1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // ...
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 // of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
52 // use kind.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include <algorithm>
78 using namespace llvm;
79
80 #define DEBUG_TYPE "loop-reduce"
81
82 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
83 /// bail out. This threshold is far beyond the number of users that LSR can
84 /// conceivably solve, so it should not affect generated code, but catches the
85 /// worst cases before LSR burns too much compile time and stack space.
86 static const unsigned MaxIVUsers = 200;
87
88 // Temporary flag to cleanup congruent phis after LSR phi expansion.
89 // It's currently disabled until we can determine whether it's truly useful or
90 // not. The flag should be removed after the v3.0 release.
91 // This is now needed for ivchains.
92 static cl::opt<bool> EnablePhiElim(
93 "enable-lsr-phielim", cl::Hidden, cl::init(true),
94 cl::desc("Enable LSR phi elimination"));
95
96 #ifndef NDEBUG
97 // Stress test IV chain generation.
98 static cl::opt<bool> StressIVChain(
99 "stress-ivchain", cl::Hidden, cl::init(false),
100 cl::desc("Stress test LSR IV chains"));
101 #else
102 static bool StressIVChain = false;
103 #endif
104
105 namespace {
106
107 /// RegSortData - This class holds data which is used to order reuse candidates.
108 class RegSortData {
109 public:
110 /// UsedByIndices - This represents the set of LSRUse indices which reference
111 /// a particular register.
112 SmallBitVector UsedByIndices;
113
RegSortData()114 RegSortData() {}
115
116 void print(raw_ostream &OS) const;
117 void dump() const;
118 };
119
120 }
121
print(raw_ostream & OS) const122 void RegSortData::print(raw_ostream &OS) const {
123 OS << "[NumUses=" << UsedByIndices.count() << ']';
124 }
125
126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const127 void RegSortData::dump() const {
128 print(errs()); errs() << '\n';
129 }
130 #endif
131
132 namespace {
133
134 /// RegUseTracker - Map register candidates to information about how they are
135 /// used.
136 class RegUseTracker {
137 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
138
139 RegUsesTy RegUsesMap;
140 SmallVector<const SCEV *, 16> RegSequence;
141
142 public:
143 void CountRegister(const SCEV *Reg, size_t LUIdx);
144 void DropRegister(const SCEV *Reg, size_t LUIdx);
145 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
146
147 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
148
149 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
150
151 void clear();
152
153 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
154 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
begin()155 iterator begin() { return RegSequence.begin(); }
end()156 iterator end() { return RegSequence.end(); }
begin() const157 const_iterator begin() const { return RegSequence.begin(); }
end() const158 const_iterator end() const { return RegSequence.end(); }
159 };
160
161 }
162
163 void
CountRegister(const SCEV * Reg,size_t LUIdx)164 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
165 std::pair<RegUsesTy::iterator, bool> Pair =
166 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
167 RegSortData &RSD = Pair.first->second;
168 if (Pair.second)
169 RegSequence.push_back(Reg);
170 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
171 RSD.UsedByIndices.set(LUIdx);
172 }
173
174 void
DropRegister(const SCEV * Reg,size_t LUIdx)175 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
176 RegUsesTy::iterator It = RegUsesMap.find(Reg);
177 assert(It != RegUsesMap.end());
178 RegSortData &RSD = It->second;
179 assert(RSD.UsedByIndices.size() > LUIdx);
180 RSD.UsedByIndices.reset(LUIdx);
181 }
182
183 void
SwapAndDropUse(size_t LUIdx,size_t LastLUIdx)184 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
185 assert(LUIdx <= LastLUIdx);
186
187 // Update RegUses. The data structure is not optimized for this purpose;
188 // we must iterate through it and update each of the bit vectors.
189 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
190 I != E; ++I) {
191 SmallBitVector &UsedByIndices = I->second.UsedByIndices;
192 if (LUIdx < UsedByIndices.size())
193 UsedByIndices[LUIdx] =
194 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
195 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
196 }
197 }
198
199 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const200 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
201 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
202 if (I == RegUsesMap.end())
203 return false;
204 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
205 int i = UsedByIndices.find_first();
206 if (i == -1) return false;
207 if ((size_t)i != LUIdx) return true;
208 return UsedByIndices.find_next(i) != -1;
209 }
210
getUsedByIndices(const SCEV * Reg) const211 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
212 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
213 assert(I != RegUsesMap.end() && "Unknown register!");
214 return I->second.UsedByIndices;
215 }
216
clear()217 void RegUseTracker::clear() {
218 RegUsesMap.clear();
219 RegSequence.clear();
220 }
221
222 namespace {
223
224 /// Formula - This class holds information that describes a formula for
225 /// computing satisfying a use. It may include broken-out immediates and scaled
226 /// registers.
227 struct Formula {
228 /// Global base address used for complex addressing.
229 GlobalValue *BaseGV;
230
231 /// Base offset for complex addressing.
232 int64_t BaseOffset;
233
234 /// Whether any complex addressing has a base register.
235 bool HasBaseReg;
236
237 /// The scale of any complex addressing.
238 int64_t Scale;
239
240 /// BaseRegs - The list of "base" registers for this use. When this is
241 /// non-empty. The canonical representation of a formula is
242 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
243 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
244 /// #1 enforces that the scaled register is always used when at least two
245 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
246 /// #2 enforces that 1 * reg is reg.
247 /// This invariant can be temporarly broken while building a formula.
248 /// However, every formula inserted into the LSRInstance must be in canonical
249 /// form.
250 SmallVector<const SCEV *, 4> BaseRegs;
251
252 /// ScaledReg - The 'scaled' register for this use. This should be non-null
253 /// when Scale is not zero.
254 const SCEV *ScaledReg;
255
256 /// UnfoldedOffset - An additional constant offset which added near the
257 /// use. This requires a temporary register, but the offset itself can
258 /// live in an add immediate field rather than a register.
259 int64_t UnfoldedOffset;
260
Formula__anonbd2ddbdf0311::Formula261 Formula()
262 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
263 ScaledReg(nullptr), UnfoldedOffset(0) {}
264
265 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
266
267 bool isCanonical() const;
268
269 void Canonicalize();
270
271 bool Unscale();
272
273 size_t getNumRegs() const;
274 Type *getType() const;
275
276 void DeleteBaseReg(const SCEV *&S);
277
278 bool referencesReg(const SCEV *S) const;
279 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
280 const RegUseTracker &RegUses) const;
281
282 void print(raw_ostream &OS) const;
283 void dump() const;
284 };
285
286 }
287
288 /// DoInitialMatch - Recursion helper for InitialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)289 static void DoInitialMatch(const SCEV *S, Loop *L,
290 SmallVectorImpl<const SCEV *> &Good,
291 SmallVectorImpl<const SCEV *> &Bad,
292 ScalarEvolution &SE) {
293 // Collect expressions which properly dominate the loop header.
294 if (SE.properlyDominates(S, L->getHeader())) {
295 Good.push_back(S);
296 return;
297 }
298
299 // Look at add operands.
300 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
301 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
302 I != E; ++I)
303 DoInitialMatch(*I, L, Good, Bad, SE);
304 return;
305 }
306
307 // Look at addrec operands.
308 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
309 if (!AR->getStart()->isZero()) {
310 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
311 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
312 AR->getStepRecurrence(SE),
313 // FIXME: AR->getNoWrapFlags()
314 AR->getLoop(), SCEV::FlagAnyWrap),
315 L, Good, Bad, SE);
316 return;
317 }
318
319 // Handle a multiplication by -1 (negation) if it didn't fold.
320 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
321 if (Mul->getOperand(0)->isAllOnesValue()) {
322 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
323 const SCEV *NewMul = SE.getMulExpr(Ops);
324
325 SmallVector<const SCEV *, 4> MyGood;
326 SmallVector<const SCEV *, 4> MyBad;
327 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
328 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
329 SE.getEffectiveSCEVType(NewMul->getType())));
330 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
331 E = MyGood.end(); I != E; ++I)
332 Good.push_back(SE.getMulExpr(NegOne, *I));
333 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
334 E = MyBad.end(); I != E; ++I)
335 Bad.push_back(SE.getMulExpr(NegOne, *I));
336 return;
337 }
338
339 // Ok, we can't do anything interesting. Just stuff the whole thing into a
340 // register and hope for the best.
341 Bad.push_back(S);
342 }
343
344 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
345 /// attempting to keep all loop-invariant and loop-computable values in a
346 /// single base register.
InitialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)347 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
348 SmallVector<const SCEV *, 4> Good;
349 SmallVector<const SCEV *, 4> Bad;
350 DoInitialMatch(S, L, Good, Bad, SE);
351 if (!Good.empty()) {
352 const SCEV *Sum = SE.getAddExpr(Good);
353 if (!Sum->isZero())
354 BaseRegs.push_back(Sum);
355 HasBaseReg = true;
356 }
357 if (!Bad.empty()) {
358 const SCEV *Sum = SE.getAddExpr(Bad);
359 if (!Sum->isZero())
360 BaseRegs.push_back(Sum);
361 HasBaseReg = true;
362 }
363 Canonicalize();
364 }
365
366 /// \brief Check whether or not this formula statisfies the canonical
367 /// representation.
368 /// \see Formula::BaseRegs.
isCanonical() const369 bool Formula::isCanonical() const {
370 if (ScaledReg)
371 return Scale != 1 || !BaseRegs.empty();
372 return BaseRegs.size() <= 1;
373 }
374
375 /// \brief Helper method to morph a formula into its canonical representation.
376 /// \see Formula::BaseRegs.
377 /// Every formula having more than one base register, must use the ScaledReg
378 /// field. Otherwise, we would have to do special cases everywhere in LSR
379 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
380 /// On the other hand, 1*reg should be canonicalized into reg.
Canonicalize()381 void Formula::Canonicalize() {
382 if (isCanonical())
383 return;
384 // So far we did not need this case. This is easy to implement but it is
385 // useless to maintain dead code. Beside it could hurt compile time.
386 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
387 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
388 ScaledReg = BaseRegs.back();
389 BaseRegs.pop_back();
390 Scale = 1;
391 size_t BaseRegsSize = BaseRegs.size();
392 size_t Try = 0;
393 // If ScaledReg is an invariant, try to find a variant expression.
394 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
395 std::swap(ScaledReg, BaseRegs[Try++]);
396 }
397
398 /// \brief Get rid of the scale in the formula.
399 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
400 /// \return true if it was possible to get rid of the scale, false otherwise.
401 /// \note After this operation the formula may not be in the canonical form.
Unscale()402 bool Formula::Unscale() {
403 if (Scale != 1)
404 return false;
405 Scale = 0;
406 BaseRegs.push_back(ScaledReg);
407 ScaledReg = nullptr;
408 return true;
409 }
410
411 /// getNumRegs - Return the total number of register operands used by this
412 /// formula. This does not include register uses implied by non-constant
413 /// addrec strides.
getNumRegs() const414 size_t Formula::getNumRegs() const {
415 return !!ScaledReg + BaseRegs.size();
416 }
417
418 /// getType - Return the type of this formula, if it has one, or null
419 /// otherwise. This type is meaningless except for the bit size.
getType() const420 Type *Formula::getType() const {
421 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
422 ScaledReg ? ScaledReg->getType() :
423 BaseGV ? BaseGV->getType() :
424 nullptr;
425 }
426
427 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
DeleteBaseReg(const SCEV * & S)428 void Formula::DeleteBaseReg(const SCEV *&S) {
429 if (&S != &BaseRegs.back())
430 std::swap(S, BaseRegs.back());
431 BaseRegs.pop_back();
432 }
433
434 /// referencesReg - Test if this formula references the given register.
referencesReg(const SCEV * S) const435 bool Formula::referencesReg(const SCEV *S) const {
436 return S == ScaledReg ||
437 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
438 }
439
440 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
441 /// which are used by uses other than the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const442 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
443 const RegUseTracker &RegUses) const {
444 if (ScaledReg)
445 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
446 return true;
447 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
448 E = BaseRegs.end(); I != E; ++I)
449 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
450 return true;
451 return false;
452 }
453
print(raw_ostream & OS) const454 void Formula::print(raw_ostream &OS) const {
455 bool First = true;
456 if (BaseGV) {
457 if (!First) OS << " + "; else First = false;
458 BaseGV->printAsOperand(OS, /*PrintType=*/false);
459 }
460 if (BaseOffset != 0) {
461 if (!First) OS << " + "; else First = false;
462 OS << BaseOffset;
463 }
464 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
465 E = BaseRegs.end(); I != E; ++I) {
466 if (!First) OS << " + "; else First = false;
467 OS << "reg(" << **I << ')';
468 }
469 if (HasBaseReg && BaseRegs.empty()) {
470 if (!First) OS << " + "; else First = false;
471 OS << "**error: HasBaseReg**";
472 } else if (!HasBaseReg && !BaseRegs.empty()) {
473 if (!First) OS << " + "; else First = false;
474 OS << "**error: !HasBaseReg**";
475 }
476 if (Scale != 0) {
477 if (!First) OS << " + "; else First = false;
478 OS << Scale << "*reg(";
479 if (ScaledReg)
480 OS << *ScaledReg;
481 else
482 OS << "<unknown>";
483 OS << ')';
484 }
485 if (UnfoldedOffset != 0) {
486 if (!First) OS << " + ";
487 OS << "imm(" << UnfoldedOffset << ')';
488 }
489 }
490
491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const492 void Formula::dump() const {
493 print(errs()); errs() << '\n';
494 }
495 #endif
496
497 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
498 /// without changing its value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)499 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
500 Type *WideTy =
501 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
502 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
503 }
504
505 /// isAddSExtable - Return true if the given add can be sign-extended
506 /// without changing its value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)507 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
508 Type *WideTy =
509 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
510 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
511 }
512
513 /// isMulSExtable - Return true if the given mul can be sign-extended
514 /// without changing its value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)515 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
516 Type *WideTy =
517 IntegerType::get(SE.getContext(),
518 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
519 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
520 }
521
522 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
523 /// and if the remainder is known to be zero, or null otherwise. If
524 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
525 /// to Y, ignoring that the multiplication may overflow, which is useful when
526 /// the result will be used in a context where the most significant bits are
527 /// ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)528 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
529 ScalarEvolution &SE,
530 bool IgnoreSignificantBits = false) {
531 // Handle the trivial case, which works for any SCEV type.
532 if (LHS == RHS)
533 return SE.getConstant(LHS->getType(), 1);
534
535 // Handle a few RHS special cases.
536 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
537 if (RC) {
538 const APInt &RA = RC->getValue()->getValue();
539 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
540 // some folding.
541 if (RA.isAllOnesValue())
542 return SE.getMulExpr(LHS, RC);
543 // Handle x /s 1 as x.
544 if (RA == 1)
545 return LHS;
546 }
547
548 // Check for a division of a constant by a constant.
549 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
550 if (!RC)
551 return nullptr;
552 const APInt &LA = C->getValue()->getValue();
553 const APInt &RA = RC->getValue()->getValue();
554 if (LA.srem(RA) != 0)
555 return nullptr;
556 return SE.getConstant(LA.sdiv(RA));
557 }
558
559 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
560 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
561 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
562 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
563 IgnoreSignificantBits);
564 if (!Step) return nullptr;
565 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
566 IgnoreSignificantBits);
567 if (!Start) return nullptr;
568 // FlagNW is independent of the start value, step direction, and is
569 // preserved with smaller magnitude steps.
570 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
571 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
572 }
573 return nullptr;
574 }
575
576 // Distribute the sdiv over add operands, if the add doesn't overflow.
577 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
578 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
579 SmallVector<const SCEV *, 8> Ops;
580 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
581 I != E; ++I) {
582 const SCEV *Op = getExactSDiv(*I, RHS, SE,
583 IgnoreSignificantBits);
584 if (!Op) return nullptr;
585 Ops.push_back(Op);
586 }
587 return SE.getAddExpr(Ops);
588 }
589 return nullptr;
590 }
591
592 // Check for a multiply operand that we can pull RHS out of.
593 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
594 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
595 SmallVector<const SCEV *, 4> Ops;
596 bool Found = false;
597 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
598 I != E; ++I) {
599 const SCEV *S = *I;
600 if (!Found)
601 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
602 IgnoreSignificantBits)) {
603 S = Q;
604 Found = true;
605 }
606 Ops.push_back(S);
607 }
608 return Found ? SE.getMulExpr(Ops) : nullptr;
609 }
610 return nullptr;
611 }
612
613 // Otherwise we don't know.
614 return nullptr;
615 }
616
617 /// ExtractImmediate - If S involves the addition of a constant integer value,
618 /// return that integer value, and mutate S to point to a new SCEV with that
619 /// value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)620 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
621 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
622 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
623 S = SE.getConstant(C->getType(), 0);
624 return C->getValue()->getSExtValue();
625 }
626 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
627 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
628 int64_t Result = ExtractImmediate(NewOps.front(), SE);
629 if (Result != 0)
630 S = SE.getAddExpr(NewOps);
631 return Result;
632 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
633 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
634 int64_t Result = ExtractImmediate(NewOps.front(), SE);
635 if (Result != 0)
636 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
637 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
638 SCEV::FlagAnyWrap);
639 return Result;
640 }
641 return 0;
642 }
643
644 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
645 /// return that symbol, and mutate S to point to a new SCEV with that
646 /// value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)647 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
648 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
649 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
650 S = SE.getConstant(GV->getType(), 0);
651 return GV;
652 }
653 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
654 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
655 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
656 if (Result)
657 S = SE.getAddExpr(NewOps);
658 return Result;
659 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
660 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
661 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
662 if (Result)
663 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
664 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
665 SCEV::FlagAnyWrap);
666 return Result;
667 }
668 return nullptr;
669 }
670
671 /// isAddressUse - Returns true if the specified instruction is using the
672 /// specified value as an address.
isAddressUse(Instruction * Inst,Value * OperandVal)673 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
674 bool isAddress = isa<LoadInst>(Inst);
675 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
676 if (SI->getOperand(1) == OperandVal)
677 isAddress = true;
678 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
679 // Addressing modes can also be folded into prefetches and a variety
680 // of intrinsics.
681 switch (II->getIntrinsicID()) {
682 default: break;
683 case Intrinsic::prefetch:
684 case Intrinsic::x86_sse_storeu_ps:
685 case Intrinsic::x86_sse2_storeu_pd:
686 case Intrinsic::x86_sse2_storeu_dq:
687 case Intrinsic::x86_sse2_storel_dq:
688 if (II->getArgOperand(0) == OperandVal)
689 isAddress = true;
690 break;
691 }
692 }
693 return isAddress;
694 }
695
696 /// getAccessType - Return the type of the memory being accessed.
getAccessType(const Instruction * Inst)697 static Type *getAccessType(const Instruction *Inst) {
698 Type *AccessTy = Inst->getType();
699 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
700 AccessTy = SI->getOperand(0)->getType();
701 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
702 // Addressing modes can also be folded into prefetches and a variety
703 // of intrinsics.
704 switch (II->getIntrinsicID()) {
705 default: break;
706 case Intrinsic::x86_sse_storeu_ps:
707 case Intrinsic::x86_sse2_storeu_pd:
708 case Intrinsic::x86_sse2_storeu_dq:
709 case Intrinsic::x86_sse2_storel_dq:
710 AccessTy = II->getArgOperand(0)->getType();
711 break;
712 }
713 }
714
715 // All pointers have the same requirements, so canonicalize them to an
716 // arbitrary pointer type to minimize variation.
717 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
718 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
719 PTy->getAddressSpace());
720
721 return AccessTy;
722 }
723
724 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)725 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
726 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
727 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
728 if (SE.isSCEVable(PN->getType()) &&
729 (SE.getEffectiveSCEVType(PN->getType()) ==
730 SE.getEffectiveSCEVType(AR->getType())) &&
731 SE.getSCEV(PN) == AR)
732 return true;
733 }
734 return false;
735 }
736
737 /// Check if expanding this expression is likely to incur significant cost. This
738 /// is tricky because SCEV doesn't track which expressions are actually computed
739 /// by the current IR.
740 ///
741 /// We currently allow expansion of IV increments that involve adds,
742 /// multiplication by constants, and AddRecs from existing phis.
