1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CGOpenMPRuntimeNVPTX.h"
16 #include "CodeGenFunction.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclOpenMP.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Basic/Cuda.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
24 #include "llvm/IR/IntrinsicsNVPTX.h"
25
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm::omp;
29
30 namespace {
31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32 class NVPTXActionTy final : public PrePostActionTy {
33 llvm::FunctionCallee EnterCallee = nullptr;
34 ArrayRef<llvm::Value *> EnterArgs;
35 llvm::FunctionCallee ExitCallee = nullptr;
36 ArrayRef<llvm::Value *> ExitArgs;
37 bool Conditional = false;
38 llvm::BasicBlock *ContBlock = nullptr;
39
40 public:
NVPTXActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)41 NVPTXActionTy(llvm::FunctionCallee EnterCallee,
42 ArrayRef<llvm::Value *> EnterArgs,
43 llvm::FunctionCallee ExitCallee,
44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46 ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)47 void Enter(CodeGenFunction &CGF) override {
48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49 if (Conditional) {
50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52 ContBlock = CGF.createBasicBlock("omp_if.end");
53 // Generate the branch (If-stmt)
54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55 CGF.EmitBlock(ThenBlock);
56 }
57 }
Done(CodeGenFunction & CGF)58 void Done(CodeGenFunction &CGF) {
59 // Emit the rest of blocks/branches
60 CGF.EmitBranch(ContBlock);
61 CGF.EmitBlock(ContBlock, true);
62 }
Exit(CodeGenFunction & CGF)63 void Exit(CodeGenFunction &CGF) override {
64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
65 }
66 };
67
68 /// A class to track the execution mode when codegening directives within
69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70 /// to the target region and used by containing directives such as 'parallel'
71 /// to emit optimized code.
72 class ExecutionRuntimeModesRAII {
73 private:
74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
75 CGOpenMPRuntimeGPU::EM_Unknown;
76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
77 bool SavedRuntimeMode = false;
78 bool *RuntimeMode = nullptr;
79
80 public:
81 /// Constructor for Non-SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode)82 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
83 : ExecMode(ExecMode) {
84 SavedExecMode = ExecMode;
85 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
86 }
87 /// Constructor for SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode,bool & RuntimeMode,bool FullRuntimeMode)88 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
89 bool &RuntimeMode, bool FullRuntimeMode)
90 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
91 SavedExecMode = ExecMode;
92 SavedRuntimeMode = RuntimeMode;
93 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
94 RuntimeMode = FullRuntimeMode;
95 }
~ExecutionRuntimeModesRAII()96 ~ExecutionRuntimeModesRAII() {
97 ExecMode = SavedExecMode;
98 if (RuntimeMode)
99 *RuntimeMode = SavedRuntimeMode;
100 }
101 };
102
103 /// GPU Configuration: This information can be derived from cuda registers,
104 /// however, providing compile time constants helps generate more efficient
105 /// code. For all practical purposes this is fine because the configuration
106 /// is the same for all known NVPTX architectures.
107 enum MachineConfiguration : unsigned {
108 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
109 /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2,
110 /// and GV_Warp_Size_Log2_Mask.
111
112 /// Global memory alignment for performance.
113 GlobalMemoryAlignment = 128,
114
115 /// Maximal size of the shared memory buffer.
116 SharedMemorySize = 128,
117 };
118
getPrivateItem(const Expr * RefExpr)119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
120 RefExpr = RefExpr->IgnoreParens();
121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
124 Base = TempASE->getBase()->IgnoreParenImpCasts();
125 RefExpr = Base;
126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
129 Base = TempOASE->getBase()->IgnoreParenImpCasts();
130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
131 Base = TempASE->getBase()->IgnoreParenImpCasts();
132 RefExpr = Base;
133 }
134 RefExpr = RefExpr->IgnoreParenImpCasts();
135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
137 const auto *ME = cast<MemberExpr>(RefExpr);
138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
139 }
140
141
buildRecordForGlobalizedVars(ASTContext & C,ArrayRef<const ValueDecl * > EscapedDecls,ArrayRef<const ValueDecl * > EscapedDeclsForTeams,llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & MappedDeclsFields,int BufSize)142 static RecordDecl *buildRecordForGlobalizedVars(
143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
146 &MappedDeclsFields, int BufSize) {
147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
149 return nullptr;
150 SmallVector<VarsDataTy, 4> GlobalizedVars;
151 for (const ValueDecl *D : EscapedDecls)
152 GlobalizedVars.emplace_back(
153 CharUnits::fromQuantity(std::max(
154 C.getDeclAlign(D).getQuantity(),
155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
156 D);
157 for (const ValueDecl *D : EscapedDeclsForTeams)
158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
160 return L.first > R.first;
161 });
162
163 // Build struct _globalized_locals_ty {
164 // /* globalized vars */[WarSize] align (max(decl_align,
165 // GlobalMemoryAlignment))
166 // /* globalized vars */ for EscapedDeclsForTeams
167 // };
168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
169 GlobalizedRD->startDefinition();
170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
172 for (const auto &Pair : GlobalizedVars) {
173 const ValueDecl *VD = Pair.second;
174 QualType Type = VD->getType();
175 if (Type->isLValueReferenceType())
176 Type = C.getPointerType(Type.getNonReferenceType());
177 else
178 Type = Type.getNonReferenceType();
179 SourceLocation Loc = VD->getLocation();
180 FieldDecl *Field;
181 if (SingleEscaped.count(VD)) {
182 Field = FieldDecl::Create(
183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
184 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
185 /*BW=*/nullptr, /*Mutable=*/false,
186 /*InitStyle=*/ICIS_NoInit);
187 Field->setAccess(AS_public);
188 if (VD->hasAttrs()) {
189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
190 E(VD->getAttrs().end());
191 I != E; ++I)
192 Field->addAttr(*I);
193 }
194 } else {
195 llvm::APInt ArraySize(32, BufSize);
196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
197 0);
198 Field = FieldDecl::Create(
199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
200 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
201 /*BW=*/nullptr, /*Mutable=*/false,
202 /*InitStyle=*/ICIS_NoInit);
203 Field->setAccess(AS_public);
204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
205 static_cast<CharUnits::QuantityType>(
206 GlobalMemoryAlignment)));
207 Field->addAttr(AlignedAttr::CreateImplicit(
208 C, /*IsAlignmentExpr=*/true,
209 IntegerLiteral::Create(C, Align,
210 C.getIntTypeForBitwidth(32, /*Signed=*/0),
211 SourceLocation()),
212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
213 }
214 GlobalizedRD->addDecl(Field);
215 MappedDeclsFields.try_emplace(VD, Field);
216 }
217 GlobalizedRD->completeDefinition();
218 return GlobalizedRD;
219 }
220
221 /// Get the list of variables that can escape their declaration context.
222 class CheckVarsEscapingDeclContext final
223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
224 CodeGenFunction &CGF;
225 llvm::SetVector<const ValueDecl *> EscapedDecls;
226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
228 RecordDecl *GlobalizedRD = nullptr;
229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
230 bool AllEscaped = false;
231 bool IsForCombinedParallelRegion = false;
232
markAsEscaped(const ValueDecl * VD)233 void markAsEscaped(const ValueDecl *VD) {
234 // Do not globalize declare target variables.
235 if (!isa<VarDecl>(VD) ||
236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
237 return;
238 VD = cast<ValueDecl>(VD->getCanonicalDecl());
239 // Use user-specified allocation.
240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
241 return;
242 // Variables captured by value must be globalized.
243 if (auto *CSI = CGF.CapturedStmtInfo) {
244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
245 // Check if need to capture the variable that was already captured by
246 // value in the outer region.
247 if (!IsForCombinedParallelRegion) {
248 if (!FD->hasAttrs())
249 return;
250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
251 if (!Attr)
252 return;
253 if (((Attr->getCaptureKind() != OMPC_map) &&
254 !isOpenMPPrivate(Attr->getCaptureKind())) ||
255 ((Attr->getCaptureKind() == OMPC_map) &&
256 !FD->getType()->isAnyPointerType()))
257 return;
258 }
259 if (!FD->getType()->isReferenceType()) {
260 assert(!VD->getType()->isVariablyModifiedType() &&
261 "Parameter captured by value with variably modified type");
262 EscapedParameters.insert(VD);
263 } else if (!IsForCombinedParallelRegion) {
264 return;
265 }
266 }
267 }
268 if ((!CGF.CapturedStmtInfo ||
269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
270 VD->getType()->isReferenceType())
271 // Do not globalize variables with reference type.
