1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35 
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42 
EnsureSlot(QualType T)43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
EnsureDest(QualType T)47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60 
61 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87 
88   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89 
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91                      QualType ArrayQTy, InitListExpr *E);
92 
needsGC(QualType T)93   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95       return AggValueSlot::NeedsGCBarriers;
96     return AggValueSlot::DoesNotNeedGCBarriers;
97   }
98 
99   bool TypeRequiresGCollection(QualType T);
100 
101   //===--------------------------------------------------------------------===//
102   //                            Visitor Methods
103   //===--------------------------------------------------------------------===//
104 
Visit(Expr * E)105   void Visit(Expr *E) {
106     ApplyDebugLocation DL(CGF, E);
107     StmtVisitor<AggExprEmitter>::Visit(E);
108   }
109 
VisitStmt(Stmt * S)110   void VisitStmt(Stmt *S) {
111     CGF.ErrorUnsupported(S, "aggregate expression");
112   }
VisitParenExpr(ParenExpr * PE)113   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)114   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115     Visit(GE->getResultExpr());
116   }
VisitCoawaitExpr(CoawaitExpr * E)117   void VisitCoawaitExpr(CoawaitExpr *E) {
118     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119   }
VisitCoyieldExpr(CoyieldExpr * E)120   void VisitCoyieldExpr(CoyieldExpr *E) {
121     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122   }
VisitUnaryCoawait(UnaryOperator * E)123   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitUnaryExtension(UnaryOperator * E)124   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)125   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126     return Visit(E->getReplacement());
127   }
128 
VisitConstantExpr(ConstantExpr * E)129   void VisitConstantExpr(ConstantExpr *E) {
130     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131       CGF.EmitAggregateStore(Result, Dest.getAddress(),
132                              E->getType().isVolatileQualified());
133       return;
134     }
135     return Visit(E->getSubExpr());
136   }
137 
138   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)139   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
VisitMemberExpr(MemberExpr * ME)140   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)141   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)142   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)144   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145     EmitAggLoadOfLValue(E);
146   }
VisitPredefinedExpr(const PredefinedExpr * E)147   void VisitPredefinedExpr(const PredefinedExpr *E) {
148     EmitAggLoadOfLValue(E);
149   }
150 
151   // Operators.
152   void VisitCastExpr(CastExpr *E);
153   void VisitCallExpr(const CallExpr *E);
154   void VisitStmtExpr(const StmtExpr *E);
155   void VisitBinaryOperator(const BinaryOperator *BO);
156   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157   void VisitBinAssign(const BinaryOperator *E);
158   void VisitBinComma(const BinaryOperator *E);
159   void VisitBinCmp(const BinaryOperator *E);
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)160   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161     Visit(E->getSemanticForm());
162   }
163 
164   void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)165   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166     EmitAggLoadOfLValue(E);
167   }
168 
169   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171   void VisitChooseExpr(const ChooseExpr *CE);
172   void VisitInitListExpr(InitListExpr *E);
173   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174                               llvm::Value *outerBegin = nullptr);
175   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)176   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)177   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179     Visit(DAE->getExpr());
180   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)181   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183     Visit(DIE->getExpr());
184   }
185   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186   void VisitCXXConstructExpr(const CXXConstructExpr *E);
187   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188   void VisitLambdaExpr(LambdaExpr *E);
189   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190   void VisitExprWithCleanups(ExprWithCleanups *E);
191   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)192   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195 
VisitPseudoObjectExpr(PseudoObjectExpr * E)196   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197     if (E->isGLValue()) {
198       LValue LV = CGF.EmitPseudoObjectLValue(E);
199       return EmitFinalDestCopy(E->getType(), LV);
200     }
201 
202     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203   }
204 
205   void VisitVAArgExpr(VAArgExpr *E);
206 
207   void EmitInitializationToLValue(Expr *E, LValue Address);
208   void EmitNullInitializationToLValue(LValue Address);
209   //  case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)210   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)211   void VisitAtomicExpr(AtomicExpr *E) {
212     RValue Res = CGF.EmitAtomicExpr(E);
213     EmitFinalDestCopy(E->getType(), Res);
214   }
215 };
216 }  // end anonymous namespace.
217 
218 //===----------------------------------------------------------------------===//
219 //                                Utilities
220 //===----------------------------------------------------------------------===//
221 
222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
223 /// represents a value lvalue, this method emits the address of the lvalue,
224 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226   LValue LV = CGF.EmitLValue(E);
227 
228   // If the type of the l-value is atomic, then do an atomic load.
229   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231     return;
232   }
233 
234   EmitFinalDestCopy(E->getType(), LV);
235 }
236 
237 /// True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239   // Only record types have members that might require garbage collection.
240   const RecordType *RecordTy = T->getAs<RecordType>();
241   if (!RecordTy) return false;
242 
243   // Don't mess with non-trivial C++ types.
244   RecordDecl *Record = RecordTy->getDecl();
245   if (isa<CXXRecordDecl>(Record) &&
246       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248     return false;
249 
250   // Check whether the type has an object member.
251   return Record->hasObjectMember();
252 }
253 
withReturnValueSlot(const Expr * E,llvm::function_ref<RValue (ReturnValueSlot)> EmitCall)254 void AggExprEmitter::withReturnValueSlot(
255     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256   QualType RetTy = E->getType();
257   bool RequiresDestruction =
258       !Dest.isExternallyDestructed() &&
259       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260 
261   // If it makes no observable difference, save a memcpy + temporary.
262   //
263   // We need to always provide our own temporary if destruction is required.
264   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265   // its lifetime before we have the chance to emit a proper destructor call.
266   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267                  (RequiresDestruction && !Dest.getAddress().isValid());
268 
269   Address RetAddr = Address::invalid();
270   Address RetAllocaAddr = Address::invalid();
271 
272   EHScopeStack::stable_iterator LifetimeEndBlock;
273   llvm::Value *LifetimeSizePtr = nullptr;
274   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275   if (!UseTemp) {
276     RetAddr = Dest.getAddress();
277   } else {
278     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279     uint64_t Size =
280         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282     if (LifetimeSizePtr) {
283       LifetimeStartInst =
284           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285       assert(LifetimeStartInst->getIntrinsicID() ==
286                  llvm::Intrinsic::lifetime_start &&
287              "Last insertion wasn't a lifetime.start?");
288 
289       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291       LifetimeEndBlock = CGF.EHStack.stable_begin();
292     }
293   }
294 
295   RValue Src =
296       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297                                Dest.isExternallyDestructed()));
298 
299   if (!UseTemp)
300     return;
301 
302   assert(Dest.getPointer() != Src.getAggregatePointer());
303   EmitFinalDestCopy(E->getType(), Src);
304 
305   if (!RequiresDestruction && LifetimeStartInst) {
306     // If there's no dtor to run, the copy was the last use of our temporary.
307     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308     // eagerly.
309     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311   }
312 }
313 
314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316   assert(src.isAggregate() && "value must be aggregate value!");
317   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318   EmitFinalDestCopy(type, srcLV, EVK_RValue);
319 }
320 
321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src,ExprValueKind SrcValueKind)322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323                                        ExprValueKind SrcValueKind) {
324   // If Dest is ignored, then we're evaluating an aggregate expression
325   // in a context that doesn't care about the result.  Note that loads
326   // from volatile l-values force the existence of a non-ignored
327   // destination.
328   if (Dest.isIgnored())
329     return;
330 
331   // Copy non-trivial C structs here.
332   LValue DstLV = CGF.MakeAddrLValue(
333       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334 
335   if (SrcValueKind == EVK_RValue) {
336     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337       if (Dest.isPotentiallyAliased())
338         CGF.callCStructMoveAssignmentOperator(DstLV, src);
339       else
340         CGF.callCStructMoveConstructor(DstLV, src);
341       return;
342     }
343   } else {
344     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345       if (Dest.isPotentiallyAliased())
346         CGF.callCStructCopyAssignmentOperator(DstLV, src);
347       else
348         CGF.callCStructCopyConstructor(DstLV, src);
349       return;
350     }
351   }
352 
353   AggValueSlot srcAgg = AggValueSlot::forLValue(
354       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356   EmitCopy(type, Dest, srcAgg);
357 }
358 
359 /// Perform a copy from the source into the destination.
