImm();
3123 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
3124 uint64_t SrcDisp = MI->getOperand(3).getImm();
3125 uint64_t Length = MI->getOperand(4).getImm();
3126
3127 // When generating more than one CLC, all but the last will need to
3128 // branch to the end when a difference is found.
3129 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
3130 splitBlockAfter(MI, MBB) : nullptr);
3131
3132 // Check for the loop form, in which operand 5 is the trip count.
3133 if (MI->getNumExplicitOperands() > 5) {
3134 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
3135
3136 uint64_t StartCountReg = MI->getOperand(5).getReg();
3137 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
3138 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
3139 forceReg(MI, DestBase, TII));
3140
3141 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
3142 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
3143 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
3144 MRI.createVirtualRegister(RC));
3145 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
3146 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
3147 MRI.createVirtualRegister(RC));
3148
3149 RC = &SystemZ::GR64BitRegClass;
3150 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
3151 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
3152
3153 MachineBasicBlock *StartMBB = MBB;
3154 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3155 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3156 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
3157
3158 // StartMBB:
3159 // # fall through to LoopMMB
3160 MBB->addSuccessor(LoopMBB);
3161
3162 // LoopMBB:
3163 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
3164 // [ %NextDestReg, NextMBB ]
3165 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
3166 // [ %NextSrcReg, NextMBB ]
3167 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
3168 // [ %NextCountReg, NextMBB ]
3169 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
3170 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
3171 // ( JLH EndMBB )
3172 //
3173 // The prefetch is used only for MVC. The JLH is used only for CLC.
3174 MBB = LoopMBB;
3175
3176 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
3177 .addReg(StartDestReg).addMBB(StartMBB)
3178 .addReg(NextDestReg).addMBB(NextMBB);
3179 if (!HaveSingleBase)
3180 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
3181 .addReg(StartSrcReg).addMBB(StartMBB)
3182 .addReg(NextSrcReg).addMBB(NextMBB);
3183 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
3184 .addReg(StartCountReg).addMBB(StartMBB)
3185 .addReg(NextCountReg).addMBB(NextMBB);
3186 if (Opcode == SystemZ::MVC)
3187 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
3188 .addImm(SystemZ::PFD_WRITE)
3189 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
3190 BuildMI(MBB, DL, TII->get(Opcode))
3191 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
3192 .addReg(ThisSrcReg).addImm(SrcDisp);
3193 if (EndMBB) {
3194 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3195 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3196 .addMBB(EndMBB);
3197 MBB->addSuccessor(EndMBB);
3198 MBB->addSuccessor(NextMBB);
3199 }
3200
3201 // NextMBB:
3202 // %NextDestReg = LA 256(%ThisDestReg)
3203 // %NextSrcReg = LA 256(%ThisSrcReg)
3204 // %NextCountReg = AGHI %ThisCountReg, -1
3205 // CGHI %NextCountReg, 0
3206 // JLH LoopMBB
3207 // # fall through to DoneMMB
3208 //
3209 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
3210 MBB = NextMBB;
3211
3212 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
3213 .addReg(ThisDestReg).addImm(256).addReg(0);
3214 if (!HaveSingleBase)
3215 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
3216 .addReg(ThisSrcReg).addImm(256).addReg(0);
3217 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
3218 .addReg(ThisCountReg).addImm(-1);
3219 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
3220 .addReg(NextCountReg).addImm(0);
3221 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3222 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3223 .addMBB(LoopMBB);
3224 MBB->addSuccessor(LoopMBB);
3225 MBB->addSuccessor(DoneMBB);
3226
3227 DestBase = MachineOperand::CreateReg(NextDestReg, false);
3228 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
3229 Length &= 255;
3230 MBB = DoneMBB;
3231 }
3232 // Handle any remaining bytes with straight-line code.
3233 while (Length > 0) {
3234 uint64_t ThisLength = std::min(Length, uint64_t(256));
3235 // The previous iteration might have created out-of-range displacements.
3236 // Apply them using LAY if so.
