1 /* $NetBSD: deflate.c,v 1.6 2022/10/15 19:49:32 christos Exp $ */
2
3 /* deflate.c -- compress data using the deflation algorithm
4 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
5 * For conditions of distribution and use, see copyright notice in zlib.h
6 */
7
8 /*
9 * ALGORITHM
10 *
11 * The "deflation" process depends on being able to identify portions
12 * of the input text which are identical to earlier input (within a
13 * sliding window trailing behind the input currently being processed).
14 *
15 * The most straightforward technique turns out to be the fastest for
16 * most input files: try all possible matches and select the longest.
17 * The key feature of this algorithm is that insertions into the string
18 * dictionary are very simple and thus fast, and deletions are avoided
19 * completely. Insertions are performed at each input character, whereas
20 * string matches are performed only when the previous match ends. So it
21 * is preferable to spend more time in matches to allow very fast string
22 * insertions and avoid deletions. The matching algorithm for small
23 * strings is inspired from that of Rabin & Karp. A brute force approach
24 * is used to find longer strings when a small match has been found.
25 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
26 * (by Leonid Broukhis).
27 * A previous version of this file used a more sophisticated algorithm
28 * (by Fiala and Greene) which is guaranteed to run in linear amortized
29 * time, but has a larger average cost, uses more memory and is patented.
30 * However the F&G algorithm may be faster for some highly redundant
31 * files if the parameter max_chain_length (described below) is too large.
32 *
33 * ACKNOWLEDGEMENTS
34 *
35 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
36 * I found it in 'freeze' written by Leonid Broukhis.
37 * Thanks to many people for bug reports and testing.
38 *
39 * REFERENCES
40 *
41 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
42 * Available in http://tools.ietf.org/html/rfc1951
43 *
44 * A description of the Rabin and Karp algorithm is given in the book
45 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
46 *
47 * Fiala,E.R., and Greene,D.H.
48 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
49 *
50 */
51
52 /* @(#) Id */
53
54 #include "deflate.h"
55
56 const char deflate_copyright[] =
57 " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
58 /*
59 If you use the zlib library in a product, an acknowledgment is welcome
60 in the documentation of your product. If for some reason you cannot
61 include such an acknowledgment, I would appreciate that you keep this
62 copyright string in the executable of your product.
63 */
64
65 /* ===========================================================================
66 * Function prototypes.
67 */
68 typedef enum {
69 need_more, /* block not completed, need more input or more output */
70 block_done, /* block flush performed */
71 finish_started, /* finish started, need only more output at next deflate */
72 finish_done /* finish done, accept no more input or output */
73 } block_state;
74
75 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
76 /* Compression function. Returns the block state after the call. */
77
78 local int deflateStateCheck OF((z_streamp strm));
79 local void slide_hash OF((deflate_state *s));
80 local void fill_window OF((deflate_state *s));
81 local block_state deflate_stored OF((deflate_state *s, int flush));
82 local block_state deflate_fast OF((deflate_state *s, int flush));
83 #ifndef FASTEST
84 local block_state deflate_slow OF((deflate_state *s, int flush));
85 #endif
86 local block_state deflate_rle OF((deflate_state *s, int flush));
87 local block_state deflate_huff OF((deflate_state *s, int flush));
88 local void lm_init OF((deflate_state *s));
89 local void putShortMSB OF((deflate_state *s, uInt b));
90 local void flush_pending OF((z_streamp strm));
91 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
92 local uInt longest_match OF((deflate_state *s, IPos cur_match));
93
94 #ifdef ZLIB_DEBUG
95 local void check_match OF((deflate_state *s, IPos start, IPos match,
96 int length));
97 #endif
98
99 /* ===========================================================================
100 * Local data
101 */
102
103 #define NIL 0
104 /* Tail of hash chains */
105
106 #ifndef TOO_FAR
107 # define TOO_FAR 4096
108 #endif
109 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
110
111 /* Values for max_lazy_match, good_match and max_chain_length, depending on
112 * the desired pack level (0..9). The values given below have been tuned to
113 * exclude worst case performance for pathological files. Better values may be
114 * found for specific files.
115 */
116 typedef struct config_s {
117 ush good_length; /* reduce lazy search above this match length */
118 ush max_lazy; /* do not perform lazy search above this match length */
119 ush nice_length; /* quit search above this match length */
120 ush max_chain;
121 compress_func func;
122 } config;
123
124 #ifdef FASTEST
125 local const config configuration_table[2] = {
126 /* good lazy nice chain */
127 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
128 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
129 #else
130 local const config configuration_table[10] = {
131 /* good lazy nice chain */
132 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
133 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
134 /* 2 */ {4, 5, 16, 8, deflate_fast},
135 /* 3 */ {4, 6, 32, 32, deflate_fast},
136
137 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
138 /* 5 */ {8, 16, 32, 32, deflate_slow},
139 /* 6 */ {8, 16, 128, 128, deflate_slow},
140 /* 7 */ {8, 32, 128, 256, deflate_slow},
141 /* 8 */ {32, 128, 258, 1024, deflate_slow},
142 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
143 #endif
144
145 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
146 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
147 * meaning.
148 */
149
150 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
151 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
152
153 /* ===========================================================================
154 * Update a hash value with the given input byte
155 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
156 * characters, so that a running hash key can be computed from the previous
157 * key instead of complete recalculation each time.
158 */
159 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
160
161
162 /* ===========================================================================
163 * Insert string str in the dictionary and set match_head to the previous head
164 * of the hash chain (the most recent string with same hash key). Return
165 * the previous length of the hash chain.
166 * If this file is compiled with -DFASTEST, the compression level is forced
167 * to 1, and no hash chains are maintained.
168 * IN assertion: all calls to INSERT_STRING are made with consecutive input
169 * characters and the first MIN_MATCH bytes of str are valid (except for
170 * the last MIN_MATCH-1 bytes of the input file).
171 */
172 #ifdef FASTEST
173 #define INSERT_STRING(s, str, match_head) \
174 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
175 match_head = s->head[s->ins_h], \
176 s->head[s->ins_h] = (Pos)(str))
177 #else
178 #define INSERT_STRING(s, str, match_head) \
179 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
180 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
181 s->head[s->ins_h] = (Pos)(str))
182 #endif
183
184 /* ===========================================================================
185 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
186 * prev[] will be initialized on the fly.
187 */
188 #define CLEAR_HASH(s) \
189 do { \
190 s->head[s->hash_size - 1] = NIL; \
191 zmemzero((Bytef *)s->head, \
192 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
193 } while (0)
194
195 /* ===========================================================================
196 * Slide the hash table when sliding the window down (could be avoided with 32
197 * bit values at the expense of memory usage). We slide even when level == 0 to
198 * keep the hash table consistent if we switch back to level > 0 later.
199 */
slide_hash(s)200 local void slide_hash(s)
201 deflate_state *s;
202 {
203 unsigned n, m;
204 Posf *p;
205 uInt wsize = s->w_size;
206
207 n = s->hash_size;
208 p = &s->head[n];
209 do {
210 m = *--p;
211 *p = (Pos)(m >= wsize ? m - wsize : NIL);
212 } while (--n);
213 n = wsize;
214 #ifndef FASTEST
215 p = &s->prev[n];
216 do {
217 m = *--p;
218 *p = (Pos)(m >= wsize ? m - wsize : NIL);
219 /* If n is not on any hash chain, prev[n] is garbage but
220 * its value will never be used.
221 */
222 } while (--n);
223 #endif
224 }
225
226 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)227 int ZEXPORT deflateInit_(strm, level, version, stream_size)
228 z_streamp strm;
229 int level;
230 const char *version;
231 int stream_size;
232 {
233 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
234 Z_DEFAULT_STRATEGY, version, stream_size);
235 /* To do: ignore strm->next_in if we use it as window */
236 }
237
238 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)239 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
240 version, stream_size)
241 z_streamp strm;
242 int level;
243 int method;
244 int windowBits;
245 int memLevel;
246 int strategy;
247 const char *version;
248 int stream_size;
249 {
250 deflate_state *s;
251 int wrap = 1;
252 static const char my_version[] = ZLIB_VERSION;
253
254 if (version == Z_NULL || version[0] != my_version[0] ||
255 stream_size != sizeof(z_stream)) {
256 return Z_VERSION_ERROR;
257 }
258 if (strm == Z_NULL) return Z_STREAM_ERROR;
259
260 strm->msg = Z_NULL;
261 if (strm->zalloc == (alloc_func)0) {
262 #ifdef Z_SOLO
263 return Z_STREAM_ERROR;
264 #else
265 strm->zalloc = zcalloc;
266 strm->opaque = (voidpf)0;
267 #endif
268 }
269 if (strm->zfree == (free_func)0)
270 #ifdef Z_SOLO
271 return Z_STREAM_ERROR;
272 #else
273 strm->zfree = zcfree;
274 #endif
275
276 #ifdef FASTEST
277 if (level != 0) level = 1;
278 #else
279 if (level == Z_DEFAULT_COMPRESSION) level = 6;
280 #endif
281
282 if (windowBits < 0) { /* suppress zlib wrapper */
283 wrap = 0;
284 if (windowBits < -15)
285 return Z_STREAM_ERROR;
286 windowBits = -windowBits;
287 }
288 #ifdef GZIP
289 else if (windowBits > 15) {
290 wrap = 2; /* write gzip wrapper instead */
291 windowBits -= 16;
292 }
293 #endif
294 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
295 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
296 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
297 return Z_STREAM_ERROR;
298 }
299 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
300 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
301 if (s == Z_NULL) return Z_MEM_ERROR;
302 strm->state = (struct internal_state FAR *)s;
303 s->strm = strm;
304 s->status = INIT_STATE; /* to pass state test in deflateReset() */
305
306 s->wrap = wrap;
307 s->gzhead = Z_NULL;
308 s->w_bits = (uInt)windowBits;
309 s->w_size = 1 << s->w_bits;
310 s->w_mask = s->w_size - 1;
311
312 s->hash_bits = (uInt)memLevel + 7;
313 s->hash_size = 1 << s->hash_bits;
314 s->hash_mask = s->hash_size - 1;
315 s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
316
317 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
318 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
319 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
320
321 s->high_water = 0; /* nothing written to s->window yet */
322
323 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
324
325 /* We overlay pending_buf and sym_buf. This works since the average size
326 * for length/distance pairs over any compressed block is assured to be 31
327 * bits or less.