272 return;
273 if (VD->getType()->isVariablyModifiedType())
274 EscapedVariableLengthDecls.insert(VD);
275 else
276 EscapedDecls.insert(VD);
277 }
278
VisitValueDecl(const ValueDecl * VD)279 void VisitValueDecl(const ValueDecl *VD) {
280 if (VD->getType()->isLValueReferenceType())
281 markAsEscaped(VD);
282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
284 const bool SavedAllEscaped = AllEscaped;
285 AllEscaped = VD->getType()->isLValueReferenceType();
286 Visit(VarD->getInit());
287 AllEscaped = SavedAllEscaped;
288 }
289 }
290 }
VisitOpenMPCapturedStmt(const CapturedStmt * S,ArrayRef<OMPClause * > Clauses,bool IsCombinedParallelRegion)291 void VisitOpenMPCapturedStmt(const CapturedStmt *S,
292 ArrayRef<OMPClause *> Clauses,
293 bool IsCombinedParallelRegion) {
294 if (!S)
295 return;
296 for (const CapturedStmt::Capture &C : S->captures()) {
297 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
298 const ValueDecl *VD = C.getCapturedVar();
299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
300 if (IsCombinedParallelRegion) {
301 // Check if the variable is privatized in the combined construct and
302 // those private copies must be shared in the inner parallel
303 // directive.
304 IsForCombinedParallelRegion = false;
305 for (const OMPClause *C : Clauses) {
306 if (!isOpenMPPrivate(C->getClauseKind()) ||
307 C->getClauseKind() == OMPC_reduction ||
308 C->getClauseKind() == OMPC_linear ||
309 C->getClauseKind() == OMPC_private)
310 continue;
311 ArrayRef<const Expr *> Vars;
312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
313 Vars = PC->getVarRefs();
314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
315 Vars = PC->getVarRefs();
316 else
317 llvm_unreachable("Unexpected clause.");
318 for (const auto *E : Vars) {
319 const Decl *D =
320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
321 if (D == VD->getCanonicalDecl()) {
322 IsForCombinedParallelRegion = true;
323 break;
324 }
325 }
326 if (IsForCombinedParallelRegion)
327 break;
328 }
329 }
330 markAsEscaped(VD);
331 if (isa<OMPCapturedExprDecl>(VD))
332 VisitValueDecl(VD);
333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
334 }
335 }
336 }
337
buildRecordForGlobalizedVars(bool IsInTTDRegion)338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
339 assert(!GlobalizedRD &&
340 "Record for globalized variables is built already.");
341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
342 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size);
343 if (IsInTTDRegion)
344 EscapedDeclsForTeams = EscapedDecls.getArrayRef();
345 else
346 EscapedDeclsForParallel = EscapedDecls.getArrayRef();
347 GlobalizedRD = ::buildRecordForGlobalizedVars(
348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
349 MappedDeclsFields, WarpSize);
350 }
351
352 public:
CheckVarsEscapingDeclContext(CodeGenFunction & CGF,ArrayRef<const ValueDecl * > TeamsReductions)353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
354 ArrayRef<const ValueDecl *> TeamsReductions)
355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
356 }
357 virtual ~CheckVarsEscapingDeclContext() = default;
VisitDeclStmt(const DeclStmt * S)358 void VisitDeclStmt(const DeclStmt *S) {
359 if (!S)
360 return;
361 for (const Decl *D : S->decls())
362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
363 VisitValueDecl(VD);
364 }
VisitOMPExecutableDirective(const OMPExecutableDirective * D)365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
366 if (!D)
367 return;
368 if (!D->hasAssociatedStmt())
369 return;
370 if (const auto *S =
371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
372 // Do not analyze directives that do not actually require capturing,
373 // like `omp for` or `omp simd` directives.
374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
377 VisitStmt(S->getCapturedStmt());
378 return;
379 }
380 VisitOpenMPCapturedStmt(
381 S, D->clauses(),
382 CaptureRegions.back() == OMPD_parallel &&
383 isOpenMPDistributeDirective(D->getDirectiveKind()));
384 }
385 }
VisitCapturedStmt(const CapturedStmt * S)386 void VisitCapturedStmt(const CapturedStmt *S) {
387 if (!S)
388 return;
389 for (const CapturedStmt::Capture &C : S->captures()) {
390 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
391 const ValueDecl *VD = C.getCapturedVar();
392 markAsEscaped(VD);
393 if (isa<OMPCapturedExprDecl>(VD))
394 VisitValueDecl(VD);
395 }
396 }
397 }
VisitLambdaExpr(const LambdaExpr * E)398 void VisitLambdaExpr(const LambdaExpr *E) {
399 if (!E)
400 return;
401 for (const LambdaCapture &C : E->captures()) {
402 if (C.capturesVariable()) {
403 if (C.getCaptureKind() == LCK_ByRef) {
404 const ValueDecl *VD = C.getCapturedVar();
405 markAsEscaped(VD);
406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
407 VisitValueDecl(VD);
408 }
409 }
410 }
411 }
VisitBlockExpr(const BlockExpr * E)412 void VisitBlockExpr(const BlockExpr *E) {
413 if (!E)
414 return;
415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
416 if (C.isByRef()) {
417 const VarDecl *VD = C.getVariable();
418 markAsEscaped(VD);
419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
420 VisitValueDecl(VD);
421 }
422 }
423 }
VisitCallExpr(const CallExpr * E)424 void VisitCallExpr(const CallExpr *E) {
425 if (!E)
426 return;
427 for (const Expr *Arg : E->arguments()) {
428 if (!Arg)
429 continue;
430 if (Arg->isLValue()) {
431 const bool SavedAllEscaped = AllEscaped;
432 AllEscaped = true;
433 Visit(Arg);
434 AllEscaped = SavedAllEscaped;
435 } else {
436 Visit(Arg);
437 }
438 }
439 Visit(E->getCallee());
440 }
VisitDeclRefExpr(const DeclRefExpr * E)441 void VisitDeclRefExpr(const DeclRefExpr *E) {
442 if (!E)
443 return;
444 const ValueDecl *VD = E->getDecl();
445 if (AllEscaped)
446 markAsEscaped(VD);
447 if (isa<OMPCapturedExprDecl>(VD))
448 VisitValueDecl(VD);
449 else if (const auto *VarD = dyn_cast<VarDecl>(VD))
450 if (VarD->isInitCapture())
451 VisitValueDecl(VD);
452 }
VisitUnaryOperator(const UnaryOperator * E)453 void VisitUnaryOperator(const UnaryOperator *E) {
454 if (!E)
455 return;
456 if (E->getOpcode() == UO_AddrOf) {
457 const bool SavedAllEscaped = AllEscaped;
458 AllEscaped = true;
459 Visit(E->getSubExpr());
460 AllEscaped = SavedAllEscaped;
461 } else {
462 Visit(E->getSubExpr());
463 }
464 }
VisitImplicitCastExpr(const ImplicitCastExpr * E)465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
466 if (!E)
467 return;
468 if (E->getCastKind() == CK_ArrayToPointerDecay) {
469 const bool SavedAllEscaped = AllEscaped;
470 AllEscaped = true;
471 Visit(E->getSubExpr());
472 AllEscaped = SavedAllEscaped;
473 } else {
474 Visit(E->getSubExpr());
475 }
476 }
VisitExpr(const Expr * E)477 void VisitExpr(const Expr *E) {
478 if (!E)
479 return;
480 bool SavedAllEscaped = AllEscaped;
481 if (!E->isLValue())
482 AllEscaped = false;
483 for (const Stmt *Child : E->children())
484 if (Child)
485 Visit(Child);
486 AllEscaped = SavedAllEscaped;
487 }
VisitStmt(const Stmt * S)488 void VisitStmt(const Stmt *S) {
489 if (!S)
490 return;
491 for (const Stmt *Child : S->children())
492 if (Child)
493 Visit(Child);
494 }
495
496 /// Returns the record that handles all the escaped local variables and used
497 /// instead of their original storage.
getGlobalizedRecord(bool IsInTTDRegion)498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
499 if (!GlobalizedRD)
500 buildRecordForGlobalizedVars(IsInTTDRegion);
501 return GlobalizedRD;
502 }
503
504 /// Returns the field in the globalized record for the escaped variable.
getFieldForGlobalizedVar(const ValueDecl * VD) const505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
506 assert(GlobalizedRD &&
507 "Record for globalized variables must be generated already.");
508 auto I = MappedDeclsFields.find(VD);
509 if (I == MappedDeclsFields.end())
510 return nullptr;
511 return I->getSecond();
512 }
513
514 /// Returns the list of the escaped local variables/parameters.
getEscapedDecls() const515 ArrayRef<const ValueDecl *> getEscapedDecls() const {
516 return EscapedDecls.getArrayRef();
517 }
518
519 /// Checks if the escaped local variable is actually a parameter passed by
520 /// value.
getEscapedParameters() const521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
522 return EscapedParameters;
523 }
524
525 /// Returns the list of the escaped variables with the variably modified
526 /// types.
getEscapedVariableLengthDecls() const527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
528 return EscapedVariableLengthDecls.getArrayRef();
529 }
530 };
531 } // anonymous namespace
532
533 /// Get the id of the warp in the block.
534 /// We assume that the warp size is 32, which is always the case
535 /// on the NVPTX device, to generate more efficient code.
getNVPTXWarpID(CodeGenFunction & CGF)536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
537 CGBuilderTy &Bld = CGF.Builder;
538 unsigned LaneIDBits =
539 CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2);
540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
542 }
543
544 /// Get the id of the current lane in the Warp.