360 ///
361 /// \param type - the type of the aggregate being copied; qualifiers are
362 ///   ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364                               const AggValueSlot &src) {
365   if (dest.requiresGCollection()) {
366     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369                                                       dest.getAddress(),
370                                                       src.getAddress(),
371                                                       size);
372     return;
373   }
374 
375   // If the result of the assignment is used, copy the LHS there also.
376   // It's volatile if either side is.  Use the minimum alignment of
377   // the two sides.
378   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381                         dest.isVolatile() || src.isVolatile());
382 }
383 
384 /// Emit the initializer for a std::initializer_list initialized with a
385 /// real initializer list.
386 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388   // Emit an array containing the elements.  The array is externally destructed
389   // if the std::initializer_list object is.
390   ASTContext &Ctx = CGF.getContext();
391   LValue Array = CGF.EmitLValue(E->getSubExpr());
392   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393   Address ArrayPtr = Array.getAddress(CGF);
394 
395   const ConstantArrayType *ArrayType =
396       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397   assert(ArrayType && "std::initializer_list constructed from non-array");
398 
399   // FIXME: Perform the checks on the field types in SemaInit.
400   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401   RecordDecl::field_iterator Field = Record->field_begin();
402   if (Field == Record->field_end()) {
403     CGF.ErrorUnsupported(E, "weird std::initializer_list");
404     return;
405   }
406 
407   // Start pointer.
408   if (!Field->getType()->isPointerType() ||
409       !Ctx.hasSameType(Field->getType()->getPointeeType(),
410                        ArrayType->getElementType())) {
411     CGF.ErrorUnsupported(E, "weird std::initializer_list");
412     return;
413   }
414 
415   AggValueSlot Dest = EnsureSlot(E->getType());
416   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419   llvm::Value *IdxStart[] = { Zero, Zero };
420   llvm::Value *ArrayStart =
421       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
422   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423   ++Field;
424 
425   if (Field == Record->field_end()) {
426     CGF.ErrorUnsupported(E, "weird std::initializer_list");
427     return;
428   }
429 
430   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432   if (Field->getType()->isPointerType() &&
433       Ctx.hasSameType(Field->getType()->getPointeeType(),
434                       ArrayType->getElementType())) {
435     // End pointer.
436     llvm::Value *IdxEnd[] = { Zero, Size };
437     llvm::Value *ArrayEnd =
438         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
439     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441     // Length.
442     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443   } else {
444     CGF.ErrorUnsupported(E, "weird std::initializer_list");
445     return;
446   }
447 }
448 
449 /// Determine if E is a trivial array filler, that is, one that is
450 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)451 static bool isTrivialFiller(Expr *E) {
452   if (!E)
453     return true;
454 
455   if (isa<ImplicitValueInitExpr>(E))
456     return true;
457 
458   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459     if (ILE->getNumInits())
460       return false;
461     return isTrivialFiller(ILE->getArrayFiller());
462   }
463 
464   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465     return Cons->getConstructor()->isDefaultConstructor() &&
466            Cons->getConstructor()->isTrivial();
467 
468   // FIXME: Are there other cases where we can avoid emitting an initializer?
469   return false;
470 }
471 
472 /// Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType ArrayQTy,InitListExpr * E)473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474                                    QualType ArrayQTy, InitListExpr *E) {
475   uint64_t NumInitElements = E->getNumInits();
476 
477   uint64_t NumArrayElements = AType->getNumElements();
478   assert(NumInitElements <= NumArrayElements);
479 
480   QualType elementType =
481       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482 
483   // DestPtr is an array*.  Construct an elementType* by drilling
484   // down a level.
485   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486   llvm::Value *indices[] = { zero, zero };
487   llvm::Value *begin =
488     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
489 
490   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
491   CharUnits elementAlign =
492     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
493 
494   // Consider initializing the array by copying from a global. For this to be
495   // more efficient than per-element initialization, the size of the elements
496   // with explicit initializers should be large enough.
497   if (NumInitElements * elementSize.getQuantity() > 16 &&
498       elementType.isTriviallyCopyableType(CGF.getContext())) {
499     CodeGen::CodeGenModule &CGM = CGF.CGM;
500     ConstantEmitter Emitter(CGF);
501     LangAS AS = ArrayQTy.getAddressSpace();
502     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
503       auto GV = new llvm::GlobalVariable(
504           CGM.getModule(), C->getType(),
505           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
506           llvm::GlobalValue::PrivateLinkage, C, "constinit",
507           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
508           CGM.getContext().getTargetAddressSpace(AS));
509       Emitter.finalize(GV);
510       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
511       GV->setAlignment(Align.getAsAlign());
512       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
513       return;
514     }
515   }
516 
517   // Exception safety requires us to destroy all the
518   // already-constructed members if an initializer throws.
519   // For that, we'll need an EH cleanup.
520   QualType::DestructionKind dtorKind = elementType.isDestructedType();
521   Address endOfInit = Address::invalid();
522   EHScopeStack::stable_iterator cleanup;
523   llvm::Instruction *cleanupDominator = nullptr;
524   if (CGF.needsEHCleanup(dtorKind)) {
525     // In principle we could tell the cleanup where we are more
526     // directly, but the control flow can get so varied here that it
527     // would actually be quite complex.  Therefore we go through an
528     // alloca.
529     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
530                                      "arrayinit.endOfInit");
531     cleanupDominator = Builder.CreateStore(begin, endOfInit);
532     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
533                                          elementAlign,
534                                          CGF.getDestroyer(dtorKind));
535     cleanup = CGF.EHStack.stable_begin();
536 
537   // Otherwise, remember that we didn't need a cleanup.
538   } else {
539     dtorKind = QualType::DK_none;
540   }
541 
542   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
543 
544   // The 'current element to initialize'.  The invariants on this
545   // variable are complicated.  Essentially, after each iteration of
546   // the loop, it points to the last initialized element, except
547   // that it points to the beginning of the array before any
548   // elements have been initialized.
549   llvm::Value *element = begin;
550 
551   // Emit the explicit initializers.
552   for (uint64_t i = 0; i != NumInitElements; ++i) {
553     // Advance to the next element.
554     if (i > 0) {
555       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
556 
557       // Tell the cleanup that it needs to destroy up to this
558       // element.  TODO: some of these stores can be trivially
559       // observed to be unnecessary.
560       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
561     }
562 
563     LValue elementLV =
564       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
565     EmitInitializationToLValue(E->getInit(i), elementLV);
566   }
567 
568   // Check whether there's a non-trivial array-fill expression.
569   Expr *filler = E->getArrayFiller();
570   bool hasTrivialFiller = isTrivialFiller(filler);
571 
572   // Any remaining elements need to be zero-initialized, possibly
573   // using the filler expression.  We can skip this if the we're
574   // emitting to zeroed memory.
575   if (NumInitElements != NumArrayElements &&
576       !(Dest.isZeroed() && hasTrivialFiller &&
577         CGF.getTypes().isZeroInitializable(elementType))) {
578 
579     // Use an actual loop.  This is basically
580     //   do { *array++ = filler; } while (array != end);
581 
582     // Advance to the start of the rest of the array.
583     if (NumInitElements) {
584       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
585       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586     }
587 
588     // Compute the end of the array.
589     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
590                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
591                                                  "arrayinit.end");
592 
593     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
594     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
595 
596     // Jump into the body.
597     CGF.EmitBlock(bodyBB);
598     llvm::PHINode *currentElement =
599       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
600     currentElement->addIncoming(element, entryBB);
601 
602     // Emit the actual filler expression.
603     {
604       // C++1z [class.temporary]p5:
605       //   when a default constructor is called to initialize an element of
606       //   an array with no corresponding initializer [...] the destruction of
607       //   every temporary created in a default argument is sequenced before
608       //   the construction of the next array element, if any
609       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
610       LValue elementLV =
611         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
612       if (filler)
613         EmitInitializationToLValue(filler, elementLV);
614       else
615         EmitNullInitializationToLValue(elementLV);
616     }
617 
618     // Move on to the next element.
619     llvm::Value *nextElement =
620       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
621 
622     // Tell the EH cleanup that we finished with the last element.
623     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
624 
625     // Leave the loop if we're done.
626     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
627                                              "arrayinit.done");
628     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
629     Builder.CreateCondBr(done, endBB, bodyBB);
630     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
631 
632     CGF.EmitBlock(endBB);
633   }
634 
635   // Leave the partial-array cleanup if we entered one.