743 ///
744 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
745 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)746 static bool isHighCostExpansion(const SCEV *S,
747 SmallPtrSetImpl<const SCEV*> &Processed,
748 ScalarEvolution &SE) {
749 // Zero/One operand expressions
750 switch (S->getSCEVType()) {
751 case scUnknown:
752 case scConstant:
753 return false;
754 case scTruncate:
755 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
756 Processed, SE);
757 case scZeroExtend:
758 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
759 Processed, SE);
760 case scSignExtend:
761 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
762 Processed, SE);
763 }
764
765 if (!Processed.insert(S).second)
766 return false;
767
768 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
769 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
770 I != E; ++I) {
771 if (isHighCostExpansion(*I, Processed, SE))
772 return true;
773 }
774 return false;
775 }
776
777 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
778 if (Mul->getNumOperands() == 2) {
779 // Multiplication by a constant is ok
780 if (isa<SCEVConstant>(Mul->getOperand(0)))
781 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
782
783 // If we have the value of one operand, check if an existing
784 // multiplication already generates this expression.
785 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
786 Value *UVal = U->getValue();
787 for (User *UR : UVal->users()) {
788 // If U is a constant, it may be used by a ConstantExpr.
789 Instruction *UI = dyn_cast<Instruction>(UR);
790 if (UI && UI->getOpcode() == Instruction::Mul &&
791 SE.isSCEVable(UI->getType())) {
792 return SE.getSCEV(UI) == Mul;
793 }
794 }
795 }
796 }
797 }
798
799 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
800 if (isExistingPhi(AR, SE))
801 return false;
802 }
803
804 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
805 return true;
806 }
807
808 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
809 /// specified set are trivially dead, delete them and see if this makes any of
810 /// their operands subsequently dead.
811 static bool
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> & DeadInsts)812 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
813 bool Changed = false;
814
815 while (!DeadInsts.empty()) {
816 Value *V = DeadInsts.pop_back_val();
817 Instruction *I = dyn_cast_or_null<Instruction>(V);
818
819 if (!I || !isInstructionTriviallyDead(I))
820 continue;
821
822 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
823 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
824 *OI = nullptr;
825 if (U->use_empty())
826 DeadInsts.push_back(U);
827 }
828
829 I->eraseFromParent();
830 Changed = true;
831 }
832
833 return Changed;
834 }
835
836 namespace {
837 class LSRUse;
838 }
839
840 /// \brief Check if the addressing mode defined by \p F is completely
841 /// folded in \p LU at isel time.
842 /// This includes address-mode folding and special icmp tricks.
843 /// This function returns true if \p LU can accommodate what \p F
844 /// defines and up to 1 base + 1 scaled + offset.
845 /// In other words, if \p F has several base registers, this function may
846 /// still return true. Therefore, users still need to account for
847 /// additional base registers and/or unfolded offsets to derive an
848 /// accurate cost model.
849 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
850 const LSRUse &LU, const Formula &F);
851 // Get the cost of the scaling factor used in F for LU.
852 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
853 const LSRUse &LU, const Formula &F);
854
855 namespace {
856
857 /// Cost - This class is used to measure and compare candidate formulae.
858 class Cost {
859 /// TODO: Some of these could be merged. Also, a lexical ordering
860 /// isn't always optimal.
861 unsigned NumRegs;
862 unsigned AddRecCost;
863 unsigned NumIVMuls;
864 unsigned NumBaseAdds;
865 unsigned ImmCost;
866 unsigned SetupCost;
867 unsigned ScaleCost;
868
869 public:
Cost()870 Cost()
871 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
872 SetupCost(0), ScaleCost(0) {}
873
874 bool operator<(const Cost &Other) const;
875
876 void Lose();
877
878 #ifndef NDEBUG
879 // Once any of the metrics loses, they must all remain losers.
isValid()880 bool isValid() {
881 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
882 | ImmCost | SetupCost | ScaleCost) != ~0u)
883 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
884 & ImmCost & SetupCost & ScaleCost) == ~0u);
885 }
886 #endif
887
isLoser()888 bool isLoser() {
889 assert(isValid() && "invalid cost");
890 return NumRegs == ~0u;
891 }
892
893 void RateFormula(const TargetTransformInfo &TTI,
894 const Formula &F,
895 SmallPtrSetImpl<const SCEV *> &Regs,
896 const DenseSet<const SCEV *> &VisitedRegs,
897 const Loop *L,
898 const SmallVectorImpl<int64_t> &Offsets,
899 ScalarEvolution &SE, DominatorTree &DT,
900 const LSRUse &LU,
901 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
902
903 void print(raw_ostream &OS) const;
904 void dump() const;
905
906 private:
907 void RateRegister(const SCEV *Reg,
908 SmallPtrSetImpl<const SCEV *> &Regs,
909 const Loop *L,
910 ScalarEvolution &SE, DominatorTree &DT);
911 void RatePrimaryRegister(const SCEV *Reg,
912 SmallPtrSetImpl<const SCEV *> &Regs,
913 const Loop *L,
914 ScalarEvolution &SE, DominatorTree &DT,
915 SmallPtrSetImpl<const SCEV *> *LoserRegs);
916 };
917
918 }
919
920 /// RateRegister - Tally up interesting quantities from the given register.
RateRegister(const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,const Loop * L,ScalarEvolution & SE,DominatorTree & DT)921 void Cost::RateRegister(const SCEV *Reg,
922 SmallPtrSetImpl<const SCEV *> &Regs,
923 const Loop *L,
924 ScalarEvolution &SE, DominatorTree &DT) {
925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
926 // If this is an addrec for another loop, don't second-guess its addrec phi
927 // nodes. LSR isn't currently smart enough to reason about more than one
928 // loop at a time. LSR has already run on inner loops, will not run on outer
929 // loops, and cannot be expected to change sibling loops.
930 if (AR->getLoop() != L) {
931 // If the AddRec exists, consider it's register free and leave it alone.
932 if (isExistingPhi(AR, SE))
933 return;
934
935 // Otherwise, do not consider this formula at all.
936 Lose();
937 return;
938 }
939 AddRecCost += 1; /// TODO: This should be a function of the stride.
940
941 // Add the step value register, if it needs one.
942 // TODO: The non-affine case isn't precisely modeled here.
943 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
944 if (!Regs.count(AR->getOperand(1))) {
945 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
946 if (isLoser())
947 return;
948 }
949 }
950 }
951 ++NumRegs;
952
953 // Rough heuristic; favor registers which don't require extra setup
954 // instructions in the preheader.
955 if (!isa<SCEVUnknown>(Reg) &&
956 !isa<SCEVConstant>(Reg) &&
957 !(isa<SCEVAddRecExpr>(Reg) &&
958 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
959 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
960 ++SetupCost;
961
962 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
963 SE.hasComputableLoopEvolution(Reg, L);
964 }
965
966 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
967 /// before, rate it. Optional LoserRegs provides a way to declare any formula
968 /// that refers to one of those regs an instant loser.
RatePrimaryRegister(const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,const Loop * L,ScalarEvolution & SE,DominatorTree & DT,SmallPtrSetImpl<const SCEV * > * LoserRegs)969 void Cost::RatePrimaryRegister(const SCEV *Reg,
970 SmallPtrSetImpl<const SCEV *> &Regs,
971 const Loop *L,
972 ScalarEvolution &SE, DominatorTree &DT,
973 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
974 if (LoserRegs && LoserRegs->count(Reg)) {
975 Lose();
976 return;
977 }
978 if (Regs.insert(Reg).second) {
979 RateRegister(Reg, Regs, L, SE, DT);
980 if (LoserRegs && isLoser())
981 LoserRegs->insert(Reg);
982 }
983 }
984
RateFormula(const TargetTransformInfo & TTI,const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const Loop * L,const SmallVectorImpl<int64_t> & Offsets,ScalarEvolution & SE,DominatorTree & DT,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)985 void Cost::RateFormula(const TargetTransformInfo &TTI,
986 const Formula &F,
987 SmallPtrSetImpl<const SCEV *> &Regs,
988 const DenseSet<const SCEV *> &VisitedRegs,
989 const Loop *L,
990 const SmallVectorImpl<int64_t> &Offsets,
991 ScalarEvolution &SE, DominatorTree &DT,
992 const LSRUse &LU,
993 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
994 assert(F.isCanonical() && "Cost is accurate only for canonical formula");
995 // Tally up the registers.
996 if (const SCEV *ScaledReg = F.ScaledReg) {
997 if (VisitedRegs.count(ScaledReg)) {
998 Lose();
999 return;
1000 }
1001 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1002 if (isLoser())
1003 return;
1004 }
1005 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1006 E = F.BaseRegs.end(); I != E; ++I) {
1007 const SCEV *BaseReg = *I;
1008 if (VisitedRegs.count(BaseReg)) {
1009 Lose();
1010 return;
1011 }
1012 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1013 if (isLoser())
1014 return;
1015 }
1016
1017 // Determine how many (unfolded) adds we'll need inside the loop.
1018 size_t NumBaseParts = F.getNumRegs();
1019 if (NumBaseParts > 1)
1020 // Do not count the base and a possible second register if the target
1021 // allows to fold 2 registers.
1022 NumBaseAdds +=
1023 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1024 NumBaseAdds += (F.UnfoldedOffset != 0);
1025
1026 // Accumulate non-free scaling amounts.
1027 ScaleCost += getScalingFactorCost(TTI, LU, F);
1028
1029 // Tally up the non-zero immediates.
1030 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1031 E = Offsets.end(); I != E; ++I) {
1032 int64_t Offset = (uint64_t)*I + F.BaseOffset;
1033 if (F.BaseGV)
1034 ImmCost += 64; // Handle symbolic values conservatively.
1035 // TODO: This should probably be the pointer size.
1036 else if (Offset != 0)
1037 ImmCost += APInt(64, Offset, true).getMinSignedBits();
1038 }
1039 assert(isValid() && "invalid cost");
1040 }
1041
1042 /// Lose - Set this cost to a losing value.
Lose()1043 void Cost::Lose() {
1044 NumRegs = ~0u;
1045 AddRecCost = ~0u;
1046 NumIVMuls = ~0u;
1047 NumBaseAdds = ~0u;
1048 ImmCost = ~0u;
1049 SetupCost = ~0u;
1050 ScaleCost = ~0u;
1051 }
1052
1053 /// operator< - Choose the lower cost.
operator <(const Cost & Other) const1054 bool Cost::operator<(const Cost &Other) const {
1055 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1056 ImmCost, SetupCost) <
1057 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1058 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1059 Other.SetupCost);
1060 }
1061
print(raw_ostream & OS) const1062 void Cost::print(raw_ostream &OS) const {
1063 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1064 if (AddRecCost != 0)
1065 OS << ", with addrec cost " << AddRecCost;
1066 if (NumIVMuls != 0)
1067 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1068 if (NumBaseAdds != 0)
1069 OS << ", plus " << NumBaseAdds << " base add"
1070 << (NumBaseAdds == 1 ? "" : "s");
1071 if (ScaleCost != 0)
1072 OS << ", plus " << ScaleCost << " scale cost";
1073 if (ImmCost != 0)
1074 OS << ", plus " << ImmCost << " imm cost";
1075 if (SetupCost != 0)
1076 OS << ", plus " << SetupCost << " setup cost";
1077 }
1078
1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1080 void Cost::dump() const {
1081 print(errs()); errs() << '\n';
1082 }
1083 #endif
1084
1085 namespace {
1086
1087 /// LSRFixup - An operand value in an instruction which is to be replaced
1088 /// with some equivalent, possibly strength-reduced, replacement.
1089 struct LSRFixup {
1090 /// UserInst - The instruction which will be updated.
1091 Instruction *UserInst;
1092
1093 /// OperandValToReplace - The operand of the instruction which will
1094 /// be replaced. The operand may be used more than once; every instance
1095 /// will be replaced.
1096 Value *OperandValToReplace;
1097
1098 /// PostIncLoops - If this user is to use the post-incremented value of an
1099 /// induction variable, this variable is non-null and holds the loop
1100 /// associated with the induction variable.
1101 PostIncLoopSet PostIncLoops;
1102
1103 /// LUIdx - The index of the LSRUse describing the expression which
1104 /// this fixup needs, minus an offset (below).
1105 size_t LUIdx;
1106
1107 /// Offset - A constant offset to be added to the LSRUse expression.
1108 /// This allows multiple fixups to share the same LSRUse with different
1109 /// offsets, for example in an unrolled loop.
1110 int64_t Offset;
1111
1112 bool isUseFullyOutsideLoop(const Loop *L) const;
1113
1114 LSRFixup();
1115
1116 void print(raw_ostream &OS) const;
1117 void dump() const;
1118 };
1119
1120 }
1121
LSRFixup()1122 LSRFixup::LSRFixup()
1123 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1124 Offset(0) {}
1125
1126 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
1127 /// value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1128 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1129 // PHI nodes use their value in their incoming blocks.
1130 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1131 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1132 if (PN->getIncomingValue(i) == OperandValToReplace &&
1133 L->contains(PN->getIncomingBlock(i)))
1134 return false;
1135 return true;
1136 }
1137
1138 return !L->contains(UserInst);
1139 }
1140
print(raw_ostream & OS) const1141 void LSRFixup::print(raw_ostream &OS) const {
1142 OS << "UserInst=";
1143 // Store is common and interesting enough to be worth special-casing.
1144 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1145 OS << "store ";
1146 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1147 } else if (UserInst->getType()->isVoidTy())
1148 OS << UserInst->getOpcodeName();
1149 else
1150 UserInst->printAsOperand(OS, /*PrintType=*/false);
1151
1152 OS << ", OperandValToReplace=";
1153 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1154
1155 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1156 E = PostIncLoops.end(); I != E; ++I) {
1157 OS << ", PostIncLoop=";
1158 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1159 }
1160
1161 if (LUIdx != ~size_t(0))
1162 OS << ", LUIdx=" << LUIdx;
1163
1164 if (Offset != 0)
1165 OS << ", Offset=" << Offset;
1166 }
1167
1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1169 void LSRFixup::dump() const {
1170 print(errs()); errs() << '\n';
1171 }
1172 #endif
1173
1174 namespace {
1175
1176 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1177 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1178 struct UniquifierDenseMapInfo {
getEmptyKey__anonbd2ddbdf0711::UniquifierDenseMapInfo1179 static SmallVector<const SCEV *, 4> getEmptyKey() {
1180 SmallVector<const SCEV *, 4> V;
1181 V.push_back(reinterpret_cast<const SCEV *>(-1));
1182 return V;
1183 }
1184
getTombstoneKey__anonbd2ddbdf0711::UniquifierDenseMapInfo1185 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1186 SmallVector<const SCEV *, 4> V;
1187 V.push_back(reinterpret_cast<const SCEV *>(-2));
1188 return V;
1189 }
1190
getHashValue__anonbd2ddbdf0711::UniquifierDenseMapInfo1191 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1192 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1193 }
1194
isEqual__anonbd2ddbdf0711::UniquifierDenseMapInfo1195 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1196 const SmallVector<const SCEV *, 4> &RHS) {
1197 return LHS == RHS;
1198 }
1199 };
1200
1201 /// LSRUse - This class holds the state that LSR keeps for each use in
1202 /// IVUsers, as well as uses invented by LSR itself. It includes information
1203 /// about what kinds of things can be folded into the user, information about
1204 /// the user itself, and information about how the use may be satisfied.
1205 /// TODO: Represent multiple users of the same expression in common?
1206 class LSRUse {
1207 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1208
1209 public:
1210 /// KindType - An enum for a kind of use, indicating what types of
1211 /// scaled and immediate operands it might support.
1212 enum KindType {
1213 Basic, ///< A normal use, with no folding.
1214 Special, ///< A special case of basic, allowing -1 scales.
1215 Address, ///< An address use; folding according to TargetLowering
1216 ICmpZero ///< An equality icmp with both operands folded into one.
1217 // TODO: Add a generic icmp too?
1218 };
1219
1220 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1221
1222 KindType Kind;
1223 Type *AccessTy;
1224
1225 SmallVector<int64_t, 8> Offsets;
1226 int64_t MinOffset;
1227 int64_t MaxOffset;
1228
1229 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1230 /// LSRUse are outside of the loop, in which case some special-case heuristics
1231 /// may be used.
1232 bool AllFixupsOutsideLoop;
1233
1234 /// RigidFormula is set to true to guarantee that this use will be associated
1235 /// with a single formula--the one that initially matched. Some SCEV
1236 /// expressions cannot be expanded. This allows LSR to consider the registers
1237 /// used by those expressions without the need to expand them later after
1238 /// changing the formula.
1239 bool RigidFormula;
1240
1241 /// WidestFixupType - This records the widest use type for any fixup using
1242 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1243 /// max fixup widths to be equivalent, because the narrower one may be relying
1244 /// on the implicit truncation to truncate away bogus bits.
1245 Type *WidestFixupType;
1246
1247 /// Formulae - A list of ways to build a value that can satisfy this user.
1248 /// After the list is populated, one of these is selected heuristically and
1249 /// used to formulate a replacement for OperandValToReplace in UserInst.
1250 SmallVector<Formula, 12> Formulae;
1251
1252 /// Regs - The set of register candidates used by all formulae in this LSRUse.
1253 SmallPtrSet<const SCEV *, 4> Regs;
1254
LSRUse(KindType K,Type * T)1255 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1256 MinOffset(INT64_MAX),
1257 MaxOffset(INT64_MIN),
1258 AllFixupsOutsideLoop(true),
1259 RigidFormula(false),
1260 WidestFixupType(nullptr) {}
1261
1262 bool HasFormulaWithSameRegs(const Formula &F) const;
1263 bool InsertFormula(const Formula &F);
1264 void DeleteFormula(Formula &F);
1265 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1266
1267 void print(raw_ostream &OS) const;
1268 void dump() const;
1269 };
1270
1271 }
1272
1273 /// HasFormula - Test whether this use as a formula which has the same
1274 /// registers as the given formula.
HasFormulaWithSameRegs(const Formula & F) const1275 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1276 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1277 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1278 // Unstable sort by host order ok, because this is only used for uniquifying.
1279 std::sort(Key.begin(), Key.end());
1280 return Uniquifier.count(Key);
1281 }
1282
1283 /// InsertFormula - If the given formula has not yet been inserted, add it to
1284 /// the list, and return true. Return false otherwise.
1285 /// The formula must be in canonical form.
InsertFormula(const Formula & F)1286 bool LSRUse::InsertFormula(const Formula &F) {
1287 assert(F.isCanonical() && "Invalid canonical representation");
1288
1289 if (!Formulae.empty() && RigidFormula)
1290 return false;
1291
1292 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1293 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1294 // Unstable sort by host order ok, because this is only used for uniquifying.
1295 std::sort(Key.begin(), Key.end());
1296
1297 if (!Uniquifier.insert(Key).second)
1298 return false;
1299
1300 // Using a register to hold the value of 0 is not profitable.
1301 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1302 "Zero allocated in a scaled register!");
1303 #ifndef NDEBUG
1304 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1305 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1306 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1307 #endif
1308
1309 // Add the formula to the list.
1310 Formulae.push_back(F);
1311
1312 // Record registers now being used by this use.
1313 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1314 if (F.ScaledReg)
1315 Regs.insert(F.ScaledReg);
1316
1317 return true;
1318 }
1319
1320 /// DeleteFormula - Remove the given formula from this use's list.
DeleteFormula(Formula & F)1321 void LSRUse::DeleteFormula(Formula &F) {
1322 if (&F != &Formulae.back())
1323 std::swap(F, Formulae.back());
1324 Formulae.pop_back();
1325 }
1326
1327 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1328 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1329 // Now that we've filtered out some formulae, recompute the Regs set.
1330 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1331 Regs.clear();
1332 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1333 E = Formulae.end(); I != E; ++I) {
1334 const Formula &F = *I;
1335 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1336 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1337 }
1338
1339 // Update the RegTracker.
1340 for (const SCEV *S : OldRegs)
1341 if (!Regs.count(S))
1342 RegUses.DropRegister(S, LUIdx);
1343 }
1344
print(raw_ostream & OS) const1345 void LSRUse::print(raw_ostream &OS) const {
1346 OS << "LSR Use: Kind=";
1347 switch (Kind) {
1348 case Basic: OS << "Basic"; break;
1349 case Special: OS << "Special"; break;
1350 case ICmpZero: OS << "ICmpZero"; break;
1351 case Address:
1352 OS << "Address of ";
1353 if (AccessTy->isPointerTy())
1354 OS << "pointer"; // the full pointer type could be really verbose
1355 else
1356 OS << *AccessTy;
1357 }
1358
1359 OS << ", Offsets={";
1360 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1361 E = Offsets.end(); I != E; ++I) {
1362 OS << *I;
1363 if (std::next(I) != E)
1364 OS << ',';
1365 }
1366 OS << '}';
1367
1368 if (AllFixupsOutsideLoop)
1369 OS << ", all-fixups-outside-loop";
1370
1371 if (WidestFixupType)
1372 OS << ", widest fixup type: " << *WidestFixupType;
1373 }
1374
1375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1376 void LSRUse::dump() const {
1377 print(errs()); errs() << '\n';
1378 }
1379 #endif
1380
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1381 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1382 LSRUse::KindType Kind, Type *AccessTy,
1383 GlobalValue *BaseGV, int64_t BaseOffset,
1384 bool HasBaseReg, int64_t Scale) {
1385 switch (Kind) {
1386 case LSRUse::Address:
1387 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
1388
1389 // Otherwise, just guess that reg+reg addressing is legal.