545 /// We assume that the warp size is 32, which is always the case
546 /// on the NVPTX device, to generate more efficient code.
getNVPTXLaneID(CodeGenFunction & CGF)547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
548 CGBuilderTy &Bld = CGF.Builder;
549 unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue(
550 llvm::omp::GV_Warp_Size_Log2_Mask);
551 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
552 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
553 "nvptx_lane_id");
554 }
555
556 /// Get the value of the thread_limit clause in the teams directive.
557 /// For the 'generic' execution mode, the runtime encodes thread_limit in
558 /// the launch parameters, always starting thread_limit+warpSize threads per
559 /// CTA. The threads in the last warp are reserved for master execution.
560 /// For the 'spmd' execution mode, all threads in a CTA are part of the team.
getThreadLimit(CodeGenFunction & CGF,bool IsInSPMDExecutionMode=false)561 static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
562 bool IsInSPMDExecutionMode = false) {
563 CGBuilderTy &Bld = CGF.Builder;
564 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
565 llvm::Value *ThreadLimit = nullptr;
566 if (IsInSPMDExecutionMode)
567 ThreadLimit = RT.getGPUNumThreads(CGF);
568 else {
569 llvm::Value *GPUNumThreads = RT.getGPUNumThreads(CGF);
570 llvm::Value *GPUWarpSize = RT.getGPUWarpSize(CGF);
571 ThreadLimit = Bld.CreateNUWSub(GPUNumThreads, GPUWarpSize, "thread_limit");
572 }
573 assert(ThreadLimit != nullptr && "Expected non-null ThreadLimit");
574 return ThreadLimit;
575 }
576
577 /// Get the thread id of the OMP master thread.
578 /// The master thread id is the first thread (lane) of the last warp in the
579 /// GPU block. Warp size is assumed to be some power of 2.
580 /// Thread id is 0 indexed.
581 /// E.g: If NumThreads is 33, master id is 32.
582 /// If NumThreads is 64, master id is 32.
583 /// If NumThreads is 1024, master id is 992.
getMasterThreadID(CodeGenFunction & CGF)584 static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
585 CGBuilderTy &Bld = CGF.Builder;
586 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
587 llvm::Value *NumThreads = RT.getGPUNumThreads(CGF);
588 // We assume that the warp size is a power of 2.
589 llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1));
590
591 llvm::Value *NumThreadsSubOne = Bld.CreateNUWSub(NumThreads, Bld.getInt32(1));
592 return Bld.CreateAnd(NumThreadsSubOne, Bld.CreateNot(Mask), "master_tid");
593 }
594
WorkerFunctionState(CodeGenModule & CGM,SourceLocation Loc)595 CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState(
596 CodeGenModule &CGM, SourceLocation Loc)
597 : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
598 Loc(Loc) {
599 createWorkerFunction(CGM);
600 }
601
createWorkerFunction(CodeGenModule & CGM)602 void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction(
603 CodeGenModule &CGM) {
604 // Create an worker function with no arguments.
605
606 WorkerFn = llvm::Function::Create(
607 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
608 /*placeholder=*/"_worker", &CGM.getModule());
609 CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
610 WorkerFn->setDoesNotRecurse();
611 }
612
613 CGOpenMPRuntimeGPU::ExecutionMode
getExecutionMode() const614 CGOpenMPRuntimeGPU::getExecutionMode() const {
615 return CurrentExecutionMode;
616 }
617
618 static CGOpenMPRuntimeGPU::DataSharingMode
getDataSharingMode(CodeGenModule & CGM)619 getDataSharingMode(CodeGenModule &CGM) {
620 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
621 : CGOpenMPRuntimeGPU::Generic;
622 }
623
624 /// Check for inner (nested) SPMD construct, if any
hasNestedSPMDDirective(ASTContext & Ctx,const OMPExecutableDirective & D)625 static bool hasNestedSPMDDirective(ASTContext &Ctx,
626 const OMPExecutableDirective &D) {
627 const auto *CS = D.getInnermostCapturedStmt();
628 const auto *Body =
629 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
630 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
631
632 if (const auto *NestedDir =
633 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
634 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
635 switch (D.getDirectiveKind()) {
636 case OMPD_target:
637 if (isOpenMPParallelDirective(DKind))
638 return true;
639 if (DKind == OMPD_teams) {
640 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
641 /*IgnoreCaptured=*/true);
642 if (!Body)
643 return false;
644 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
645 if (const auto *NND =
646 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
647 DKind = NND->getDirectiveKind();
648 if (isOpenMPParallelDirective(DKind))
649 return true;
650 }
651 }
652 return false;
653 case OMPD_target_teams:
654 return isOpenMPParallelDirective(DKind);
655 case OMPD_target_simd:
656 case OMPD_target_parallel:
657 case OMPD_target_parallel_for:
658 case OMPD_target_parallel_for_simd:
659 case OMPD_target_teams_distribute:
660 case OMPD_target_teams_distribute_simd:
661 case OMPD_target_teams_distribute_parallel_for:
662 case OMPD_target_teams_distribute_parallel_for_simd:
663 case OMPD_parallel:
664 case OMPD_for:
665 case OMPD_parallel_for:
666 case OMPD_parallel_master:
667 case OMPD_parallel_sections:
668 case OMPD_for_simd:
669 case OMPD_parallel_for_simd:
670 case OMPD_cancel:
671 case OMPD_cancellation_point:
672 case OMPD_ordered:
673 case OMPD_threadprivate:
674 case OMPD_allocate:
675 case OMPD_task:
676 case OMPD_simd:
677 case OMPD_sections:
678 case OMPD_section:
679 case OMPD_single:
680 case OMPD_master:
681 case OMPD_critical:
682 case OMPD_taskyield:
683 case OMPD_barrier:
684 case OMPD_taskwait:
685 case OMPD_taskgroup:
686 case OMPD_atomic:
687 case OMPD_flush:
688 case OMPD_depobj:
689 case OMPD_scan:
690 case OMPD_teams:
691 case OMPD_target_data:
692 case OMPD_target_exit_data:
693 case OMPD_target_enter_data:
694 case OMPD_distribute:
695 case OMPD_distribute_simd:
696 case OMPD_distribute_parallel_for:
697 case OMPD_distribute_parallel_for_simd:
698 case OMPD_teams_distribute:
699 case OMPD_teams_distribute_simd:
700 case OMPD_teams_distribute_parallel_for:
701 case OMPD_teams_distribute_parallel_for_simd:
702 case OMPD_target_update:
703 case OMPD_declare_simd:
704 case OMPD_declare_variant:
705 case OMPD_begin_declare_variant:
706 case OMPD_end_declare_variant:
707 case OMPD_declare_target:
708 case OMPD_end_declare_target:
709 case OMPD_declare_reduction:
710 case OMPD_declare_mapper:
711 case OMPD_taskloop:
712 case OMPD_taskloop_simd:
713 case OMPD_master_taskloop:
714 case OMPD_master_taskloop_simd:
715 case OMPD_parallel_master_taskloop:
716 case OMPD_parallel_master_taskloop_simd:
717 case OMPD_requires:
718 case OMPD_unknown:
719 default:
720 llvm_unreachable("Unexpected directive.");
721 }
722 }
723
724 return false;
725 }
726
supportsSPMDExecutionMode(ASTContext & Ctx,const OMPExecutableDirective & D)727 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
728 const OMPExecutableDirective &D) {
729 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
730 switch (DirectiveKind) {
731 case OMPD_target:
732 case OMPD_target_teams:
733 return hasNestedSPMDDirective(Ctx, D);
734 case OMPD_target_parallel:
735 case OMPD_target_parallel_for:
736 case OMPD_target_parallel_for_simd:
737 case OMPD_target_teams_distribute_parallel_for:
738 case OMPD_target_teams_distribute_parallel_for_simd:
739 case OMPD_target_simd:
740 case OMPD_target_teams_distribute_simd:
741 return true;
742 case OMPD_target_teams_distribute:
743 return false;
744 case OMPD_parallel:
745 case OMPD_for:
746 case OMPD_parallel_for:
747 case OMPD_parallel_master:
748 case OMPD_parallel_sections:
749 case OMPD_for_simd:
750 case OMPD_parallel_for_simd:
751 case OMPD_cancel:
752 case OMPD_cancellation_point:
753 case OMPD_ordered:
754 case OMPD_threadprivate:
755 case OMPD_allocate:
756 case OMPD_task:
757 case OMPD_simd:
758 case OMPD_sections:
759 case OMPD_section:
760 case OMPD_single:
761 case OMPD_master:
762 case OMPD_critical:
763 case OMPD_taskyield:
764 case OMPD_barrier:
765 case OMPD_taskwait:
766 case OMPD_taskgroup:
767 case OMPD_atomic:
768 case OMPD_flush:
769 case OMPD_depobj:
770 case OMPD_scan:
771 case OMPD_teams:
772 case OMPD_target_data:
773 case OMPD_target_exit_data:
774 case OMPD_target_enter_data:
775 case OMPD_distribute:
776 case OMPD_distribute_simd:
777 case OMPD_distribute_parallel_for:
778 case OMPD_distribute_parallel_for_simd:
779 case OMPD_teams_distribute:
780 case OMPD_teams_distribute_simd:
781 case OMPD_teams_distribute_parallel_for:
782 case OMPD_teams_distribute_parallel_for_simd:
783 case OMPD_target_update:
784 case OMPD_declare_simd:
785 case OMPD_declare_variant:
786 case OMPD_begin_declare_variant:
787 case OMPD_end_declare_variant:
788 case OMPD_declare_target:
789 case OMPD_end_declare_target:
790 case OMPD_declare_reduction:
791 case OMPD_declare_mapper:
792 case OMPD_taskloop:
793 case OMPD_taskloop_simd:
794 case OMPD_master_taskloop:
795 case OMPD_master_taskloop_simd:
796 case OMPD_parallel_master_taskloop:
797 case OMPD_parallel_master_taskloop_simd:
798 case OMPD_requires:
799 case OMPD_unknown:
800 default:
801 break;
802 }
803 llvm_unreachable(
804 "Unknown programming model for OpenMP directive on NVPTX target.");
805 }
806
807 /// Check if the directive is loops based and has schedule clause at all or has
808 /// static scheduling.