328 *
329 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
330 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
331 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
332 * possible fixed-codes length/distance pair is then 31 bits total.
333 *
334 * sym_buf starts one-fourth of the way into pending_buf. So there are
335 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
336 * in sym_buf is three bytes -- two for the distance and one for the
337 * literal/length. As each symbol is consumed, the pointer to the next
338 * sym_buf value to read moves forward three bytes. From that symbol, up to
339 * 31 bits are written to pending_buf. The closest the written pending_buf
340 * bits gets to the next sym_buf symbol to read is just before the last
341 * code is written. At that time, 31*(n - 2) bits have been written, just
342 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
343 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
344 * symbols are written.) The closest the writing gets to what is unread is
345 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
346 * can range from 128 to 32768.
347 *
348 * Therefore, at a minimum, there are 142 bits of space between what is
349 * written and what is read in the overlain buffers, so the symbols cannot
350 * be overwritten by the compressed data. That space is actually 139 bits,
351 * due to the three-bit fixed-code block header.
352 *
353 * That covers the case where either Z_FIXED is specified, forcing fixed
354 * codes, or when the use of fixed codes is chosen, because that choice
355 * results in a smaller compressed block than dynamic codes. That latter
356 * condition then assures that the above analysis also covers all dynamic
357 * blocks. A dynamic-code block will only be chosen to be emitted if it has
358 * fewer bits than a fixed-code block would for the same set of symbols.
359 * Therefore its average symbol length is assured to be less than 31. So
360 * the compressed data for a dynamic block also cannot overwrite the
361 * symbols from which it is being constructed.
362 */
363
364 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
365 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
366
367 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
368 s->pending_buf == Z_NULL) {
369 s->status = FINISH_STATE;
370 strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR));
371 deflateEnd (strm);
372 return Z_MEM_ERROR;
373 }
374 s->sym_buf = s->pending_buf + s->lit_bufsize;
375 s->sym_end = (s->lit_bufsize - 1) * 3;
376 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
377 * on 16 bit machines and because stored blocks are restricted to
378 * 64K-1 bytes.
379 */
380
381 s->level = level;
382 s->strategy = strategy;
383 s->method = (Byte)method;
384
385 return deflateReset(strm);
386 }
387
388 /* =========================================================================
389 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
390 */
deflateStateCheck(strm)391 local int deflateStateCheck(strm)
392 z_streamp strm;
393 {
394 deflate_state *s;
395 if (strm == Z_NULL ||
396 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
397 return 1;
398 s = strm->state;
399 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
400 #ifdef GZIP
401 s->status != GZIP_STATE &&
402 #endif
403 s->status != EXTRA_STATE &&
404 s->status != NAME_STATE &&
405 s->status != COMMENT_STATE &&
406 s->status != HCRC_STATE &&
407 s->status != BUSY_STATE &&
408 s->status != FINISH_STATE))
409 return 1;
410 return 0;
411 }
412
413 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)414 int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
415 z_streamp strm;
416 const Bytef *dictionary;
417 uInt dictLength;
418 {
419 deflate_state *s;
420 uInt str, n;
421 int wrap;
422 unsigned avail;
423 z_const unsigned char *next;
424
425 if (deflateStateCheck(strm) || dictionary == Z_NULL)
426 return Z_STREAM_ERROR;
427 s = strm->state;
428 wrap = s->wrap;
429 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
430 return Z_STREAM_ERROR;
431
432 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
433 if (wrap == 1)
434 strm->adler = adler32(strm->adler, dictionary, dictLength);
435 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
436
437 /* if dictionary would fill window, just replace the history */
438 if (dictLength >= s->w_size) {
439 if (wrap == 0) { /* already empty otherwise */
440 CLEAR_HASH(s);
441 s->strstart = 0;
442 s->block_start = 0L;
443 s->insert = 0;
444 }
445 dictionary += dictLength - s->w_size; /* use the tail */
446 dictLength = s->w_size;
447 }
448
449 /* insert dictionary into window and hash */
450 avail = strm->avail_in;
451 next = strm->next_in;
452 strm->avail_in = dictLength;
453 strm->next_in = __UNCONST(dictionary);
454 fill_window(s);
455 while (s->lookahead >= MIN_MATCH) {
456 str = s->strstart;
457 n = s->lookahead - (MIN_MATCH-1);
458 do {
459 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
460 #ifndef FASTEST
461 s->prev[str & s->w_mask] = s->head[s->ins_h];
462 #endif
463 s->head[s->ins_h] = (Pos)str;
464 str++;
465 } while (--n);
466 s->strstart = str;
467 s->lookahead = MIN_MATCH-1;
468 fill_window(s);
469 }
470 s->strstart += s->lookahead;
471 s->block_start = (long)s->strstart;
472 s->insert = s->lookahead;
473 s->lookahead = 0;
474 s->match_length = s->prev_length = MIN_MATCH-1;
475 s->match_available = 0;
476 strm->next_in = next;
477 strm->avail_in = avail;
478 s->wrap = wrap;
479 return Z_OK;
480 }
481
482 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)483 int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
484 z_streamp strm;
485 Bytef *dictionary;
486 uInt *dictLength;
487 {
488 deflate_state *s;
489 uInt len;
490
491 if (deflateStateCheck(strm))
492 return Z_STREAM_ERROR;
493 s = strm->state;
494 len = s->strstart + s->lookahead;
495 if (len > s->w_size)
496 len = s->w_size;
497 if (dictionary != Z_NULL && len)
498 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
499 if (dictLength != Z_NULL)
500 *dictLength = len;
501 return Z_OK;
502 }
503
504 /* ========================================================================= */
deflateResetKeep(strm)505 int ZEXPORT deflateResetKeep(strm)
506 z_streamp strm;
507 {
508 deflate_state *s;
509
510 if (deflateStateCheck(strm)) {
511 return Z_STREAM_ERROR;
512 }
513
514 strm->total_in = strm->total_out = 0;
515 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
516 strm->data_type = Z_UNKNOWN;
517
518 s = (deflate_state *)strm->state;
519 s->pending = 0;
520 s->pending_out = s->pending_buf;
521
522 if (s->wrap < 0) {
523 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
524 }
525 s->status =
526 #ifdef GZIP
527 s->wrap == 2 ? GZIP_STATE :
528 #endif
529 INIT_STATE;
530 strm->adler =
531 #ifdef GZIP
532 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
533 #endif
534 adler32(0L, Z_NULL, 0);
535 s->last_flush = -2;
536
537 _tr_init(s);
538
539 return Z_OK;
540 }
541
542 /* ========================================================================= */
deflateReset(strm)543 int ZEXPORT deflateReset(strm)
544 z_streamp strm;
545 {
546 int ret;
547
548 ret = deflateResetKeep(strm);
549 if (ret == Z_OK)
550 lm_init(strm->state);
551 return ret;
552 }
553
554 /* ========================================================================= */
deflateSetHeader(strm,head)555 int ZEXPORT deflateSetHeader(strm, head)
556 z_streamp strm;
557 gz_headerp head;
558 {
559 if (deflateStateCheck(strm) || strm->state->wrap != 2)
560 return Z_STREAM_ERROR;
561 strm->state->gzhead = head;
562 return Z_OK;
563 }
564
565 /* ========================================================================= */
deflatePending(strm,pending,bits)566 int ZEXPORT deflatePending(strm, pending, bits)
567 unsigned *pending;
568 int *bits;
569 z_streamp strm;
570 {
571 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
572 if (pending != Z_NULL)
573 *pending = strm->state->pending;
574 if (bits != Z_NULL)
575 *bits = strm->state->bi_valid;
576 return Z_OK;
577 }
578
579 /* ========================================================================= */
deflatePrime(strm,bits,value)580 int ZEXPORT deflatePrime(strm, bits, value)
581 z_streamp strm;
582 int bits;
583 int value;
584 {
585 deflate_state *s;
586 int put;
587
588 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
589 s = strm->state;
590 if (bits < 0 || bits > 16 ||
591 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
592 return Z_BUF_ERROR;
593 do {
594 put = Buf_size - s->bi_valid;
595 if (put > bits)
596 put = bits;
597 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
598 s->bi_valid += put;
599 _tr_flush_bits(s);
600 value >>= put;
601 bits -= put;
602 } while (bits);
603 return Z_OK;
604 }
605
606 /* ========================================================================= */
deflateParams(strm,level,strategy)607 int ZEXPORT deflateParams(strm, level, strategy)
608 z_streamp strm;
609 int level;
610 int strategy;
611 {
612 deflate_state *s;
613 compress_func func;
614
615 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
616 s = strm->state;
617
618 #ifdef FASTEST
619 if (level != 0) level = 1;
620 #else
621 if (level == Z_DEFAULT_COMPRESSION) level = 6;
622 #endif
623 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
624 return Z_STREAM_ERROR;
625 }
626 func = configuration_table[s->level].func;
627
628 if ((strategy != s->strategy || func != configuration_table[level].func) &&
629 s->last_flush != -2) {
630 /* Flush the last buffer: */
631 int err = deflate(strm, Z_BLOCK);
632 if (err == Z_STREAM_ERROR)
633 return err;
634 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
635 return Z_BUF_ERROR;
636 }
637 if (s->level != level) {
638 if (s->level == 0 && s->matches != 0) {
639 if (s->matches == 1)
640 slide_hash(s);
641 else
642 CLEAR_HASH(s);
643 s->matches = 0;
644 }
645 s->level = level;
646 s->max_lazy_match = configuration_table[level].max_lazy;
647 s->good_match = configuration_table[level].good_length;
648 s->nice_match = configuration_table[level].nice_length;
649 s->max_chain_length = configuration_table[level].max_chain;
650 }
651 s->strategy = strategy;
652 return Z_OK;
653 }
654
655 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)656 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
657 z_streamp strm;
658 int good_length;
659 int max_lazy;
660 int nice_length;
661 int max_chain;
662 {
663 deflate_state *s;
664
665 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
666 s = strm->state;
667 s->good_match = (uInt)good_length;
668 s->max_lazy_match = (uInt)max_lazy;
669 s->nice_match = nice_length;
670 s->max_chain_length = (uInt)max_chain;
671 return Z_OK;
672 }
673
674 /* =========================================================================
675 * For the default windowBits of 15 and memLevel of 8, this function returns a
676 * close to exact, as well as small, upper bound on the compressed size. This
677 * is an expansion of ~0.03%, plus a small constant.