1390 //return ;
1391
1392 case LSRUse::ICmpZero:
1393 // There's not even a target hook for querying whether it would be legal to
1394 // fold a GV into an ICmp.
1395 if (BaseGV)
1396 return false;
1397
1398 // ICmp only has two operands; don't allow more than two non-trivial parts.
1399 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1400 return false;
1401
1402 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1403 // putting the scaled register in the other operand of the icmp.
1404 if (Scale != 0 && Scale != -1)
1405 return false;
1406
1407 // If we have low-level target information, ask the target if it can fold an
1408 // integer immediate on an icmp.
1409 if (BaseOffset != 0) {
1410 // We have one of:
1411 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1412 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1413 // Offs is the ICmp immediate.
1414 if (Scale == 0)
1415 // The cast does the right thing with INT64_MIN.
1416 BaseOffset = -(uint64_t)BaseOffset;
1417 return TTI.isLegalICmpImmediate(BaseOffset);
1418 }
1419
1420 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1421 return true;
1422
1423 case LSRUse::Basic:
1424 // Only handle single-register values.
1425 return !BaseGV && Scale == 0 && BaseOffset == 0;
1426
1427 case LSRUse::Special:
1428 // Special case Basic to handle -1 scales.
1429 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1430 }
1431
1432 llvm_unreachable("Invalid LSRUse Kind!");
1433 }
1434
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1435 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1436 int64_t MinOffset, int64_t MaxOffset,
1437 LSRUse::KindType Kind, Type *AccessTy,
1438 GlobalValue *BaseGV, int64_t BaseOffset,
1439 bool HasBaseReg, int64_t Scale) {
1440 // Check for overflow.
1441 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1442 (MinOffset > 0))
1443 return false;
1444 MinOffset = (uint64_t)BaseOffset + MinOffset;
1445 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1446 (MaxOffset > 0))
1447 return false;
1448 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1449
1450 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1451 HasBaseReg, Scale) &&
1452 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1453 HasBaseReg, Scale);
1454 }
1455
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,const Formula & F)1456 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1457 int64_t MinOffset, int64_t MaxOffset,
1458 LSRUse::KindType Kind, Type *AccessTy,
1459 const Formula &F) {
1460 // For the purpose of isAMCompletelyFolded either having a canonical formula
1461 // or a scale not equal to zero is correct.
1462 // Problems may arise from non canonical formulae having a scale == 0.
1463 // Strictly speaking it would best to just rely on canonical formulae.
1464 // However, when we generate the scaled formulae, we first check that the
1465 // scaling factor is profitable before computing the actual ScaledReg for
1466 // compile time sake.
1467 assert((F.isCanonical() || F.Scale != 0));
1468 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1469 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1470 }
1471
1472 /// isLegalUse - Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1473 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1474 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1475 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
1476 int64_t Scale) {
1477 // We know how to expand completely foldable formulae.
1478 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1479 BaseOffset, HasBaseReg, Scale) ||
1480 // Or formulae that use a base register produced by a sum of base
1481 // registers.
1482 (Scale == 1 &&
1483 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1484 BaseGV, BaseOffset, true, 0));
1485 }
1486
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,const Formula & F)1487 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1488 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1489 const Formula &F) {
1490 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1491 F.BaseOffset, F.HasBaseReg, F.Scale);
1492 }
1493
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1494 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1495 const LSRUse &LU, const Formula &F) {
1496 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1497 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1498 F.Scale);
1499 }
1500
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1501 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1502 const LSRUse &LU, const Formula &F) {
1503 if (!F.Scale)
1504 return 0;
1505
1506 // If the use is not completely folded in that instruction, we will have to
1507 // pay an extra cost only for scale != 1.
1508 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1509 LU.AccessTy, F))
1510 return F.Scale != 1;
1511
1512 switch (LU.Kind) {
1513 case LSRUse::Address: {
1514 // Check the scaling factor cost with both the min and max offsets.
1515 int ScaleCostMinOffset =
1516 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1517 F.BaseOffset + LU.MinOffset,
1518 F.HasBaseReg, F.Scale);
1519 int ScaleCostMaxOffset =
1520 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1521 F.BaseOffset + LU.MaxOffset,
1522 F.HasBaseReg, F.Scale);
1523
1524 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1525 "Legal addressing mode has an illegal cost!");
1526 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1527 }
1528 case LSRUse::ICmpZero:
1529 case LSRUse::Basic:
1530 case LSRUse::Special:
1531 // The use is completely folded, i.e., everything is folded into the
1532 // instruction.
1533 return 0;
1534 }
1535
1536 llvm_unreachable("Invalid LSRUse Kind!");
1537 }
1538
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,Type * AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1539 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1540 LSRUse::KindType Kind, Type *AccessTy,
1541 GlobalValue *BaseGV, int64_t BaseOffset,
1542 bool HasBaseReg) {
1543 // Fast-path: zero is always foldable.
1544 if (BaseOffset == 0 && !BaseGV) return true;
1545
1546 // Conservatively, create an address with an immediate and a
1547 // base and a scale.
1548 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1549
1550 // Canonicalize a scale of 1 to a base register if the formula doesn't
1551 // already have a base register.
1552 if (!HasBaseReg && Scale == 1) {
1553 Scale = 0;
1554 HasBaseReg = true;
1555 }
1556
1557 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1558 HasBaseReg, Scale);
1559 }
1560
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,Type * AccessTy,const SCEV * S,bool HasBaseReg)1561 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1562 ScalarEvolution &SE, int64_t MinOffset,
1563 int64_t MaxOffset, LSRUse::KindType Kind,
1564 Type *AccessTy, const SCEV *S, bool HasBaseReg) {
1565 // Fast-path: zero is always foldable.
1566 if (S->isZero()) return true;
1567
1568 // Conservatively, create an address with an immediate and a
1569 // base and a scale.
1570 int64_t BaseOffset = ExtractImmediate(S, SE);
1571 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1572
1573 // If there's anything else involved, it's not foldable.
1574 if (!S->isZero()) return false;
1575
1576 // Fast-path: zero is always foldable.
1577 if (BaseOffset == 0 && !BaseGV) return true;
1578
1579 // Conservatively, create an address with an immediate and a
1580 // base and a scale.
1581 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1582
1583 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1584 BaseOffset, HasBaseReg, Scale);
1585 }
1586
1587 namespace {
1588
1589 /// IVInc - An individual increment in a Chain of IV increments.
1590 /// Relate an IV user to an expression that computes the IV it uses from the IV
1591 /// used by the previous link in the Chain.
1592 ///
1593 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1594 /// original IVOperand. The head of the chain's IVOperand is only valid during
1595 /// chain collection, before LSR replaces IV users. During chain generation,
1596 /// IncExpr can be used to find the new IVOperand that computes the same
1597 /// expression.
1598 struct IVInc {
1599 Instruction *UserInst;
1600 Value* IVOperand;
1601 const SCEV *IncExpr;
1602
IVInc__anonbd2ddbdf0811::IVInc1603 IVInc(Instruction *U, Value *O, const SCEV *E):
1604 UserInst(U), IVOperand(O), IncExpr(E) {}
1605 };
1606
1607 // IVChain - The list of IV increments in program order.
1608 // We typically add the head of a chain without finding subsequent links.
1609 struct IVChain {
1610 SmallVector<IVInc,1> Incs;
1611 const SCEV *ExprBase;
1612
IVChain__anonbd2ddbdf0811::IVChain1613 IVChain() : ExprBase(nullptr) {}
1614
IVChain__anonbd2ddbdf0811::IVChain1615 IVChain(const IVInc &Head, const SCEV *Base)
1616 : Incs(1, Head), ExprBase(Base) {}
1617
1618 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1619
1620 // begin - return the first increment in the chain.
begin__anonbd2ddbdf0811::IVChain1621 const_iterator begin() const {
1622 assert(!Incs.empty());
1623 return std::next(Incs.begin());
1624 }
end__anonbd2ddbdf0811::IVChain1625 const_iterator end() const {
1626 return Incs.end();
1627 }
1628
1629 // hasIncs - Returns true if this chain contains any increments.
hasIncs__anonbd2ddbdf0811::IVChain1630 bool hasIncs() const { return Incs.size() >= 2; }
1631
1632 // add - Add an IVInc to the end of this chain.
add__anonbd2ddbdf0811::IVChain1633 void add(const IVInc &X) { Incs.push_back(X); }
1634
1635 // tailUserInst - Returns the last UserInst in the chain.
tailUserInst__anonbd2ddbdf0811::IVChain1636 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1637
1638 // isProfitableIncrement - Returns true if IncExpr can be profitably added to
1639 // this chain.
1640 bool isProfitableIncrement(const SCEV *OperExpr,
1641 const SCEV *IncExpr,
1642 ScalarEvolution&);
1643 };
1644
1645 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1646 /// Distinguish between FarUsers that definitely cross IV increments and
1647 /// NearUsers that may be used between IV increments.
1648 struct ChainUsers {
1649 SmallPtrSet<Instruction*, 4> FarUsers;
1650 SmallPtrSet<Instruction*, 4> NearUsers;
1651 };
1652
1653 /// LSRInstance - This class holds state for the main loop strength reduction
1654 /// logic.
1655 class LSRInstance {
1656 IVUsers &IU;
1657 ScalarEvolution &SE;
1658 DominatorTree &DT;
1659 LoopInfo &LI;
1660 const TargetTransformInfo &TTI;
1661 Loop *const L;
1662 bool Changed;
1663
1664 /// IVIncInsertPos - This is the insert position that the current loop's
1665 /// induction variable increment should be placed. In simple loops, this is
1666 /// the latch block's terminator. But in more complicated cases, this is a
1667 /// position which will dominate all the in-loop post-increment users.
1668 Instruction *IVIncInsertPos;
1669
1670 /// Factors - Interesting factors between use strides.
1671 SmallSetVector<int64_t, 8> Factors;
1672
1673 /// Types - Interesting use types, to facilitate truncation reuse.
1674 SmallSetVector<Type *, 4> Types;
1675
1676 /// Fixups - The list of operands which are to be replaced.
1677 SmallVector<LSRFixup, 16> Fixups;
1678
1679 /// Uses - The list of interesting uses.
1680 SmallVector<LSRUse, 16> Uses;
1681
1682 /// RegUses - Track which uses use which register candidates.
1683 RegUseTracker RegUses;
1684
1685 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1686 // have more than a few IV increment chains in a loop. Missing a Chain falls
1687 // back to normal LSR behavior for those uses.
1688 static const unsigned MaxChains = 8;
1689
1690 /// IVChainVec - IV users can form a chain of IV increments.
1691 SmallVector<IVChain, MaxChains> IVChainVec;
1692
1693 /// IVIncSet - IV users that belong to profitable IVChains.
1694 SmallPtrSet<Use*, MaxChains> IVIncSet;
1695
1696 void OptimizeShadowIV();
1697 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1698 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1699 void OptimizeLoopTermCond();
1700
1701 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1702 SmallVectorImpl<ChainUsers> &ChainUsersVec);
1703 void FinalizeChain(IVChain &Chain);
1704 void CollectChains();
1705 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1706 SmallVectorImpl<WeakVH> &DeadInsts);
1707
1708 void CollectInterestingTypesAndFactors();
1709 void CollectFixupsAndInitialFormulae();
1710
getNewFixup()1711 LSRFixup &getNewFixup() {
1712 Fixups.push_back(LSRFixup());
1713 return Fixups.back();
1714 }
1715
1716 // Support for sharing of LSRUses between LSRFixups.
1717 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1718 UseMapTy UseMap;
1719
1720 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1721 LSRUse::KindType Kind, Type *AccessTy);
1722
1723 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1724 LSRUse::KindType Kind,
1725 Type *AccessTy);
1726
1727 void DeleteUse(LSRUse &LU, size_t LUIdx);
1728
1729 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1730
1731 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1732 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1733 void CountRegisters(const Formula &F, size_t LUIdx);
1734 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1735
1736 void CollectLoopInvariantFixupsAndFormulae();
1737
1738 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1739 unsigned Depth = 0);
1740
1741 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1742 const Formula &Base, unsigned Depth,
1743 size_t Idx, bool IsScaledReg = false);
1744 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1745 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1746 const Formula &Base, size_t Idx,
1747 bool IsScaledReg = false);
1748 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1749 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1750 const Formula &Base,
1751 const SmallVectorImpl<int64_t> &Worklist,
1752 size_t Idx, bool IsScaledReg = false);
1753 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1754 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1755 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1756 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1757 void GenerateCrossUseConstantOffsets();
1758 void GenerateAllReuseFormulae();
1759
1760 void FilterOutUndesirableDedicatedRegisters();
1761
1762 size_t EstimateSearchSpaceComplexity() const;
1763 void NarrowSearchSpaceByDetectingSupersets();
1764 void NarrowSearchSpaceByCollapsingUnrolledCode();
1765 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1766 void NarrowSearchSpaceByPickingWinnerRegs();
1767 void NarrowSearchSpaceUsingHeuristics();
1768
1769 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1770 Cost &SolutionCost,
1771 SmallVectorImpl<const Formula *> &Workspace,
1772 const Cost &CurCost,
1773 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1774 DenseSet<const SCEV *> &VisitedRegs) const;
1775 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1776
1777 BasicBlock::iterator
1778 HoistInsertPosition(BasicBlock::iterator IP,
1779 const SmallVectorImpl<Instruction *> &Inputs) const;
1780 BasicBlock::iterator
1781 AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1782 const LSRFixup &LF,
1783 const LSRUse &LU,
1784 SCEVExpander &Rewriter) const;
1785
1786 Value *Expand(const LSRFixup &LF,
1787 const Formula &F,
1788 BasicBlock::iterator IP,
1789 SCEVExpander &Rewriter,
1790 SmallVectorImpl<WeakVH> &DeadInsts) const;
1791 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1792 const Formula &F,
1793 SCEVExpander &Rewriter,
1794 SmallVectorImpl<WeakVH> &DeadInsts,
1795 Pass *P) const;
1796 void Rewrite(const LSRFixup &LF,
1797 const Formula &F,
1798 SCEVExpander &Rewriter,
1799 SmallVectorImpl<WeakVH> &DeadInsts,
1800 Pass *P) const;
1801 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1802 Pass *P);
1803
1804 public:
1805 LSRInstance(Loop *L, Pass *P);
1806
getChanged() const1807 bool getChanged() const { return Changed; }
1808
1809 void print_factors_and_types(raw_ostream &OS) const;
1810 void print_fixups(raw_ostream &OS) const;
1811 void print_uses(raw_ostream &OS) const;
1812 void print(raw_ostream &OS) const;
1813 void dump() const;
1814 };
1815
1816 }
1817
1818 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1819 /// inside the loop then try to eliminate the cast operation.
OptimizeShadowIV()1820 void LSRInstance::OptimizeShadowIV() {
1821 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1822 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1823 return;
1824
1825 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1826 UI != E; /* empty */) {
1827 IVUsers::const_iterator CandidateUI = UI;
1828 ++UI;
1829 Instruction *ShadowUse = CandidateUI->getUser();
1830 Type *DestTy = nullptr;
1831 bool IsSigned = false;
1832
1833 /* If shadow use is a int->float cast then insert a second IV
1834 to eliminate this cast.
1835
1836 for (unsigned i = 0; i < n; ++i)
1837 foo((double)i);
1838
1839 is transformed into
1840
1841 double d = 0.0;
1842 for (unsigned i = 0; i < n; ++i, ++d)
1843 foo(d);
1844 */
1845 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1846 IsSigned = false;
1847 DestTy = UCast->getDestTy();
1848 }
1849 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1850 IsSigned = true;
1851 DestTy = SCast->getDestTy();
1852 }
1853 if (!DestTy) continue;
1854
1855 // If target does not support DestTy natively then do not apply
1856 // this transformation.
1857 if (!TTI.isTypeLegal(DestTy)) continue;
1858
1859 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1860 if (!PH) continue;
1861 if (PH->getNumIncomingValues() != 2) continue;
1862
1863 Type *SrcTy = PH->getType();
1864 int Mantissa = DestTy->getFPMantissaWidth();
1865 if (Mantissa == -1) continue;
1866 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1867 continue;
1868
1869 unsigned Entry, Latch;
1870 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1871 Entry = 0;
1872 Latch = 1;
1873 } else {
1874 Entry = 1;
1875 Latch = 0;
1876 }
1877
1878 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1879 if (!Init) continue;
1880 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1881 (double)Init->getSExtValue() :
1882 (double)Init->getZExtValue());
1883
1884 BinaryOperator *Incr =
1885 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1886 if (!Incr) continue;
1887 if (Incr->getOpcode() != Instruction::Add
1888 && Incr->getOpcode() != Instruction::Sub)
1889 continue;
1890
1891 /* Initialize new IV, double d = 0.0 in above example. */
1892 ConstantInt *C = nullptr;
1893 if (Incr->getOperand(0) == PH)
1894 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1895 else if (Incr->getOperand(1) == PH)
1896 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1897 else
1898 continue;
1899
1900 if (!C) continue;
1901
1902 // Ignore negative constants, as the code below doesn't handle them
1903 // correctly. TODO: Remove this restriction.
1904 if (!C->getValue().isStrictlyPositive()) continue;
1905
1906 /* Add new PHINode. */
1907 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1908
1909 /* create new increment. '++d' in above example. */
1910 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1911 BinaryOperator *NewIncr =
1912 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1913 Instruction::FAdd : Instruction::FSub,
1914 NewPH, CFP, "IV.S.next.", Incr);
1915
1916 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1917 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1918
1919 /* Remove cast operation */
1920 ShadowUse->replaceAllUsesWith(NewPH);
1921 ShadowUse->eraseFromParent();
1922 Changed = true;
1923 break;
1924 }
1925 }
1926
1927 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1928 /// set the IV user and stride information and return true, otherwise return
1929 /// false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)1930 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1931 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1932 if (UI->getUser() == Cond) {
1933 // NOTE: we could handle setcc instructions with multiple uses here, but
1934 // InstCombine does it as well for simple uses, it's not clear that it
1935 // occurs enough in real life to handle.
1936 CondUse = UI;
1937 return true;
1938 }
1939 return false;
1940 }
1941
1942 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1943 /// a max computation.
1944 ///
1945 /// This is a narrow solution to a specific, but acute, problem. For loops
1946 /// like this:
1947 ///
1948 /// i = 0;
1949 /// do {
1950 /// p[i] = 0.0;
1951 /// } while (++i < n);
1952 ///
1953 /// the trip count isn't just 'n', because 'n' might not be positive. And
1954 /// unfortunately this can come up even for loops where the user didn't use
1955 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1956 /// will commonly be lowered like this:
1957 //
1958 /// if (n > 0) {
1959 /// i = 0;
1960 /// do {
1961 /// p[i] = 0.0;
1962 /// } while (++i < n);
1963 /// }
1964 ///
1965 /// and then it's possible for subsequent optimization to obscure the if
1966 /// test in such a way that indvars can't find it.
1967 ///
1968 /// When indvars can't find the if test in loops like this, it creates a
1969 /// max expression, which allows it to give the loop a canonical
1970 /// induction variable:
1971 ///
1972 /// i = 0;
1973 /// max = n < 1 ? 1 : n;
1974 /// do {
1975 /// p[i] = 0.0;
1976 /// } while (++i != max);
1977 ///
1978 /// Canonical induction variables are necessary because the loop passes
1979 /// are designed around them. The most obvious example of this is the
1980 /// LoopInfo analysis, which doesn't remember trip count values. It
1981 /// expects to be able to rediscover the trip count each time it is
1982 /// needed, and it does this using a simple analysis that only succeeds if
1983 /// the loop has a canonical induction variable.
1984 ///
1985 /// However, when it comes time to generate code, the maximum operation
1986 /// can be quite costly, especially if it's inside of an outer loop.
1987 ///
1988 /// This function solves this problem by detecting this type of loop and
1989 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1990 /// the instructions for the maximum computation.
1991 ///
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)1992 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1993 // Check that the loop matches the pattern we're looking for.