hasStaticScheduling(const OMPExecutableDirective & D)809 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
810 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
811 isOpenMPLoopDirective(D.getDirectiveKind()) &&
812 "Expected loop-based directive.");
813 return !D.hasClausesOfKind<OMPOrderedClause>() &&
814 (!D.hasClausesOfKind<OMPScheduleClause>() ||
815 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
816 [](const OMPScheduleClause *C) {
817 return C->getScheduleKind() == OMPC_SCHEDULE_static;
818 }));
819 }
820
821 /// Check for inner (nested) lightweight runtime construct, if any
hasNestedLightweightDirective(ASTContext & Ctx,const OMPExecutableDirective & D)822 static bool hasNestedLightweightDirective(ASTContext &Ctx,
823 const OMPExecutableDirective &D) {
824 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
825 const auto *CS = D.getInnermostCapturedStmt();
826 const auto *Body =
827 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
828 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
829
830 if (const auto *NestedDir =
831 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
832 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
833 switch (D.getDirectiveKind()) {
834 case OMPD_target:
835 if (isOpenMPParallelDirective(DKind) &&
836 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
837 hasStaticScheduling(*NestedDir))
838 return true;
839 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
840 return true;
841 if (DKind == OMPD_parallel) {
842 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
843 /*IgnoreCaptured=*/true);
844 if (!Body)
845 return false;
846 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
847 if (const auto *NND =
848 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
849 DKind = NND->getDirectiveKind();
850 if (isOpenMPWorksharingDirective(DKind) &&
851 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
852 return true;
853 }
854 } else if (DKind == OMPD_teams) {
855 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
856 /*IgnoreCaptured=*/true);
857 if (!Body)
858 return false;
859 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
860 if (const auto *NND =
861 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
862 DKind = NND->getDirectiveKind();
863 if (isOpenMPParallelDirective(DKind) &&
864 isOpenMPWorksharingDirective(DKind) &&
865 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
866 return true;
867 if (DKind == OMPD_parallel) {
868 Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
869 /*IgnoreCaptured=*/true);
870 if (!Body)
871 return false;
872 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
873 if (const auto *NND =
874 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
875 DKind = NND->getDirectiveKind();
876 if (isOpenMPWorksharingDirective(DKind) &&
877 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
878 return true;
879 }
880 }
881 }
882 }
883 return false;
884 case OMPD_target_teams:
885 if (isOpenMPParallelDirective(DKind) &&
886 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
887 hasStaticScheduling(*NestedDir))
888 return true;
889 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
890 return true;
891 if (DKind == OMPD_parallel) {
892 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
893 /*IgnoreCaptured=*/true);
894 if (!Body)
895 return false;
896 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
897 if (const auto *NND =
898 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
899 DKind = NND->getDirectiveKind();
900 if (isOpenMPWorksharingDirective(DKind) &&
901 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
902 return true;
903 }
904 }
905 return false;
906 case OMPD_target_parallel:
907 if (DKind == OMPD_simd)
908 return true;
909 return isOpenMPWorksharingDirective(DKind) &&
910 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
911 case OMPD_target_teams_distribute:
912 case OMPD_target_simd:
913 case OMPD_target_parallel_for:
914 case OMPD_target_parallel_for_simd:
915 case OMPD_target_teams_distribute_simd:
916 case OMPD_target_teams_distribute_parallel_for:
917 case OMPD_target_teams_distribute_parallel_for_simd:
918 case OMPD_parallel:
919 case OMPD_for:
920 case OMPD_parallel_for:
921 case OMPD_parallel_master:
922 case OMPD_parallel_sections:
923 case OMPD_for_simd:
924 case OMPD_parallel_for_simd:
925 case OMPD_cancel:
926 case OMPD_cancellation_point:
927 case OMPD_ordered:
928 case OMPD_threadprivate:
929 case OMPD_allocate:
930 case OMPD_task:
931 case OMPD_simd:
932 case OMPD_sections:
933 case OMPD_section:
934 case OMPD_single:
935 case OMPD_master:
936 case OMPD_critical:
937 case OMPD_taskyield:
938 case OMPD_barrier:
939 case OMPD_taskwait:
940 case OMPD_taskgroup:
941 case OMPD_atomic:
942 case OMPD_flush:
943 case OMPD_depobj:
944 case OMPD_scan:
945 case OMPD_teams:
946 case OMPD_target_data:
947 case OMPD_target_exit_data:
948 case OMPD_target_enter_data:
949 case OMPD_distribute:
950 case OMPD_distribute_simd:
951 case OMPD_distribute_parallel_for:
952 case OMPD_distribute_parallel_for_simd:
953 case OMPD_teams_distribute:
954 case OMPD_teams_distribute_simd:
955 case OMPD_teams_distribute_parallel_for:
956 case OMPD_teams_distribute_parallel_for_simd:
957 case OMPD_target_update:
958 case OMPD_declare_simd:
959 case OMPD_declare_variant:
960 case OMPD_begin_declare_variant:
961 case OMPD_end_declare_variant:
962 case OMPD_declare_target:
963 case OMPD_end_declare_target:
964 case OMPD_declare_reduction:
965 case OMPD_declare_mapper:
966 case OMPD_taskloop:
967 case OMPD_taskloop_simd:
968 case OMPD_master_taskloop:
969 case OMPD_master_taskloop_simd:
970 case OMPD_parallel_master_taskloop:
971 case OMPD_parallel_master_taskloop_simd:
972 case OMPD_requires:
973 case OMPD_unknown:
974 default:
975 llvm_unreachable("Unexpected directive.");
976 }
977 }
978
979 return false;
980 }
981
982 /// Checks if the construct supports lightweight runtime. It must be SPMD
983 /// construct + inner loop-based construct with static scheduling.
supportsLightweightRuntime(ASTContext & Ctx,const OMPExecutableDirective & D)984 static bool supportsLightweightRuntime(ASTContext &Ctx,
985 const OMPExecutableDirective &D) {
986 if (!supportsSPMDExecutionMode(Ctx, D))
987 return false;
988 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
989 switch (DirectiveKind) {
990 case OMPD_target:
991 case OMPD_target_teams:
992 case OMPD_target_parallel:
993 return hasNestedLightweightDirective(Ctx, D);
994 case OMPD_target_parallel_for:
995 case OMPD_target_parallel_for_simd:
996 case OMPD_target_teams_distribute_parallel_for:
997 case OMPD_target_teams_distribute_parallel_for_simd:
998 // (Last|First)-privates must be shared in parallel region.
999 return hasStaticScheduling(D);
1000 case OMPD_target_simd:
1001 case OMPD_target_teams_distribute_simd:
1002 return true;
1003 case OMPD_target_teams_distribute:
1004 return false;
1005 case OMPD_parallel:
1006 case OMPD_for:
1007 case OMPD_parallel_for:
1008 case OMPD_parallel_master:
1009 case OMPD_parallel_sections:
1010 case OMPD_for_simd:
1011 case OMPD_parallel_for_simd:
1012 case OMPD_cancel:
1013 case OMPD_cancellation_point:
1014 case OMPD_ordered:
1015 case OMPD_threadprivate:
1016 case OMPD_allocate:
1017 case OMPD_task:
1018 case OMPD_simd:
1019 case OMPD_sections:
1020 case OMPD_section:
1021 case OMPD_single:
1022 case OMPD_master:
1023 case OMPD_critical:
1024 case OMPD_taskyield:
1025 case OMPD_barrier:
1026 case OMPD_taskwait:
1027 case OMPD_taskgroup:
1028 case OMPD_atomic:
1029 case OMPD_flush:
1030 case OMPD_depobj:
1031 case OMPD_scan:
1032 case OMPD_teams:
1033 case OMPD_target_data:
1034 case OMPD_target_exit_data:
1035 case OMPD_target_enter_data:
1036 case OMPD_distribute:
1037 case OMPD_distribute_simd:
1038 case OMPD_distribute_parallel_for:
1039 case OMPD_distribute_parallel_for_simd:
1040 case OMPD_teams_distribute:
1041 case OMPD_teams_distribute_simd:
1042 case OMPD_teams_distribute_parallel_for:
1043 case OMPD_teams_distribute_parallel_for_simd:
1044 case OMPD_target_update:
1045 case OMPD_declare_simd:
1046 case OMPD_declare_variant:
1047 case OMPD_begin_declare_variant:
1048 case OMPD_end_declare_variant:
1049 case OMPD_declare_target:
1050 case OMPD_end_declare_target:
1051 case OMPD_declare_reduction:
1052 case OMPD_declare_mapper:
1053 case OMPD_taskloop:
1054 case OMPD_taskloop_simd:
1055 case OMPD_master_taskloop:
1056 case OMPD_master_taskloop_simd:
1057 case OMPD_parallel_master_taskloop:
1058 case OMPD_parallel_master_taskloop_simd:
1059 case OMPD_requires:
1060 case OMPD_unknown:
1061 default:
1062 break;
1063 }
1064 llvm_unreachable(
1065 "Unknown programming model for OpenMP directive on NVPTX target.");
1066 }
1067
emitNonSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1068 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1069 StringRef ParentName,
1070 llvm::Function *&OutlinedFn,
1071 llvm::Constant *&OutlinedFnID,
1072 bool IsOffloadEntry,
1073 const RegionCodeGenTy &CodeGen) {
1074 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1075 EntryFunctionState EST;
1076 WorkerFunctionState WST(CGM, D.getBeginLoc());
1077 Work.clear();
1078 WrapperFunctionsMap.clear();
1079
1080 // Emit target region as a standalone region.