678 *
679 * For any setting other than those defaults for windowBits and memLevel, one
680 * of two worst case bounds is returned. This is at most an expansion of ~4% or
681 * ~13%, plus a small constant.
682 *
683 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
684 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
685 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
686 * expansion results from five bytes of header for each stored block.
687 *
688 * The larger expansion of 13% results from a window size less than or equal to
689 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
690 * the data being compressed may have slid out of the sliding window, impeding
691 * a stored block from being emitted. Then the only choice is a fixed or
692 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
693 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
694 * which this can occur is 255 (memLevel == 2).
695 *
696 * Shifts are used to approximate divisions, for speed.
697 */
deflateBound(strm,sourceLen)698 uLong ZEXPORT deflateBound(strm, sourceLen)
699 z_streamp strm;
700 uLong sourceLen;
701 {
702 deflate_state *s;
703 uLong fixedlen, storelen, wraplen;
704
705 /* upper bound for fixed blocks with 9-bit literals and length 255
706 (memLevel == 2, which is the lowest that may not use stored blocks) --
707 ~13% overhead plus a small constant */
708 fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
709 (sourceLen >> 9) + 4;
710
711 /* upper bound for stored blocks with length 127 (memLevel == 1) --
712 ~4% overhead plus a small constant */
713 storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
714 (sourceLen >> 11) + 7;
715
716 /* if can't get parameters, return larger bound plus a zlib wrapper */
717 if (deflateStateCheck(strm))
718 return (fixedlen > storelen ? fixedlen : storelen) + 6;
719
720 /* compute wrapper length */
721 s = strm->state;
722 switch (s->wrap) {
723 case 0: /* raw deflate */
724 wraplen = 0;
725 break;
726 case 1: /* zlib wrapper */
727 wraplen = 6 + (s->strstart ? 4 : 0);
728 break;
729 #ifdef GZIP
730 case 2: /* gzip wrapper */
731 wraplen = 18;
732 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
733 Bytef *str;
734 if (s->gzhead->extra != Z_NULL)
735 wraplen += 2 + s->gzhead->extra_len;
736 str = s->gzhead->name;
737 if (str != Z_NULL)
738 do {
739 wraplen++;
740 } while (*str++);
741 str = s->gzhead->comment;
742 if (str != Z_NULL)
743 do {
744 wraplen++;
745 } while (*str++);
746 if (s->gzhead->hcrc)
747 wraplen += 2;
748 }
749 break;
750 #endif
751 default: /* for compiler happiness */
752 wraplen = 6;
753 }
754
755 /* if not default parameters, return one of the conservative bounds */
756 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
757 return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
758
759 /* default settings: return tight bound for that case -- ~0.03% overhead
760 plus a small constant */
761 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
762 (sourceLen >> 25) + 13 - 6 + wraplen;
763 }
764
765 /* =========================================================================
766 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
767 * IN assertion: the stream state is correct and there is enough room in
768 * pending_buf.
769 */
putShortMSB(s,b)770 local void putShortMSB(s, b)
771 deflate_state *s;
772 uInt b;
773 {
774 put_byte(s, (Byte)(b >> 8));
775 put_byte(s, (Byte)(b & 0xff));
776 }
777
778 /* =========================================================================
779 * Flush as much pending output as possible. All deflate() output, except for
780 * some deflate_stored() output, goes through this function so some
781 * applications may wish to modify it to avoid allocating a large
782 * strm->next_out buffer and copying into it. (See also read_buf()).
783 */
flush_pending(strm)784 local void flush_pending(strm)
785 z_streamp strm;
786 {
787 unsigned len;
788 deflate_state *s = strm->state;
789
790 _tr_flush_bits(s);
791 len = s->pending;
792 if (len > strm->avail_out) len = strm->avail_out;
793 if (len == 0) return;
794
795 zmemcpy(strm->next_out, s->pending_out, len);
796 strm->next_out += len;
797 s->pending_out += len;
798 strm->total_out += len;
799 strm->avail_out -= len;
800 s->pending -= len;
801 if (s->pending == 0) {
802 s->pending_out = s->pending_buf;
803 }
804 }
805
806 /* ===========================================================================
807 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
808 */
809 #define HCRC_UPDATE(beg) \
810 do { \
811 if (s->gzhead->hcrc && s->pending > (beg)) \
812 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
813 s->pending - (beg)); \
814 } while (0)
815
816 /* ========================================================================= */
deflate(strm,flush)817 int ZEXPORT deflate(strm, flush)
818 z_streamp strm;
819 int flush;
820 {
821 int old_flush; /* value of flush param for previous deflate call */
822 deflate_state *s;
823
824 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
825 return Z_STREAM_ERROR;
826 }
827 s = strm->state;
828
829 if (strm->next_out == Z_NULL ||
830 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
831 (s->status == FINISH_STATE && flush != Z_FINISH)) {
832 ERR_RETURN(strm, Z_STREAM_ERROR);
833 }
834 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
835
836 old_flush = s->last_flush;
837 s->last_flush = flush;
838
839 /* Flush as much pending output as possible */
840 if (s->pending != 0) {
841 flush_pending(strm);
842 if (strm->avail_out == 0) {
843 /* Since avail_out is 0, deflate will be called again with
844 * more output space, but possibly with both pending and
845 * avail_in equal to zero. There won't be anything to do,
846 * but this is not an error situation so make sure we
847 * return OK instead of BUF_ERROR at next call of deflate:
848 */
849 s->last_flush = -1;
850 return Z_OK;
851 }
852
853 /* Make sure there is something to do and avoid duplicate consecutive
854 * flushes. For repeated and useless calls with Z_FINISH, we keep
855 * returning Z_STREAM_END instead of Z_BUF_ERROR.