1994 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1995 Cond->getPredicate() != CmpInst::ICMP_NE)
1996 return Cond;
1997
1998 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1999 if (!Sel || !Sel->hasOneUse()) return Cond;
2000
2001 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2002 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2003 return Cond;
2004 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2005
2006 // Add one to the backedge-taken count to get the trip count.
2007 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2008 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2009
2010 // Check for a max calculation that matches the pattern. There's no check
2011 // for ICMP_ULE here because the comparison would be with zero, which
2012 // isn't interesting.
2013 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2014 const SCEVNAryExpr *Max = nullptr;
2015 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2016 Pred = ICmpInst::ICMP_SLE;
2017 Max = S;
2018 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2019 Pred = ICmpInst::ICMP_SLT;
2020 Max = S;
2021 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2022 Pred = ICmpInst::ICMP_ULT;
2023 Max = U;
2024 } else {
2025 // No match; bail.
2026 return Cond;
2027 }
2028
2029 // To handle a max with more than two operands, this optimization would
2030 // require additional checking and setup.
2031 if (Max->getNumOperands() != 2)
2032 return Cond;
2033
2034 const SCEV *MaxLHS = Max->getOperand(0);
2035 const SCEV *MaxRHS = Max->getOperand(1);
2036
2037 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2038 // for a comparison with 1. For <= and >=, a comparison with zero.
2039 if (!MaxLHS ||
2040 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2041 return Cond;
2042
2043 // Check the relevant induction variable for conformance to
2044 // the pattern.
2045 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2046 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2047 if (!AR || !AR->isAffine() ||
2048 AR->getStart() != One ||
2049 AR->getStepRecurrence(SE) != One)
2050 return Cond;
2051
2052 assert(AR->getLoop() == L &&
2053 "Loop condition operand is an addrec in a different loop!");
2054
2055 // Check the right operand of the select, and remember it, as it will
2056 // be used in the new comparison instruction.
2057 Value *NewRHS = nullptr;
2058 if (ICmpInst::isTrueWhenEqual(Pred)) {
2059 // Look for n+1, and grab n.
2060 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2061 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2062 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2063 NewRHS = BO->getOperand(0);
2064 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2065 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2066 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2067 NewRHS = BO->getOperand(0);
2068 if (!NewRHS)
2069 return Cond;
2070 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2071 NewRHS = Sel->getOperand(1);
2072 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2073 NewRHS = Sel->getOperand(2);
2074 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2075 NewRHS = SU->getValue();
2076 else
2077 // Max doesn't match expected pattern.
2078 return Cond;
2079
2080 // Determine the new comparison opcode. It may be signed or unsigned,
2081 // and the original comparison may be either equality or inequality.
2082 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2083 Pred = CmpInst::getInversePredicate(Pred);
2084
2085 // Ok, everything looks ok to change the condition into an SLT or SGE and
2086 // delete the max calculation.
2087 ICmpInst *NewCond =
2088 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2089
2090 // Delete the max calculation instructions.
2091 Cond->replaceAllUsesWith(NewCond);
2092 CondUse->setUser(NewCond);
2093 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2094 Cond->eraseFromParent();
2095 Sel->eraseFromParent();
2096 if (Cmp->use_empty())
2097 Cmp->eraseFromParent();
2098 return NewCond;
2099 }
2100
2101 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2102 /// postinc iv when possible.
2103 void
OptimizeLoopTermCond()2104 LSRInstance::OptimizeLoopTermCond() {
2105 SmallPtrSet<Instruction *, 4> PostIncs;
2106
2107 BasicBlock *LatchBlock = L->getLoopLatch();
2108 SmallVector<BasicBlock*, 8> ExitingBlocks;
2109 L->getExitingBlocks(ExitingBlocks);
2110
2111 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2112 BasicBlock *ExitingBlock = ExitingBlocks[i];
2113
2114 // Get the terminating condition for the loop if possible. If we
2115 // can, we want to change it to use a post-incremented version of its
2116 // induction variable, to allow coalescing the live ranges for the IV into
2117 // one register value.
2118
2119 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2120 if (!TermBr)
2121 continue;
2122 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2123 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2124 continue;
2125
2126 // Search IVUsesByStride to find Cond's IVUse if there is one.
2127 IVStrideUse *CondUse = nullptr;
2128 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2129 if (!FindIVUserForCond(Cond, CondUse))
2130 continue;
2131
2132 // If the trip count is computed in terms of a max (due to ScalarEvolution
2133 // being unable to find a sufficient guard, for example), change the loop
2134 // comparison to use SLT or ULT instead of NE.
2135 // One consequence of doing this now is that it disrupts the count-down
2136 // optimization. That's not always a bad thing though, because in such
2137 // cases it may still be worthwhile to avoid a max.
2138 Cond = OptimizeMax(Cond, CondUse);
2139
2140 // If this exiting block dominates the latch block, it may also use
2141 // the post-inc value if it won't be shared with other uses.
2142 // Check for dominance.
2143 if (!DT.dominates(ExitingBlock, LatchBlock))
2144 continue;
2145
2146 // Conservatively avoid trying to use the post-inc value in non-latch
2147 // exits if there may be pre-inc users in intervening blocks.
2148 if (LatchBlock != ExitingBlock)
2149 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2150 // Test if the use is reachable from the exiting block. This dominator
2151 // query is a conservative approximation of reachability.
2152 if (&*UI != CondUse &&
2153 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2154 // Conservatively assume there may be reuse if the quotient of their
2155 // strides could be a legal scale.
2156 const SCEV *A = IU.getStride(*CondUse, L);
2157 const SCEV *B = IU.getStride(*UI, L);
2158 if (!A || !B) continue;
2159 if (SE.getTypeSizeInBits(A->getType()) !=
2160 SE.getTypeSizeInBits(B->getType())) {
2161 if (SE.getTypeSizeInBits(A->getType()) >
2162 SE.getTypeSizeInBits(B->getType()))
2163 B = SE.getSignExtendExpr(B, A->getType());
2164 else
2165 A = SE.getSignExtendExpr(A, B->getType());
2166 }
2167 if (const SCEVConstant *D =
2168 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2169 const ConstantInt *C = D->getValue();
2170 // Stride of one or negative one can have reuse with non-addresses.
2171 if (C->isOne() || C->isAllOnesValue())
2172 goto decline_post_inc;
2173 // Avoid weird situations.
2174 if (C->getValue().getMinSignedBits() >= 64 ||
2175 C->getValue().isMinSignedValue())
2176 goto decline_post_inc;
2177 // Check for possible scaled-address reuse.
2178 Type *AccessTy = getAccessType(UI->getUser());
2179 int64_t Scale = C->getSExtValue();
2180 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
2181 /*BaseOffset=*/ 0,
2182 /*HasBaseReg=*/ false, Scale))
2183 goto decline_post_inc;
2184 Scale = -Scale;
2185 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
2186 /*BaseOffset=*/ 0,
2187 /*HasBaseReg=*/ false, Scale))
2188 goto decline_post_inc;
2189 }
2190 }
2191
2192 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2193 << *Cond << '\n');
2194
2195 // It's possible for the setcc instruction to be anywhere in the loop, and
2196 // possible for it to have multiple users. If it is not immediately before
2197 // the exiting block branch, move it.
2198 if (&*++BasicBlock::iterator(Cond) != TermBr) {
2199 if (Cond->hasOneUse()) {
2200 Cond->moveBefore(TermBr);
2201 } else {
2202 // Clone the terminating condition and insert into the loopend.
2203 ICmpInst *OldCond = Cond;
2204 Cond = cast<ICmpInst>(Cond->clone());
2205 Cond->setName(L->getHeader()->getName() + ".termcond");
2206 ExitingBlock->getInstList().insert(TermBr, Cond);
2207
2208 // Clone the IVUse, as the old use still exists!
2209 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2210 TermBr->replaceUsesOfWith(OldCond, Cond);
2211 }
2212 }
2213
2214 // If we get to here, we know that we can transform the setcc instruction to
2215 // use the post-incremented version of the IV, allowing us to coalesce the
2216 // live ranges for the IV correctly.
2217 CondUse->transformToPostInc(L);
2218 Changed = true;
2219
2220 PostIncs.insert(Cond);
2221 decline_post_inc:;
2222 }
2223
2224 // Determine an insertion point for the loop induction variable increment. It
2225 // must dominate all the post-inc comparisons we just set up, and it must
2226 // dominate the loop latch edge.
2227 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2228 for (Instruction *Inst : PostIncs) {
2229 BasicBlock *BB =
2230 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2231 Inst->getParent());
2232 if (BB == Inst->getParent())
2233 IVIncInsertPos = Inst;
2234 else if (BB != IVIncInsertPos->getParent())
2235 IVIncInsertPos = BB->getTerminator();
2236 }
2237 }
2238
2239 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
2240 /// at the given offset and other details. If so, update the use and
2241 /// return true.
2242 bool
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,Type * AccessTy)2243 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2244 LSRUse::KindType Kind, Type *AccessTy) {
2245 int64_t NewMinOffset = LU.MinOffset;
2246 int64_t NewMaxOffset = LU.MaxOffset;
2247 Type *NewAccessTy = AccessTy;
2248
2249 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2250 // something conservative, however this can pessimize in the case that one of
2251 // the uses will have all its uses outside the loop, for example.
2252 if (LU.Kind != Kind)
2253 return false;
2254
2255 // Check for a mismatched access type, and fall back conservatively as needed.
2256 // TODO: Be less conservative when the type is similar and can use the same
2257 // addressing modes.
2258 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2259 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2260
2261 // Conservatively assume HasBaseReg is true for now.
2262 if (NewOffset < LU.MinOffset) {
2263 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2264 LU.MaxOffset - NewOffset, HasBaseReg))
2265 return false;
2266 NewMinOffset = NewOffset;
2267 } else if (NewOffset > LU.MaxOffset) {
2268 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2269 NewOffset - LU.MinOffset, HasBaseReg))
2270 return false;
2271 NewMaxOffset = NewOffset;
2272 }
2273
2274 // Update the use.
2275 LU.MinOffset = NewMinOffset;
2276 LU.MaxOffset = NewMaxOffset;
2277 LU.AccessTy = NewAccessTy;
2278 if (NewOffset != LU.Offsets.back())
2279 LU.Offsets.push_back(NewOffset);
2280 return true;
2281 }
2282
2283 /// getUse - Return an LSRUse index and an offset value for a fixup which
2284 /// needs the given expression, with the given kind and optional access type.
2285 /// Either reuse an existing use or create a new one, as needed.
2286 std::pair<size_t, int64_t>
getUse(const SCEV * & Expr,LSRUse::KindType Kind,Type * AccessTy)2287 LSRInstance::getUse(const SCEV *&Expr,
2288 LSRUse::KindType Kind, Type *AccessTy) {
2289 const SCEV *Copy = Expr;
2290 int64_t Offset = ExtractImmediate(Expr, SE);
2291
2292 // Basic uses can't accept any offset, for example.
2293 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2294 Offset, /*HasBaseReg=*/ true)) {
2295 Expr = Copy;
2296 Offset = 0;
2297 }
2298
2299 std::pair<UseMapTy::iterator, bool> P =
2300 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2301 if (!P.second) {
2302 // A use already existed with this base.
2303 size_t LUIdx = P.first->second;
2304 LSRUse &LU = Uses[LUIdx];
2305 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2306 // Reuse this use.
2307 return std::make_pair(LUIdx, Offset);
2308 }
2309
2310 // Create a new use.
2311 size_t LUIdx = Uses.size();
2312 P.first->second = LUIdx;
2313 Uses.push_back(LSRUse(Kind, AccessTy));
2314 LSRUse &LU = Uses[LUIdx];
2315
2316 // We don't need to track redundant offsets, but we don't need to go out
2317 // of our way here to avoid them.
2318 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2319 LU.Offsets.push_back(Offset);
2320
2321 LU.MinOffset = Offset;
2322 LU.MaxOffset = Offset;
2323 return std::make_pair(LUIdx, Offset);
2324 }
2325
2326 /// DeleteUse - Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2327 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2328 if (&LU != &Uses.back())
2329 std::swap(LU, Uses.back());
2330 Uses.pop_back();
2331
2332 // Update RegUses.
2333 RegUses.SwapAndDropUse(LUIdx, Uses.size());
2334 }
2335
2336 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2337 /// a formula that has the same registers as the given formula.
2338 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2339 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2340 const LSRUse &OrigLU) {
2341 // Search all uses for the formula. This could be more clever.
2342 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2343 LSRUse &LU = Uses[LUIdx];
2344 // Check whether this use is close enough to OrigLU, to see whether it's
2345 // worthwhile looking through its formulae.
2346 // Ignore ICmpZero uses because they may contain formulae generated by
2347 // GenerateICmpZeroScales, in which case adding fixup offsets may
2348 // be invalid.
2349 if (&LU != &OrigLU &&
2350 LU.Kind != LSRUse::ICmpZero &&
2351 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2352 LU.WidestFixupType == OrigLU.WidestFixupType &&
2353 LU.HasFormulaWithSameRegs(OrigF)) {
2354 // Scan through this use's formulae.
2355 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2356 E = LU.Formulae.end(); I != E; ++I) {
2357 const Formula &F = *I;
2358 // Check to see if this formula has the same registers and symbols
2359 // as OrigF.
2360 if (F.BaseRegs == OrigF.BaseRegs &&
2361 F.ScaledReg == OrigF.ScaledReg &&
2362 F.BaseGV == OrigF.BaseGV &&
2363 F.Scale == OrigF.Scale &&
2364 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2365 if (F.BaseOffset == 0)
2366 return &LU;
2367 // This is the formula where all the registers and symbols matched;
2368 // there aren't going to be any others. Since we declined it, we
2369 // can skip the rest of the formulae and proceed to the next LSRUse.
2370 break;
2371 }
2372 }
2373 }
2374 }
2375
2376 // Nothing looked good.
2377 return nullptr;
2378 }
2379
CollectInterestingTypesAndFactors()2380 void LSRInstance::CollectInterestingTypesAndFactors() {
2381 SmallSetVector<const SCEV *, 4> Strides;
2382
2383 // Collect interesting types and strides.
2384 SmallVector<const SCEV *, 4> Worklist;
2385 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2386 const SCEV *Expr = IU.getExpr(*UI);
2387
2388 // Collect interesting types.
2389 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2390
2391 // Add strides for mentioned loops.
2392 Worklist.push_back(Expr);
2393 do {
2394 const SCEV *S = Worklist.pop_back_val();
2395 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2396 if (AR->getLoop() == L)
2397 Strides.insert(AR->getStepRecurrence(SE));
2398 Worklist.push_back(AR->getStart());
2399 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2400 Worklist.append(Add->op_begin(), Add->op_end());
2401 }
2402 } while (!Worklist.empty());
2403 }
2404
2405 // Compute interesting factors from the set of interesting strides.
2406 for (SmallSetVector<const SCEV *, 4>::const_iterator
2407 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2408 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2409 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2410 const SCEV *OldStride = *I;
2411 const SCEV *NewStride = *NewStrideIter;
2412
2413 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2414 SE.getTypeSizeInBits(NewStride->getType())) {
2415 if (SE.getTypeSizeInBits(OldStride->getType()) >
2416 SE.getTypeSizeInBits(NewStride->getType()))
2417 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2418 else
2419 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2420 }
2421 if (const SCEVConstant *Factor =
2422 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2423 SE, true))) {
2424 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2425 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2426 } else if (const SCEVConstant *Factor =
2427 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2428 NewStride,
2429 SE, true))) {
2430 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2431 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2432 }
2433 }
2434
2435 // If all uses use the same type, don't bother looking for truncation-based
2436 // reuse.
2437 if (Types.size() == 1)
2438 Types.clear();
2439
2440 DEBUG(print_factors_and_types(dbgs()));
2441 }
2442
2443 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2444 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2445 /// Instructions to IVStrideUses, we could partially skip this.
2446 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2447 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2448 Loop *L, ScalarEvolution &SE) {
2449 for(; OI != OE; ++OI) {
2450 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2451 if (!SE.isSCEVable(Oper->getType()))
2452 continue;
2453
2454 if (const SCEVAddRecExpr *AR =
2455 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2456 if (AR->getLoop() == L)
2457 break;
2458 }
2459 }
2460 }
2461 return OI;
2462 }
2463
2464 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2465 /// operands, so wrap it in a convenient helper.
getWideOperand(Value * Oper)2466 static Value *getWideOperand(Value *Oper) {
2467 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2468 return Trunc->getOperand(0);
2469 return Oper;
2470 }
2471
2472 /// isCompatibleIVType - Return true if we allow an IV chain to include both
2473 /// types.
isCompatibleIVType(Value * LVal,Value * RVal)2474 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2475 Type *LType = LVal->getType();
2476 Type *RType = RVal->getType();
2477 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2478 }
2479
2480 /// getExprBase - Return an approximation of this SCEV expression's "base", or
2481 /// NULL for any constant. Returning the expression itself is
2482 /// conservative. Returning a deeper subexpression is more precise and valid as
2483 /// long as it isn't less complex than another subexpression. For expressions
2484 /// involving multiple unscaled values, we need to return the pointer-type
2485 /// SCEVUnknown. This avoids forming chains across objects, such as:
2486 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2487 ///
2488 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2489 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2490 static const SCEV *getExprBase(const SCEV *S) {
2491 switch (S->getSCEVType()) {
2492 default: // uncluding scUnknown.
2493 return S;
2494 case scConstant:
2495 return nullptr;
2496 case scTruncate:
2497 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2498 case scZeroExtend:
2499 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2500 case scSignExtend:
2501 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2502 case scAddExpr: {
2503 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2504 // there's nothing more complex.
2505 // FIXME: not sure if we want to recognize negation.
2506 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2507 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2508 E(Add->op_begin()); I != E; ++I) {
2509 const SCEV *SubExpr = *I;
2510 if (SubExpr->getSCEVType() == scAddExpr)
2511 return getExprBase(SubExpr);
2512
2513 if (SubExpr->getSCEVType() != scMulExpr)
2514 return SubExpr;
2515 }
2516 return S; // all operands are scaled, be conservative.
2517 }
2518 case scAddRecExpr:
2519 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2520 }
2521 }
2522
2523 /// Return true if the chain increment is profitable to expand into a loop
2524 /// invariant value, which may require its own register. A profitable chain
2525 /// increment will be an offset relative to the same base. We allow such offsets
2526 /// to potentially be used as chain increment as long as it's not obviously
2527 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2528 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2529 const SCEV *IncExpr,
2530 ScalarEvolution &SE) {
2531 // Aggressively form chains when -stress-ivchain.
2532 if (StressIVChain)
2533 return true;
2534
2535 // Do not replace a constant offset from IV head with a nonconstant IV
2536 // increment.
2537 if (!isa<SCEVConstant>(IncExpr)) {
2538 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2539 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2540 return 0;
2541 }
2542
2543 SmallPtrSet<const SCEV*, 8> Processed;
2544 return !isHighCostExpansion(IncExpr, Processed, SE);
2545 }
2546
2547 /// Return true if the number of registers needed for the chain is estimated to
2548 /// be less than the number required for the individual IV users. First prohibit
2549 /// any IV users that keep the IV live across increments (the Users set should
2550 /// be empty). Next count the number and type of increments in the chain.
2551 ///
2552 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2553 /// effectively use postinc addressing modes. Only consider it profitable it the
2554 /// increments can be computed in fewer registers when chained.
2555 ///
2556 /// TODO: Consider IVInc free if it's already used in another chains.
2557 static bool
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2558 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2559 ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2560 if (StressIVChain)
2561 return true;
2562
2563 if (!Chain.hasIncs())
2564 return false;
2565
2566 if (!Users.empty()) {
2567 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2568 for (Instruction *Inst : Users) {
2569 dbgs() << " " << *Inst << "\n";
2570 });
2571 return false;
2572 }
2573 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2574
2575 // The chain itself may require a register, so intialize cost to 1.
2576 int cost = 1;
2577
2578 // A complete chain likely eliminates the need for keeping the original IV in
2579 // a register. LSR does not currently know how to form a complete chain unless
2580 // the header phi already exists.
2581 if (isa<PHINode>(Chain.tailUserInst())
2582 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2583 --cost;
2584 }
2585 const SCEV *LastIncExpr = nullptr;
2586 unsigned NumConstIncrements = 0;
2587 unsigned NumVarIncrements = 0;
2588 unsigned NumReusedIncrements = 0;
2589 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2590 I != E; ++I) {
2591
2592 if (I->IncExpr->isZero())
2593 continue;
2594
2595 // Incrementing by zero or some constant is neutral. We assume constants can
2596 // be folded into an addressing mode or an add's immediate operand.