1081 class NVPTXPrePostActionTy : public PrePostActionTy {
1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 CGOpenMPRuntimeGPU::WorkerFunctionState &WST;
1084
1085 public:
1086 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
1087 CGOpenMPRuntimeGPU::WorkerFunctionState &WST)
1088 : EST(EST), WST(WST) {}
1089 void Enter(CodeGenFunction &CGF) override {
1090 auto &RT =
1091 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1092 RT.emitNonSPMDEntryHeader(CGF, EST, WST);
1093 // Skip target region initialization.
1094 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1095 }
1096 void Exit(CodeGenFunction &CGF) override {
1097 auto &RT =
1098 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1099 RT.clearLocThreadIdInsertPt(CGF);
1100 RT.emitNonSPMDEntryFooter(CGF, EST);
1101 }
1102 } Action(EST, WST);
1103 CodeGen.setAction(Action);
1104 IsInTTDRegion = true;
1105 // Reserve place for the globalized memory.
1106 GlobalizedRecords.emplace_back();
1107 if (!KernelStaticGlobalized) {
1108 KernelStaticGlobalized = new llvm::GlobalVariable(
1109 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
1110 llvm::GlobalValue::InternalLinkage,
1111 llvm::UndefValue::get(CGM.VoidPtrTy),
1112 "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
1113 llvm::GlobalValue::NotThreadLocal,
1114 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
1115 }
1116 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1117 IsOffloadEntry, CodeGen);
1118 IsInTTDRegion = false;
1119
1120 // Now change the name of the worker function to correspond to this target
1121 // region's entry function.
1122 WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
1123
1124 // Create the worker function
1125 emitWorkerFunction(WST);
1126 }
1127
1128 // Setup NVPTX threads for master-worker OpenMP scheme.
emitNonSPMDEntryHeader(CodeGenFunction & CGF,EntryFunctionState & EST,WorkerFunctionState & WST)1129 void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
1130 EntryFunctionState &EST,
1131 WorkerFunctionState &WST) {
1132 CGBuilderTy &Bld = CGF.Builder;
1133
1134 llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
1135 llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
1136 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
1137 EST.ExitBB = CGF.createBasicBlock(".exit");
1138
1139 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1140 llvm::Value *GPUThreadID = RT.getGPUThreadID(CGF);
1141 llvm::Value *ThreadLimit = getThreadLimit(CGF);
1142 llvm::Value *IsWorker = Bld.CreateICmpULT(GPUThreadID, ThreadLimit);
1143 Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
1144
1145 CGF.EmitBlock(WorkerBB);
1146 emitCall(CGF, WST.Loc, WST.WorkerFn);
1147 CGF.EmitBranch(EST.ExitBB);
1148
1149 CGF.EmitBlock(MasterCheckBB);
1150 GPUThreadID = RT.getGPUThreadID(CGF);
1151 llvm::Value *MasterThreadID = getMasterThreadID(CGF);
1152 llvm::Value *IsMaster = Bld.CreateICmpEQ(GPUThreadID, MasterThreadID);
1153 Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
1154
1155 CGF.EmitBlock(MasterBB);
1156 IsInTargetMasterThreadRegion = true;
1157 // SEQUENTIAL (MASTER) REGION START
1158 // First action in sequential region:
1159 // Initialize the state of the OpenMP runtime library on the GPU.
1160 // TODO: Optimize runtime initialization and pass in correct value.
1161 llvm::Value *Args[] = {getThreadLimit(CGF),
1162 Bld.getInt16(/*RequiresOMPRuntime=*/1)};
1163 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1164 CGM.getModule(), OMPRTL___kmpc_kernel_init),
1165 Args);
1166
1167 // For data sharing, we need to initialize the stack.
1168 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1169 CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack));
1170
1171 emitGenericVarsProlog(CGF, WST.Loc);
1172 }
1173
emitNonSPMDEntryFooter(CodeGenFunction & CGF,EntryFunctionState & EST)1174 void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
1175 EntryFunctionState &EST) {
1176 IsInTargetMasterThreadRegion = false;
1177 if (!CGF.HaveInsertPoint())
1178 return;
1179
1180 emitGenericVarsEpilog(CGF);
1181
1182 if (!EST.ExitBB)
1183 EST.ExitBB = CGF.createBasicBlock(".exit");
1184
1185 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
1186 CGF.EmitBranch(TerminateBB);
1187
1188 CGF.EmitBlock(TerminateBB);
1189 // Signal termination condition.
1190 // TODO: Optimize runtime initialization and pass in correct value.
1191 llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
1192 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1193 CGM.getModule(), OMPRTL___kmpc_kernel_deinit),
1194 Args);
1195 // Barrier to terminate worker threads.
1196 syncCTAThreads(CGF);
1197 // Master thread jumps to exit point.
1198 CGF.EmitBranch(EST.ExitBB);
1199
1200 CGF.EmitBlock(EST.ExitBB);
1201 EST.ExitBB = nullptr;
1202 }
1203
emitSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1204 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1205 StringRef ParentName,
1206 llvm::Function *&OutlinedFn,
1207 llvm::Constant *&OutlinedFnID,
1208 bool IsOffloadEntry,
1209 const RegionCodeGenTy &CodeGen) {
1210 ExecutionRuntimeModesRAII ModeRAII(
1211 CurrentExecutionMode, RequiresFullRuntime,
1212 CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1213 !supportsLightweightRuntime(CGM.getContext(), D));
1214 EntryFunctionState EST;
1215
1216 // Emit target region as a standalone region.
1217 class NVPTXPrePostActionTy : public PrePostActionTy {
1218 CGOpenMPRuntimeGPU &RT;
1219 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1220 const OMPExecutableDirective &D;
1221
1222 public:
1223 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1224 CGOpenMPRuntimeGPU::EntryFunctionState &EST,
1225 const OMPExecutableDirective &D)
1226 : RT(RT), EST(EST), D(D) {}
1227 void Enter(CodeGenFunction &CGF) override {
1228 RT.emitSPMDEntryHeader(CGF, EST, D);
1229 // Skip target region initialization.
1230 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1231 }
1232 void Exit(CodeGenFunction &CGF) override {
1233 RT.clearLocThreadIdInsertPt(CGF);
1234 RT.emitSPMDEntryFooter(CGF, EST);
1235 }
1236 } Action(*this, EST, D);
1237 CodeGen.setAction(Action);
1238 IsInTTDRegion = true;
1239 // Reserve place for the globalized memory.
1240 GlobalizedRecords.emplace_back();
1241 if (!KernelStaticGlobalized) {
1242 KernelStaticGlobalized = new llvm::GlobalVariable(
1243 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
1244 llvm::GlobalValue::InternalLinkage,
1245 llvm::UndefValue::get(CGM.VoidPtrTy),
1246 "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
1247 llvm::GlobalValue::NotThreadLocal,
1248 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
1249 }
1250 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1251 IsOffloadEntry, CodeGen);
1252 IsInTTDRegion = false;
1253 }
1254
emitSPMDEntryHeader(CodeGenFunction & CGF,EntryFunctionState & EST,const OMPExecutableDirective & D)1255 void CGOpenMPRuntimeGPU::emitSPMDEntryHeader(
1256 CodeGenFunction &CGF, EntryFunctionState &EST,
1257 const OMPExecutableDirective &D) {
1258 CGBuilderTy &Bld = CGF.Builder;
1259
1260 // Setup BBs in entry function.
1261 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
1262 EST.ExitBB = CGF.createBasicBlock(".exit");
1263
1264 llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
1265 /*RequiresOMPRuntime=*/
1266 Bld.getInt16(RequiresFullRuntime ? 1 : 0)};
1267 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1268 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_init),
1269 Args);
1270
1271 if (RequiresFullRuntime) {
1272 // For data sharing, we need to initialize the stack.