856 */
857 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
858 flush != Z_FINISH) {
859 ERR_RETURN(strm, Z_BUF_ERROR);
860 }
861
862 /* User must not provide more input after the first FINISH: */
863 if (s->status == FINISH_STATE && strm->avail_in != 0) {
864 ERR_RETURN(strm, Z_BUF_ERROR);
865 }
866
867 /* Write the header */
868 if (s->status == INIT_STATE && s->wrap == 0)
869 s->status = BUSY_STATE;
870 if (s->status == INIT_STATE) {
871 /* zlib header */
872 uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
873 uInt level_flags;
874
875 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
876 level_flags = 0;
877 else if (s->level < 6)
878 level_flags = 1;
879 else if (s->level == 6)
880 level_flags = 2;
881 else
882 level_flags = 3;
883 header |= (level_flags << 6);
884 if (s->strstart != 0) header |= PRESET_DICT;
885 header += 31 - (header % 31);
886
887 putShortMSB(s, header);
888
889 /* Save the adler32 of the preset dictionary: */
890 if (s->strstart != 0) {
891 putShortMSB(s, (uInt)(strm->adler >> 16));
892 putShortMSB(s, (uInt)(strm->adler & 0xffff));
893 }
894 strm->adler = adler32(0L, Z_NULL, 0);
895 s->status = BUSY_STATE;
896
897 /* Compression must start with an empty pending buffer */
898 flush_pending(strm);
899 if (s->pending != 0) {
900 s->last_flush = -1;
901 return Z_OK;
902 }
903 }
904 #ifdef GZIP
905 if (s->status == GZIP_STATE) {
906 /* gzip header */
907 strm->adler = crc32(0L, Z_NULL, 0);
908 put_byte(s, 31);
909 put_byte(s, 139);
910 put_byte(s, 8);
911 if (s->gzhead == Z_NULL) {
912 put_byte(s, 0);
913 put_byte(s, 0);
914 put_byte(s, 0);
915 put_byte(s, 0);
916 put_byte(s, 0);
917 put_byte(s, s->level == 9 ? 2 :
918 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
919 4 : 0));
920 put_byte(s, OS_CODE);
921 s->status = BUSY_STATE;
922
923 /* Compression must start with an empty pending buffer */
924 flush_pending(strm);
925 if (s->pending != 0) {
926 s->last_flush = -1;
927 return Z_OK;
928 }
929 }
930 else {
931 put_byte(s, (s->gzhead->text ? 1 : 0) +
932 (s->gzhead->hcrc ? 2 : 0) +
933 (s->gzhead->extra == Z_NULL ? 0 : 4) +
934 (s->gzhead->name == Z_NULL ? 0 : 8) +
935 (s->gzhead->comment == Z_NULL ? 0 : 16)
936 );
937 put_byte(s, (Byte)(s->gzhead->time & 0xff));
938 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
939 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
940 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
941 put_byte(s, s->level == 9 ? 2 :
942 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
943 4 : 0));
944 put_byte(s, s->gzhead->os & 0xff);
945 if (s->gzhead->extra != Z_NULL) {
946 put_byte(s, s->gzhead->extra_len & 0xff);
947 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
948 }
949 if (s->gzhead->hcrc)
950 strm->adler = crc32(strm->adler, s->pending_buf,
951 s->pending);
952 s->gzindex = 0;
953 s->status = EXTRA_STATE;
954 }
955 }
956 if (s->status == EXTRA_STATE) {
957 if (s->gzhead->extra != Z_NULL) {
958 ulg beg = s->pending; /* start of bytes to update crc */
959 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
960 while (s->pending + left > s->pending_buf_size) {
961 uInt copy = s->pending_buf_size - s->pending;
962 zmemcpy(s->pending_buf + s->pending,
963 s->gzhead->extra + s->gzindex, copy);
964 s->pending = s->pending_buf_size;
965 HCRC_UPDATE(beg);
966 s->gzindex += copy;
967 flush_pending(strm);
968 if (s->pending != 0) {
969 s->last_flush = -1;
970 return Z_OK;
971 }
972 beg = 0;
973 left -= copy;
974 }
975 zmemcpy(s->pending_buf + s->pending,
976 s->gzhead->extra + s->gzindex, left);
977 s->pending += left;
978 HCRC_UPDATE(beg);
979 s->gzindex = 0;
980 }
981 s->status = NAME_STATE;
982 }
983 if (s->status == NAME_STATE) {
984 if (s->gzhead->name != Z_NULL) {
985 ulg beg = s->pending; /* start of bytes to update crc */
986 int val;
987 do {
988 if (s->pending == s->pending_buf_size) {
989 HCRC_UPDATE(beg);
990 flush_pending(strm);
991 if (s->pending != 0) {
992 s->last_flush = -1;
993 return Z_OK;
994 }
995 beg = 0;
996 }
997 val = s->gzhead->name[s->gzindex++];
998 put_byte(s, val);
999 } while (val != 0);
1000 HCRC_UPDATE(beg);
1001 s->gzindex = 0;
1002 }
1003 s->status = COMMENT_STATE;
1004 }
1005 if (s->status == COMMENT_STATE) {
1006 if (s->gzhead->comment != Z_NULL) {
1007 ulg beg = s->pending; /* start of bytes to update crc */
1008 int val;
1009 do {
1010 if (s->pending == s->pending_buf_size) {
1011 HCRC_UPDATE(beg);
1012 flush_pending(strm);
1013 if (s->pending != 0) {
1014 s->last_flush = -1;
1015 return Z_OK;
1016 }
1017 beg = 0;
1018 }
1019 val = s->gzhead->comment[s->gzindex++];
1020 put_byte(s, val);
1021 } while (val != 0);
1022 HCRC_UPDATE(beg);
1023 }
1024 s->status = HCRC_STATE;
1025 }
1026 if (s->status == HCRC_STATE) {
1027 if (s->gzhead->hcrc) {
1028 if (s->pending + 2 > s->pending_buf_size) {
1029 flush_pending(strm);
1030 if (s->pending != 0) {
1031 s->last_flush = -1;
1032 return Z_OK;
1033 }
1034 }
1035 put_byte(s, (Byte)(strm->adler & 0xff));
1036 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1037 strm->adler = crc32(0L, Z_NULL, 0);
1038 }
1039 s->status = BUSY_STATE;
1040
1041 /* Compression must start with an empty pending buffer */
1042 flush_pending(strm);
1043 if (s->pending != 0) {
1044 s->last_flush = -1;
1045 return Z_OK;
1046 }
1047 }
1048 #endif
1049
1050 /* Start a new block or continue the current one.
1051 */
1052 if (strm->avail_in != 0 || s->lookahead != 0 ||
1053 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1054 block_state bstate;
1055
1056 bstate = s->level == 0 ? deflate_stored(s, flush) :
1057 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1058 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1059 (*(configuration_table[s->level].func))(s, flush);
1060
1061 if (bstate == finish_started || bstate == finish_done) {
1062 s->status = FINISH_STATE;
1063 }
1064 if (bstate == need_more || bstate == finish_started) {
1065 if (strm->avail_out == 0) {
1066 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1067 }
1068 return Z_OK;
1069 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1070 * of deflate should use the same flush parameter to make sure
1071 * that the flush is complete. So we don't have to output an
1072 * empty block here, this will be done at next call. This also
1073 * ensures that for a very small output buffer, we emit at most
1074 * one empty block.
1075 */
1076 }
1077 if (bstate == block_done) {
1078 if (flush == Z_PARTIAL_FLUSH) {
1079 _tr_align(s);
1080 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1081 _tr_stored_block(s, (char*)0, 0L, 0);
1082 /* For a full flush, this empty block will be recognized
1083 * as a special marker by inflate_sync().
1084 */
1085 if (flush == Z_FULL_FLUSH) {
1086 CLEAR_HASH(s); /* forget history */
1087 if (s->lookahead == 0) {
1088 s->strstart = 0;
1089 s->block_start = 0L;
1090 s->insert = 0;
1091 }
1092 }
1093 }
1094 flush_pending(strm);
1095 if (strm->avail_out == 0) {
1096 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1097 return Z_OK;
1098 }
1099 }
1100 }
1101
1102 if (flush != Z_FINISH) return Z_OK;
1103 if (s->wrap <= 0) return Z_STREAM_END;
1104
1105 /* Write the trailer */
1106 #ifdef GZIP
1107 if (s->wrap == 2) {
1108 put_byte(s, (Byte)(strm->adler & 0xff));
1109 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1110 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1111 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1112 put_byte(s, (Byte)(strm->total_in & 0xff));
1113 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1114 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1115 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1116 }
1117 else
1118 #endif
1119 {
1120 putShortMSB(s, (uInt)(strm->adler >> 16));
1121 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1122 }
1123 flush_pending(strm);
1124 /* If avail_out is zero, the application will call deflate again
1125 * to flush the rest.
1126 */
1127 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1128 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1129 }
1130
1131 /* ========================================================================= */
deflateEnd(strm)1132 int ZEXPORT deflateEnd(strm)
1133 z_streamp strm;
1134 {
1135 int status;
1136
1137 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1138
1139 status = strm->state->status;
1140
1141 /* Deallocate in reverse order of allocations: */
1142 TRY_FREE(strm, strm->state->pending_buf);
1143 TRY_FREE(strm, strm->state->head);
1144 TRY_FREE(strm, strm->state->prev);
1145 TRY_FREE(strm, strm->state->window);
1146
1147 ZFREE(strm, strm->state);
1148 strm->state = Z_NULL;
1149
1150 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1151 }
1152
1153 /* =========================================================================
1154 * Copy the source state to the destination state.
1155 * To simplify the source, this is not supported for 16-bit MSDOS (which
1156 * doesn't have enough memory anyway to duplicate compression states).