636   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
637 }
638 
639 //===----------------------------------------------------------------------===//
640 //                            Visitor Methods
641 //===----------------------------------------------------------------------===//
642 
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
644   Visit(E->getSubExpr());
645 }
646 
VisitOpaqueValueExpr(OpaqueValueExpr * e)647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
648   // If this is a unique OVE, just visit its source expression.
649   if (e->isUnique())
650     Visit(e->getSourceExpr());
651   else
652     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
653 }
654 
655 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
657   if (Dest.isPotentiallyAliased() &&
658       E->getType().isPODType(CGF.getContext())) {
659     // For a POD type, just emit a load of the lvalue + a copy, because our
660     // compound literal might alias the destination.
661     EmitAggLoadOfLValue(E);
662     return;
663   }
664 
665   AggValueSlot Slot = EnsureSlot(E->getType());
666 
667   // Block-scope compound literals are destroyed at the end of the enclosing
668   // scope in C.
669   bool Destruct =
670       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
671   if (Destruct)
672     Slot.setExternallyDestructed();
673 
674   CGF.EmitAggExpr(E->getInitializer(), Slot);
675 
676   if (Destruct)
677     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
678       CGF.pushLifetimeExtendedDestroy(
679           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
680           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
681 }
682 
683 /// Attempt to look through various unimportant expressions to find a
684 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind,const ASTContext & ctx)685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
686   op = op->IgnoreParenNoopCasts(ctx);
687   if (auto castE = dyn_cast<CastExpr>(op)) {
688     if (castE->getCastKind() == kind)
689       return castE->getSubExpr();
690   }
691   return nullptr;
692 }
693 
VisitCastExpr(CastExpr * E)694 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697   switch (E->getCastKind()) {
698   case CK_Dynamic: {
699     // FIXME: Can this actually happen? We have no test coverage for it.
700     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702                                       CodeGenFunction::TCK_Load);
703     // FIXME: Do we also need to handle property references here?
704     if (LV.isSimple())
705       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706     else
707       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708 
709     if (!Dest.isIgnored())
710       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711     break;
712   }
713 
714   case CK_ToUnion: {
715     // Evaluate even if the destination is ignored.
716     if (Dest.isIgnored()) {
717       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718                       /*ignoreResult=*/true);
719       break;
720     }
721 
722     // GCC union extension
723     QualType Ty = E->getSubExpr()->getType();
724     Address CastPtr =
725       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726     EmitInitializationToLValue(E->getSubExpr(),
727                                CGF.MakeAddrLValue(CastPtr, Ty));
728     break;
729   }
730 
731   case CK_LValueToRValueBitCast: {
732     if (Dest.isIgnored()) {
733       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734                       /*ignoreResult=*/true);
735       break;
736     }
737 
738     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739     Address SourceAddress =
740         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741     Address DestAddress =
742         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743     llvm::Value *SizeVal = llvm::ConstantInt::get(
744         CGF.SizeTy,
745         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747     break;
748   }
749 
750   case CK_DerivedToBase:
751   case CK_BaseToDerived:
752   case CK_UncheckedDerivedToBase: {
753     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754                 "should have been unpacked before we got here");
755   }
756 
757   case CK_NonAtomicToAtomic:
758   case CK_AtomicToNonAtomic: {
759     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760 
761     // Determine the atomic and value types.
762     QualType atomicType = E->getSubExpr()->getType();
763     QualType valueType = E->getType();
764     if (isToAtomic) std::swap(atomicType, valueType);
765 
766     assert(atomicType->isAtomicType());
767     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768                           atomicType->castAs<AtomicType>()->getValueType()));
769 
770     // Just recurse normally if we're ignoring the result or the
771     // atomic type doesn't change representation.
772     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773       return Visit(E->getSubExpr());
774     }
775 
776     CastKind peepholeTarget =
777       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778 
779     // These two cases are reverses of each other; try to peephole them.
780     if (Expr *op =
781             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
782       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
783                                                      E->getType()) &&
784            "peephole significantly changed types?");
785       return Visit(op);
786     }
787 
788     // If we're converting an r-value of non-atomic type to an r-value
789     // of atomic type, just emit directly into the relevant sub-object.
790     if (isToAtomic) {
791       AggValueSlot valueDest = Dest;
792       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
793         // Zero-initialize.  (Strictly speaking, we only need to initialize
794         // the padding at the end, but this is simpler.)
795         if (!Dest.isZeroed())
796           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
797 
798         // Build a GEP to refer to the subobject.
799         Address valueAddr =
800             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
801         valueDest = AggValueSlot::forAddr(valueAddr,
802                                           valueDest.getQualifiers(),
803                                           valueDest.isExternallyDestructed(),
804                                           valueDest.requiresGCollection(),
805                                           valueDest.isPotentiallyAliased(),
806                                           AggValueSlot::DoesNotOverlap,
807                                           AggValueSlot::IsZeroed);
808       }
809 
810       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
811       return;
812     }
813 
814     // Otherwise, we're converting an atomic type to a non-atomic type.
815     // Make an atomic temporary, emit into that, and then copy the value out.
816     AggValueSlot atomicSlot =
817       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
818     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
819 
820     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
821     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
822     return EmitFinalDestCopy(valueType, rvalue);
823   }
824   case CK_AddressSpaceConversion:
825      return Visit(E->getSubExpr());
826 
827   case CK_LValueToRValue:
828     // If we're loading from a volatile type, force the destination
829     // into existence.
830     if (E->getSubExpr()->getType().isVolatileQualified()) {
831       bool Destruct =
832           !Dest.isExternallyDestructed() &&
833           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
834       if (Destruct)
835         Dest.setExternallyDestructed();
836       EnsureDest(E->getType());
837       Visit(E->getSubExpr());
838 
839       if (Destruct)
840         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
841                         E->getType());
842 
843       return;
844     }
845 
846     LLVM_FALLTHROUGH;
847 
848 
849   case CK_NoOp:
850   case CK_UserDefinedConversion:
851   case CK_ConstructorConversion:
852     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
853                                                    E->getType()) &&
854            "Implicit cast types must be compatible");
855     Visit(E->getSubExpr());
856     break;
857 
858   case CK_LValueBitCast:
859     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
860 
861   case CK_Dependent:
862   case CK_BitCast:
863   case CK_ArrayToPointerDecay:
864   case CK_FunctionToPointerDecay:
865   case CK_NullToPointer:
866   case CK_NullToMemberPointer:
867   case CK_BaseToDerivedMemberPointer:
868   case CK_DerivedToBaseMemberPointer:
869   case CK_MemberPointerToBoolean:
870   case CK_ReinterpretMemberPointer:
871   case CK_IntegralToPointer:
872   case CK_PointerToIntegral:
873   case CK_PointerToBoolean:
874   case CK_ToVoid:
875   case CK_VectorSplat:
876   case CK_IntegralCast:
877   case CK_BooleanToSignedIntegral:
878   case CK_IntegralToBoolean:
879   case CK_IntegralToFloating:
880   case CK_FloatingToIntegral:
881   case CK_FloatingToBoolean:
882   case CK_FloatingCast:
883   case CK_CPointerToObjCPointerCast:
884   case CK_BlockPointerToObjCPointerCast:
885   case CK_AnyPointerToBlockPointerCast:
886   case CK_ObjCObjectLValueCast:
887   case CK_FloatingRealToComplex:
888   case CK_FloatingComplexToReal:
889   case CK_FloatingComplexToBoolean:
890   case CK_FloatingComplexCast:
891   case CK_FloatingComplexToIntegralComplex:
892   case CK_IntegralRealToComplex:
893   case CK_IntegralComplexToReal:
894   case CK_IntegralComplexToBoolean:
895   case CK_IntegralComplexCast:
896   case CK_IntegralComplexToFloatingComplex:
897   case CK_ARCProduceObject:
898   case CK_ARCConsumeObject:
899   case CK_ARCReclaimReturnedObject:
900   case CK_ARCExtendBlockObject:
901   case CK_CopyAndAutoreleaseBlockObject:
902   case CK_BuiltinFnToFnPtr:
903   case CK_ZeroToOCLOpaqueType:
904   case CK_MatrixCast:
905 
906   case CK_IntToOCLSampler:
907   case CK_FloatingToFixedPoint:
908   case CK_FixedPointToFloating:
909   case CK_FixedPointCast:
910   case CK_FixedPointToBoolean:
911   case CK_FixedPointToIntegral:
912   case CK_IntegralToFixedPoint:
913     llvm_unreachable("cast kind invalid for aggregate types");
914   }
915 }
916 
VisitCallExpr(const CallExpr * E)917 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
918   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
919     EmitAggLoadOfLValue(E);
920     return;
921   }
922 
923   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
924     return CGF.EmitCallExpr(E, Slot);
925   });
926 }
927 
VisitObjCMessageExpr(ObjCMessageExpr * E)928 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
929   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
930     return CGF.EmitObjCMessageExpr(E, Slot);
931   });
932 }
933 
VisitBinComma(const BinaryOperator * E)934 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
935   CGF.EmitIgnoredExpr(E->getLHS());
936   Visit(E->getRHS());
937 }
938 
VisitStmtExpr(const StmtExpr * E)939 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
940   CodeGenFunction::StmtExprEvaluation eval(CGF);
941   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
942 }
943 
944 enum CompareKind {
945   CK_Less,
946   CK_Greater,
947   CK_Equal,
948 };
949 
EmitCompare(CGBuilderTy & Builder,CodeGenFunction & CGF,const BinaryOperator * E,llvm::Value * LHS,llvm::Value * RHS,CompareKind Kind,const char * NameSuffix="")950 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
951                                 const BinaryOperator *E, llvm::Value *LHS,
952                                 llvm::Value *RHS, CompareKind Kind,
953                                 const char *NameSuffix = "") {
954   QualType ArgTy = E->getLHS()->getType();
955   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
956     ArgTy = CT->getElementType();
957 
958   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
959     assert(Kind == CK_Equal &&
960            "member pointers may only be compared for equality");
961     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
962         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
963   }
964 
965   // Compute the comparison instructions for the specified comparison kind.