1273 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1274 CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack_spmd));
1275 }
1276
1277 CGF.EmitBranch(ExecuteBB);
1278
1279 CGF.EmitBlock(ExecuteBB);
1280
1281 IsInTargetMasterThreadRegion = true;
1282 }
1283
emitSPMDEntryFooter(CodeGenFunction & CGF,EntryFunctionState & EST)1284 void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF,
1285 EntryFunctionState &EST) {
1286 IsInTargetMasterThreadRegion = false;
1287 if (!CGF.HaveInsertPoint())
1288 return;
1289
1290 if (!EST.ExitBB)
1291 EST.ExitBB = CGF.createBasicBlock(".exit");
1292
1293 llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
1294 CGF.EmitBranch(OMPDeInitBB);
1295
1296 CGF.EmitBlock(OMPDeInitBB);
1297 // DeInitialize the OMP state in the runtime; called by all active threads.
1298 llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
1299 CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
1300 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1301 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_deinit_v2),
1302 Args);
1303 CGF.EmitBranch(EST.ExitBB);
1304
1305 CGF.EmitBlock(EST.ExitBB);
1306 EST.ExitBB = nullptr;
1307 }
1308
1309 // Create a unique global variable to indicate the execution mode of this target
1310 // region. The execution mode is either 'generic', or 'spmd' depending on the
1311 // target directive. This variable is picked up by the offload library to setup
1312 // the device appropriately before kernel launch. If the execution mode is
1313 // 'generic', the runtime reserves one warp for the master, otherwise, all
1314 // warps participate in parallel work.
setPropertyExecutionMode(CodeGenModule & CGM,StringRef Name,bool Mode)1315 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1316 bool Mode) {
1317 auto *GVMode =
1318 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1319 llvm::GlobalValue::WeakAnyLinkage,
1320 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
1321 Twine(Name, "_exec_mode"));
1322 CGM.addCompilerUsedGlobal(GVMode);
1323 }
1324
emitWorkerFunction(WorkerFunctionState & WST)1325 void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) {
1326 ASTContext &Ctx = CGM.getContext();
1327
1328 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
1329 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
1330 WST.Loc, WST.Loc);
1331 emitWorkerLoop(CGF, WST);
1332 CGF.FinishFunction();
1333 }
1334
emitWorkerLoop(CodeGenFunction & CGF,WorkerFunctionState & WST)1335 void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF,
1336 WorkerFunctionState &WST) {
1337 //
1338 // The workers enter this loop and wait for parallel work from the master.
1339 // When the master encounters a parallel region it sets up the work + variable
1340 // arguments, and wakes up the workers. The workers first check to see if
1341 // they are required for the parallel region, i.e., within the # of requested
1342 // parallel threads. The activated workers load the variable arguments and
1343 // execute the parallel work.
1344 //
1345
1346 CGBuilderTy &Bld = CGF.Builder;
1347
1348 llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
1349 llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
1350 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
1351 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
1352 llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
1353 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
1354
1355 CGF.EmitBranch(AwaitBB);
1356
1357 // Workers wait for work from master.
1358 CGF.EmitBlock(AwaitBB);
1359 // Wait for parallel work
1360 syncCTAThreads(CGF);
1361
1362 Address WorkFn =
1363 CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
1364 Address ExecStatus =
1365 CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
1366 CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
1367 CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
1368
1369 // TODO: Optimize runtime initialization and pass in correct value.
1370 llvm::Value *Args[] = {WorkFn.getPointer()};
1371 llvm::Value *Ret =
1372 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1373 CGM.getModule(), OMPRTL___kmpc_kernel_parallel),
1374 Args);
1375 Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
1376
1377 // On termination condition (workid == 0), exit loop.
1378 llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
1379 llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
1380 Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
1381
1382 // Activate requested workers.
1383 CGF.EmitBlock(SelectWorkersBB);
1384 llvm::Value *IsActive =
1385 Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
1386 Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
1387
1388 // Signal start of parallel region.
1389 CGF.EmitBlock(ExecuteBB);
1390 // Skip initialization.
1391 setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1392
1393 // Process work items: outlined parallel functions.
1394 for (llvm::Function *W : Work) {
1395 // Try to match this outlined function.
1396 llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
1397
1398 llvm::Value *WorkFnMatch =
1399 Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
1400
1401 llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
1402 llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
1403 Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
1404
1405 // Execute this outlined function.
1406 CGF.EmitBlock(ExecuteFNBB);
1407
1408 // Insert call to work function via shared wrapper. The shared
1409 // wrapper takes two arguments:
1410 // - the parallelism level;
1411 // - the thread ID;
1412 emitCall(CGF, WST.Loc, W,
1413 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
1414
1415 // Go to end of parallel region.
1416 CGF.EmitBranch(TerminateBB);
1417
1418 CGF.EmitBlock(CheckNextBB);
1419 }
1420 // Default case: call to outlined function through pointer if the target
1421 // region makes a declare target call that may contain an orphaned parallel
1422 // directive.
1423 auto *ParallelFnTy =
1424 llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
1425 /*isVarArg=*/false);
1426 llvm::Value *WorkFnCast =
1427 Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo());
1428 // Insert call to work function via shared wrapper. The shared
1429 // wrapper takes two arguments:
1430 // - the parallelism level;
1431 // - the thread ID;
1432 emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast},
1433 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
1434 // Go to end of parallel region.
1435 CGF.EmitBranch(TerminateBB);
1436
1437 // Signal end of parallel region.
1438 CGF.EmitBlock(TerminateBB);
1439 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1440 CGM.getModule(), OMPRTL___kmpc_kernel_end_parallel),
1441 llvm::None);
1442 CGF.EmitBranch(BarrierBB);
1443
1444 // All active and inactive workers wait at a barrier after parallel region.
1445 CGF.EmitBlock(BarrierBB);
1446 // Barrier after parallel region.
1447 syncCTAThreads(CGF);
1448 CGF.EmitBranch(AwaitBB);
1449
1450 // Exit target region.
1451 CGF.EmitBlock(ExitBB);
1452 // Skip initialization.
1453 clearLocThreadIdInsertPt(CGF);
1454 }
1455
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t,llvm::GlobalValue::LinkageTypes)1456 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1457 llvm::Constant *Addr,
1458 uint64_t Size, int32_t,
1459 llvm::GlobalValue::LinkageTypes) {
1460 // TODO: Add support for global variables on the device after declare target
1461 // support.
1462 if (!isa<llvm::Function>(Addr))
1463 return;
1464 llvm::Module &M = CGM.getModule();
1465 llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1466
1467 // Get "nvvm.annotations" metadata node
1468 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1469
1470 llvm::Metadata *MDVals[] = {
1471 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
1472 llvm::ConstantAsMetadata::get(
1473 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1474 // Append metadata to nvvm.annotations
1475 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1476 }
1477
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1478 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1479 const OMPExecutableDirective &D, StringRef ParentName,
1480 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1481 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1482 if (!IsOffloadEntry) // Nothing to do.
1483 return;
1484
1485 assert(!ParentName.empty() && "Invalid target region parent name!");
1486
1487 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1488 if (Mode)
1489 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1490 CodeGen);
1491 else
1492 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1493 CodeGen);
1494
1495 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1496 }
1497
1498 namespace {
1499 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1500 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1501 enum ModeFlagsTy : unsigned {
1502 /// Bit set to 1 when in SPMD mode.
1503 KMP_IDENT_SPMD_MODE = 0x01,
1504 /// Bit set to 1 when a simplified runtime is used.
1505 KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1506 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1507 };
1508
1509 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1510 static const ModeFlagsTy UndefinedMode =
1511 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1512 } // anonymous namespace
1513
getDefaultLocationReserved2Flags() const1514 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1515 switch (getExecutionMode()) {
1516 case EM_SPMD:
1517 if (requiresFullRuntime())
1518 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1519 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1520 case EM_NonSPMD:
1521 assert(requiresFullRuntime() && "Expected full runtime.");
1522 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1523 case EM_Unknown:
1524 return UndefinedMode;
1525 }
1526 llvm_unreachable("Unknown flags are requested.");
1527 }
1528
CGOpenMPRuntimeGPU(CodeGenModule & CGM)1529 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1530 : CGOpenMPRuntime(CGM, "_", "$") {
1531 if (!CGM.getLangOpts().OpenMPIsDevice)
1532 llvm_unreachable("OpenMP NVPTX can only handle device code.");
1533 }
1534
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)1535 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1536 ProcBindKind ProcBind,
1537 SourceLocation Loc) {
1538 // Do nothing in case of SPMD mode and L0 parallel.
1539 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1540 return;
1541
1542 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1543 }
1544
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)1545 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1546 llvm::Value *NumThreads,
1547 SourceLocation Loc) {
1548 // Do nothing in case of SPMD mode and L0 parallel.
1549 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1550 return;
1551
1552 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
1553 }
1554
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)1555 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1556 const Expr *NumTeams,
1557 const Expr *ThreadLimit,
1558 SourceLocation Loc) {}
1559
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1560 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1561 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1562 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1563 // Emit target region as a standalone region.