1157 */
deflateCopy(dest,source)1158 int ZEXPORT deflateCopy(dest, source)
1159 z_streamp dest;
1160 z_streamp source;
1161 {
1162 #ifdef MAXSEG_64K
1163 return Z_STREAM_ERROR;
1164 #else
1165 deflate_state *ds;
1166 deflate_state *ss;
1167
1168
1169 if (deflateStateCheck(source) || dest == Z_NULL) {
1170 return Z_STREAM_ERROR;
1171 }
1172
1173 ss = source->state;
1174
1175 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1176
1177 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1178 if (ds == Z_NULL) return Z_MEM_ERROR;
1179 dest->state = (struct internal_state FAR *) ds;
1180 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1181 ds->strm = dest;
1182
1183 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1184 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1185 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1186 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1187
1188 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1189 ds->pending_buf == Z_NULL) {
1190 deflateEnd (dest);
1191 return Z_MEM_ERROR;
1192 }
1193 /* following zmemcpy do not work for 16-bit MSDOS */
1194 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1195 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1196 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1197 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1198
1199 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1200 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1201
1202 ds->l_desc.dyn_tree = ds->dyn_ltree;
1203 ds->d_desc.dyn_tree = ds->dyn_dtree;
1204 ds->bl_desc.dyn_tree = ds->bl_tree;
1205
1206 return Z_OK;
1207 #endif /* MAXSEG_64K */
1208 }
1209
1210 /* ===========================================================================
1211 * Read a new buffer from the current input stream, update the adler32
1212 * and total number of bytes read. All deflate() input goes through
1213 * this function so some applications may wish to modify it to avoid
1214 * allocating a large strm->next_in buffer and copying from it.
1215 * (See also flush_pending()).
1216 */
read_buf(strm,buf,size)1217 local unsigned read_buf(strm, buf, size)
1218 z_streamp strm;
1219 Bytef *buf;
1220 unsigned size;
1221 {
1222 unsigned len = strm->avail_in;
1223
1224 if (len > size) len = size;
1225 if (len == 0) return 0;
1226
1227 strm->avail_in -= len;
1228
1229 zmemcpy(buf, strm->next_in, len);
1230 if (strm->state->wrap == 1) {
1231 strm->adler = adler32(strm->adler, buf, len);
1232 }
1233 #ifdef GZIP
1234 else if (strm->state->wrap == 2) {
1235 strm->adler = crc32(strm->adler, buf, len);
1236 }
1237 #endif
1238 strm->next_in += len;
1239 strm->total_in += len;
1240
1241 return len;
1242 }
1243
1244 /* ===========================================================================
1245 * Initialize the "longest match" routines for a new zlib stream
1246 */
lm_init(s)1247 local void lm_init(s)
1248 deflate_state *s;
1249 {
1250 s->window_size = (ulg)2L*s->w_size;
1251
1252 CLEAR_HASH(s);
1253
1254 /* Set the default configuration parameters:
1255 */
1256 s->max_lazy_match = configuration_table[s->level].max_lazy;
1257 s->good_match = configuration_table[s->level].good_length;
1258 s->nice_match = configuration_table[s->level].nice_length;
1259 s->max_chain_length = configuration_table[s->level].max_chain;
1260
1261 s->strstart = 0;
1262 s->block_start = 0L;
1263 s->lookahead = 0;
1264 s->insert = 0;
1265 s->match_length = s->prev_length = MIN_MATCH-1;
1266 s->match_available = 0;
1267 s->ins_h = 0;
1268 }
1269
1270 #ifndef FASTEST
1271 /* ===========================================================================
1272 * Set match_start to the longest match starting at the given string and
1273 * return its length. Matches shorter or equal to prev_length are discarded,
1274 * in which case the result is equal to prev_length and match_start is
1275 * garbage.
1276 * IN assertions: cur_match is the head of the hash chain for the current
1277 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1278 * OUT assertion: the match length is not greater than s->lookahead.
1279 */
longest_match(s,cur_match)1280 local uInt longest_match(s, cur_match)
1281 deflate_state *s;
1282 IPos cur_match; /* current match */
1283 {
1284 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1285 register Bytef *scan = s->window + s->strstart; /* current string */
1286 register Bytef *match; /* matched string */
1287 register int len; /* length of current match */
1288 int best_len = (int)s->prev_length; /* best match length so far */
1289 int nice_match = s->nice_match; /* stop if match long enough */
1290 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1291 s->strstart - (IPos)MAX_DIST(s) : NIL;
1292 /* Stop when cur_match becomes <= limit. To simplify the code,
1293 * we prevent matches with the string of window index 0.
1294 */
1295 Posf *prev = s->prev;
1296 uInt wmask = s->w_mask;
1297
1298 #ifdef UNALIGNED_OK
1299 /* Compare two bytes at a time. Note: this is not always beneficial.
1300 * Try with and without -DUNALIGNED_OK to check.
1301 */
1302 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1303 register ush scan_start = *(ushf*)scan;
1304 register ush scan_end = *(ushf*)(scan + best_len - 1);
1305 #else
1306 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1307 register Byte scan_end1 = scan[best_len - 1];
1308 register Byte scan_end = scan[best_len];
1309 #endif
1310
1311 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1312 * It is easy to get rid of this optimization if necessary.
1313 */
1314 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1315
1316 /* Do not waste too much time if we already have a good match: */
1317 if (s->prev_length >= s->good_match) {
1318 chain_length >>= 2;
1319 }
1320 /* Do not look for matches beyond the end of the input. This is necessary
1321 * to make deflate deterministic.
1322 */
1323 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1324
1325 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1326 "need lookahead");
1327
1328 do {
1329 Assert(cur_match < s->strstart, "no future");
1330 match = s->window + cur_match;
1331
1332 /* Skip to next match if the match length cannot increase
1333 * or if the match length is less than 2. Note that the checks below
1334 * for insufficient lookahead only occur occasionally for performance
1335 * reasons. Therefore uninitialized memory will be accessed, and
1336 * conditional jumps will be made that depend on those values.
1337 * However the length of the match is limited to the lookahead, so
1338 * the output of deflate is not affected by the uninitialized values.
1339 */
1340 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1341 /* This code assumes sizeof(unsigned short) == 2. Do not use
1342 * UNALIGNED_OK if your compiler uses a different size.
1343 */
1344 if (*(ushf*)(match + best_len - 1) != scan_end ||
1345 *(ushf*)match != scan_start) continue;
1346
1347 /* It is not necessary to compare scan[2] and match[2] since they are
1348 * always equal when the other bytes match, given that the hash keys
1349 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1350 * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1351 * lookahead only every 4th comparison; the 128th check will be made
1352 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1353 * necessary to put more guard bytes at the end of the window, or
1354 * to check more often for insufficient lookahead.
1355 */
1356 Assert(scan[2] == match[2], "scan[2]?");
1357 scan++, match++;
1358 do {
1359 } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1360 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1361 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1362 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1363 scan < strend);
1364 /* The funny "do {}" generates better code on most compilers */
1365
1366 /* Here, scan <= window + strstart + 257 */
1367 Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1368 "wild scan");
1369 if (*scan == *match) scan++;
1370
1371 len = (MAX_MATCH - 1) - (int)(strend - scan);
1372 scan = strend - (MAX_MATCH-1);
1373
1374 #else /* UNALIGNED_OK */
1375
1376 if (match[best_len] != scan_end ||
1377 match[best_len - 1] != scan_end1 ||
1378 *match != *scan ||
1379 *++match != scan[1]) continue;
1380
1381 /* The check at best_len - 1 can be removed because it will be made
1382 * again later. (This heuristic is not always a win.)
1383 * It is not necessary to compare scan[2] and match[2] since they
1384 * are always equal when the other bytes match, given that
1385 * the hash keys are equal and that HASH_BITS >= 8.
1386 */
1387 scan += 2, match++;
1388 Assert(*scan == *match, "match[2]?");
1389
1390 /* We check for insufficient lookahead only every 8th comparison;
1391 * the 256th check will be made at strstart + 258.
1392 */
1393 do {
1394 } while (*++scan == *++match && *++scan == *++match &&
1395 *++scan == *++match && *++scan == *++match &&
1396 *++scan == *++match && *++scan == *++match &&
1397 *++scan == *++match && *++scan == *++match &&
1398 scan < strend);
1399
1400 Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1401 "wild scan");
1402
1403 len = MAX_MATCH - (int)(strend - scan);
1404 scan = strend - MAX_MATCH;
1405
1406 #endif /* UNALIGNED_OK */
1407
1408 if (len > best_len) {
1409 s->match_start = cur_match;
1410 best_len = len;
1411 if (len >= nice_match) break;
1412 #ifdef UNALIGNED_OK
1413 scan_end = *(ushf*)(scan + best_len - 1);
1414 #else
1415 scan_end1 = scan[best_len - 1];
1416 scan_end = scan[best_len];
1417 #endif
1418 }
1419 } while ((cur_match = prev[cur_match & wmask]) > limit
1420 && --chain_length != 0);
1421
1422 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1423 return s->lookahead;
1424 }
1425
1426 #else /* FASTEST */
1427
1428 /* ---------------------------------------------------------------------------
1429 * Optimized version for FASTEST only
1430 */
longest_match(s,cur_match)1431 local uInt longest_match(s, cur_match)
1432 deflate_state *s;
1433 IPos cur_match; /* current match */
1434 {
1435 register Bytef *scan = s->window + s->strstart; /* current string */
1436 register Bytef *match; /* matched string */
1437 register int len; /* length of current match */
1438 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1439
1440 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1441 * It is easy to get rid of this optimization if necessary.