966   struct CmpInstInfo {
967     const char *Name;
968     llvm::CmpInst::Predicate FCmp;
969     llvm::CmpInst::Predicate SCmp;
970     llvm::CmpInst::Predicate UCmp;
971   };
972   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
973     using FI = llvm::FCmpInst;
974     using II = llvm::ICmpInst;
975     switch (Kind) {
976     case CK_Less:
977       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
978     case CK_Greater:
979       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
980     case CK_Equal:
981       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
982     }
983     llvm_unreachable("Unrecognised CompareKind enum");
984   }();
985 
986   if (ArgTy->hasFloatingRepresentation())
987     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
988                               llvm::Twine(InstInfo.Name) + NameSuffix);
989   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
990     auto Inst =
991         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
992     return Builder.CreateICmp(Inst, LHS, RHS,
993                               llvm::Twine(InstInfo.Name) + NameSuffix);
994   }
995 
996   llvm_unreachable("unsupported aggregate binary expression should have "
997                    "already been handled");
998 }
999 
VisitBinCmp(const BinaryOperator * E)1000 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1001   using llvm::BasicBlock;
1002   using llvm::PHINode;
1003   using llvm::Value;
1004   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1005                                       E->getRHS()->getType()));
1006   const ComparisonCategoryInfo &CmpInfo =
1007       CGF.getContext().CompCategories.getInfoForType(E->getType());
1008   assert(CmpInfo.Record->isTriviallyCopyable() &&
1009          "cannot copy non-trivially copyable aggregate");
1010 
1011   QualType ArgTy = E->getLHS()->getType();
1012 
1013   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1014       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1015       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1016     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1017   }
1018   bool IsComplex = ArgTy->isAnyComplexType();
1019 
1020   // Evaluate the operands to the expression and extract their values.
1021   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1022     RValue RV = CGF.EmitAnyExpr(E);
1023     if (RV.isScalar())
1024       return {RV.getScalarVal(), nullptr};
1025     if (RV.isAggregate())
1026       return {RV.getAggregatePointer(), nullptr};
1027     assert(RV.isComplex());
1028     return RV.getComplexVal();
1029   };
1030   auto LHSValues = EmitOperand(E->getLHS()),
1031        RHSValues = EmitOperand(E->getRHS());
1032 
1033   auto EmitCmp = [&](CompareKind K) {
1034     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1035                              K, IsComplex ? ".r" : "");
1036     if (!IsComplex)
1037       return Cmp;
1038     assert(K == CompareKind::CK_Equal);
1039     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1040                                  RHSValues.second, K, ".i");
1041     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1042   };
1043   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1044     return Builder.getInt(VInfo->getIntValue());
1045   };
1046 
1047   Value *Select;
1048   if (ArgTy->isNullPtrType()) {
1049     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1050   } else if (!CmpInfo.isPartial()) {
1051     Value *SelectOne =
1052         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1053                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1054     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1055                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1056                                   SelectOne, "sel.eq");
1057   } else {
1058     Value *SelectEq = Builder.CreateSelect(
1059         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1060         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1061     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1062                                            EmitCmpRes(CmpInfo.getGreater()),
1063                                            SelectEq, "sel.gt");
1064     Select = Builder.CreateSelect(
1065         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1066   }
1067   // Create the return value in the destination slot.
1068   EnsureDest(E->getType());
1069   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1070 
1071   // Emit the address of the first (and only) field in the comparison category
1072   // type, and initialize it from the constant integer value selected above.
1073   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1074       DestLV, *CmpInfo.Record->field_begin());
1075   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1076 
1077   // All done! The result is in the Dest slot.
1078 }
1079 
VisitBinaryOperator(const BinaryOperator * E)1080 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1081   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1082     VisitPointerToDataMemberBinaryOperator(E);
1083   else
1084     CGF.ErrorUnsupported(E, "aggregate binary expression");
1085 }
1086 
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)1087 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1088                                                     const BinaryOperator *E) {
1089   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1090   EmitFinalDestCopy(E->getType(), LV);
1091 }
1092 
1093 /// Is the value of the given expression possibly a reference to or
1094 /// into a __block variable?
isBlockVarRef(const Expr * E)1095 static bool isBlockVarRef(const Expr *E) {
1096   // Make sure we look through parens.
1097   E = E->IgnoreParens();
1098 
1099   // Check for a direct reference to a __block variable.
1100   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1101     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1102     return (var && var->hasAttr<BlocksAttr>());
1103   }
1104 
1105   // More complicated stuff.
1106 
1107   // Binary operators.
1108   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1109     // For an assignment or pointer-to-member operation, just care
1110     // about the LHS.
1111     if (op->isAssignmentOp() || op->isPtrMemOp())
1112       return isBlockVarRef(op->getLHS());
1113 
1114     // For a comma, just care about the RHS.
1115     if (op->getOpcode() == BO_Comma)
1116       return isBlockVarRef(op->getRHS());
1117 
1118     // FIXME: pointer arithmetic?
1119     return false;
1120 
1121   // Check both sides of a conditional operator.
1122   } else if (const AbstractConditionalOperator *op
1123                = dyn_cast<AbstractConditionalOperator>(E)) {
1124     return isBlockVarRef(op->getTrueExpr())
1125         || isBlockVarRef(op->getFalseExpr());
1126 
1127   // OVEs are required to support BinaryConditionalOperators.
1128   } else if (const OpaqueValueExpr *op
1129                = dyn_cast<OpaqueValueExpr>(E)) {
1130     if (const Expr *src = op->getSourceExpr())
1131       return isBlockVarRef(src);
1132 
1133   // Casts are necessary to get things like (*(int*)&var) = foo().
1134   // We don't really care about the kind of cast here, except
1135   // we don't want to look through l2r casts, because it's okay
1136   // to get the *value* in a __block variable.
1137   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1138     if (cast->getCastKind() == CK_LValueToRValue)
1139       return false;
1140     return isBlockVarRef(cast->getSubExpr());
1141 
1142   // Handle unary operators.  Again, just aggressively look through
1143   // it, ignoring the operation.
1144   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1145     return isBlockVarRef(uop->getSubExpr());
1146 
1147   // Look into the base of a field access.
1148   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1149     return isBlockVarRef(mem->getBase());
1150 
1151   // Look into the base of a subscript.