1564 class NVPTXPrePostActionTy : public PrePostActionTy {
1565 bool &IsInParallelRegion;
1566 bool PrevIsInParallelRegion;
1567
1568 public:
1569 NVPTXPrePostActionTy(bool &IsInParallelRegion)
1570 : IsInParallelRegion(IsInParallelRegion) {}
1571 void Enter(CodeGenFunction &CGF) override {
1572 PrevIsInParallelRegion = IsInParallelRegion;
1573 IsInParallelRegion = true;
1574 }
1575 void Exit(CodeGenFunction &CGF) override {
1576 IsInParallelRegion = PrevIsInParallelRegion;
1577 }
1578 } Action(IsInParallelRegion);
1579 CodeGen.setAction(Action);
1580 bool PrevIsInTTDRegion = IsInTTDRegion;
1581 IsInTTDRegion = false;
1582 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1583 IsInTargetMasterThreadRegion = false;
1584 auto *OutlinedFun =
1585 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1586 D, ThreadIDVar, InnermostKind, CodeGen));
1587 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1588 IsInTTDRegion = PrevIsInTTDRegion;
1589 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1590 !IsInParallelRegion) {
1591 llvm::Function *WrapperFun =
1592 createParallelDataSharingWrapper(OutlinedFun, D);
1593 WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1594 }
1595
1596 return OutlinedFun;
1597 }
1598
1599 /// Get list of lastprivate variables from the teams distribute ... or
1600 /// teams {distribute ...} directives.
1601 static void
getDistributeLastprivateVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)1602 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1603 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1604 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1605 "expected teams directive.");
1606 const OMPExecutableDirective *Dir = &D;
1607 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1608 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1609 Ctx,
1610 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1611 /*IgnoreCaptured=*/true))) {
1612 Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1613 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1614 Dir = nullptr;
1615 }
1616 }
1617 if (!Dir)
1618 return;
1619 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1620 for (const Expr *E : C->getVarRefs())
1621 Vars.push_back(getPrivateItem(E));
1622 }
1623 }
1624
1625 /// Get list of reduction variables from the teams ... directives.
1626 static void
getTeamsReductionVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)1627 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1628 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1629 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1630 "expected teams directive.");
1631 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1632 for (const Expr *E : C->privates())
1633 Vars.push_back(getPrivateItem(E));
1634 }
1635 }
1636
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1637 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1638 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1639 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1640 SourceLocation Loc = D.getBeginLoc();
1641
1642 const RecordDecl *GlobalizedRD = nullptr;
1643 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1644 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1645 unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size);
1646 // Globalize team reductions variable unconditionally in all modes.
1647 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1648 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1649 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1650 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1651 if (!LastPrivatesReductions.empty()) {
1652 GlobalizedRD = ::buildRecordForGlobalizedVars(
1653 CGM.getContext(), llvm::None, LastPrivatesReductions,
1654 MappedDeclsFields, WarpSize);
1655 }
1656 } else if (!LastPrivatesReductions.empty()) {
1657 assert(!TeamAndReductions.first &&
1658 "Previous team declaration is not expected.");
1659 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1660 std::swap(TeamAndReductions.second, LastPrivatesReductions);
1661 }
1662
1663 // Emit target region as a standalone region.
1664 class NVPTXPrePostActionTy : public PrePostActionTy {
1665 SourceLocation &Loc;
1666 const RecordDecl *GlobalizedRD;
1667 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1668 &MappedDeclsFields;
1669
1670 public:
1671 NVPTXPrePostActionTy(
1672 SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1673 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1674 &MappedDeclsFields)
1675 : Loc(Loc), GlobalizedRD(GlobalizedRD),
1676 MappedDeclsFields(MappedDeclsFields) {}
1677 void Enter(CodeGenFunction &CGF) override {
1678 auto &Rt =
1679 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1680 if (GlobalizedRD) {
1681 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1682 I->getSecond().GlobalRecord = GlobalizedRD;
1683 I->getSecond().MappedParams =
1684 std::make_unique<CodeGenFunction::OMPMapVars>();
1685 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1686 for (const auto &Pair : MappedDeclsFields) {
1687 assert(Pair.getFirst()->isCanonicalDecl() &&
1688 "Expected canonical declaration");
1689 Data.insert(std::make_pair(Pair.getFirst(),
1690 MappedVarData(Pair.getSecond(),
1691 /*IsOnePerTeam=*/true)));
1692 }
1693 }
1694 Rt.emitGenericVarsProlog(CGF, Loc);
1695 }
1696 void Exit(CodeGenFunction &CGF) override {
1697 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1698 .emitGenericVarsEpilog(CGF);
1699 }
1700 } Action(Loc, GlobalizedRD, MappedDeclsFields);
1701 CodeGen.setAction(Action);
1702 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1703 D, ThreadIDVar, InnermostKind, CodeGen);
1704
1705 return OutlinedFun;
1706 }
1707
emitGenericVarsProlog(CodeGenFunction & CGF,SourceLocation Loc,bool WithSPMDCheck)1708 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1709 SourceLocation Loc,
1710 bool WithSPMDCheck) {
1711 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1712 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1713 return;
1714
1715 CGBuilderTy &Bld = CGF.Builder;
1716
1717 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1718 if (I == FunctionGlobalizedDecls.end())
1719 return;
1720 if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
1721 QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
1722 QualType SecGlobalRecTy;
1723
1724 // Recover pointer to this function's global record. The runtime will
1725 // handle the specifics of the allocation of the memory.
1726 // Use actual memory size of the record including the padding
1727 // for alignment purposes.
1728 unsigned Alignment =
1729 CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
1730 unsigned GlobalRecordSize =
1731 CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
1732 GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
1733
1734 llvm::PointerType *GlobalRecPtrTy =
1735 CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
1736 llvm::Value *GlobalRecCastAddr;
1737 llvm::Value *IsTTD = nullptr;
1738 if (!IsInTTDRegion &&
1739 (WithSPMDCheck ||
1740 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
1741 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
1742 llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
1743 llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
1744 if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
1745 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1746 llvm::Value *ThreadID = getThreadID(CGF, Loc);
1747 llvm::Value *PL = CGF.EmitRuntimeCall(
1748 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1749 OMPRTL___kmpc_parallel_level),
1750 {RTLoc, ThreadID});
1751 IsTTD = Bld.CreateIsNull(PL);
1752 }
1753 llvm::Value *IsSPMD = Bld.CreateIsNotNull(
1754 CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1755 CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode)));
1756 Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
1757 // There is no need to emit line number for unconditional branch.
1758 (void)ApplyDebugLocation::CreateEmpty(CGF);
1759 CGF.EmitBlock(SPMDBB);
1760 Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
1761 CharUnits::fromQuantity(Alignment));
1762 CGF.EmitBranch(ExitBB);
1763 // There is no need to emit line number for unconditional branch.
1764 (void)ApplyDebugLocation::CreateEmpty(CGF);
1765 CGF.EmitBlock(NonSPMDBB);
1766 llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
1767 if (const RecordDecl *SecGlobalizedVarsRecord =
1768 I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
1769 SecGlobalRecTy =
1770 CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
1771
1772 // Recover pointer to this function's global record. The runtime will
1773 // handle the specifics of the allocation of the memory.
1774 // Use actual memory size of the record including the padding
1775 // for alignment purposes.
1776 unsigned Alignment =
1777 CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
1778 unsigned GlobalRecordSize =
1779 CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
1780 GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
1781 Size = Bld.CreateSelect(
1782 IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
1783 }
1784 // TODO: allow the usage of shared memory to be controlled by
1785 // the user, for now, default to global.