2597 if (isa<SCEVConstant>(I->IncExpr)) {
2598 ++NumConstIncrements;
2599 continue;
2600 }
2601
2602 if (I->IncExpr == LastIncExpr)
2603 ++NumReusedIncrements;
2604 else
2605 ++NumVarIncrements;
2606
2607 LastIncExpr = I->IncExpr;
2608 }
2609 // An IV chain with a single increment is handled by LSR's postinc
2610 // uses. However, a chain with multiple increments requires keeping the IV's
2611 // value live longer than it needs to be if chained.
2612 if (NumConstIncrements > 1)
2613 --cost;
2614
2615 // Materializing increment expressions in the preheader that didn't exist in
2616 // the original code may cost a register. For example, sign-extended array
2617 // indices can produce ridiculous increments like this:
2618 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2619 cost += NumVarIncrements;
2620
2621 // Reusing variable increments likely saves a register to hold the multiple of
2622 // the stride.
2623 cost -= NumReusedIncrements;
2624
2625 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2626 << "\n");
2627
2628 return cost < 0;
2629 }
2630
2631 /// ChainInstruction - Add this IV user to an existing chain or make it the head
2632 /// of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2633 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2634 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2635 // When IVs are used as types of varying widths, they are generally converted
2636 // to a wider type with some uses remaining narrow under a (free) trunc.
2637 Value *const NextIV = getWideOperand(IVOper);
2638 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2639 const SCEV *const OperExprBase = getExprBase(OperExpr);
2640
2641 // Visit all existing chains. Check if its IVOper can be computed as a
2642 // profitable loop invariant increment from the last link in the Chain.
2643 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2644 const SCEV *LastIncExpr = nullptr;
2645 for (; ChainIdx < NChains; ++ChainIdx) {
2646 IVChain &Chain = IVChainVec[ChainIdx];
2647
2648 // Prune the solution space aggressively by checking that both IV operands
2649 // are expressions that operate on the same unscaled SCEVUnknown. This
2650 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2651 // first avoids creating extra SCEV expressions.
2652 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2653 continue;
2654
2655 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2656 if (!isCompatibleIVType(PrevIV, NextIV))
2657 continue;
2658
2659 // A phi node terminates a chain.
2660 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2661 continue;
2662
2663 // The increment must be loop-invariant so it can be kept in a register.
2664 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2665 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2666 if (!SE.isLoopInvariant(IncExpr, L))
2667 continue;
2668
2669 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2670 LastIncExpr = IncExpr;
2671 break;
2672 }
2673 }
2674 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2675 // bother for phi nodes, because they must be last in the chain.
2676 if (ChainIdx == NChains) {
2677 if (isa<PHINode>(UserInst))
2678 return;
2679 if (NChains >= MaxChains && !StressIVChain) {
2680 DEBUG(dbgs() << "IV Chain Limit\n");
2681 return;
2682 }
2683 LastIncExpr = OperExpr;
2684 // IVUsers may have skipped over sign/zero extensions. We don't currently
2685 // attempt to form chains involving extensions unless they can be hoisted
2686 // into this loop's AddRec.
2687 if (!isa<SCEVAddRecExpr>(LastIncExpr))
2688 return;
2689 ++NChains;
2690 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2691 OperExprBase));
2692 ChainUsersVec.resize(NChains);
2693 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2694 << ") IV=" << *LastIncExpr << "\n");
2695 } else {
2696 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
2697 << ") IV+" << *LastIncExpr << "\n");
2698 // Add this IV user to the end of the chain.
2699 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2700 }
2701 IVChain &Chain = IVChainVec[ChainIdx];
2702
2703 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2704 // This chain's NearUsers become FarUsers.
2705 if (!LastIncExpr->isZero()) {
2706 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2707 NearUsers.end());
2708 NearUsers.clear();
2709 }
2710
2711 // All other uses of IVOperand become near uses of the chain.
2712 // We currently ignore intermediate values within SCEV expressions, assuming
2713 // they will eventually be used be the current chain, or can be computed
2714 // from one of the chain increments. To be more precise we could
2715 // transitively follow its user and only add leaf IV users to the set.
2716 for (User *U : IVOper->users()) {
2717 Instruction *OtherUse = dyn_cast<Instruction>(U);
2718 if (!OtherUse)
2719 continue;
2720 // Uses in the chain will no longer be uses if the chain is formed.
2721 // Include the head of the chain in this iteration (not Chain.begin()).
2722 IVChain::const_iterator IncIter = Chain.Incs.begin();
2723 IVChain::const_iterator IncEnd = Chain.Incs.end();
2724 for( ; IncIter != IncEnd; ++IncIter) {
2725 if (IncIter->UserInst == OtherUse)
2726 break;
2727 }
2728 if (IncIter != IncEnd)
2729 continue;
2730
2731 if (SE.isSCEVable(OtherUse->getType())
2732 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2733 && IU.isIVUserOrOperand(OtherUse)) {
2734 continue;
2735 }
2736 NearUsers.insert(OtherUse);
2737 }
2738
2739 // Since this user is part of the chain, it's no longer considered a use
2740 // of the chain.
2741 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2742 }
2743
2744 /// CollectChains - Populate the vector of Chains.
2745 ///
2746 /// This decreases ILP at the architecture level. Targets with ample registers,
2747 /// multiple memory ports, and no register renaming probably don't want
2748 /// this. However, such targets should probably disable LSR altogether.
2749 ///
2750 /// The job of LSR is to make a reasonable choice of induction variables across
2751 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2752 /// ILP *within the loop* if the target wants it.
2753 ///
2754 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2755 /// will not reorder memory operations, it will recognize this as a chain, but
2756 /// will generate redundant IV increments. Ideally this would be corrected later
2757 /// by a smart scheduler:
2758 /// = A[i]
2759 /// = A[i+x]
2760 /// A[i] =
2761 /// A[i+x] =
2762 ///
2763 /// TODO: Walk the entire domtree within this loop, not just the path to the
2764 /// loop latch. This will discover chains on side paths, but requires
2765 /// maintaining multiple copies of the Chains state.
CollectChains()2766 void LSRInstance::CollectChains() {
2767 DEBUG(dbgs() << "Collecting IV Chains.\n");
2768 SmallVector<ChainUsers, 8> ChainUsersVec;
2769
2770 SmallVector<BasicBlock *,8> LatchPath;
2771 BasicBlock *LoopHeader = L->getHeader();
2772 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2773 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2774 LatchPath.push_back(Rung->getBlock());
2775 }
2776 LatchPath.push_back(LoopHeader);
2777
2778 // Walk the instruction stream from the loop header to the loop latch.
2779 for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2780 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2781 BBIter != BBEnd; ++BBIter) {
2782 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2783 I != E; ++I) {
2784 // Skip instructions that weren't seen by IVUsers analysis.
2785 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2786 continue;
2787
2788 // Ignore users that are part of a SCEV expression. This way we only
2789 // consider leaf IV Users. This effectively rediscovers a portion of
2790 // IVUsers analysis but in program order this time.
2791 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2792 continue;
2793
2794 // Remove this instruction from any NearUsers set it may be in.
2795 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2796 ChainIdx < NChains; ++ChainIdx) {
2797 ChainUsersVec[ChainIdx].NearUsers.erase(I);
2798 }
2799 // Search for operands that can be chained.
2800 SmallPtrSet<Instruction*, 4> UniqueOperands;
2801 User::op_iterator IVOpEnd = I->op_end();
2802 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2803 while (IVOpIter != IVOpEnd) {
2804 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2805 if (UniqueOperands.insert(IVOpInst).second)
2806 ChainInstruction(I, IVOpInst, ChainUsersVec);
2807 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2808 }
2809 } // Continue walking down the instructions.
2810 } // Continue walking down the domtree.
2811 // Visit phi backedges to determine if the chain can generate the IV postinc.
2812 for (BasicBlock::iterator I = L->getHeader()->begin();
2813 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2814 if (!SE.isSCEVable(PN->getType()))
2815 continue;
2816
2817 Instruction *IncV =
2818 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2819 if (IncV)
2820 ChainInstruction(PN, IncV, ChainUsersVec);
2821 }
2822 // Remove any unprofitable chains.
2823 unsigned ChainIdx = 0;
2824 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2825 UsersIdx < NChains; ++UsersIdx) {
2826 if (!isProfitableChain(IVChainVec[UsersIdx],
2827 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2828 continue;
2829 // Preserve the chain at UsesIdx.
2830 if (ChainIdx != UsersIdx)
2831 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2832 FinalizeChain(IVChainVec[ChainIdx]);
2833 ++ChainIdx;
2834 }
2835 IVChainVec.resize(ChainIdx);
2836 }
2837
FinalizeChain(IVChain & Chain)2838 void LSRInstance::FinalizeChain(IVChain &Chain) {
2839 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2840 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2841
2842 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2843 I != E; ++I) {
2844 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n");
2845 User::op_iterator UseI =
2846 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2847 assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2848 IVIncSet.insert(UseI);
2849 }
2850 }
2851
2852 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)2853 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2854 Value *Operand, const TargetTransformInfo &TTI) {
2855 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2856 if (!IncConst || !isAddressUse(UserInst, Operand))
2857 return false;
2858
2859 if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2860 return false;
2861
2862 int64_t IncOffset = IncConst->getValue()->getSExtValue();
2863 if (!isAlwaysFoldable(TTI, LSRUse::Address,
2864 getAccessType(UserInst), /*BaseGV=*/ nullptr,
2865 IncOffset, /*HaseBaseReg=*/ false))
2866 return false;
2867
2868 return true;
2869 }
2870
2871 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2872 /// materialize the IV user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts)2873 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2874 SmallVectorImpl<WeakVH> &DeadInsts) {
2875 // Find the new IVOperand for the head of the chain. It may have been replaced
2876 // by LSR.
2877 const IVInc &Head = Chain.Incs[0];
2878 User::op_iterator IVOpEnd = Head.UserInst->op_end();
2879 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2880 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2881 IVOpEnd, L, SE);
2882 Value *IVSrc = nullptr;
2883 while (IVOpIter != IVOpEnd) {
2884 IVSrc = getWideOperand(*IVOpIter);
2885
2886 // If this operand computes the expression that the chain needs, we may use
2887 // it. (Check this after setting IVSrc which is used below.)
2888 //
2889 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2890 // narrow for the chain, so we can no longer use it. We do allow using a
2891 // wider phi, assuming the LSR checked for free truncation. In that case we
2892 // should already have a truncate on this operand such that
2893 // getSCEV(IVSrc) == IncExpr.
2894 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2895 || SE.getSCEV(IVSrc) == Head.IncExpr) {
2896 break;
2897 }
2898 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2899 }
2900 if (IVOpIter == IVOpEnd) {
2901 // Gracefully give up on this chain.
2902 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2903 return;
2904 }
2905
2906 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2907 Type *IVTy = IVSrc->getType();
2908 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2909 const SCEV *LeftOverExpr = nullptr;
2910 for (IVChain::const_iterator IncI = Chain.begin(),
2911 IncE = Chain.end(); IncI != IncE; ++IncI) {
2912
2913 Instruction *InsertPt = IncI->UserInst;
2914 if (isa<PHINode>(InsertPt))
2915 InsertPt = L->getLoopLatch()->getTerminator();
2916
2917 // IVOper will replace the current IV User's operand. IVSrc is the IV
2918 // value currently held in a register.
2919 Value *IVOper = IVSrc;
2920 if (!IncI->IncExpr->isZero()) {
2921 // IncExpr was the result of subtraction of two narrow values, so must
2922 // be signed.
2923 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2924 LeftOverExpr = LeftOverExpr ?
2925 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2926 }
2927 if (LeftOverExpr && !LeftOverExpr->isZero()) {
2928 // Expand the IV increment.
2929 Rewriter.clearPostInc();
2930 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2931 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2932 SE.getUnknown(IncV));
2933 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2934
2935 // If an IV increment can't be folded, use it as the next IV value.
2936 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2937 TTI)) {
2938 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2939 IVSrc = IVOper;
2940 LeftOverExpr = nullptr;
2941 }
2942 }
2943 Type *OperTy = IncI->IVOperand->getType();
2944 if (IVTy != OperTy) {
2945 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2946 "cannot extend a chained IV");
2947 IRBuilder<> Builder(InsertPt);
2948 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2949 }
2950 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2951 DeadInsts.push_back(IncI->IVOperand);
2952 }
2953 // If LSR created a new, wider phi, we may also replace its postinc. We only
2954 // do this if we also found a wide value for the head of the chain.
2955 if (isa<PHINode>(Chain.tailUserInst())) {
2956 for (BasicBlock::iterator I = L->getHeader()->begin();
2957 PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2958 if (!isCompatibleIVType(Phi, IVSrc))
2959 continue;
2960 Instruction *PostIncV = dyn_cast<Instruction>(
2961 Phi->getIncomingValueForBlock(L->getLoopLatch()));
2962 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2963 continue;
2964 Value *IVOper = IVSrc;
2965 Type *PostIncTy = PostIncV->getType();
2966 if (IVTy != PostIncTy) {
2967 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2968 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2969 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2970 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2971 }
2972 Phi->replaceUsesOfWith(PostIncV, IVOper);
2973 DeadInsts.push_back(PostIncV);
2974 }
2975 }
2976 }
2977
CollectFixupsAndInitialFormulae()2978 void LSRInstance::CollectFixupsAndInitialFormulae() {
2979 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2980 Instruction *UserInst = UI->getUser();
2981 // Skip IV users that are part of profitable IV Chains.
2982 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2983 UI->getOperandValToReplace());
2984 assert(UseI != UserInst->op_end() && "cannot find IV operand");
2985 if (IVIncSet.count(UseI))
2986 continue;
2987
2988 // Record the uses.
2989 LSRFixup &LF = getNewFixup();
2990 LF.UserInst = UserInst;
2991 LF.OperandValToReplace = UI->getOperandValToReplace();
2992 LF.PostIncLoops = UI->getPostIncLoops();
2993
2994 LSRUse::KindType Kind = LSRUse::Basic;
2995 Type *AccessTy = nullptr;
2996 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2997 Kind = LSRUse::Address;
2998 AccessTy = getAccessType(LF.UserInst);
2999 }
3000
3001 const SCEV *S = IU.getExpr(*UI);
3002
3003 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3004 // (N - i == 0), and this allows (N - i) to be the expression that we work
3005 // with rather than just N or i, so we can consider the register
3006 // requirements for both N and i at the same time. Limiting this code to
3007 // equality icmps is not a problem because all interesting loops use
3008 // equality icmps, thanks to IndVarSimplify.
3009 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
3010 if (CI->isEquality()) {
3011 // Swap the operands if needed to put the OperandValToReplace on the
3012 // left, for consistency.
3013 Value *NV = CI->getOperand(1);
3014 if (NV == LF.OperandValToReplace) {
3015 CI->setOperand(1, CI->getOperand(0));
3016 CI->setOperand(0, NV);
3017 NV = CI->getOperand(1);
3018 Changed = true;
3019 }
3020
3021 // x == y --> x - y == 0
3022 const SCEV *N = SE.getSCEV(NV);
3023 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3024 // S is normalized, so normalize N before folding it into S
3025 // to keep the result normalized.
3026 N = TransformForPostIncUse(Normalize, N, CI, nullptr,
3027 LF.PostIncLoops, SE, DT);
3028 Kind = LSRUse::ICmpZero;
3029 S = SE.getMinusSCEV(N, S);
3030 }
3031
3032 // -1 and the negations of all interesting strides (except the negation
3033 // of -1) are now also interesting.
3034 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3035 if (Factors[i] != -1)
3036 Factors.insert(-(uint64_t)Factors[i]);
3037 Factors.insert(-1);
3038 }
3039
3040 // Set up the initial formula for this use.
3041 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3042 LF.LUIdx = P.first;
3043 LF.Offset = P.second;
3044 LSRUse &LU = Uses[LF.LUIdx];
3045 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3046 if (!LU.WidestFixupType ||
3047 SE.getTypeSizeInBits(LU.WidestFixupType) <
3048 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3049 LU.WidestFixupType = LF.OperandValToReplace->getType();
3050
3051 // If this is the first use of this LSRUse, give it a formula.
3052 if (LU.Formulae.empty()) {
3053 InsertInitialFormula(S, LU, LF.LUIdx);
3054 CountRegisters(LU.Formulae.back(), LF.LUIdx);
3055 }
3056 }
3057
3058 DEBUG(print_fixups(dbgs()));
3059 }
3060
3061 /// InsertInitialFormula - Insert a formula for the given expression into
3062 /// the given use, separating out loop-variant portions from loop-invariant
3063 /// and loop-computable portions.
3064 void
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3065 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3066 // Mark uses whose expressions cannot be expanded.
3067 if (!isSafeToExpand(S, SE))
3068 LU.RigidFormula = true;
3069
3070 Formula F;
3071 F.InitialMatch(S, L, SE);
3072 bool Inserted = InsertFormula(LU, LUIdx, F);
3073 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3074 }
3075
3076 /// InsertSupplementalFormula - Insert a simple single-register formula for
3077 /// the given expression into the given use.
3078 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3079 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3080 LSRUse &LU, size_t LUIdx) {
3081 Formula F;
3082 F.BaseRegs.push_back(S);
3083 F.HasBaseReg = true;
3084 bool Inserted = InsertFormula(LU, LUIdx, F);
3085 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3086 }
3087
3088 /// CountRegisters - Note which registers are used by the given formula,
3089 /// updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3090 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3091 if (F.ScaledReg)
3092 RegUses.CountRegister(F.ScaledReg, LUIdx);
3093 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3094 E = F.BaseRegs.end(); I != E; ++I)
3095 RegUses.CountRegister(*I, LUIdx);
3096 }
3097
3098 /// InsertFormula - If the given formula has not yet been inserted, add it to
3099 /// the list, and return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3100 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3101 // Do not insert formula that we will not be able to expand.
3102 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3103 "Formula is illegal");
3104 if (!LU.InsertFormula(F))
3105 return false;
3106
3107 CountRegisters(F, LUIdx);
3108 return true;
3109 }
3110
3111 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
3112 /// loop-invariant values which we're tracking. These other uses will pin these
3113 /// values in registers, making them less profitable for elimination.
3114 /// TODO: This currently misses non-constant addrec step registers.
3115 /// TODO: Should this give more weight to users inside the loop?
3116 void
CollectLoopInvariantFixupsAndFormulae()3117 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3118 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3119 SmallPtrSet<const SCEV *, 32> Visited;
3120
3121 while (!Worklist.empty()) {
3122 const SCEV *S = Worklist.pop_back_val();
3123
3124 // Don't process the same SCEV twice
3125 if (!Visited.insert(S).second)
3126 continue;
3127
3128 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3129 Worklist.append(N->op_begin(), N->op_end());
3130 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3131 Worklist.push_back(C->getOperand());
3132 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3133 Worklist.push_back(D->getLHS());
3134 Worklist.push_back(D->getRHS());
3135 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3136 const Value *V = US->getValue();
3137 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3138 // Look for instructions defined outside the loop.
3139 if (L->contains(Inst)) continue;
3140 } else if (isa<UndefValue>(V))
3141 // Undef doesn't have a live range, so it doesn't matter.
3142 continue;
3143 for (const Use &U : V->uses()) {
3144 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3145 // Ignore non-instructions.
3146 if (!UserInst)
3147 continue;
3148 // Ignore instructions in other functions (as can happen with
3149 // Constants).
3150 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3151 continue;
3152 // Ignore instructions not dominated by the loop.
3153 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3154 UserInst->getParent() :
3155 cast<PHINode>(UserInst)->getIncomingBlock(
3156 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3157 if (!DT.dominates(L->getHeader(), UseBB))
3158 continue;
3159 // Ignore uses which are part of other SCEV expressions, to avoid
3160 // analyzing them multiple times.
3161 if (SE.isSCEVable(UserInst->getType())) {
3162 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3163 // If the user is a no-op, look through to its uses.
3164 if (!isa<SCEVUnknown>(UserS))
3165 continue;
3166 if (UserS == US) {
3167 Worklist.push_back(
3168 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3169 continue;
3170 }
3171 }
3172 // Ignore icmp instructions which are already being analyzed.