1442 */
1443 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1444
1445 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1446 "need lookahead");
1447
1448 Assert(cur_match < s->strstart, "no future");
1449
1450 match = s->window + cur_match;
1451
1452 /* Return failure if the match length is less than 2:
1453 */
1454 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1455
1456 /* The check at best_len - 1 can be removed because it will be made
1457 * again later. (This heuristic is not always a win.)
1458 * It is not necessary to compare scan[2] and match[2] since they
1459 * are always equal when the other bytes match, given that
1460 * the hash keys are equal and that HASH_BITS >= 8.
1461 */
1462 scan += 2, match += 2;
1463 Assert(*scan == *match, "match[2]?");
1464
1465 /* We check for insufficient lookahead only every 8th comparison;
1466 * the 256th check will be made at strstart + 258.
1467 */
1468 do {
1469 } while (*++scan == *++match && *++scan == *++match &&
1470 *++scan == *++match && *++scan == *++match &&
1471 *++scan == *++match && *++scan == *++match &&
1472 *++scan == *++match && *++scan == *++match &&
1473 scan < strend);
1474
1475 Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1476
1477 len = MAX_MATCH - (int)(strend - scan);
1478
1479 if (len < MIN_MATCH) return MIN_MATCH - 1;
1480
1481 s->match_start = cur_match;
1482 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1483 }
1484
1485 #endif /* FASTEST */
1486
1487 #ifdef ZLIB_DEBUG
1488
1489 #define EQUAL 0
1490 /* result of memcmp for equal strings */
1491
1492 /* ===========================================================================
1493 * Check that the match at match_start is indeed a match.
1494 */
check_match(s,start,match,length)1495 local void check_match(s, start, match, length)
1496 deflate_state *s;
1497 IPos start, match;
1498 int length;
1499 {
1500 /* check that the match is indeed a match */
1501 if (zmemcmp(s->window + match,
1502 s->window + start, length) != EQUAL) {
1503 fprintf(stderr, " start %u, match %u, length %d\n",
1504 start, match, length);
1505 do {
1506 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1507 } while (--length != 0);
1508 z_error("invalid match");
1509 }
1510 if (z_verbose > 1) {
1511 fprintf(stderr,"\\[%d,%d]", start - match, length);
1512 do { putc(s->window[start++], stderr); } while (--length != 0);
1513 }
1514 }
1515 #else
1516 # define check_match(s, start, match, length)
1517 #endif /* ZLIB_DEBUG */
1518
1519 /* ===========================================================================
1520 * Fill the window when the lookahead becomes insufficient.
1521 * Updates strstart and lookahead.
1522 *
1523 * IN assertion: lookahead < MIN_LOOKAHEAD
1524 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1525 * At least one byte has been read, or avail_in == 0; reads are
1526 * performed for at least two bytes (required for the zip translate_eol
1527 * option -- not supported here).
1528 */
fill_window(s)1529 local void fill_window(s)
1530 deflate_state *s;
1531 {
1532 unsigned n;
1533 unsigned more; /* Amount of free space at the end of the window. */
1534 uInt wsize = s->w_size;
1535
1536 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1537
1538 do {
1539 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1540
1541 /* Deal with !@#$% 64K limit: */
1542 if (sizeof(int) <= 2) {
1543 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1544 more = wsize;
1545
1546 } else if (more == (unsigned)(-1)) {
1547 /* Very unlikely, but possible on 16 bit machine if
1548 * strstart == 0 && lookahead == 1 (input done a byte at time)
1549 */
1550 more--;
1551 }
1552 }
1553
1554 /* If the window is almost full and there is insufficient lookahead,
1555 * move the upper half to the lower one to make room in the upper half.
1556 */
1557 if (s->strstart >= wsize + MAX_DIST(s)) {
1558
1559 zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1560 s->match_start -= wsize;
1561 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1562 s->block_start -= (long) wsize;
1563 if (s->insert > s->strstart)
1564 s->insert = s->strstart;
1565 slide_hash(s);
1566 more += wsize;
1567 }
1568 if (s->strm->avail_in == 0) break;
1569
1570 /* If there was no sliding:
1571 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1572 * more == window_size - lookahead - strstart
1573 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1574 * => more >= window_size - 2*WSIZE + 2
1575 * In the BIG_MEM or MMAP case (not yet supported),
1576 * window_size == input_size + MIN_LOOKAHEAD &&
1577 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1578 * Otherwise, window_size == 2*WSIZE so more >= 2.
1579 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1580 */
1581 Assert(more >= 2, "more < 2");
1582
1583 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1584 s->lookahead += n;
1585
1586 /* Initialize the hash value now that we have some input: */
1587 if (s->lookahead + s->insert >= MIN_MATCH) {
1588 uInt str = s->strstart - s->insert;
1589 s->ins_h = s->window[str];
1590 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1591 #if MIN_MATCH != 3
1592 Call UPDATE_HASH() MIN_MATCH-3 more times
1593 #endif
1594 while (s->insert) {
1595 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1596 #ifndef FASTEST
1597 s->prev[str & s->w_mask] = s->head[s->ins_h];
1598 #endif
1599 s->head[s->ins_h] = (Pos)str;
1600 str++;
1601 s->insert--;
1602 if (s->lookahead + s->insert < MIN_MATCH)
1603 break;
1604 }
1605 }
1606 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1607 * but this is not important since only literal bytes will be emitted.
1608 */
1609
1610 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1611
1612 /* If the WIN_INIT bytes after the end of the current data have never been
1613 * written, then zero those bytes in order to avoid memory check reports of
1614 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1615 * the longest match routines. Update the high water mark for the next
1616 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1617 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1618 */
1619 if (s->high_water < s->window_size) {
1620 ulg curr = s->strstart + (ulg)(s->lookahead);
1621 ulg init;
1622
1623 if (s->high_water < curr) {
1624 /* Previous high water mark below current data -- zero WIN_INIT
1625 * bytes or up to end of window, whichever is less.
1626 */
1627 init = s->window_size - curr;
1628 if (init > WIN_INIT)
1629 init = WIN_INIT;
1630 zmemzero(s->window + curr, (unsigned)init);
1631 s->high_water = curr + init;
1632 }
1633 else if (s->high_water < (ulg)curr + WIN_INIT) {
1634 /* High water mark at or above current data, but below current data
1635 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1636 * to end of window, whichever is less.
1637 */
1638 init = (ulg)curr + WIN_INIT - s->high_water;
1639 if (init > s->window_size - s->high_water)
1640 init = s->window_size - s->high_water;
1641 zmemzero(s->window + s->high_water, (unsigned)init);
1642 s->high_water += init;
1643 }
1644 }
1645
1646 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1647 "not enough room for search");
1648 }
1649
1650 /* ===========================================================================
1651 * Flush the current block, with given end-of-file flag.
1652 * IN assertion: strstart is set to the end of the current match.
1653 */
1654 #define FLUSH_BLOCK_ONLY(s, last) { \
1655 _tr_flush_block(s, (s->block_start >= 0L ? \
1656 (charf *)&s->window[(unsigned)s->block_start] : \
1657 (charf *)Z_NULL), \
1658 (ulg)((long)s->strstart - s->block_start), \
1659 (last)); \
1660 s->block_start = s->strstart; \
1661 flush_pending(s->strm); \
1662 Tracev((stderr,"[FLUSH]")); \
1663 }
1664
1665 /* Same but force premature exit if necessary. */
1666 #define FLUSH_BLOCK(s, last) { \
1667 FLUSH_BLOCK_ONLY(s, last); \
1668 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1669 }
1670
1671 /* Maximum stored block length in deflate format (not including header). */
1672 #define MAX_STORED 65535
1673
1674 /* Minimum of a and b. */
1675 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1676
1677 /* ===========================================================================
1678 * Copy without compression as much as possible from the input stream, return
1679 * the current block state.
1680 *
1681 * In case deflateParams() is used to later switch to a non-zero compression
1682 * level, s->matches (otherwise unused when storing) keeps track of the number
1683 * of hash table slides to perform. If s->matches is 1, then one hash table
1684 * slide will be done when switching. If s->matches is 2, the maximum value
1685 * allowed here, then the hash table will be cleared, since two or more slides
1686 * is the same as a clear.
1687 *
1688 * deflate_stored() is written to minimize the number of times an input byte is
1689 * copied. It is most efficient with large input and output buffers, which
1690 * maximizes the opportunities to have a single copy from next_in to next_out.