1152   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1153     return isBlockVarRef(sub->getBase());
1154   }
1155 
1156   return false;
1157 }
1158 
VisitBinAssign(const BinaryOperator * E)1159 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1160   // For an assignment to work, the value on the right has
1161   // to be compatible with the value on the left.
1162   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1163                                                  E->getRHS()->getType())
1164          && "Invalid assignment");
1165 
1166   // If the LHS might be a __block variable, and the RHS can
1167   // potentially cause a block copy, we need to evaluate the RHS first
1168   // so that the assignment goes the right place.
1169   // This is pretty semantically fragile.
1170   if (isBlockVarRef(E->getLHS()) &&
1171       E->getRHS()->HasSideEffects(CGF.getContext())) {
1172     // Ensure that we have a destination, and evaluate the RHS into that.
1173     EnsureDest(E->getRHS()->getType());
1174     Visit(E->getRHS());
1175 
1176     // Now emit the LHS and copy into it.
1177     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1178 
1179     // That copy is an atomic copy if the LHS is atomic.
1180     if (LHS.getType()->isAtomicType() ||
1181         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1182       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1183       return;
1184     }
1185 
1186     EmitCopy(E->getLHS()->getType(),
1187              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1188                                      needsGC(E->getLHS()->getType()),
1189                                      AggValueSlot::IsAliased,
1190                                      AggValueSlot::MayOverlap),
1191              Dest);
1192     return;
1193   }
1194 
1195   LValue LHS = CGF.EmitLValue(E->getLHS());
1196 
1197   // If we have an atomic type, evaluate into the destination and then
1198   // do an atomic copy.
1199   if (LHS.getType()->isAtomicType() ||
1200       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1201     EnsureDest(E->getRHS()->getType());
1202     Visit(E->getRHS());
1203     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1204     return;
1205   }
1206 
1207   // Codegen the RHS so that it stores directly into the LHS.
1208   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1209       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1210       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1211   // A non-volatile aggregate destination might have volatile member.
1212   if (!LHSSlot.isVolatile() &&
1213       CGF.hasVolatileMember(E->getLHS()->getType()))
1214     LHSSlot.setVolatile(true);
1215 
1216   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1217 
1218   // Copy into the destination if the assignment isn't ignored.
1219   EmitFinalDestCopy(E->getType(), LHS);
1220 
1221   if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1222       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1223     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1224                     E->getType());
1225 }
1226 
1227 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)1228 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1229   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1230   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1231   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1232 
1233   // Bind the common expression if necessary.
1234   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1235 
1236   CodeGenFunction::ConditionalEvaluation eval(CGF);
1237   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1238                            CGF.getProfileCount(E));
1239 
1240   // Save whether the destination's lifetime is externally managed.
1241   bool isExternallyDestructed = Dest.isExternallyDestructed();
1242   bool destructNonTrivialCStruct =
1243       !isExternallyDestructed &&
1244       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1245   isExternallyDestructed |= destructNonTrivialCStruct;
1246   Dest.setExternallyDestructed(isExternallyDestructed);
1247 
1248   eval.begin(CGF);
1249   CGF.EmitBlock(LHSBlock);
1250   CGF.incrementProfileCounter(E);
1251   Visit(E->getTrueExpr());
1252   eval.end(CGF);
1253 
1254   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1255   CGF.Builder.CreateBr(ContBlock);
1256 
1257   // If the result of an agg expression is unused, then the emission
1258   // of the LHS might need to create a destination slot.  That's fine
1259   // with us, and we can safely emit the RHS into the same slot, but
1260   // we shouldn't claim that it's already being destructed.
1261   Dest.setExternallyDestructed(isExternallyDestructed);
1262 
1263   eval.begin(CGF);
1264   CGF.EmitBlock(RHSBlock);
1265   Visit(E->getFalseExpr());
1266   eval.end(CGF);
1267 
1268   if (destructNonTrivialCStruct)
1269     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1270                     E->getType());
1271 
1272   CGF.EmitBlock(ContBlock);
1273 }
1274 
VisitChooseExpr(const ChooseExpr * CE)1275 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1276   Visit(CE->getChosenSubExpr());
1277 }
1278 
VisitVAArgExpr(VAArgExpr * VE)1279 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1280   Address ArgValue = Address::invalid();
1281   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1282 
1283   // If EmitVAArg fails, emit an error.
1284   if (!ArgPtr.isValid()) {
1285     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1286     return;
1287   }
1288 
1289   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1290 }
1291 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)1292 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1293   // Ensure that we have a slot, but if we already do, remember
1294   // whether it was externally destructed.
1295   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1296   EnsureDest(E->getType());
1297 
1298   // We're going to push a destructor if there isn't already one.
1299   Dest.setExternallyDestructed();
1300 
1301   Visit(E->getSubExpr());
1302 
1303   // Push that destructor we promised.
1304   if (!wasExternallyDestructed)
1305     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1306 }
1307 
1308 void
VisitCXXConstructExpr(const CXXConstructExpr * E)1309 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1310   AggValueSlot Slot = EnsureSlot(E->getType());
1311   CGF.EmitCXXConstructExpr(E, Slot);
1312 }
1313 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)1314 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1315     const CXXInheritedCtorInitExpr *E) {
1316   AggValueSlot Slot = EnsureSlot(E->getType());
1317   CGF.EmitInheritedCXXConstructorCall(
1318       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1319       E->inheritedFromVBase(), E);
1320 }
1321 
1322 void
VisitLambdaExpr(LambdaExpr * E)1323 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1324   AggValueSlot Slot = EnsureSlot(E->getType());
1325   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1326 
1327   // We'll need to enter cleanup scopes in case any of the element
1328   // initializers throws an exception.
1329   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1330   llvm::Instruction *CleanupDominator = nullptr;
1331 
1332   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1333   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1334                                                e = E->capture_init_end();
1335        i != e; ++i, ++CurField) {
1336     // Emit initialization
1337     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1338     if (CurField->hasCapturedVLAType()) {
1339       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1340       continue;
1341     }
1342 
1343     EmitInitializationToLValue(*i, LV);
1344 
1345     // Push a destructor if necessary.
1346     if (QualType::DestructionKind DtorKind =
1347             CurField->getType().isDestructedType()) {
1348       assert(LV.isSimple());
1349       if (CGF.needsEHCleanup(DtorKind)) {
1350         if (!CleanupDominator)
1351           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1352               CGF.Int8Ty,
1353               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1354               CharUnits::One()); // placeholder
1355 
1356         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1357                         CGF.getDestroyer(DtorKind), false);
1358         Cleanups.push_back(CGF.EHStack.stable_begin());
1359       }
1360     }
1361   }
1362 
1363   // Deactivate all the partial cleanups in reverse order, which
1364   // generally means popping them.
1365   for (unsigned i = Cleanups.size(); i != 0; --i)
1366     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1367 
1368   // Destroy the placeholder if we made one.
1369   if (CleanupDominator)
1370     CleanupDominator->eraseFromParent();
1371 }
1372 
VisitExprWithCleanups(ExprWithCleanups * E)1373 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1374   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1375   Visit(E->getSubExpr());
1376 }
1377 
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1378 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1379   QualType T = E->getType();
1380   AggValueSlot Slot = EnsureSlot(T);
1381   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1382 }
1383 
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1384 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1385   QualType T = E->getType();
1386   AggValueSlot Slot = EnsureSlot(T);
1387   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1388 }
1389 
1390 /// Determine whether the given cast kind is known to always convert values
1391 /// with all zero bits in their value representation to values with all zero
1392 /// bits in their value representation.
castPreservesZero(const CastExpr * CE)1393 static bool castPreservesZero(const CastExpr *CE) {
1394   switch (CE->getCastKind()) {
1395     // No-ops.
1396   case CK_NoOp:
1397   case CK_UserDefinedConversion:
1398   case CK_ConstructorConversion:
1399   case CK_BitCast:
1400   case CK_ToUnion:
1401   case CK_ToVoid:
1402     // Conversions between (possibly-complex) integral, (possibly-complex)
1403     // floating-point, and bool.