3237 if (!isUInt<12>(DestDisp)) {
3238 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3239 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3240 .addOperand(DestBase).addImm(DestDisp).addReg(0);
3241 DestBase = MachineOperand::CreateReg(Reg, false);
3242 DestDisp = 0;
3243 }
3244 if (!isUInt<12>(SrcDisp)) {
3245 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
3246 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
3247 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
3248 SrcBase = MachineOperand::CreateReg(Reg, false);
3249 SrcDisp = 0;
3250 }
3251 BuildMI(*MBB, MI, DL, TII->get(Opcode))
3252 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
3253 .addOperand(SrcBase).addImm(SrcDisp);
3254 DestDisp += ThisLength;
3255 SrcDisp += ThisLength;
3256 Length -= ThisLength;
3257 // If there's another CLC to go, branch to the end if a difference
3258 // was found.
3259 if (EndMBB && Length > 0) {
3260 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
3261 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3262 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
3263 .addMBB(EndMBB);
3264 MBB->addSuccessor(EndMBB);
3265 MBB->addSuccessor(NextMBB);
3266 MBB = NextMBB;
3267 }
3268 }
3269 if (EndMBB) {
3270 MBB->addSuccessor(EndMBB);
3271 MBB = EndMBB;
3272 MBB->addLiveIn(SystemZ::CC);
3273 }
3274
3275 MI->eraseFromParent();
3276 return MBB;
3277 }
3278
3279 // Decompose string pseudo-instruction MI into a loop that continually performs
3280 // Opcode until CC != 3.
3281 MachineBasicBlock *
emitStringWrapper(MachineInstr * MI,MachineBasicBlock * MBB,unsigned Opcode) const3282 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
3283 MachineBasicBlock *MBB,
3284 unsigned Opcode) const {
3285 MachineFunction &MF = *MBB->getParent();
3286 const SystemZInstrInfo *TII =
3287 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
3288 MachineRegisterInfo &MRI = MF.getRegInfo();
3289 DebugLoc DL = MI->getDebugLoc();
3290
3291 uint64_t End1Reg = MI->getOperand(0).getReg();
3292 uint64_t Start1Reg = MI->getOperand(1).getReg();
3293 uint64_t Start2Reg = MI->getOperand(2).getReg();
3294 uint64_t CharReg = MI->getOperand(3).getReg();
3295
3296 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
3297 uint64_t This1Reg = MRI.createVirtualRegister(RC);
3298 uint64_t This2Reg = MRI.createVirtualRegister(RC);
3299 uint64_t End2Reg = MRI.createVirtualRegister(RC);
3300
3301 MachineBasicBlock *StartMBB = MBB;
3302 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
3303 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
3304
3305 // StartMBB:
3306 // # fall through to LoopMMB
3307 MBB->addSuccessor(LoopMBB);
3308
3309 // LoopMBB:
3310 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
3311 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
3312 // R0L = %CharReg
3313 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
3314 // JO LoopMBB
3315 // # fall through to DoneMMB
3316 //
3317 // The load of R0L can be hoisted by post-RA LICM.
3318 MBB = LoopMBB;
3319
3320 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
3321 .addReg(Start1Reg).addMBB(StartMBB)
3322 .addReg(End1Reg).addMBB(LoopMBB);
3323 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
3324 .addReg(Start2Reg).addMBB(StartMBB)
3325 .addReg(End2Reg).addMBB(LoopMBB);
3326 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
3327 BuildMI(MBB, DL, TII->get(Opcode))
3328 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
3329 .addReg(This1Reg).addReg(This2Reg);
3330 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
3331 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
3332 MBB->addSuccessor(LoopMBB);
3333 MBB->addSuccessor(DoneMBB);
3334
3335 DoneMBB->addLiveIn(SystemZ::CC);
3336
3337 MI->eraseFromParent();
3338 return DoneMBB;
3339 }
3340
3341 MachineBasicBlock *SystemZTargetLowering::
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const3342 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
3343 switch (MI->getOpcode()) {
3344 case SystemZ::Select32Mux:
3345 case SystemZ::Select32:
3346 case SystemZ::SelectF32:
3347 case SystemZ::Select64:
3348 case SystemZ::SelectF64:
3349 case SystemZ::SelectF128:
3350 return emitSelect(MI, MBB);
3351
3352 case SystemZ::CondStore8Mux:
3353 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
3354 case SystemZ::CondStore8MuxInv:
3355 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
3356 case SystemZ::CondStore16Mux:
3357 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
3358 case SystemZ::CondStore16MuxInv:
3359 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
3360 case SystemZ::CondStore8:
3361 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
3362 case SystemZ::CondStore8Inv:
3363 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