1691 */
deflate_stored(s,flush)1692 local block_state deflate_stored(s, flush)
1693 deflate_state *s;
1694 int flush;
1695 {
1696 /* Smallest worthy block size when not flushing or finishing. By default
1697 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1698 * large input and output buffers, the stored block size will be larger.
1699 */
1700 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1701
1702 /* Copy as many min_block or larger stored blocks directly to next_out as
1703 * possible. If flushing, copy the remaining available input to next_out as
1704 * stored blocks, if there is enough space.
1705 */
1706 unsigned len, left, have, last = 0;
1707 unsigned used = s->strm->avail_in;
1708 do {
1709 /* Set len to the maximum size block that we can copy directly with the
1710 * available input data and output space. Set left to how much of that
1711 * would be copied from what's left in the window.
1712 */
1713 len = MAX_STORED; /* maximum deflate stored block length */
1714 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1715 if (s->strm->avail_out < have) /* need room for header */
1716 break;
1717 /* maximum stored block length that will fit in avail_out: */
1718 have = s->strm->avail_out - have;
1719 left = s->strstart - s->block_start; /* bytes left in window */
1720 if (len > (ulg)left + s->strm->avail_in)
1721 len = left + s->strm->avail_in; /* limit len to the input */
1722 if (len > have)
1723 len = have; /* limit len to the output */
1724
1725 /* If the stored block would be less than min_block in length, or if
1726 * unable to copy all of the available input when flushing, then try
1727 * copying to the window and the pending buffer instead. Also don't
1728 * write an empty block when flushing -- deflate() does that.
1729 */
1730 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1731 flush == Z_NO_FLUSH ||
1732 len != left + s->strm->avail_in))
1733 break;
1734
1735 /* Make a dummy stored block in pending to get the header bytes,
1736 * including any pending bits. This also updates the debugging counts.
1737 */
1738 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1739 _tr_stored_block(s, (char *)0, 0L, last);
1740
1741 /* Replace the lengths in the dummy stored block with len. */
1742 s->pending_buf[s->pending - 4] = len;
1743 s->pending_buf[s->pending - 3] = len >> 8;
1744 s->pending_buf[s->pending - 2] = ~len;
1745 s->pending_buf[s->pending - 1] = ~len >> 8;
1746
1747 /* Write the stored block header bytes. */
1748 flush_pending(s->strm);
1749
1750 #ifdef ZLIB_DEBUG
1751 /* Update debugging counts for the data about to be copied. */
1752 s->compressed_len += len << 3;
1753 s->bits_sent += len << 3;
1754 #endif
1755
1756 /* Copy uncompressed bytes from the window to next_out. */
1757 if (left) {
1758 if (left > len)
1759 left = len;
1760 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1761 s->strm->next_out += left;
1762 s->strm->avail_out -= left;
1763 s->strm->total_out += left;
1764 s->block_start += left;
1765 len -= left;
1766 }
1767
1768 /* Copy uncompressed bytes directly from next_in to next_out, updating
1769 * the check value.
1770 */
1771 if (len) {
1772 read_buf(s->strm, s->strm->next_out, len);
1773 s->strm->next_out += len;
1774 s->strm->avail_out -= len;
1775 s->strm->total_out += len;
1776 }
1777 } while (last == 0);
1778
1779 /* Update the sliding window with the last s->w_size bytes of the copied
1780 * data, or append all of the copied data to the existing window if less
1781 * than s->w_size bytes were copied. Also update the number of bytes to
1782 * insert in the hash tables, in the event that deflateParams() switches to
1783 * a non-zero compression level.
1784 */
1785 used -= s->strm->avail_in; /* number of input bytes directly copied */
1786 if (used) {
1787 /* If any input was used, then no unused input remains in the window,
1788 * therefore s->block_start == s->strstart.
1789 */
1790 if (used >= s->w_size) { /* supplant the previous history */
1791 s->matches = 2; /* clear hash */
1792 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1793 s->strstart = s->w_size;
1794 s->insert = s->strstart;
1795 }
1796 else {
1797 if (s->window_size - s->strstart <= used) {
1798 /* Slide the window down. */
1799 s->strstart -= s->w_size;
1800 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1801 if (s->matches < 2)
1802 s->matches++; /* add a pending slide_hash() */
1803 if (s->insert > s->strstart)
1804 s->insert = s->strstart;
1805 }
1806 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1807 s->strstart += used;
1808 s->insert += MIN(used, s->w_size - s->insert);
1809 }
1810 s->block_start = s->strstart;
1811 }
1812 if (s->high_water < s->strstart)
1813 s->high_water = s->strstart;
1814
1815 /* If the last block was written to next_out, then done. */
1816 if (last)
1817 return finish_done;
1818
1819 /* If flushing and all input has been consumed, then done. */
1820 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1821 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1822 return block_done;
1823
1824 /* Fill the window with any remaining input. */
1825 have = s->window_size - s->strstart;
1826 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1827 /* Slide the window down. */
1828 s->block_start -= s->w_size;
1829 s->strstart -= s->w_size;
1830 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1831 if (s->matches < 2)
1832 s->matches++; /* add a pending slide_hash() */
1833 have += s->w_size; /* more space now */
1834 if (s->insert > s->strstart)
1835 s->insert = s->strstart;
1836 }
1837 if (have > s->strm->avail_in)
1838 have = s->strm->avail_in;
1839 if (have) {
1840 read_buf(s->strm, s->window + s->strstart, have);
1841 s->strstart += have;
1842 s->insert += MIN(have, s->w_size - s->insert);
1843 }
1844 if (s->high_water < s->strstart)
1845 s->high_water = s->strstart;
1846
1847 /* There was not enough avail_out to write a complete worthy or flushed
1848 * stored block to next_out. Write a stored block to pending instead, if we
1849 * have enough input for a worthy block, or if flushing and there is enough
1850 * room for the remaining input as a stored block in the pending buffer.
1851 */
1852 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1853 /* maximum stored block length that will fit in pending: */
1854 have = MIN(s->pending_buf_size - have, MAX_STORED);
1855 min_block = MIN(have, s->w_size);
1856 left = s->strstart - s->block_start;
1857 if (left >= min_block ||
1858 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1859 s->strm->avail_in == 0 && left <= have)) {
1860 len = MIN(left, have);
1861 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1862 len == left ? 1 : 0;
1863 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1864 s->block_start += len;
1865 flush_pending(s->strm);
1866 }
1867
1868 /* We've done all we can with the available input and output. */
1869 return last ? finish_started : need_more;
1870 }
1871
1872 /* ===========================================================================
1873 * Compress as much as possible from the input stream, return the current
1874 * block state.
1875 * This function does not perform lazy evaluation of matches and inserts
1876 * new strings in the dictionary only for unmatched strings or for short
1877 * matches. It is used only for the fast compression options.
1878 */
deflate_fast(s,flush)1879 local block_state deflate_fast(s, flush)
1880 deflate_state *s;
1881 int flush;
1882 {
1883 IPos hash_head; /* head of the hash chain */
1884 int bflush; /* set if current block must be flushed */
1885
1886 for (;;) {
1887 /* Make sure that we always have enough lookahead, except
1888 * at the end of the input file. We need MAX_MATCH bytes
1889 * for the next match, plus MIN_MATCH bytes to insert the
1890 * string following the next match.
1891 */
1892 if (s->lookahead < MIN_LOOKAHEAD) {
1893 fill_window(s);
1894 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1895 return need_more;
1896 }
1897 if (s->lookahead == 0) break; /* flush the current block */
1898 }
1899
1900 /* Insert the string window[strstart .. strstart + 2] in the
1901 * dictionary, and set hash_head to the head of the hash chain:
1902 */
1903 hash_head = NIL;
1904 if (s->lookahead >= MIN_MATCH) {
1905 INSERT_STRING(s, s->strstart, hash_head);
1906 }
1907
1908 /* Find the longest match, discarding those <= prev_length.
1909 * At this point we have always match_length < MIN_MATCH
1910 */
1911 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1912 /* To simplify the code, we prevent matches with the string
1913 * of window index 0 (in particular we have to avoid a match
1914 * of the string with itself at the start of the input file).
1915 */
1916 s->match_length = longest_match (s, hash_head);
1917 /* longest_match() sets match_start */
1918 }
1919 if (s->match_length >= MIN_MATCH) {
1920 check_match(s, s->strstart, s->match_start, s->match_length);
1921
1922 _tr_tally_dist(s, s->strstart - s->match_start,
1923 s->match_length - MIN_MATCH, bflush);
1924
1925 s->lookahead -= s->match_length;
1926
1927 /* Insert new strings in the hash table only if the match length
1928 * is not too large. This saves time but degrades compression.
1929 */
1930 #ifndef FASTEST
1931 if (s->match_length <= s->max_insert_length &&
1932 s->lookahead >= MIN_MATCH) {
1933 s->match_length--; /* string at strstart already in table */
1934 do {
1935 s->strstart++;
1936 INSERT_STRING(s, s->strstart, hash_head);
1937 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1938 * always MIN_MATCH bytes ahead.