1404   case CK_BooleanToSignedIntegral:
1405   case CK_FloatingCast:
1406   case CK_FloatingComplexCast:
1407   case CK_FloatingComplexToBoolean:
1408   case CK_FloatingComplexToIntegralComplex:
1409   case CK_FloatingComplexToReal:
1410   case CK_FloatingRealToComplex:
1411   case CK_FloatingToBoolean:
1412   case CK_FloatingToIntegral:
1413   case CK_IntegralCast:
1414   case CK_IntegralComplexCast:
1415   case CK_IntegralComplexToBoolean:
1416   case CK_IntegralComplexToFloatingComplex:
1417   case CK_IntegralComplexToReal:
1418   case CK_IntegralRealToComplex:
1419   case CK_IntegralToBoolean:
1420   case CK_IntegralToFloating:
1421     // Reinterpreting integers as pointers and vice versa.
1422   case CK_IntegralToPointer:
1423   case CK_PointerToIntegral:
1424     // Language extensions.
1425   case CK_VectorSplat:
1426   case CK_MatrixCast:
1427   case CK_NonAtomicToAtomic:
1428   case CK_AtomicToNonAtomic:
1429     return true;
1430 
1431   case CK_BaseToDerivedMemberPointer:
1432   case CK_DerivedToBaseMemberPointer:
1433   case CK_MemberPointerToBoolean:
1434   case CK_NullToMemberPointer:
1435   case CK_ReinterpretMemberPointer:
1436     // FIXME: ABI-dependent.
1437     return false;
1438 
1439   case CK_AnyPointerToBlockPointerCast:
1440   case CK_BlockPointerToObjCPointerCast:
1441   case CK_CPointerToObjCPointerCast:
1442   case CK_ObjCObjectLValueCast:
1443   case CK_IntToOCLSampler:
1444   case CK_ZeroToOCLOpaqueType:
1445     // FIXME: Check these.
1446     return false;
1447 
1448   case CK_FixedPointCast:
1449   case CK_FixedPointToBoolean:
1450   case CK_FixedPointToFloating:
1451   case CK_FixedPointToIntegral:
1452   case CK_FloatingToFixedPoint:
1453   case CK_IntegralToFixedPoint:
1454     // FIXME: Do all fixed-point types represent zero as all 0 bits?
1455     return false;
1456 
1457   case CK_AddressSpaceConversion:
1458   case CK_BaseToDerived:
1459   case CK_DerivedToBase:
1460   case CK_Dynamic:
1461   case CK_NullToPointer:
1462   case CK_PointerToBoolean:
1463     // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1464     // same representation in all involved address spaces.
1465     return false;
1466 
1467   case CK_ARCConsumeObject:
1468   case CK_ARCExtendBlockObject:
1469   case CK_ARCProduceObject:
1470   case CK_ARCReclaimReturnedObject:
1471   case CK_CopyAndAutoreleaseBlockObject:
1472   case CK_ArrayToPointerDecay:
1473   case CK_FunctionToPointerDecay:
1474   case CK_BuiltinFnToFnPtr:
1475   case CK_Dependent:
1476   case CK_LValueBitCast:
1477   case CK_LValueToRValue:
1478   case CK_LValueToRValueBitCast:
1479   case CK_UncheckedDerivedToBase:
1480     return false;
1481   }
1482   llvm_unreachable("Unhandled clang::CastKind enum");
1483 }
1484 
1485 /// isSimpleZero - If emitting this value will obviously just cause a store of
1486 /// zero to memory, return true.  This can return false if uncertain, so it just
1487 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1488 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1489   E = E->IgnoreParens();
1490   while (auto *CE = dyn_cast<CastExpr>(E)) {
1491     if (!castPreservesZero(CE))
1492       break;
1493     E = CE->getSubExpr()->IgnoreParens();
1494   }
1495 
1496   // 0
1497   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1498     return IL->getValue() == 0;
1499   // +0.0
1500   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1501     return FL->getValue().isPosZero();
1502   // int()
1503   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1504       CGF.getTypes().isZeroInitializable(E->getType()))
1505     return true;
1506   // (int*)0 - Null pointer expressions.
1507   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1508     return ICE->getCastKind() == CK_NullToPointer &&
1509            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1510            !E->HasSideEffects(CGF.getContext());
1511   // '\0'
1512   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1513     return CL->getValue() == 0;
1514 
1515   // Otherwise, hard case: conservatively return false.
1516   return false;
1517 }
1518 
1519 
1520 void
EmitInitializationToLValue(Expr * E,LValue LV)1521 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1522   QualType type = LV.getType();
1523   // FIXME: Ignore result?
1524   // FIXME: Are initializers affected by volatile?
1525   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1526     // Storing "i32 0" to a zero'd memory location is a noop.
1527     return;
1528   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1529     return EmitNullInitializationToLValue(LV);
1530   } else if (isa<NoInitExpr>(E)) {
1531     // Do nothing.
1532     return;
1533   } else if (type->isReferenceType()) {
1534     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1535     return CGF.EmitStoreThroughLValue(RV, LV);
1536   }
1537 
1538   switch (CGF.getEvaluationKind(type)) {
1539   case TEK_Complex:
1540     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1541     return;
1542   case TEK_Aggregate:
1543     CGF.EmitAggExpr(
1544         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1545                                    AggValueSlot::DoesNotNeedGCBarriers,
1546                                    AggValueSlot::IsNotAliased,
1547                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1548     return;
1549   case TEK_Scalar:
1550     if (LV.isSimple()) {
1551       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1552     } else {
1553       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1554     }
1555     return;
1556   }
1557   llvm_unreachable("bad evaluation kind");
1558 }
1559 
EmitNullInitializationToLValue(LValue lv)1560 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1561   QualType type = lv.getType();
1562 
1563   // If the destination slot is already zeroed out before the aggregate is
1564   // copied into it, we don't have to emit any zeros here.
1565   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1566     return;
1567 
1568   if (CGF.hasScalarEvaluationKind(type)) {
1569     // For non-aggregates, we can store the appropriate null constant.
1570     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1571     // Note that the following is not equivalent to
1572     // EmitStoreThroughBitfieldLValue for ARC types.
1573     if (lv.isBitField()) {
1574       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1575     } else {
1576       assert(lv.isSimple());
1577       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1578     }
1579   } else {
1580     // There's a potential optimization opportunity in combining
1581     // memsets; that would be easy for arrays, but relatively
1582     // difficult for structures with the current code.
1583     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1584   }
1585 }
1586 
VisitInitListExpr(InitListExpr * E)1587 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1588 #if 0
1589   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1590   // (Length of globals? Chunks of zeroed-out space?).
1591   //
1592   // If we can, prefer a copy from a global; this is a lot less code for long
1593   // globals, and it's easier for the current optimizers to analyze.
1594   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1595     llvm::GlobalVariable* GV =
1596     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1597                              llvm::GlobalValue::InternalLinkage, C, "");
1598     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1599     return;
1600   }
1601 #endif
1602   if (E->hadArrayRangeDesignator())
1603     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1604 
1605   if (E->isTransparent())
1606     return Visit(E->getInit(0));
1607 
1608   AggValueSlot Dest = EnsureSlot(E->getType());
1609 
1610   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1611 
1612   // Handle initialization of an array.
1613   if (E->getType()->isArrayType()) {
1614     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1615     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1616     return;
1617   }
1618 
1619   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1620 
1621   // Do struct initialization; this code just sets each individual member
1622   // to the approprate value.  This makes bitfield support automatic;
1623   // the disadvantage is that the generated code is more difficult for
1624   // the optimizer, especially with bitfields.
1625   unsigned NumInitElements = E->getNumInits();
1626   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1627 
1628   // We'll need to enter cleanup scopes in case any of the element
1629   // initializers throws an exception.
1630   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1631   llvm::Instruction *cleanupDominator = nullptr;
1632   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1633     cleanups.push_back(cleanup);
1634     if (!cleanupDominator) // create placeholder once needed
1635       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1636           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1637           CharUnits::One());
1638   };
1639 
1640   unsigned curInitIndex = 0;
1641 
1642   // Emit initialization of base classes.
1643   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1644     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1645            "missing initializer for base class");
1646     for (auto &Base : CXXRD->bases()) {
1647       assert(!Base.isVirtual() && "should not see vbases here");
1648       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1649       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1650           Dest.getAddress(), CXXRD, BaseRD,
1651           /*isBaseVirtual*/ false);
1652       AggValueSlot AggSlot = AggValueSlot::forAddr(
1653           V, Qualifiers(),
1654           AggValueSlot::IsDestructed,
1655           AggValueSlot::DoesNotNeedGCBarriers,
1656           AggValueSlot::IsNotAliased,
1657           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1658       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1659 
1660       if (QualType::DestructionKind dtorKind =
1661               Base.getType().isDestructedType()) {
1662         CGF.pushDestroy(dtorKind, V, Base.getType());
1663         addCleanup(CGF.EHStack.stable_begin());
1664       }
1665     }
1666   }
1667 
1668   // Prepare a 'this' for CXXDefaultInitExprs.