3173 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3174 unsigned OtherIdx = !U.getOperandNo();
3175 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3176 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3177 continue;
3178 }
3179
3180 LSRFixup &LF = getNewFixup();
3181 LF.UserInst = const_cast<Instruction *>(UserInst);
3182 LF.OperandValToReplace = U;
3183 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
3184 LF.LUIdx = P.first;
3185 LF.Offset = P.second;
3186 LSRUse &LU = Uses[LF.LUIdx];
3187 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3188 if (!LU.WidestFixupType ||
3189 SE.getTypeSizeInBits(LU.WidestFixupType) <
3190 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3191 LU.WidestFixupType = LF.OperandValToReplace->getType();
3192 InsertSupplementalFormula(US, LU, LF.LUIdx);
3193 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3194 break;
3195 }
3196 }
3197 }
3198 }
3199
3200 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
3201 /// separate registers. If C is non-null, multiply each subexpression by C.
3202 ///
3203 /// Return remainder expression after factoring the subexpressions captured by
3204 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3205 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3206 SmallVectorImpl<const SCEV *> &Ops,
3207 const Loop *L,
3208 ScalarEvolution &SE,
3209 unsigned Depth = 0) {
3210 // Arbitrarily cap recursion to protect compile time.
3211 if (Depth >= 3)
3212 return S;
3213
3214 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3215 // Break out add operands.
3216 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
3217 I != E; ++I) {
3218 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
3219 if (Remainder)
3220 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3221 }
3222 return nullptr;
3223 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3224 // Split a non-zero base out of an addrec.
3225 if (AR->getStart()->isZero())
3226 return S;
3227
3228 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3229 C, Ops, L, SE, Depth+1);
3230 // Split the non-zero AddRec unless it is part of a nested recurrence that
3231 // does not pertain to this loop.
3232 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3233 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3234 Remainder = nullptr;
3235 }
3236 if (Remainder != AR->getStart()) {
3237 if (!Remainder)
3238 Remainder = SE.getConstant(AR->getType(), 0);
3239 return SE.getAddRecExpr(Remainder,
3240 AR->getStepRecurrence(SE),
3241 AR->getLoop(),
3242 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3243 SCEV::FlagAnyWrap);
3244 }
3245 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3246 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3247 if (Mul->getNumOperands() != 2)
3248 return S;
3249 if (const SCEVConstant *Op0 =
3250 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3251 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3252 const SCEV *Remainder =
3253 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3254 if (Remainder)
3255 Ops.push_back(SE.getMulExpr(C, Remainder));
3256 return nullptr;
3257 }
3258 }
3259 return S;
3260 }
3261
3262 /// \brief Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3263 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3264 const Formula &Base,
3265 unsigned Depth, size_t Idx,
3266 bool IsScaledReg) {
3267 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3268 SmallVector<const SCEV *, 8> AddOps;
3269 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3270 if (Remainder)
3271 AddOps.push_back(Remainder);
3272
3273 if (AddOps.size() == 1)
3274 return;
3275
3276 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3277 JE = AddOps.end();
3278 J != JE; ++J) {
3279
3280 // Loop-variant "unknown" values are uninteresting; we won't be able to
3281 // do anything meaningful with them.
3282 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3283 continue;
3284
3285 // Don't pull a constant into a register if the constant could be folded
3286 // into an immediate field.
3287 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3288 LU.AccessTy, *J, Base.getNumRegs() > 1))
3289 continue;
3290
3291 // Collect all operands except *J.
3292 SmallVector<const SCEV *, 8> InnerAddOps(
3293 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3294 InnerAddOps.append(std::next(J),
3295 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3296
3297 // Don't leave just a constant behind in a register if the constant could
3298 // be folded into an immediate field.
3299 if (InnerAddOps.size() == 1 &&
3300 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3301 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3302 continue;
3303
3304 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3305 if (InnerSum->isZero())
3306 continue;
3307 Formula F = Base;
3308
3309 // Add the remaining pieces of the add back into the new formula.
3310 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3311 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3312 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3313 InnerSumSC->getValue()->getZExtValue())) {
3314 F.UnfoldedOffset =
3315 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3316 if (IsScaledReg)
3317 F.ScaledReg = nullptr;
3318 else
3319 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3320 } else if (IsScaledReg)
3321 F.ScaledReg = InnerSum;
3322 else
3323 F.BaseRegs[Idx] = InnerSum;
3324
3325 // Add J as its own register, or an unfolded immediate.
3326 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3327 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3328 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3329 SC->getValue()->getZExtValue()))
3330 F.UnfoldedOffset =
3331 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3332 else
3333 F.BaseRegs.push_back(*J);
3334 // We may have changed the number of register in base regs, adjust the
3335 // formula accordingly.
3336 F.Canonicalize();
3337
3338 if (InsertFormula(LU, LUIdx, F))
3339 // If that formula hadn't been seen before, recurse to find more like
3340 // it.
3341 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3342 }
3343 }
3344
3345 /// GenerateReassociations - Split out subexpressions from adds and the bases of
3346 /// addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3347 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3348 Formula Base, unsigned Depth) {
3349 assert(Base.isCanonical() && "Input must be in the canonical form");
3350 // Arbitrarily cap recursion to protect compile time.
3351 if (Depth >= 3)
3352 return;
3353
3354 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3355 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3356
3357 if (Base.Scale == 1)
3358 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3359 /* Idx */ -1, /* IsScaledReg */ true);
3360 }
3361
3362 /// GenerateCombinations - Generate a formula consisting of all of the
3363 /// loop-dominating registers added into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3364 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3365 Formula Base) {
3366 // This method is only interesting on a plurality of registers.
3367 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3368 return;
3369
3370 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3371 // processing the formula.
3372 Base.Unscale();
3373 Formula F = Base;
3374 F.BaseRegs.clear();
3375 SmallVector<const SCEV *, 4> Ops;
3376 for (SmallVectorImpl<const SCEV *>::const_iterator
3377 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3378 const SCEV *BaseReg = *I;
3379 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3380 !SE.hasComputableLoopEvolution(BaseReg, L))
3381 Ops.push_back(BaseReg);
3382 else
3383 F.BaseRegs.push_back(BaseReg);
3384 }
3385 if (Ops.size() > 1) {
3386 const SCEV *Sum = SE.getAddExpr(Ops);
3387 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3388 // opportunity to fold something. For now, just ignore such cases
3389 // rather than proceed with zero in a register.
3390 if (!Sum->isZero()) {
3391 F.BaseRegs.push_back(Sum);
3392 F.Canonicalize();
3393 (void)InsertFormula(LU, LUIdx, F);
3394 }
3395 }
3396 }
3397
3398 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3399 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3400 const Formula &Base, size_t Idx,
3401 bool IsScaledReg) {
3402 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3403 GlobalValue *GV = ExtractSymbol(G, SE);
3404 if (G->isZero() || !GV)
3405 return;
3406 Formula F = Base;
3407 F.BaseGV = GV;
3408 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3409 return;
3410 if (IsScaledReg)
3411 F.ScaledReg = G;
3412 else
3413 F.BaseRegs[Idx] = G;
3414 (void)InsertFormula(LU, LUIdx, F);
3415 }
3416
3417 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3418 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3419 Formula Base) {
3420 // We can't add a symbolic offset if the address already contains one.
3421 if (Base.BaseGV) return;
3422
3423 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3424 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3425 if (Base.Scale == 1)
3426 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3427 /* IsScaledReg */ true);
3428 }
3429
3430 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3431 void LSRInstance::GenerateConstantOffsetsImpl(
3432 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3433 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3434 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3435 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3436 E = Worklist.end();
3437 I != E; ++I) {
3438 Formula F = Base;
3439 F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
3440 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
3441 LU.AccessTy, F)) {
3442 // Add the offset to the base register.
3443 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3444 // If it cancelled out, drop the base register, otherwise update it.
3445 if (NewG->isZero()) {
3446 if (IsScaledReg) {
3447 F.Scale = 0;
3448 F.ScaledReg = nullptr;
3449 } else
3450 F.DeleteBaseReg(F.BaseRegs[Idx]);
3451 F.Canonicalize();
3452 } else if (IsScaledReg)
3453 F.ScaledReg = NewG;
3454 else
3455 F.BaseRegs[Idx] = NewG;
3456
3457 (void)InsertFormula(LU, LUIdx, F);
3458 }
3459 }
3460
3461 int64_t Imm = ExtractImmediate(G, SE);
3462 if (G->isZero() || Imm == 0)
3463 return;
3464 Formula F = Base;
3465 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3466 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3467 return;
3468 if (IsScaledReg)
3469 F.ScaledReg = G;
3470 else
3471 F.BaseRegs[Idx] = G;
3472 (void)InsertFormula(LU, LUIdx, F);
3473 }
3474
3475 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3476 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3477 Formula Base) {
3478 // TODO: For now, just add the min and max offset, because it usually isn't
3479 // worthwhile looking at everything inbetween.
3480 SmallVector<int64_t, 2> Worklist;
3481 Worklist.push_back(LU.MinOffset);
3482 if (LU.MaxOffset != LU.MinOffset)
3483 Worklist.push_back(LU.MaxOffset);
3484
3485 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3486 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3487 if (Base.Scale == 1)
3488 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3489 /* IsScaledReg */ true);
3490 }
3491
3492 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3493 /// the comparison. For example, x == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3494 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3495 Formula Base) {
3496 if (LU.Kind != LSRUse::ICmpZero) return;
3497
3498 // Determine the integer type for the base formula.
3499 Type *IntTy = Base.getType();
3500 if (!IntTy) return;
3501 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3502
3503 // Don't do this if there is more than one offset.
3504 if (LU.MinOffset != LU.MaxOffset) return;
3505
3506 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3507
3508 // Check each interesting stride.
3509 for (SmallSetVector<int64_t, 8>::const_iterator
3510 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3511 int64_t Factor = *I;
3512
3513 // Check that the multiplication doesn't overflow.
3514 if (Base.BaseOffset == INT64_MIN && Factor == -1)
3515 continue;
3516 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3517 if (NewBaseOffset / Factor != Base.BaseOffset)
3518 continue;
3519 // If the offset will be truncated at this use, check that it is in bounds.
3520 if (!IntTy->isPointerTy() &&
3521 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3522 continue;
3523
3524 // Check that multiplying with the use offset doesn't overflow.
3525 int64_t Offset = LU.MinOffset;
3526 if (Offset == INT64_MIN && Factor == -1)
3527 continue;
3528 Offset = (uint64_t)Offset * Factor;
3529 if (Offset / Factor != LU.MinOffset)
3530 continue;
3531 // If the offset will be truncated at this use, check that it is in bounds.
3532 if (!IntTy->isPointerTy() &&
3533 !ConstantInt::isValueValidForType(IntTy, Offset))
3534 continue;
3535
3536 Formula F = Base;
3537 F.BaseOffset = NewBaseOffset;
3538
3539 // Check that this scale is legal.
3540 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3541 continue;
3542
3543 // Compensate for the use having MinOffset built into it.
3544 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3545
3546 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3547
3548 // Check that multiplying with each base register doesn't overflow.
3549 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3550 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3551 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3552 goto next;
3553 }
3554
3555 // Check that multiplying with the scaled register doesn't overflow.
3556 if (F.ScaledReg) {
3557 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3558 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3559 continue;
3560 }
3561
3562 // Check that multiplying with the unfolded offset doesn't overflow.
3563 if (F.UnfoldedOffset != 0) {
3564 if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3565 continue;
3566 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3567 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3568 continue;
3569 // If the offset will be truncated, check that it is in bounds.
3570 if (!IntTy->isPointerTy() &&
3571 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3572 continue;
3573 }
3574
3575 // If we make it here and it's legal, add it.
3576 (void)InsertFormula(LU, LUIdx, F);
3577 next:;
3578 }
3579 }
3580
3581 /// GenerateScales - Generate stride factor reuse formulae by making use of
3582 /// scaled-offset address modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)3583 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3584 // Determine the integer type for the base formula.
3585 Type *IntTy = Base.getType();
3586 if (!IntTy) return;
3587
3588 // If this Formula already has a scaled register, we can't add another one.
3589 // Try to unscale the formula to generate a better scale.
3590 if (Base.Scale != 0 && !Base.Unscale())
3591 return;
3592
3593 assert(Base.Scale == 0 && "Unscale did not did its job!");
3594
3595 // Check each interesting stride.
3596 for (SmallSetVector<int64_t, 8>::const_iterator
3597 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3598 int64_t Factor = *I;
3599
3600 Base.Scale = Factor;
3601 Base.HasBaseReg = Base.BaseRegs.size() > 1;
3602 // Check whether this scale is going to be legal.
3603 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3604 Base)) {
3605 // As a special-case, handle special out-of-loop Basic users specially.
3606 // TODO: Reconsider this special case.
3607 if (LU.Kind == LSRUse::Basic &&
3608 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3609 LU.AccessTy, Base) &&
3610 LU.AllFixupsOutsideLoop)
3611 LU.Kind = LSRUse::Special;
3612 else
3613 continue;
3614 }
3615 // For an ICmpZero, negating a solitary base register won't lead to
3616 // new solutions.
3617 if (LU.Kind == LSRUse::ICmpZero &&
3618 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3619 continue;
3620 // For each addrec base reg, apply the scale, if possible.
3621 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3622 if (const SCEVAddRecExpr *AR =
3623 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3624 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3625 if (FactorS->isZero())
3626 continue;
3627 // Divide out the factor, ignoring high bits, since we'll be
3628 // scaling the value back up in the end.
3629 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3630 // TODO: This could be optimized to avoid all the copying.
3631 Formula F = Base;
3632 F.ScaledReg = Quotient;
3633 F.DeleteBaseReg(F.BaseRegs[i]);
3634 // The canonical representation of 1*reg is reg, which is already in
3635 // Base. In that case, do not try to insert the formula, it will be
3636 // rejected anyway.
3637 if (F.Scale == 1 && F.BaseRegs.empty())
3638 continue;
3639 (void)InsertFormula(LU, LUIdx, F);
3640 }
3641 }
3642 }
3643 }
3644
3645 /// GenerateTruncates - Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)3646 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3647 // Don't bother truncating symbolic values.
3648 if (Base.BaseGV) return;
3649
3650 // Determine the integer type for the base formula.
3651 Type *DstTy = Base.getType();
3652 if (!DstTy) return;
3653 DstTy = SE.getEffectiveSCEVType(DstTy);
3654
3655 for (SmallSetVector<Type *, 4>::const_iterator
3656 I = Types.begin(), E = Types.end(); I != E; ++I) {
3657 Type *SrcTy = *I;
3658 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3659 Formula F = Base;
3660
3661 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3662 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3663 JE = F.BaseRegs.end(); J != JE; ++J)
3664 *J = SE.getAnyExtendExpr(*J, SrcTy);
3665
3666 // TODO: This assumes we've done basic processing on all uses and
3667 // have an idea what the register usage is.
3668 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3669 continue;
3670
3671 (void)InsertFormula(LU, LUIdx, F);
3672 }
3673 }
3674 }
3675
3676 namespace {
3677
3678 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3679 /// defer modifications so that the search phase doesn't have to worry about
3680 /// the data structures moving underneath it.
3681 struct WorkItem {
3682 size_t LUIdx;
3683 int64_t Imm;
3684 const SCEV *OrigReg;
3685
WorkItem__anonbd2ddbdf0911::WorkItem3686 WorkItem(size_t LI, int64_t I, const SCEV *R)
3687 : LUIdx(LI), Imm(I), OrigReg(R) {}
3688
3689 void print(raw_ostream &OS) const;
3690 void dump() const;
3691 };
3692
3693 }
3694
print(raw_ostream & OS) const3695 void WorkItem::print(raw_ostream &OS) const {
3696 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3697 << " , add offset " << Imm;
3698 }
3699
3700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const3701 void WorkItem::dump() const {
3702 print(errs()); errs() << '\n';
3703 }
3704 #endif
3705
3706 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3707 /// distance apart and try to form reuse opportunities between them.
GenerateCrossUseConstantOffsets()3708 void LSRInstance::GenerateCrossUseConstantOffsets() {
3709 // Group the registers by their value without any added constant offset.
3710 typedef std::map<int64_t, const SCEV *> ImmMapTy;
3711 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3712 RegMapTy Map;
3713 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3714 SmallVector<const SCEV *, 8> Sequence;
3715 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3716 I != E; ++I) {
3717 const SCEV *Reg = *I;
3718 int64_t Imm = ExtractImmediate(Reg, SE);
3719 std::pair<RegMapTy::iterator, bool> Pair =
3720 Map.insert(std::make_pair(Reg, ImmMapTy()));
3721 if (Pair.second)
3722 Sequence.push_back(Reg);
3723 Pair.first->second.insert(std::make_pair(Imm, *I));
3724 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3725 }
3726
3727 // Now examine each set of registers with the same base value. Build up
3728 // a list of work to do and do the work in a separate step so that we're
3729 // not adding formulae and register counts while we're searching.
3730 SmallVector<WorkItem, 32> WorkItems;
3731 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3732 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3733 E = Sequence.end(); I != E; ++I) {
3734 const SCEV *Reg = *I;
3735 const ImmMapTy &Imms = Map.find(Reg)->second;
3736
3737 // It's not worthwhile looking for reuse if there's only one offset.
3738 if (Imms.size() == 1)
3739 continue;
3740
3741 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3742 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3743 J != JE; ++J)
3744 dbgs() << ' ' << J->first;
3745 dbgs() << '\n');
3746
3747 // Examine each offset.
3748 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3749 J != JE; ++J) {
3750 const SCEV *OrigReg = J->second;
3751
3752 int64_t JImm = J->first;
3753 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3754
3755 if (!isa<SCEVConstant>(OrigReg) &&
3756 UsedByIndicesMap[Reg].count() == 1) {
3757 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3758 continue;
3759 }
3760
3761 // Conservatively examine offsets between this orig reg a few selected
3762 // other orig regs.
3763 ImmMapTy::const_iterator OtherImms[] = {
3764 Imms.begin(), std::prev(Imms.end()),
3765 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3766 2)
3767 };
3768 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3769 ImmMapTy::const_iterator M = OtherImms[i];
3770 if (M == J || M == JE) continue;
3771
3772 // Compute the difference between the two.
3773 int64_t Imm = (uint64_t)JImm - M->first;
3774 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3775 LUIdx = UsedByIndices.find_next(LUIdx))
3776 // Make a memo of this use, offset, and register tuple.
3777 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3778 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3779 }
3780 }
3781 }
3782
3783 Map.clear();
3784 Sequence.clear();
3785 UsedByIndicesMap.clear();
3786 UniqueItems.clear();
3787
3788 // Now iterate through the worklist and add new formulae.
3789 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3790 E = WorkItems.end(); I != E; ++I) {
3791 const WorkItem &WI = *I;
3792 size_t LUIdx = WI.LUIdx;
3793 LSRUse &LU = Uses[LUIdx];
3794 int64_t Imm = WI.Imm;
3795 const SCEV *OrigReg = WI.OrigReg;
3796
3797 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3798 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3799 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3800
3801 // TODO: Use a more targeted data structure.
3802 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3803 Formula F = LU.Formulae[L];
3804 // FIXME: The code for the scaled and unscaled registers looks
3805 // very similar but slightly different. Investigate if they
3806 // could be merged. That way, we would not have to unscale the
3807 // Formula.
3808 F.Unscale();
3809 // Use the immediate in the scaled register.
3810 if (F.ScaledReg == OrigReg) {
3811 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3812 // Don't create 50 + reg(-50).
3813 if (F.referencesReg(SE.getSCEV(
3814 ConstantInt::get(IntTy, -(uint64_t)Offset))))
3815 continue;
3816 Formula NewF = F;
3817 NewF.BaseOffset = Offset;
3818 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3819 NewF))
3820 continue;
3821 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3822
3823 // If the new scale is a constant in a register, and adding the constant
3824 // value to the immediate would produce a value closer to zero than the
3825 // immediate itself, then the formula isn't worthwhile.
3826 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3827 if (C->getValue()->isNegative() !=
3828 (NewF.BaseOffset < 0) &&
3829 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
3830 .ule(abs64(NewF.BaseOffset)))
3831 continue;
3832
3833 // OK, looks good.
3834 NewF.Canonicalize();
3835 (void)InsertFormula(LU, LUIdx, NewF);
3836 } else {
3837 // Use the immediate in a base register.
3838 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3839 const SCEV *BaseReg = F.BaseRegs[N];
3840 if (BaseReg != OrigReg)
3841 continue;
3842 Formula NewF = F;
3843 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3844 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3845 LU.Kind, LU.AccessTy, NewF)) {
3846 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3847 continue;
3848 NewF = F;
3849 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3850 }
3851 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3852
3853 // If the new formula has a constant in a register, and adding the
3854 // constant value to the immediate would produce a value closer to
3855 // zero than the immediate itself, then the formula isn't worthwhile.