1939 */
1940 } while (--s->match_length != 0);
1941 s->strstart++;
1942 } else
1943 #endif
1944 {
1945 s->strstart += s->match_length;
1946 s->match_length = 0;
1947 s->ins_h = s->window[s->strstart];
1948 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1949 #if MIN_MATCH != 3
1950 Call UPDATE_HASH() MIN_MATCH-3 more times
1951 #endif
1952 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1953 * matter since it will be recomputed at next deflate call.
1954 */
1955 }
1956 } else {
1957 /* No match, output a literal byte */
1958 Tracevv((stderr,"%c", s->window[s->strstart]));
1959 _tr_tally_lit(s, s->window[s->strstart], bflush);
1960 s->lookahead--;
1961 s->strstart++;
1962 }
1963 if (bflush) FLUSH_BLOCK(s, 0);
1964 }
1965 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1966 if (flush == Z_FINISH) {
1967 FLUSH_BLOCK(s, 1);
1968 return finish_done;
1969 }
1970 if (s->sym_next)
1971 FLUSH_BLOCK(s, 0);
1972 return block_done;
1973 }
1974
1975 #ifndef FASTEST
1976 /* ===========================================================================
1977 * Same as above, but achieves better compression. We use a lazy
1978 * evaluation for matches: a match is finally adopted only if there is
1979 * no better match at the next window position.
1980 */
deflate_slow(s,flush)1981 local block_state deflate_slow(s, flush)
1982 deflate_state *s;
1983 int flush;
1984 {
1985 IPos hash_head; /* head of hash chain */
1986 int bflush; /* set if current block must be flushed */
1987
1988 /* Process the input block. */
1989 for (;;) {
1990 /* Make sure that we always have enough lookahead, except
1991 * at the end of the input file. We need MAX_MATCH bytes
1992 * for the next match, plus MIN_MATCH bytes to insert the
1993 * string following the next match.
1994 */
1995 if (s->lookahead < MIN_LOOKAHEAD) {
1996 fill_window(s);
1997 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1998 return need_more;
1999 }
2000 if (s->lookahead == 0) break; /* flush the current block */
2001 }
2002
2003 /* Insert the string window[strstart .. strstart + 2] in the
2004 * dictionary, and set hash_head to the head of the hash chain:
2005 */
2006 hash_head = NIL;
2007 if (s->lookahead >= MIN_MATCH) {
2008 INSERT_STRING(s, s->strstart, hash_head);
2009 }
2010
2011 /* Find the longest match, discarding those <= prev_length.
2012 */
2013 s->prev_length = s->match_length, s->prev_match = s->match_start;
2014 s->match_length = MIN_MATCH-1;
2015
2016 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2017 s->strstart - hash_head <= MAX_DIST(s)) {
2018 /* To simplify the code, we prevent matches with the string
2019 * of window index 0 (in particular we have to avoid a match
2020 * of the string with itself at the start of the input file).
2021 */
2022 s->match_length = longest_match (s, hash_head);
2023 /* longest_match() sets match_start */
2024
2025 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2026 #if TOO_FAR <= 32767
2027 || (s->match_length == MIN_MATCH &&
2028 s->strstart - s->match_start > TOO_FAR)
2029 #endif
2030 )) {
2031
2032 /* If prev_match is also MIN_MATCH, match_start is garbage
2033 * but we will ignore the current match anyway.
2034 */
2035 s->match_length = MIN_MATCH-1;
2036 }
2037 }
2038 /* If there was a match at the previous step and the current
2039 * match is not better, output the previous match:
2040 */
2041 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2042 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2043 /* Do not insert strings in hash table beyond this. */
2044
2045 check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2046
2047 _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2048 s->prev_length - MIN_MATCH, bflush);
2049
2050 /* Insert in hash table all strings up to the end of the match.
2051 * strstart - 1 and strstart are already inserted. If there is not
2052 * enough lookahead, the last two strings are not inserted in
2053 * the hash table.
2054 */
2055 s->lookahead -= s->prev_length - 1;
2056 s->prev_length -= 2;
2057 do {
2058 if (++s->strstart <= max_insert) {
2059 INSERT_STRING(s, s->strstart, hash_head);
2060 }
2061 } while (--s->prev_length != 0);
2062 s->match_available = 0;
2063 s->match_length = MIN_MATCH-1;
2064 s->strstart++;
2065
2066 if (bflush) FLUSH_BLOCK(s, 0);
2067
2068 } else if (s->match_available) {
2069 /* If there was no match at the previous position, output a
2070 * single literal. If there was a match but the current match
2071 * is longer, truncate the previous match to a single literal.
2072 */
2073 Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2074 _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2075 if (bflush) {
2076 FLUSH_BLOCK_ONLY(s, 0);
2077 }
2078 s->strstart++;
2079 s->lookahead--;
2080 if (s->strm->avail_out == 0) return need_more;
2081 } else {
2082 /* There is no previous match to compare with, wait for
2083 * the next step to decide.
2084 */
2085 s->match_available = 1;
2086 s->strstart++;
2087 s->lookahead--;
2088 }
2089 }
2090 Assert (flush != Z_NO_FLUSH, "no flush?");
2091 if (s->match_available) {
2092 Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2093 _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2094 s->match_available = 0;
2095 }
2096 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2097 if (flush == Z_FINISH) {
2098 FLUSH_BLOCK(s, 1);
2099 return finish_done;
2100 }
2101 if (s->sym_next)
2102 FLUSH_BLOCK(s, 0);
2103 return block_done;
2104 }
2105 #endif /* FASTEST */
2106
2107 /* ===========================================================================
2108 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2109 * one. Do not maintain a hash table. (It will be regenerated if this run of
2110 * deflate switches away from Z_RLE.)
2111 */
deflate_rle(s,flush)2112 local block_state deflate_rle(s, flush)
2113 deflate_state *s;
2114 int flush;
2115 {
2116 int bflush; /* set if current block must be flushed */
2117 uInt prev; /* byte at distance one to match */
2118 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2119
2120 for (;;) {
2121 /* Make sure that we always have enough lookahead, except
2122 * at the end of the input file. We need MAX_MATCH bytes
2123 * for the longest run, plus one for the unrolled loop.
2124 */
2125 if (s->lookahead <= MAX_MATCH) {
2126 fill_window(s);
2127 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2128 return need_more;
2129 }
2130 if (s->lookahead == 0) break; /* flush the current block */
2131 }
2132
2133 /* See how many times the previous byte repeats */
2134 s->match_length = 0;
2135 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2136 scan = s->window + s->strstart - 1;
2137 prev = *scan;
2138 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2139 strend = s->window + s->strstart + MAX_MATCH;
2140 do {
2141 } while (prev == *++scan && prev == *++scan &&
2142 prev == *++scan && prev == *++scan &&
2143 prev == *++scan && prev == *++scan &&
2144 prev == *++scan && prev == *++scan &&
2145 scan < strend);
2146 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2147 if (s->match_length > s->lookahead)
2148 s->match_length = s->lookahead;
2149 }
2150 Assert(scan <= s->window + (uInt)(s->window_size - 1),
2151 "wild scan");
2152 }
2153
2154 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2155 if (s->match_length >= MIN_MATCH) {
2156 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2157
2158 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2159
2160 s->lookahead -= s->match_length;
2161 s->strstart += s->match_length;
2162 s->match_length = 0;
2163 } else {
2164 /* No match, output a literal byte */
2165 Tracevv((stderr,"%c", s->window[s->strstart]));
2166 _tr_tally_lit(s, s->window[s->strstart], bflush);
2167 s->lookahead--;
2168 s->strstart++;
2169 }
2170 if (bflush) FLUSH_BLOCK(s, 0);
2171 }
2172 s->insert = 0;
2173 if (flush == Z_FINISH) {
2174 FLUSH_BLOCK(s, 1);
2175 return finish_done;
2176 }
2177 if (s->sym_next)
2178 FLUSH_BLOCK(s, 0);
2179 return block_done;
2180 }
2181
2182 /* ===========================================================================
2183 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2184 * (It will be regenerated if this run of deflate switches away from Huffman.)
2185 */
deflate_huff(s,flush)2186 local block_state deflate_huff(s, flush)
2187 deflate_state *s;
2188 int flush;
2189 {
2190 int bflush; /* set if current block must be flushed */
2191
2192 for (;;) {
2193 /* Make sure that we have a literal to write. */
2194 if (s->lookahead == 0) {
2195 fill_window(s);
2196 if (s->lookahead == 0) {
2197 if (flush == Z_NO_FLUSH)
2198 return need_more;
2199 break; /* flush the current block */
2200 }
2201 }
2202
2203 /* Output a literal byte */
2204 s->match_length = 0;
2205 Tracevv((stderr,"%c", s->window[s->strstart]));
2206 _tr_tally_lit(s, s->window[s->strstart], bflush);
2207 s->lookahead--;
2208 s->strstart++;
2209 if (bflush) FLUSH_BLOCK(s, 0);
2210 }
2211 s->insert = 0;
2212 if (flush == Z_FINISH) {
2213 FLUSH_BLOCK(s, 1);
2214 return finish_done;
2215 }
2216 if (s->sym_next)
2217 FLUSH_BLOCK(s, 0);
2218 return block_done;
2219 }
2220