1669   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1670 
1671   if (record->isUnion()) {
1672     // Only initialize one field of a union. The field itself is
1673     // specified by the initializer list.
1674     if (!E->getInitializedFieldInUnion()) {
1675       // Empty union; we have nothing to do.
1676 
1677 #ifndef NDEBUG
1678       // Make sure that it's really an empty and not a failure of
1679       // semantic analysis.
1680       for (const auto *Field : record->fields())
1681         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1682 #endif
1683       return;
1684     }
1685 
1686     // FIXME: volatility
1687     FieldDecl *Field = E->getInitializedFieldInUnion();
1688 
1689     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1690     if (NumInitElements) {
1691       // Store the initializer into the field
1692       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1693     } else {
1694       // Default-initialize to null.
1695       EmitNullInitializationToLValue(FieldLoc);
1696     }
1697 
1698     return;
1699   }
1700 
1701   // Here we iterate over the fields; this makes it simpler to both
1702   // default-initialize fields and skip over unnamed fields.
1703   for (const auto *field : record->fields()) {
1704     // We're done once we hit the flexible array member.
1705     if (field->getType()->isIncompleteArrayType())
1706       break;
1707 
1708     // Always skip anonymous bitfields.
1709     if (field->isUnnamedBitfield())
1710       continue;
1711 
1712     // We're done if we reach the end of the explicit initializers, we
1713     // have a zeroed object, and the rest of the fields are
1714     // zero-initializable.
1715     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1716         CGF.getTypes().isZeroInitializable(E->getType()))
1717       break;
1718 
1719 
1720     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1721     // We never generate write-barries for initialized fields.
1722     LV.setNonGC(true);
1723 
1724     if (curInitIndex < NumInitElements) {
1725       // Store the initializer into the field.
1726       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1727     } else {
1728       // We're out of initializers; default-initialize to null
1729       EmitNullInitializationToLValue(LV);
1730     }
1731 
1732     // Push a destructor if necessary.
1733     // FIXME: if we have an array of structures, all explicitly
1734     // initialized, we can end up pushing a linear number of cleanups.
1735     bool pushedCleanup = false;
1736     if (QualType::DestructionKind dtorKind
1737           = field->getType().isDestructedType()) {
1738       assert(LV.isSimple());
1739       if (CGF.needsEHCleanup(dtorKind)) {
1740         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1741                         CGF.getDestroyer(dtorKind), false);
1742         addCleanup(CGF.EHStack.stable_begin());
1743         pushedCleanup = true;
1744       }
1745     }
1746 
1747     // If the GEP didn't get used because of a dead zero init or something
1748     // else, clean it up for -O0 builds and general tidiness.
1749     if (!pushedCleanup && LV.isSimple())
1750       if (llvm::GetElementPtrInst *GEP =
1751               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1752         if (GEP->use_empty())
1753           GEP->eraseFromParent();
1754   }
1755 
1756   // Deactivate all the partial cleanups in reverse order, which
1757   // generally means popping them.
1758   assert((cleanupDominator || cleanups.empty()) &&
1759          "Missing cleanupDominator before deactivating cleanup blocks");
1760   for (unsigned i = cleanups.size(); i != 0; --i)
1761     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1762 
1763   // Destroy the placeholder if we made one.
1764   if (cleanupDominator)
1765     cleanupDominator->eraseFromParent();
1766 }
1767 
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E,llvm::Value * outerBegin)1768 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1769                                             llvm::Value *outerBegin) {
1770   // Emit the common subexpression.
1771   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1772 
1773   Address destPtr = EnsureSlot(E->getType()).getAddress();
1774   uint64_t numElements = E->getArraySize().getZExtValue();
1775 
1776   if (!numElements)
1777     return;
1778 
1779   // destPtr is an array*. Construct an elementType* by drilling down a level.
1780   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1781   llvm::Value *indices[] = {zero, zero};
1782   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1783                                                  "arrayinit.begin");
1784 
1785   // Prepare to special-case multidimensional array initialization: we avoid
1786   // emitting multiple destructor loops in that case.
1787   if (!outerBegin)
1788     outerBegin = begin;
1789   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1790 
1791   QualType elementType =
1792       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1793   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1794   CharUnits elementAlign =
1795       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1796 
1797   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1798   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1799 
1800   // Jump into the body.
1801   CGF.EmitBlock(bodyBB);
1802   llvm::PHINode *index =
1803       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1804   index->addIncoming(zero, entryBB);
1805   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1806 
1807   // Prepare for a cleanup.
1808   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1809   EHScopeStack::stable_iterator cleanup;
1810   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1811     if (outerBegin->getType() != element->getType())
1812       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1813     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1814                                        elementAlign,
1815                                        CGF.getDestroyer(dtorKind));
1816     cleanup = CGF.EHStack.stable_begin();
1817   } else {
1818     dtorKind = QualType::DK_none;
1819   }
1820 
1821   // Emit the actual filler expression.
1822   {
1823     // Temporaries created in an array initialization loop are destroyed
1824     // at the end of each iteration.
1825     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1826     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1827     LValue elementLV =
1828         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1829 
1830     if (InnerLoop) {
1831       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1832       auto elementSlot = AggValueSlot::forLValue(
1833           elementLV, CGF, AggValueSlot::IsDestructed,
1834           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1835           AggValueSlot::DoesNotOverlap);
1836       AggExprEmitter(CGF, elementSlot, false)
1837           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1838     } else
1839       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1840   }
1841 
1842   // Move on to the next element.
1843   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1844       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1845   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1846 
1847   // Leave the loop if we're done.
1848   llvm::Value *done = Builder.CreateICmpEQ(
1849       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1850       "arrayinit.done");
1851   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1852   Builder.CreateCondBr(done, endBB, bodyBB);
1853 
1854   CGF.EmitBlock(endBB);
1855 
1856   // Leave the partial-array cleanup if we entered one.
1857   if (dtorKind)
1858     CGF.DeactivateCleanupBlock(cleanup, index);
1859 }
1860 
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1861 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1862   AggValueSlot Dest = EnsureSlot(E->getType());
1863 
1864   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1865   EmitInitializationToLValue(E->getBase(), DestLV);
1866   VisitInitListExpr(E->getUpdater());
1867 }
1868 
1869 //===----------------------------------------------------------------------===//
1870 //                        Entry Points into this File
1871 //===----------------------------------------------------------------------===//
1872 
1873 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1874 /// non-zero bytes that will be stored when outputting the initializer for the
1875 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1876 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1877   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1878     E = MTE->getSubExpr();
1879   E = E->IgnoreParenNoopCasts(CGF.getContext());
1880 
1881   // 0 and 0.0 won't require any non-zero stores!
1882   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1883 
1884   // If this is an initlist expr, sum up the size of sizes of the (present)
1885   // elements.  If this is something weird, assume the whole thing is non-zero.
1886   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1887   while (ILE && ILE->isTransparent())
1888     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1889   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1890     return CGF.getContext().getTypeSizeInChars(E->getType());
1891 
1892   // InitListExprs for structs have to be handled carefully.  If there are
1893   // reference members, we need to consider the size of the reference, not the
1894   // referencee.  InitListExprs for unions and arrays can't have references.
1895   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1896     if (!RT->isUnionType()) {
1897       RecordDecl *SD = RT->getDecl();
1898       CharUnits NumNonZeroBytes = CharUnits::Zero();
1899 
1900       unsigned ILEElement = 0;
1901       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1902         while (ILEElement != CXXRD->getNumBases())
1903           NumNonZeroBytes +=
1904               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1905       for (const auto *Field : SD->fields()) {
1906         // We're done once we hit the flexible array member or run out of
1907         // InitListExpr elements.
1908         if (Field->getType()->isIncompleteArrayType() ||
1909             ILEElement == ILE->getNumInits())
1910           break;
1911         if (Field->isUnnamedBitfield())
1912           continue;
1913 
1914         const Expr *E = ILE->getInit(ILEElement++);
1915 
1916         // Reference values are always non-null and have the width of a pointer.