3364 case SystemZ::CondStore16:
3365 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
3366 case SystemZ::CondStore16Inv:
3367 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
3368 case SystemZ::CondStore32:
3369 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
3370 case SystemZ::CondStore32Inv:
3371 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
3372 case SystemZ::CondStore64:
3373 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
3374 case SystemZ::CondStore64Inv:
3375 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
3376 case SystemZ::CondStoreF32:
3377 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
3378 case SystemZ::CondStoreF32Inv:
3379 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
3380 case SystemZ::CondStoreF64:
3381 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
3382 case SystemZ::CondStoreF64Inv:
3383 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
3384
3385 case SystemZ::AEXT128_64:
3386 return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
3387 case SystemZ::ZEXT128_32:
3388 return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
3389 case SystemZ::ZEXT128_64:
3390 return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
3391
3392 case SystemZ::ATOMIC_SWAPW:
3393 return emitAtomicLoadBinary(MI, MBB, 0, 0);
3394 case SystemZ::ATOMIC_SWAP_32:
3395 return emitAtomicLoadBinary(MI, MBB, 0, 32);
3396 case SystemZ::ATOMIC_SWAP_64:
3397 return emitAtomicLoadBinary(MI, MBB, 0, 64);
3398
3399 case SystemZ::ATOMIC_LOADW_AR:
3400 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
3401 case SystemZ::ATOMIC_LOADW_AFI:
3402 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
3403 case SystemZ::ATOMIC_LOAD_AR:
3404 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
3405 case SystemZ::ATOMIC_LOAD_AHI:
3406 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
3407 case SystemZ::ATOMIC_LOAD_AFI:
3408 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
3409 case SystemZ::ATOMIC_LOAD_AGR:
3410 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
3411 case SystemZ::ATOMIC_LOAD_AGHI:
3412 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
3413 case SystemZ::ATOMIC_LOAD_AGFI:
3414 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
3415
3416 case SystemZ::ATOMIC_LOADW_SR:
3417 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
3418 case SystemZ::ATOMIC_LOAD_SR:
3419 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
3420 case SystemZ::ATOMIC_LOAD_SGR:
3421 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
3422
3423 case SystemZ::ATOMIC_LOADW_NR:
3424 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
3425 case SystemZ::ATOMIC_LOADW_NILH:
3426 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
3427 case SystemZ::ATOMIC_LOAD_NR:
3428 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
3429 case SystemZ::ATOMIC_LOAD_NILL:
3430 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
3431 case SystemZ::ATOMIC_LOAD_NILH:
3432 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
3433 case SystemZ::ATOMIC_LOAD_NILF:
3434 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
3435 case SystemZ::ATOMIC_LOAD_NGR:
3436 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
3437 case SystemZ::ATOMIC_LOAD_NILL64:
3438 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
3439 case SystemZ::ATOMIC_LOAD_NILH64:
3440 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
3441 case SystemZ::ATOMIC_LOAD_NIHL64:
3442 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
3443 case SystemZ::ATOMIC_LOAD_NIHH64:
3444 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
3445 case SystemZ::ATOMIC_LOAD_NILF64:
3446 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
3447 case SystemZ::ATOMIC_LOAD_NIHF64:
3448 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
3449
3450 case SystemZ::ATOMIC_LOADW_OR:
3451 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
3452 case SystemZ::ATOMIC_LOADW_OILH:
3453 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
3454 case SystemZ::ATOMIC_LOAD_OR:
3455 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
3456 case SystemZ::ATOMIC_LOAD_OILL:
3457 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
3458 case SystemZ::ATOMIC_LOAD_OILH:
3459 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
3460 case SystemZ::ATOMIC_LOAD_OILF:
3461 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
3462 case SystemZ::ATOMIC_LOAD_OGR:
3463 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3464 case SystemZ::ATOMIC_LOAD_OILL64:
3465 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
3466 case SystemZ::ATOMIC_LOAD_OILH64:
3467 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
3468 case SystemZ::ATOMIC_LOAD_OIHL64:
3469 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
3470 case SystemZ::ATOMIC_LOAD_OIHH64:
3471 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
3472 case SystemZ::ATOMIC_LOAD_OILF64:
3473 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
3474 case SystemZ::ATOMIC_LOAD_OIHF64:
3475 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
3476
3477 case SystemZ::ATOMIC_LOADW_XR:
3478 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3479 case SystemZ::ATOMIC_LOADW_XILF:
3480 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
3481 case SystemZ::ATOMIC_LOAD_XR:
3482 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3483 case SystemZ::ATOMIC_LOAD_XILF:
3484 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
3485 case SystemZ::ATOMIC_LOAD_XGR:
3486 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3487 case SystemZ::ATOMIC_LOAD_XILF64:
3488 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
3489 case SystemZ::ATOMIC_LOAD_XIHF64:
3490 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
3491
3492 case SystemZ::ATOMIC_LOADW_NRi:
3493 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3494 case SystemZ::ATOMIC_LOADW_NILHi:
3495 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
3496 case SystemZ::ATOMIC_LOAD_NRi:
3497 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3498 case SystemZ::ATOMIC_LOAD_NILLi:
3499 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
3500 case SystemZ::ATOMIC_LOAD_NILHi:
3501 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
3502 case SystemZ::ATOMIC_LOAD_NILFi:
3503 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
3504 case SystemZ::ATOMIC_LOAD_NGRi:
3505 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3506 case SystemZ::ATOMIC_LOAD_NILL64i:
3507 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
3508 case SystemZ::ATOMIC_LOAD_NILH64i:
3509 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
3510 case SystemZ::ATOMIC_LOAD_NIHL64i:
3511 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
3512 case SystemZ::ATOMIC_LOAD_NIHH64i:
3513 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
3514 case SystemZ::ATOMIC_LOAD_NILF64i:
3515 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
3516 case SystemZ::ATOMIC_LOAD_NIHF64i:
3517 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
3518
3519 case SystemZ::ATOMIC_LOADW_MIN:
3520 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3521 SystemZ::CCMASK_CMP_LE, 0);
3522 case SystemZ::ATOMIC_LOAD_MIN_32:
3523 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3524 SystemZ::CCMASK_CMP_LE, 32);
3525 case SystemZ::ATOMIC_LOAD_MIN_64:
3526 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3527 SystemZ::CCMASK_CMP_LE, 64);
3528
3529 case SystemZ::ATOMIC_LOADW_MAX:
3530 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3531 SystemZ::CCMASK_CMP_GE, 0);
3532 case SystemZ::ATOMIC_LOAD_MAX_32:
3533 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3534 SystemZ::CCMASK_CMP_GE, 32);
3535 case SystemZ::ATOMIC_LOAD_MAX_64:
3536 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3537 SystemZ::CCMASK_CMP_GE, 64);
3538
3539 case SystemZ::ATOMIC_LOADW_UMIN:
3540 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3541 SystemZ::CCMASK_CMP_LE, 0);
3542 case SystemZ::ATOMIC_LOAD_UMIN_32:
3543 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3544 SystemZ::CCMASK_CMP_LE, 32);
3545 case SystemZ::ATOMIC_LOAD_UMIN_64:
3546 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3547 SystemZ::CCMASK_CMP_LE, 64);
3548
3549 case SystemZ::ATOMIC_LOADW_UMAX:
3550 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3551 SystemZ::CCMASK_CMP_GE, 0);
3552 case SystemZ::ATOMIC_LOAD_UMAX_32:
3553 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3554 SystemZ::CCMASK_CMP_GE, 32);
3555 case SystemZ::ATOMIC_LOAD_UMAX_64:
3556 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3557 SystemZ::CCMASK_CMP_GE, 64);
3558
3559 case SystemZ::ATOMIC_CMP_SWAPW:
3560 return emitAtomicCmpSwapW(MI, MBB);
3561 case SystemZ::MVCSequence:
3562 case SystemZ::MVCLoop:
3563 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
3564 case SystemZ::NCSequence:
3565 case SystemZ::NCLoop:
3566 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3567 case SystemZ::OCSequence:
3568 case SystemZ::OCLoop:
3569 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3570 case SystemZ::XCSequence:
3571 case SystemZ::XCLoop:
3572 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
3573 case SystemZ::CLCSequence:
3574 case SystemZ::CLCLoop:
3575 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
3576 case SystemZ::CLSTLoop:
3577 return emitStringWrapper(MI, MBB, SystemZ::CLST);
3578 case SystemZ::MVSTLoop:
3579 return emitStringWrapper(MI, MBB, SystemZ::MVST);
3580 case SystemZ::SRSTLoop:
3581 return emitStringWrapper(MI, MBB, SystemZ::SRST);
3582 default:
3583 llvm_unreachable("Unexpected instr type to insert");
3584 }
3585 }
3586