3856 for (SmallVectorImpl<const SCEV *>::const_iterator
3857 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3858 J != JE; ++J)
3859 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3860 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
3861 abs64(NewF.BaseOffset)) &&
3862 (C->getValue()->getValue() +
3863 NewF.BaseOffset).countTrailingZeros() >=
3864 countTrailingZeros<uint64_t>(NewF.BaseOffset))
3865 goto skip_formula;
3866
3867 // Ok, looks good.
3868 NewF.Canonicalize();
3869 (void)InsertFormula(LU, LUIdx, NewF);
3870 break;
3871 skip_formula:;
3872 }
3873 }
3874 }
3875 }
3876 }
3877
3878 /// GenerateAllReuseFormulae - Generate formulae for each use.
3879 void
GenerateAllReuseFormulae()3880 LSRInstance::GenerateAllReuseFormulae() {
3881 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3882 // queries are more precise.
3883 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3884 LSRUse &LU = Uses[LUIdx];
3885 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3886 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3887 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3888 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3889 }
3890 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3891 LSRUse &LU = Uses[LUIdx];
3892 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3893 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3894 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3895 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3896 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3897 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3898 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3899 GenerateScales(LU, LUIdx, LU.Formulae[i]);
3900 }
3901 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3902 LSRUse &LU = Uses[LUIdx];
3903 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3904 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3905 }
3906
3907 GenerateCrossUseConstantOffsets();
3908
3909 DEBUG(dbgs() << "\n"
3910 "After generating reuse formulae:\n";
3911 print_uses(dbgs()));
3912 }
3913
3914 /// If there are multiple formulae with the same set of registers used
3915 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()3916 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3917 DenseSet<const SCEV *> VisitedRegs;
3918 SmallPtrSet<const SCEV *, 16> Regs;
3919 SmallPtrSet<const SCEV *, 16> LoserRegs;
3920 #ifndef NDEBUG
3921 bool ChangedFormulae = false;
3922 #endif
3923
3924 // Collect the best formula for each unique set of shared registers. This
3925 // is reset for each use.
3926 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3927 BestFormulaeTy;
3928 BestFormulaeTy BestFormulae;
3929
3930 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3931 LSRUse &LU = Uses[LUIdx];
3932 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3933
3934 bool Any = false;
3935 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3936 FIdx != NumForms; ++FIdx) {
3937 Formula &F = LU.Formulae[FIdx];
3938
3939 // Some formulas are instant losers. For example, they may depend on
3940 // nonexistent AddRecs from other loops. These need to be filtered
3941 // immediately, otherwise heuristics could choose them over others leading
3942 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3943 // avoids the need to recompute this information across formulae using the
3944 // same bad AddRec. Passing LoserRegs is also essential unless we remove
3945 // the corresponding bad register from the Regs set.
3946 Cost CostF;
3947 Regs.clear();
3948 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3949 &LoserRegs);
3950 if (CostF.isLoser()) {
3951 // During initial formula generation, undesirable formulae are generated
3952 // by uses within other loops that have some non-trivial address mode or
3953 // use the postinc form of the IV. LSR needs to provide these formulae
3954 // as the basis of rediscovering the desired formula that uses an AddRec
3955 // corresponding to the existing phi. Once all formulae have been
3956 // generated, these initial losers may be pruned.
3957 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
3958 dbgs() << "\n");
3959 }
3960 else {
3961 SmallVector<const SCEV *, 4> Key;
3962 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3963 JE = F.BaseRegs.end(); J != JE; ++J) {
3964 const SCEV *Reg = *J;
3965 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3966 Key.push_back(Reg);
3967 }
3968 if (F.ScaledReg &&
3969 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3970 Key.push_back(F.ScaledReg);
3971 // Unstable sort by host order ok, because this is only used for
3972 // uniquifying.
3973 std::sort(Key.begin(), Key.end());
3974
3975 std::pair<BestFormulaeTy::const_iterator, bool> P =
3976 BestFormulae.insert(std::make_pair(Key, FIdx));
3977 if (P.second)
3978 continue;
3979
3980 Formula &Best = LU.Formulae[P.first->second];
3981
3982 Cost CostBest;
3983 Regs.clear();
3984 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3985 DT, LU);
3986 if (CostF < CostBest)
3987 std::swap(F, Best);
3988 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
3989 dbgs() << "\n"
3990 " in favor of formula "; Best.print(dbgs());
3991 dbgs() << '\n');
3992 }
3993 #ifndef NDEBUG
3994 ChangedFormulae = true;
3995 #endif
3996 LU.DeleteFormula(F);
3997 --FIdx;
3998 --NumForms;
3999 Any = true;
4000 }
4001
4002 // Now that we've filtered out some formulae, recompute the Regs set.
4003 if (Any)
4004 LU.RecomputeRegs(LUIdx, RegUses);
4005
4006 // Reset this to prepare for the next use.
4007 BestFormulae.clear();
4008 }
4009
4010 DEBUG(if (ChangedFormulae) {
4011 dbgs() << "\n"
4012 "After filtering out undesirable candidates:\n";
4013 print_uses(dbgs());
4014 });
4015 }
4016
4017 // This is a rough guess that seems to work fairly well.
4018 static const size_t ComplexityLimit = UINT16_MAX;
4019
4020 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
4021 /// solutions the solver might have to consider. It almost never considers
4022 /// this many solutions because it prune the search space, but the pruning
4023 /// isn't always sufficient.
EstimateSearchSpaceComplexity() const4024 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4025 size_t Power = 1;
4026 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4027 E = Uses.end(); I != E; ++I) {
4028 size_t FSize = I->Formulae.size();
4029 if (FSize >= ComplexityLimit) {
4030 Power = ComplexityLimit;
4031 break;
4032 }
4033 Power *= FSize;
4034 if (Power >= ComplexityLimit)
4035 break;
4036 }
4037 return Power;
4038 }
4039
4040 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
4041 /// of the registers of another formula, it won't help reduce register
4042 /// pressure (though it may not necessarily hurt register pressure); remove
4043 /// it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()4044 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4045 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4046 DEBUG(dbgs() << "The search space is too complex.\n");
4047
4048 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4049 "which use a superset of registers used by other "
4050 "formulae.\n");
4051
4052 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4053 LSRUse &LU = Uses[LUIdx];
4054 bool Any = false;
4055 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4056 Formula &F = LU.Formulae[i];
4057 // Look for a formula with a constant or GV in a register. If the use
4058 // also has a formula with that same value in an immediate field,
4059 // delete the one that uses a register.
4060 for (SmallVectorImpl<const SCEV *>::const_iterator
4061 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4062 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4063 Formula NewF = F;
4064 NewF.BaseOffset += C->getValue()->getSExtValue();
4065 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4066 (I - F.BaseRegs.begin()));
4067 if (LU.HasFormulaWithSameRegs(NewF)) {
4068 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4069 LU.DeleteFormula(F);
4070 --i;
4071 --e;
4072 Any = true;
4073 break;
4074 }
4075 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4076 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4077 if (!F.BaseGV) {
4078 Formula NewF = F;
4079 NewF.BaseGV = GV;
4080 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4081 (I - F.BaseRegs.begin()));
4082 if (LU.HasFormulaWithSameRegs(NewF)) {
4083 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4084 dbgs() << '\n');
4085 LU.DeleteFormula(F);
4086 --i;
4087 --e;
4088 Any = true;
4089 break;
4090 }
4091 }
4092 }
4093 }
4094 }
4095 if (Any)
4096 LU.RecomputeRegs(LUIdx, RegUses);
4097 }
4098
4099 DEBUG(dbgs() << "After pre-selection:\n";
4100 print_uses(dbgs()));
4101 }
4102 }
4103
4104 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
4105 /// for expressions like A, A+1, A+2, etc., allocate a single register for
4106 /// them.
NarrowSearchSpaceByCollapsingUnrolledCode()4107 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4108 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4109 return;
4110
4111 DEBUG(dbgs() << "The search space is too complex.\n"
4112 "Narrowing the search space by assuming that uses separated "
4113 "by a constant offset will use the same registers.\n");
4114
4115 // This is especially useful for unrolled loops.
4116
4117 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4118 LSRUse &LU = Uses[LUIdx];
4119 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4120 E = LU.Formulae.end(); I != E; ++I) {
4121 const Formula &F = *I;
4122 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4123 continue;
4124
4125 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4126 if (!LUThatHas)
4127 continue;
4128
4129 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4130 LU.Kind, LU.AccessTy))
4131 continue;
4132
4133 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4134
4135 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4136
4137 // Update the relocs to reference the new use.
4138 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
4139 E = Fixups.end(); I != E; ++I) {
4140 LSRFixup &Fixup = *I;
4141 if (Fixup.LUIdx == LUIdx) {
4142 Fixup.LUIdx = LUThatHas - &Uses.front();
4143 Fixup.Offset += F.BaseOffset;
4144 // Add the new offset to LUThatHas' offset list.
4145 if (LUThatHas->Offsets.back() != Fixup.Offset) {
4146 LUThatHas->Offsets.push_back(Fixup.Offset);
4147 if (Fixup.Offset > LUThatHas->MaxOffset)
4148 LUThatHas->MaxOffset = Fixup.Offset;
4149 if (Fixup.Offset < LUThatHas->MinOffset)
4150 LUThatHas->MinOffset = Fixup.Offset;
4151 }
4152 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4153 }
4154 if (Fixup.LUIdx == NumUses-1)
4155 Fixup.LUIdx = LUIdx;
4156 }
4157
4158 // Delete formulae from the new use which are no longer legal.
4159 bool Any = false;
4160 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4161 Formula &F = LUThatHas->Formulae[i];
4162 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4163 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4164 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4165 dbgs() << '\n');
4166 LUThatHas->DeleteFormula(F);
4167 --i;
4168 --e;
4169 Any = true;
4170 }
4171 }
4172
4173 if (Any)
4174 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4175
4176 // Delete the old use.
4177 DeleteUse(LU, LUIdx);
4178 --LUIdx;
4179 --NumUses;
4180 break;
4181 }
4182 }
4183
4184 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4185 }
4186
4187 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
4188 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4189 /// we've done more filtering, as it may be able to find more formulae to
4190 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4191 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4192 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4193 DEBUG(dbgs() << "The search space is too complex.\n");
4194
4195 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4196 "undesirable dedicated registers.\n");
4197
4198 FilterOutUndesirableDedicatedRegisters();
4199
4200 DEBUG(dbgs() << "After pre-selection:\n";
4201 print_uses(dbgs()));
4202 }
4203 }
4204
4205 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
4206 /// to be profitable, and then in any use which has any reference to that
4207 /// register, delete all formulae which do not reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4208 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4209 // With all other options exhausted, loop until the system is simple
4210 // enough to handle.
4211 SmallPtrSet<const SCEV *, 4> Taken;
4212 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4213 // Ok, we have too many of formulae on our hands to conveniently handle.
4214 // Use a rough heuristic to thin out the list.
4215 DEBUG(dbgs() << "The search space is too complex.\n");
4216
4217 // Pick the register which is used by the most LSRUses, which is likely
4218 // to be a good reuse register candidate.
4219 const SCEV *Best = nullptr;
4220 unsigned BestNum = 0;
4221 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
4222 I != E; ++I) {
4223 const SCEV *Reg = *I;
4224 if (Taken.count(Reg))
4225 continue;
4226 if (!Best)
4227 Best = Reg;
4228 else {
4229 unsigned Count = RegUses.getUsedByIndices(Reg).count();
4230 if (Count > BestNum) {
4231 Best = Reg;
4232 BestNum = Count;
4233 }
4234 }
4235 }
4236
4237 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4238 << " will yield profitable reuse.\n");
4239 Taken.insert(Best);
4240
4241 // In any use with formulae which references this register, delete formulae
4242 // which don't reference it.
4243 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4244 LSRUse &LU = Uses[LUIdx];
4245 if (!LU.Regs.count(Best)) continue;
4246
4247 bool Any = false;
4248 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4249 Formula &F = LU.Formulae[i];
4250 if (!F.referencesReg(Best)) {
4251 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4252 LU.DeleteFormula(F);
4253 --e;
4254 --i;
4255 Any = true;
4256 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4257 continue;
4258 }
4259 }
4260
4261 if (Any)
4262 LU.RecomputeRegs(LUIdx, RegUses);
4263 }
4264
4265 DEBUG(dbgs() << "After pre-selection:\n";
4266 print_uses(dbgs()));
4267 }
4268 }
4269
4270 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
4271 /// formulae to choose from, use some rough heuristics to prune down the number
4272 /// of formulae. This keeps the main solver from taking an extraordinary amount
4273 /// of time in some worst-case scenarios.
NarrowSearchSpaceUsingHeuristics()4274 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4275 NarrowSearchSpaceByDetectingSupersets();
4276 NarrowSearchSpaceByCollapsingUnrolledCode();
4277 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4278 NarrowSearchSpaceByPickingWinnerRegs();
4279 }
4280
4281 /// SolveRecurse - This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const4282 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4283 Cost &SolutionCost,
4284 SmallVectorImpl<const Formula *> &Workspace,
4285 const Cost &CurCost,
4286 const SmallPtrSet<const SCEV *, 16> &CurRegs,
4287 DenseSet<const SCEV *> &VisitedRegs) const {
4288 // Some ideas:
4289 // - prune more:
4290 // - use more aggressive filtering
4291 // - sort the formula so that the most profitable solutions are found first
4292 // - sort the uses too
4293 // - search faster:
4294 // - don't compute a cost, and then compare. compare while computing a cost
4295 // and bail early.
4296 // - track register sets with SmallBitVector
4297
4298 const LSRUse &LU = Uses[Workspace.size()];
4299
4300 // If this use references any register that's already a part of the
4301 // in-progress solution, consider it a requirement that a formula must
4302 // reference that register in order to be considered. This prunes out
4303 // unprofitable searching.
4304 SmallSetVector<const SCEV *, 4> ReqRegs;
4305 for (const SCEV *S : CurRegs)
4306 if (LU.Regs.count(S))
4307 ReqRegs.insert(S);
4308
4309 SmallPtrSet<const SCEV *, 16> NewRegs;
4310 Cost NewCost;
4311 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4312 E = LU.Formulae.end(); I != E; ++I) {
4313 const Formula &F = *I;
4314
4315 // Ignore formulae which may not be ideal in terms of register reuse of
4316 // ReqRegs. The formula should use all required registers before
4317 // introducing new ones.
4318 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4319 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
4320 JE = ReqRegs.end(); J != JE; ++J) {
4321 const SCEV *Reg = *J;
4322 if ((F.ScaledReg && F.ScaledReg == Reg) ||
4323 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4324 F.BaseRegs.end()) {
4325 --NumReqRegsToFind;
4326 if (NumReqRegsToFind == 0)
4327 break;
4328 }
4329 }
4330 if (NumReqRegsToFind != 0) {
4331 // If none of the formulae satisfied the required registers, then we could
4332 // clear ReqRegs and try again. Currently, we simply give up in this case.
4333 continue;
4334 }
4335
4336 // Evaluate the cost of the current formula. If it's already worse than
4337 // the current best, prune the search at that point.
4338 NewCost = CurCost;
4339 NewRegs = CurRegs;
4340 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4341 LU);
4342 if (NewCost < SolutionCost) {
4343 Workspace.push_back(&F);
4344 if (Workspace.size() != Uses.size()) {
4345 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4346 NewRegs, VisitedRegs);
4347 if (F.getNumRegs() == 1 && Workspace.size() == 1)
4348 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4349 } else {
4350 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4351 dbgs() << ".\n Regs:";
4352 for (const SCEV *S : NewRegs)
4353 dbgs() << ' ' << *S;
4354 dbgs() << '\n');
4355
4356 SolutionCost = NewCost;
4357 Solution = Workspace;
4358 }
4359 Workspace.pop_back();
4360 }
4361 }
4362 }
4363
4364 /// Solve - Choose one formula from each use. Return the results in the given
4365 /// Solution vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const4366 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4367 SmallVector<const Formula *, 8> Workspace;
4368 Cost SolutionCost;
4369 SolutionCost.Lose();
4370 Cost CurCost;
4371 SmallPtrSet<const SCEV *, 16> CurRegs;
4372 DenseSet<const SCEV *> VisitedRegs;
4373 Workspace.reserve(Uses.size());
4374
4375 // SolveRecurse does all the work.
4376 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4377 CurRegs, VisitedRegs);
4378 if (Solution.empty()) {
4379 DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4380 return;
4381 }
4382
4383 // Ok, we've now made all our decisions.
4384 DEBUG(dbgs() << "\n"
4385 "The chosen solution requires "; SolutionCost.print(dbgs());
4386 dbgs() << ":\n";
4387 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4388 dbgs() << " ";
4389 Uses[i].print(dbgs());
4390 dbgs() << "\n"
4391 " ";
4392 Solution[i]->print(dbgs());
4393 dbgs() << '\n';
4394 });
4395
4396 assert(Solution.size() == Uses.size() && "Malformed solution!");
4397 }
4398
4399 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4400 /// the dominator tree far as we can go while still being dominated by the
4401 /// input positions. This helps canonicalize the insert position, which
4402 /// encourages sharing.
4403 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const4404 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4405 const SmallVectorImpl<Instruction *> &Inputs)
4406 const {
4407 for (;;) {
4408 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4409 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4410
4411 BasicBlock *IDom;
4412 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4413 if (!Rung) return IP;
4414 Rung = Rung->getIDom();
4415 if (!Rung) return IP;
4416 IDom = Rung->getBlock();
4417
4418 // Don't climb into a loop though.
4419 const Loop *IDomLoop = LI.getLoopFor(IDom);
4420 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4421 if (IDomDepth <= IPLoopDepth &&
4422 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4423 break;
4424 }
4425
4426 bool AllDominate = true;
4427 Instruction *BetterPos = nullptr;
4428 Instruction *Tentative = IDom->getTerminator();
4429 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4430 E = Inputs.end(); I != E; ++I) {
4431 Instruction *Inst = *I;
4432 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4433 AllDominate = false;
4434 break;
4435 }
4436 // Attempt to find an insert position in the middle of the block,
4437 // instead of at the end, so that it can be used for other expansions.
4438 if (IDom == Inst->getParent() &&
4439 (!BetterPos || !DT.dominates(Inst, BetterPos)))
4440 BetterPos = std::next(BasicBlock::iterator(Inst));
4441 }
4442 if (!AllDominate)
4443 break;
4444 if (BetterPos)
4445 IP = BetterPos;
4446 else
4447 IP = Tentative;
4448 }
4449
4450 return IP;
4451 }
4452
4453 /// AdjustInsertPositionForExpand - Determine an input position which will be
4454 /// dominated by the operands and which will dominate the result.
4455 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU,SCEVExpander & Rewriter) const4456 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4457 const LSRFixup &LF,
4458 const LSRUse &LU,
4459 SCEVExpander &Rewriter) const {
4460 // Collect some instructions which must be dominated by the
4461 // expanding replacement. These must be dominated by any operands that
4462 // will be required in the expansion.
4463 SmallVector<Instruction *, 4> Inputs;
4464 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4465 Inputs.push_back(I);
4466 if (LU.Kind == LSRUse::ICmpZero)
4467 if (Instruction *I =
4468 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4469 Inputs.push_back(I);
4470 if (LF.PostIncLoops.count(L)) {
4471 if (LF.isUseFullyOutsideLoop(L))
4472 Inputs.push_back(L->getLoopLatch()->getTerminator());
4473 else
4474 Inputs.push_back(IVIncInsertPos);
4475 }
4476 // The expansion must also be dominated by the increment positions of any
4477 // loops it for which it is using post-inc mode.
4478 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4479 E = LF.PostIncLoops.end(); I != E; ++I) {
4480 const Loop *PIL = *I;
4481 if (PIL == L) continue;
4482
4483 // Be dominated by the loop exit.
4484 SmallVector<BasicBlock *, 4> ExitingBlocks;
4485 PIL->getExitingBlocks(ExitingBlocks);
4486 if (!ExitingBlocks.empty()) {
4487 BasicBlock *BB = ExitingBlocks[0];
4488 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4489 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4490 Inputs.push_back(BB->getTerminator());
4491 }
4492 }
4493
4494 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4495 && !isa<DbgInfoIntrinsic>(LowestIP) &&
4496 "Insertion point must be a normal instruction");
4497
4498 // Then, climb up the immediate dominator tree as far as we can go while
4499 // still being dominated by the input positions.
4500 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4501
4502 // Don't insert instructions before PHI nodes.
4503 while (isa<PHINode>(IP)) ++IP;
4504
4505 // Ignore landingpad instructions.