1917         if (Field->getType()->isReferenceType())
1918           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1919               CGF.getTarget().getPointerWidth(0));
1920         else
1921           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1922       }
1923 
1924       return NumNonZeroBytes;
1925     }
1926   }
1927 
1928   // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1929   CharUnits NumNonZeroBytes = CharUnits::Zero();
1930   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1931     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1932   return NumNonZeroBytes;
1933 }
1934 
1935 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1936 /// zeros in it, emit a memset and avoid storing the individual zeros.
1937 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1938 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1939                                      CodeGenFunction &CGF) {
1940   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1941   // volatile stores.
1942   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1943     return;
1944 
1945   // C++ objects with a user-declared constructor don't need zero'ing.
1946   if (CGF.getLangOpts().CPlusPlus)
1947     if (const RecordType *RT = CGF.getContext()
1948                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1949       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1950       if (RD->hasUserDeclaredConstructor())
1951         return;
1952     }
1953 
1954   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1955   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1956   if (Size <= CharUnits::fromQuantity(16))
1957     return;
1958 
1959   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1960   // we prefer to emit memset + individual stores for the rest.
1961   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1962   if (NumNonZeroBytes*4 > Size)
1963     return;
1964 
1965   // Okay, it seems like a good idea to use an initial memset, emit the call.
1966   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1967 
1968   Address Loc = Slot.getAddress();
1969   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1970   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1971 
1972   // Tell the AggExprEmitter that the slot is known zero.
1973   Slot.setZeroed();
1974 }
1975 
1976 
1977 
1978 
1979 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1980 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1981 /// the value of the aggregate expression is not needed.  If VolatileDest is
1982 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1983 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1984   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1985          "Invalid aggregate expression to emit");
1986   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1987          "slot has bits but no address");
1988 
1989   // Optimize the slot if possible.
1990   CheckAggExprForMemSetUse(Slot, E, *this);
1991 
1992   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1993 }
1994 
EmitAggExprToLValue(const Expr * E)1995 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1996   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1997   Address Temp = CreateMemTemp(E->getType());
1998   LValue LV = MakeAddrLValue(Temp, E->getType());
1999   EmitAggExpr(E, AggValueSlot::forLValue(
2000                      LV, *this, AggValueSlot::IsNotDestructed,
2001                      AggValueSlot::DoesNotNeedGCBarriers,
2002                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2003   return LV;
2004 }
2005 
2006 AggValueSlot::Overlap_t
getOverlapForFieldInit(const FieldDecl * FD)2007 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2008   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2009     return AggValueSlot::DoesNotOverlap;
2010 
2011   // If the field lies entirely within the enclosing class's nvsize, its tail
2012   // padding cannot overlap any already-initialized object. (The only subobjects
2013   // with greater addresses that might already be initialized are vbases.)
2014   const RecordDecl *ClassRD = FD->getParent();
2015   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2016   if (Layout.getFieldOffset(FD->getFieldIndex()) +
2017           getContext().getTypeSize(FD->getType()) <=
2018       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2019     return AggValueSlot::DoesNotOverlap;
2020 
2021   // The tail padding may contain values we need to preserve.
2022   return AggValueSlot::MayOverlap;
2023 }
2024 
getOverlapForBaseInit(const CXXRecordDecl * RD,const CXXRecordDecl * BaseRD,bool IsVirtual)2025 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2026     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2027   // If the most-derived object is a field declared with [[no_unique_address]],
2028   // the tail padding of any virtual base could be reused for other subobjects
2029   // of that field's class.
2030   if (IsVirtual)
2031     return AggValueSlot::MayOverlap;
2032 
2033   // If the base class is laid out entirely within the nvsize of the derived
2034   // class, its tail padding cannot yet be initialized, so we can issue
2035   // stores at the full width of the base class.
2036   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2037   if (Layout.getBaseClassOffset(BaseRD) +
2038           getContext().getASTRecordLayout(BaseRD).getSize() <=
2039       Layout.getNonVirtualSize())
2040     return AggValueSlot::DoesNotOverlap;
2041 
2042   // The tail padding may contain values we need to preserve.
2043   return AggValueSlot::MayOverlap;
2044 }
2045 
EmitAggregateCopy(LValue Dest,LValue Src,QualType Ty,AggValueSlot::Overlap_t MayOverlap,bool isVolatile)2046 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2047                                         AggValueSlot::Overlap_t MayOverlap,
2048                                         bool isVolatile) {
2049   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2050 
2051   Address DestPtr = Dest.getAddress(*this);
2052   Address SrcPtr = Src.getAddress(*this);
2053 
2054   if (getLangOpts().CPlusPlus) {
2055     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2056       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2057       assert((Record->hasTrivialCopyConstructor() ||
2058               Record->hasTrivialCopyAssignment() ||
2059               Record->hasTrivialMoveConstructor() ||
2060               Record->hasTrivialMoveAssignment() ||
2061               Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2062              "Trying to aggregate-copy a type without a trivial copy/move "
2063              "constructor or assignment operator");
2064       // Ignore empty classes in C++.
2065       if (Record->isEmpty())
2066         return;
2067     }
2068   }
2069 
2070   if (getLangOpts().CUDAIsDevice) {
2071     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2072       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2073                                                                   Src))
2074         return;
2075     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2076       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2077                                                                   Src))
2078         return;
2079     }
2080   }
2081 
2082   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2083   // C99 6.5.16.1p3, which states "If the value being stored in an object is
2084   // read from another object that overlaps in anyway the storage of the first
2085   // object, then the overlap shall be exact and the two objects shall have
2086   // qualified or unqualified versions of a compatible type."
2087   //
2088   // memcpy is not defined if the source and destination pointers are exactly
2089   // equal, but other compilers do this optimization, and almost every memcpy
2090   // implementation handles this case safely.  If there is a libc that does not
2091   // safely handle this, we can add a target hook.
2092 
2093   // Get data size info for this aggregate. Don't copy the tail padding if this
2094   // might be a potentially-overlapping subobject, since the tail padding might
2095   // be occupied by a different object. Otherwise, copying it is fine.
2096   TypeInfoChars TypeInfo;
2097   if (MayOverlap)
2098     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2099   else
2100     TypeInfo = getContext().getTypeInfoInChars(Ty);
2101 
2102   llvm::Value *SizeVal = nullptr;
2103   if (TypeInfo.Width.isZero()) {
2104     // But note that getTypeInfo returns 0 for a VLA.
2105     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2106             getContext().getAsArrayType(Ty))) {
2107       QualType BaseEltTy;
2108       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2109       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2110       assert(!TypeInfo.Width.isZero());
2111       SizeVal = Builder.CreateNUWMul(
2112           SizeVal,
2113           llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2114     }
2115   }
2116   if (!SizeVal) {
2117     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2118   }
2119 
2120   // FIXME: If we have a volatile struct, the optimizer can remove what might
2121   // appear to be `extra' memory ops:
2122   //
2123   // volatile struct { int i; } a, b;
2124   //
2125   // int main() {
2126   //   a = b;
2127   //   a = b;
2128   // }
2129   //
2130   // we need to use a different call here.  We use isVolatile to indicate when
2131   // either the source or the destination is volatile.
2132 
2133   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2134   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2135 
2136   // Don't do any of the memmove_collectable tests if GC isn't set.
2137   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2138     // fall through
2139   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2140     RecordDecl *Record = RecordTy->getDecl();
2141     if (Record->hasObjectMember()) {
2142       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2143                                                     SizeVal);
2144       return;
2145     }
2146   } else if (Ty->isArrayType()) {
2147     QualType BaseType = getContext().getBaseElementType(Ty);
2148     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2149       if (RecordTy->getDecl()->hasObjectMember()) {
2150         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2151                                                       SizeVal);
2152         return;
2153       }
2154     }
2155   }
2156 
2157   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2158 
2159   // Determine the metadata to describe the position of any padding in this
2160   // memcpy, as well as the TBAA tags for the members of the struct, in case
2161   // the optimizer wishes to expand it in to scalar memory operations.
2162   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2163     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2164 
2165   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2166     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2167         Dest.getTBAAInfo(), Src.getTBAAInfo());
2168     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2169   }
2170 }
2171