4506 while (isa<LandingPadInst>(IP)) ++IP;
4507
4508 // Ignore debug intrinsics.
4509 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4510
4511 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4512 // IP consistent across expansions and allows the previously inserted
4513 // instructions to be reused by subsequent expansion.
4514 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4515
4516 return IP;
4517 }
4518
4519 /// Expand - Emit instructions for the leading candidate expression for this
4520 /// LSRUse (this is called "expanding").
Expand(const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts) const4521 Value *LSRInstance::Expand(const LSRFixup &LF,
4522 const Formula &F,
4523 BasicBlock::iterator IP,
4524 SCEVExpander &Rewriter,
4525 SmallVectorImpl<WeakVH> &DeadInsts) const {
4526 const LSRUse &LU = Uses[LF.LUIdx];
4527 if (LU.RigidFormula)
4528 return LF.OperandValToReplace;
4529
4530 // Determine an input position which will be dominated by the operands and
4531 // which will dominate the result.
4532 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4533
4534 // Inform the Rewriter if we have a post-increment use, so that it can
4535 // perform an advantageous expansion.
4536 Rewriter.setPostInc(LF.PostIncLoops);
4537
4538 // This is the type that the user actually needs.
4539 Type *OpTy = LF.OperandValToReplace->getType();
4540 // This will be the type that we'll initially expand to.
4541 Type *Ty = F.getType();
4542 if (!Ty)
4543 // No type known; just expand directly to the ultimate type.
4544 Ty = OpTy;
4545 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4546 // Expand directly to the ultimate type if it's the right size.
4547 Ty = OpTy;
4548 // This is the type to do integer arithmetic in.
4549 Type *IntTy = SE.getEffectiveSCEVType(Ty);
4550
4551 // Build up a list of operands to add together to form the full base.
4552 SmallVector<const SCEV *, 8> Ops;
4553
4554 // Expand the BaseRegs portion.
4555 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4556 E = F.BaseRegs.end(); I != E; ++I) {
4557 const SCEV *Reg = *I;
4558 assert(!Reg->isZero() && "Zero allocated in a base register!");
4559
4560 // If we're expanding for a post-inc user, make the post-inc adjustment.
4561 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4562 Reg = TransformForPostIncUse(Denormalize, Reg,
4563 LF.UserInst, LF.OperandValToReplace,
4564 Loops, SE, DT);
4565
4566 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
4567 }
4568
4569 // Expand the ScaledReg portion.
4570 Value *ICmpScaledV = nullptr;
4571 if (F.Scale != 0) {
4572 const SCEV *ScaledS = F.ScaledReg;
4573
4574 // If we're expanding for a post-inc user, make the post-inc adjustment.
4575 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4576 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4577 LF.UserInst, LF.OperandValToReplace,
4578 Loops, SE, DT);
4579
4580 if (LU.Kind == LSRUse::ICmpZero) {
4581 // Expand ScaleReg as if it was part of the base regs.
4582 if (F.Scale == 1)
4583 Ops.push_back(
4584 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
4585 else {
4586 // An interesting way of "folding" with an icmp is to use a negated
4587 // scale, which we'll implement by inserting it into the other operand
4588 // of the icmp.
4589 assert(F.Scale == -1 &&
4590 "The only scale supported by ICmpZero uses is -1!");
4591 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
4592 }
4593 } else {
4594 // Otherwise just expand the scaled register and an explicit scale,
4595 // which is expected to be matched as part of the address.
4596
4597 // Flush the operand list to suppress SCEVExpander hoisting address modes.
4598 // Unless the addressing mode will not be folded.
4599 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4600 isAMCompletelyFolded(TTI, LU, F)) {
4601 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4602 Ops.clear();
4603 Ops.push_back(SE.getUnknown(FullV));
4604 }
4605 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
4606 if (F.Scale != 1)
4607 ScaledS =
4608 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4609 Ops.push_back(ScaledS);
4610 }
4611 }
4612
4613 // Expand the GV portion.
4614 if (F.BaseGV) {
4615 // Flush the operand list to suppress SCEVExpander hoisting.
4616 if (!Ops.empty()) {
4617 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4618 Ops.clear();
4619 Ops.push_back(SE.getUnknown(FullV));
4620 }
4621 Ops.push_back(SE.getUnknown(F.BaseGV));
4622 }
4623
4624 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4625 // unfolded offsets. LSR assumes they both live next to their uses.
4626 if (!Ops.empty()) {
4627 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4628 Ops.clear();
4629 Ops.push_back(SE.getUnknown(FullV));
4630 }
4631
4632 // Expand the immediate portion.
4633 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4634 if (Offset != 0) {
4635 if (LU.Kind == LSRUse::ICmpZero) {
4636 // The other interesting way of "folding" with an ICmpZero is to use a
4637 // negated immediate.
4638 if (!ICmpScaledV)
4639 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4640 else {
4641 Ops.push_back(SE.getUnknown(ICmpScaledV));
4642 ICmpScaledV = ConstantInt::get(IntTy, Offset);
4643 }
4644 } else {
4645 // Just add the immediate values. These again are expected to be matched
4646 // as part of the address.
4647 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4648 }
4649 }
4650
4651 // Expand the unfolded offset portion.
4652 int64_t UnfoldedOffset = F.UnfoldedOffset;
4653 if (UnfoldedOffset != 0) {
4654 // Just add the immediate values.
4655 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4656 UnfoldedOffset)));
4657 }
4658
4659 // Emit instructions summing all the operands.
4660 const SCEV *FullS = Ops.empty() ?
4661 SE.getConstant(IntTy, 0) :
4662 SE.getAddExpr(Ops);
4663 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4664
4665 // We're done expanding now, so reset the rewriter.
4666 Rewriter.clearPostInc();
4667
4668 // An ICmpZero Formula represents an ICmp which we're handling as a
4669 // comparison against zero. Now that we've expanded an expression for that
4670 // form, update the ICmp's other operand.
4671 if (LU.Kind == LSRUse::ICmpZero) {
4672 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4673 DeadInsts.push_back(CI->getOperand(1));
4674 assert(!F.BaseGV && "ICmp does not support folding a global value and "
4675 "a scale at the same time!");
4676 if (F.Scale == -1) {
4677 if (ICmpScaledV->getType() != OpTy) {
4678 Instruction *Cast =
4679 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4680 OpTy, false),
4681 ICmpScaledV, OpTy, "tmp", CI);
4682 ICmpScaledV = Cast;
4683 }
4684 CI->setOperand(1, ICmpScaledV);
4685 } else {
4686 // A scale of 1 means that the scale has been expanded as part of the
4687 // base regs.
4688 assert((F.Scale == 0 || F.Scale == 1) &&
4689 "ICmp does not support folding a global value and "
4690 "a scale at the same time!");
4691 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4692 -(uint64_t)Offset);
4693 if (C->getType() != OpTy)
4694 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4695 OpTy, false),
4696 C, OpTy);
4697
4698 CI->setOperand(1, C);
4699 }
4700 }
4701
4702 return FullV;
4703 }
4704
4705 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4706 /// of their operands effectively happens in their predecessor blocks, so the
4707 /// expression may need to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts,Pass * P) const4708 void LSRInstance::RewriteForPHI(PHINode *PN,
4709 const LSRFixup &LF,
4710 const Formula &F,
4711 SCEVExpander &Rewriter,
4712 SmallVectorImpl<WeakVH> &DeadInsts,
4713 Pass *P) const {
4714 DenseMap<BasicBlock *, Value *> Inserted;
4715 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4716 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4717 BasicBlock *BB = PN->getIncomingBlock(i);
4718
4719 // If this is a critical edge, split the edge so that we do not insert
4720 // the code on all predecessor/successor paths. We do this unless this
4721 // is the canonical backedge for this loop, which complicates post-inc
4722 // users.
4723 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4724 !isa<IndirectBrInst>(BB->getTerminator())) {
4725 BasicBlock *Parent = PN->getParent();
4726 Loop *PNLoop = LI.getLoopFor(Parent);
4727 if (!PNLoop || Parent != PNLoop->getHeader()) {
4728 // Split the critical edge.
4729 BasicBlock *NewBB = nullptr;
4730 if (!Parent->isLandingPad()) {
4731 NewBB = SplitCriticalEdge(BB, Parent, P,
4732 /*MergeIdenticalEdges=*/true,
4733 /*DontDeleteUselessPhis=*/true);
4734 } else {
4735 SmallVector<BasicBlock*, 2> NewBBs;
4736 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4737 NewBB = NewBBs[0];
4738 }
4739 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4740 // phi predecessors are identical. The simple thing to do is skip
4741 // splitting in this case rather than complicate the API.
4742 if (NewBB) {
4743 // If PN is outside of the loop and BB is in the loop, we want to
4744 // move the block to be immediately before the PHI block, not
4745 // immediately after BB.
4746 if (L->contains(BB) && !L->contains(PN))
4747 NewBB->moveBefore(PN->getParent());
4748
4749 // Splitting the edge can reduce the number of PHI entries we have.
4750 e = PN->getNumIncomingValues();
4751 BB = NewBB;
4752 i = PN->getBasicBlockIndex(BB);
4753 }
4754 }
4755 }
4756
4757 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4758 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4759 if (!Pair.second)
4760 PN->setIncomingValue(i, Pair.first->second);
4761 else {
4762 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4763
4764 // If this is reuse-by-noop-cast, insert the noop cast.
4765 Type *OpTy = LF.OperandValToReplace->getType();
4766 if (FullV->getType() != OpTy)
4767 FullV =
4768 CastInst::Create(CastInst::getCastOpcode(FullV, false,
4769 OpTy, false),
4770 FullV, LF.OperandValToReplace->getType(),
4771 "tmp", BB->getTerminator());
4772
4773 PN->setIncomingValue(i, FullV);
4774 Pair.first->second = FullV;
4775 }
4776 }
4777 }
4778
4779 /// Rewrite - Emit instructions for the leading candidate expression for this
4780 /// LSRUse (this is called "expanding"), and update the UserInst to reference
4781 /// the newly expanded value.
Rewrite(const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts,Pass * P) const4782 void LSRInstance::Rewrite(const LSRFixup &LF,
4783 const Formula &F,
4784 SCEVExpander &Rewriter,
4785 SmallVectorImpl<WeakVH> &DeadInsts,
4786 Pass *P) const {
4787 // First, find an insertion point that dominates UserInst. For PHI nodes,
4788 // find the nearest block which dominates all the relevant uses.
4789 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4790 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4791 } else {
4792 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4793
4794 // If this is reuse-by-noop-cast, insert the noop cast.
4795 Type *OpTy = LF.OperandValToReplace->getType();
4796 if (FullV->getType() != OpTy) {
4797 Instruction *Cast =
4798 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4799 FullV, OpTy, "tmp", LF.UserInst);
4800 FullV = Cast;
4801 }
4802
4803 // Update the user. ICmpZero is handled specially here (for now) because
4804 // Expand may have updated one of the operands of the icmp already, and
4805 // its new value may happen to be equal to LF.OperandValToReplace, in
4806 // which case doing replaceUsesOfWith leads to replacing both operands
4807 // with the same value. TODO: Reorganize this.
4808 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4809 LF.UserInst->setOperand(0, FullV);
4810 else
4811 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4812 }
4813
4814 DeadInsts.push_back(LF.OperandValToReplace);
4815 }
4816
4817 /// ImplementSolution - Rewrite all the fixup locations with new values,
4818 /// following the chosen solution.
4819 void
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution,Pass * P)4820 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4821 Pass *P) {
4822 // Keep track of instructions we may have made dead, so that
4823 // we can remove them after we are done working.
4824 SmallVector<WeakVH, 16> DeadInsts;
4825
4826 SCEVExpander Rewriter(SE, "lsr");
4827 #ifndef NDEBUG
4828 Rewriter.setDebugType(DEBUG_TYPE);
4829 #endif
4830 Rewriter.disableCanonicalMode();
4831 Rewriter.enableLSRMode();
4832 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4833
4834 // Mark phi nodes that terminate chains so the expander tries to reuse them.
4835 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4836 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4837 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
4838 Rewriter.setChainedPhi(PN);
4839 }
4840
4841 // Expand the new value definitions and update the users.
4842 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4843 E = Fixups.end(); I != E; ++I) {
4844 const LSRFixup &Fixup = *I;
4845
4846 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4847
4848 Changed = true;
4849 }
4850
4851 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4852 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4853 GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4854 Changed = true;
4855 }
4856 // Clean up after ourselves. This must be done before deleting any
4857 // instructions.
4858 Rewriter.clear();
4859
4860 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4861 }
4862
LSRInstance(Loop * L,Pass * P)4863 LSRInstance::LSRInstance(Loop *L, Pass *P)
4864 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
4865 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
4866 LI(P->getAnalysis<LoopInfo>()),
4867 TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
4868 IVIncInsertPos(nullptr) {
4869 // If LoopSimplify form is not available, stay out of trouble.
4870 if (!L->isLoopSimplifyForm())
4871 return;
4872
4873 // If there's no interesting work to be done, bail early.
4874 if (IU.empty()) return;
4875
4876 // If there's too much analysis to be done, bail early. We won't be able to
4877 // model the problem anyway.
4878 unsigned NumUsers = 0;
4879 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
4880 if (++NumUsers > MaxIVUsers) {
4881 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
4882 << "\n");
4883 return;
4884 }
4885 }
4886
4887 #ifndef NDEBUG
4888 // All dominating loops must have preheaders, or SCEVExpander may not be able
4889 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4890 //
4891 // IVUsers analysis should only create users that are dominated by simple loop
4892 // headers. Since this loop should dominate all of its users, its user list
4893 // should be empty if this loop itself is not within a simple loop nest.
4894 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4895 Rung; Rung = Rung->getIDom()) {
4896 BasicBlock *BB = Rung->getBlock();
4897 const Loop *DomLoop = LI.getLoopFor(BB);
4898 if (DomLoop && DomLoop->getHeader() == BB) {
4899 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4900 }
4901 }
4902 #endif // DEBUG
4903
4904 DEBUG(dbgs() << "\nLSR on loop ";
4905 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4906 dbgs() << ":\n");
4907
4908 // First, perform some low-level loop optimizations.
4909 OptimizeShadowIV();
4910 OptimizeLoopTermCond();
4911
4912 // If loop preparation eliminates all interesting IV users, bail.
4913 if (IU.empty()) return;
4914
4915 // Skip nested loops until we can model them better with formulae.
4916 if (!L->empty()) {
4917 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4918 return;
4919 }
4920
4921 // Start collecting data and preparing for the solver.
4922 CollectChains();
4923 CollectInterestingTypesAndFactors();
4924 CollectFixupsAndInitialFormulae();
4925 CollectLoopInvariantFixupsAndFormulae();
4926
4927 assert(!Uses.empty() && "IVUsers reported at least one use");
4928 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4929 print_uses(dbgs()));
4930
4931 // Now use the reuse data to generate a bunch of interesting ways
4932 // to formulate the values needed for the uses.
4933 GenerateAllReuseFormulae();
4934
4935 FilterOutUndesirableDedicatedRegisters();
4936 NarrowSearchSpaceUsingHeuristics();
4937
4938 SmallVector<const Formula *, 8> Solution;
4939 Solve(Solution);
4940
4941 // Release memory that is no longer needed.
4942 Factors.clear();
4943 Types.clear();
4944 RegUses.clear();
4945
4946 if (Solution.empty())
4947 return;
4948
4949 #ifndef NDEBUG
4950 // Formulae should be legal.
4951 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
4952 I != E; ++I) {
4953 const LSRUse &LU = *I;
4954 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4955 JE = LU.Formulae.end();
4956 J != JE; ++J)
4957 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4958 *J) && "Illegal formula generated!");
4959 };
4960 #endif
4961
4962 // Now that we've decided what we want, make it so.
4963 ImplementSolution(Solution, P);
4964 }
4965
print_factors_and_types(raw_ostream & OS) const4966 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4967 if (Factors.empty() && Types.empty()) return;
4968
4969 OS << "LSR has identified the following interesting factors and types: ";
4970 bool First = true;
4971
4972 for (SmallSetVector<int64_t, 8>::const_iterator
4973 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4974 if (!First) OS << ", ";
4975 First = false;
4976 OS << '*' << *I;
4977 }
4978
4979 for (SmallSetVector<Type *, 4>::const_iterator
4980 I = Types.begin(), E = Types.end(); I != E; ++I) {
4981 if (!First) OS << ", ";
4982 First = false;
4983 OS << '(' << **I << ')';
4984 }
4985 OS << '\n';
4986 }
4987
print_fixups(raw_ostream & OS) const4988 void LSRInstance::print_fixups(raw_ostream &OS) const {
4989 OS << "LSR is examining the following fixup sites:\n";
4990 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4991 E = Fixups.end(); I != E; ++I) {
4992 dbgs() << " ";
4993 I->print(OS);
4994 OS << '\n';
4995 }
4996 }
4997
print_uses(raw_ostream & OS) const4998 void LSRInstance::print_uses(raw_ostream &OS) const {
4999 OS << "LSR is examining the following uses:\n";
5000 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
5001 E = Uses.end(); I != E; ++I) {
5002 const LSRUse &LU = *I;
5003 dbgs() << " ";
5004 LU.print(OS);
5005 OS << '\n';
5006 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
5007 JE = LU.Formulae.end(); J != JE; ++J) {
5008 OS << " ";
5009 J->print(OS);
5010 OS << '\n';
5011 }
5012 }
5013 }
5014
print(raw_ostream & OS) const5015 void LSRInstance::print(raw_ostream &OS) const {
5016 print_factors_and_types(OS);
5017 print_fixups(OS);
5018 print_uses(OS);
5019 }
5020
5021 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const5022 void LSRInstance::dump() const {
5023 print(errs()); errs() << '\n';
5024 }
5025 #endif
5026
5027 namespace {
5028
5029 class LoopStrengthReduce : public LoopPass {
5030 public:
5031 static char ID; // Pass ID, replacement for typeid
5032 LoopStrengthReduce();
5033
5034 private:
5035 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5036 void getAnalysisUsage(AnalysisUsage &AU) const override;
5037 };
5038
5039 }
5040
5041 char LoopStrengthReduce::ID = 0;
5042 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5043 "Loop Strength Reduction", false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)5044 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
5045 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5046 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5047 INITIALIZE_PASS_DEPENDENCY(IVUsers)
5048 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5049 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5050 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5051 "Loop Strength Reduction", false, false)
5052
5053
5054 Pass *llvm::createLoopStrengthReducePass() {
5055 return new LoopStrengthReduce();
5056 }
5057
LoopStrengthReduce()5058 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5059 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5060 }
5061
getAnalysisUsage(AnalysisUsage & AU) const5062 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5063 // We split critical edges, so we change the CFG. However, we do update
5064 // many analyses if they are around.
5065 AU.addPreservedID(LoopSimplifyID);
5066
5067 AU.addRequired<LoopInfo>();
5068 AU.addPreserved<LoopInfo>();
5069 AU.addRequiredID(LoopSimplifyID);
5070 AU.addRequired<DominatorTreeWrapperPass>();
5071 AU.addPreserved<DominatorTreeWrapperPass>();
5072 AU.addRequired<ScalarEvolution>();
5073 AU.addPreserved<ScalarEvolution>();
5074 // Requiring LoopSimplify a second time here prevents IVUsers from running
5075 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5076 AU.addRequiredID(LoopSimplifyID);
5077 AU.addRequired<IVUsers>();
5078 AU.addPreserved<IVUsers>();
5079 AU.addRequired<TargetTransformInfo>();
5080 }
5081
runOnLoop(Loop * L,LPPassManager &)5082 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5083 if (skipOptnoneFunction(L))
5084 return false;
5085
5086 bool Changed = false;
5087
5088 // Run the main LSR transformation.
5089 Changed |= LSRInstance(L, this).getChanged();
5090
5091 // Remove any extra phis created by processing inner loops.
5092 Changed |= DeleteDeadPHIs(L->getHeader());
5093 if (EnablePhiElim && L->isLoopSimplifyForm()) {
5094 SmallVector<WeakVH, 16> DeadInsts;
5095 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
5096 #ifndef NDEBUG
5097 Rewriter.setDebugType(DEBUG_TYPE);
5098 #endif
5099 unsigned numFolded = Rewriter.replaceCongruentIVs(
5100 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5101 &getAnalysis<TargetTransformInfo>());
5102 if (numFolded) {
5103 Changed = true;
5104 DeleteTriviallyDeadInstructions(DeadInsts);
5105 DeleteDeadPHIs(L->getHeader());
5106 }
5107 }
5108 return Changed;
5109 }
5110