1786 llvm::Value *GlobalRecordSizeArg[] = {
1787 Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
1788 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
1789 OMPBuilder.getOrCreateRuntimeFunction(
1790 CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack),
1791 GlobalRecordSizeArg);
1792 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1793 GlobalRecValue, GlobalRecPtrTy);
1794 CGF.EmitBlock(ExitBB);
1795 auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
1796 /*NumReservedValues=*/2, "_select_stack");
1797 Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
1798 Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
1799 GlobalRecCastAddr = Phi;
1800 I->getSecond().GlobalRecordAddr = Phi;
1801 I->getSecond().IsInSPMDModeFlag = IsSPMD;
1802 } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
1803 assert(GlobalizedRecords.back().Records.size() < 2 &&
1804 "Expected less than 2 globalized records: one for target and one "
1805 "for teams.");
1806 unsigned Offset = 0;
1807 for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
1808 QualType RDTy = CGM.getContext().getRecordType(RD);
1809 unsigned Alignment =
1810 CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
1811 unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
1812 Offset =
1813 llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
1814 }
1815 unsigned Alignment =
1816 CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
1817 Offset = llvm::alignTo(Offset, Alignment);
1818 GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
1819 ++GlobalizedRecords.back().RegionCounter;
1820 if (GlobalizedRecords.back().Records.size() == 1) {
1821 assert(KernelStaticGlobalized &&
1822 "Kernel static pointer must be initialized already.");
1823 auto *UseSharedMemory = new llvm::GlobalVariable(
1824 CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
1825 llvm::GlobalValue::InternalLinkage, nullptr,
1826 "_openmp_static_kernel$is_shared");
1827 UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1828 QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
1829 /*DestWidth=*/16, /*Signed=*/0);
1830 llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
1831 Address(UseSharedMemory,
1832 CGM.getContext().getTypeAlignInChars(Int16Ty)),
1833 /*Volatile=*/false, Int16Ty, Loc);
1834 auto *StaticGlobalized = new llvm::GlobalVariable(
1835 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
1836 llvm::GlobalValue::CommonLinkage, nullptr);
1837 auto *RecSize = new llvm::GlobalVariable(
1838 CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
1839 llvm::GlobalValue::InternalLinkage, nullptr,
1840 "_openmp_static_kernel$size");
1841 RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1842 llvm::Value *Ld = CGF.EmitLoadOfScalar(
1843 Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
1844 CGM.getContext().getSizeType(), Loc);
1845 llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1846 KernelStaticGlobalized, CGM.VoidPtrPtrTy);
1847 llvm::Value *GlobalRecordSizeArg[] = {
1848 llvm::ConstantInt::get(
1849 CGM.Int16Ty,
1850 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0),
1851 StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
1852 CGF.EmitRuntimeCall(
1853 OMPBuilder.getOrCreateRuntimeFunction(
1854 CGM.getModule(), OMPRTL___kmpc_get_team_static_memory),
1855 GlobalRecordSizeArg);
1856 GlobalizedRecords.back().Buffer = StaticGlobalized;
1857 GlobalizedRecords.back().RecSize = RecSize;
1858 GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
1859 GlobalizedRecords.back().Loc = Loc;
1860 }
1861 assert(KernelStaticGlobalized && "Global address must be set already.");
1862 Address FrameAddr = CGF.EmitLoadOfPointer(
1863 Address(KernelStaticGlobalized, CGM.getPointerAlign()),
1864 CGM.getContext()
1865 .getPointerType(CGM.getContext().VoidPtrTy)
1866 .castAs<PointerType>());
1867 llvm::Value *GlobalRecValue =
1868 Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer();
1869 I->getSecond().GlobalRecordAddr = GlobalRecValue;
1870 I->getSecond().IsInSPMDModeFlag = nullptr;
1871 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1872 GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
1873 } else {
1874 // TODO: allow the usage of shared memory to be controlled by
1875 // the user, for now, default to global.
1876 bool UseSharedMemory =
1877 IsInTTDRegion && GlobalRecordSize <= SharedMemorySize;
1878 llvm::Value *GlobalRecordSizeArg[] = {
1879 llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
1880 CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)};
1881 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
1882 OMPBuilder.getOrCreateRuntimeFunction(
1883 CGM.getModule(),
1884 IsInTTDRegion ? OMPRTL___kmpc_data_sharing_push_stack
1885 : OMPRTL___kmpc_data_sharing_coalesced_push_stack),
1886 GlobalRecordSizeArg);
1887 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1888 GlobalRecValue, GlobalRecPtrTy);
1889 I->getSecond().GlobalRecordAddr = GlobalRecValue;
1890 I->getSecond().IsInSPMDModeFlag = nullptr;
1891 }
1892 LValue Base =
1893 CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
1894
1895 // Emit the "global alloca" which is a GEP from the global declaration
1896 // record using the pointer returned by the runtime.
1897 LValue SecBase;
1898 decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
1899 if (IsTTD) {
1900 SecIt = I->getSecond().SecondaryLocalVarData->begin();
1901 llvm::PointerType *SecGlobalRecPtrTy =
1902 CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
1903 SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
1904 Bld.CreatePointerBitCastOrAddrSpaceCast(
1905 I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
1906 SecGlobalRecTy);
1907 }
1908 for (auto &Rec : I->getSecond().LocalVarData) {
1909 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1910 llvm::Value *ParValue;
1911 if (EscapedParam) {
1912 const auto *VD = cast<VarDecl>(Rec.first);
1913 LValue ParLVal =
1914 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1915 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1916 }
1917 LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
1918 // Emit VarAddr basing on lane-id if required.
1919 QualType VarTy;
1920 if (Rec.second.IsOnePerTeam) {
1921 VarTy = Rec.second.FD->getType();
1922 } else {
1923 Address Addr = VarAddr.getAddress(CGF);
1924 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
1925 Addr.getElementType(), Addr.getPointer(),
1926 {Bld.getInt32(0), getNVPTXLaneID(CGF)});
1927 VarTy =
1928 Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
1929 VarAddr = CGF.MakeAddrLValue(
1930 Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
1931 AlignmentSource::Decl);
1932 }
1933 Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1934 if (!IsInTTDRegion &&
1935 (WithSPMDCheck ||
1936 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
1937 assert(I->getSecond().IsInSPMDModeFlag &&
1938 "Expected unknown execution mode or required SPMD check.");
1939 if (IsTTD) {
1940 assert(SecIt->second.IsOnePerTeam &&
1941 "Secondary glob data must be one per team.");
1942 LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
1943 VarAddr.setAddress(
1944 Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF),
1945 VarAddr.getPointer(CGF)),
1946 VarAddr.getAlignment()));
1947 Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1948 }
1949 Address GlobalPtr = Rec.second.PrivateAddr;
1950 Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
1951 Rec.second.PrivateAddr = Address(
1952 Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
1953 LocalAddr.getPointer(), GlobalPtr.getPointer()),
1954 LocalAddr.getAlignment());
1955 }
1956 if (EscapedParam) {
1957 const auto *VD = cast<VarDecl>(Rec.first);
1958 CGF.EmitStoreOfScalar(ParValue, VarAddr);
1959 I->getSecond().MappedParams->setVarAddr(CGF, VD,
1960 VarAddr.getAddress(CGF));
1961 }
1962 if (IsTTD)
1963 ++SecIt;
1964 }
1965 }
1966 for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
1967 // Recover pointer to this function's global record. The runtime will
1968 // handle the specifics of the allocation of the memory.
1969 // Use actual memory size of the record including the padding
1970 // for alignment purposes.
1971 CGBuilderTy &Bld = CGF.Builder;
1972 llvm::Value *Size = CGF.getTypeSize(VD->getType());
1973 CharUnits Align = CGM.getContext().getDeclAlign(VD);
1974 Size = Bld.CreateNUWAdd(
1975 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1976 llvm::Value *AlignVal =
1977 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1978 Size = Bld.CreateUDiv(Size, AlignVal);
1979 Size = Bld.CreateNUWMul(Size, AlignVal);
1980 // TODO: allow the usage of shared memory to be controlled by
1981 // the user, for now, default to global.
1982 llvm::Value *GlobalRecordSizeArg[] = {
1983 Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
1984 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
1985 OMPBuilder.getOrCreateRuntimeFunction(
1986 CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack),
1987 GlobalRecordSizeArg);
1988 llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1989 GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
1990 LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
1991 CGM.getContext().getDeclAlign(VD),
1992 AlignmentSource::Decl);
1993 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1994 Base.getAddress(CGF));
1995 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
1996 }
1997 I->getSecond().MappedParams->apply(CGF);
1998 }
1999
emitGenericVarsEpilog(CodeGenFunction & CGF,bool WithSPMDCheck)2000 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
2001 bool WithSPMDCheck) {
2002 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
2003 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
2004 return;
2005
2006 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
2007 if (I != FunctionGlobalizedDecls.end()) {
2008 I->getSecond().MappedParams->restore(CGF);
2009 if (!CGF.HaveInsertPoint())
2010 return;
2011 for (llvm::Value *Addr :
2012 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
2013 CGF.EmitRuntimeCall(
2014 OMPBuilder.getOrCreateRuntimeFunction(
2015 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack),
2016 Addr);
2017 }
2018 if (I->getSecond().GlobalRecordAddr) {
2019 if (!IsInTTDRegion &&
2020 (WithSPMDCheck ||
2021 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
2022 CGBuilderTy &Bld = CGF.Builder;
2023 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
2024 llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
2025 Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
2026 // There is no need to emit line number for unconditional branch.
2027 (void)ApplyDebugLocation::CreateEmpty(CGF);
2028 CGF.EmitBlock(NonSPMDBB);
2029 CGF.EmitRuntimeCall(
2030 OMPBuilder.getOrCreateRuntimeFunction(
2031 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack),
2032 CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
2033 CGF.EmitBlock(ExitBB);
2034 } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
2035 assert(GlobalizedRecords.back().RegionCounter > 0 &&
2036 "region counter must be > 0.");
2037 --GlobalizedRecords.back().RegionCounter;
2038 // Emit the restore function only in the target region.
2039 if (GlobalizedRecords.back().RegionCounter == 0) {
2040 QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
2041 /*DestWidth=*/16, /*Signed=*/0);
2042 llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
2043 Address(GlobalizedRecords.back().UseSharedMemory,
2044 CGM.getContext().getTypeAlignInChars(Int16Ty)),
2045 /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
2046 llvm::Value *Args[] = {
2047 llvm::ConstantInt::get(
2048 CGM.Int16Ty,
2049 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0),
2050 IsInSharedMemory};
2051 CGF.EmitRuntimeCall(
2052 OMPBuilder.getOrCreateRuntimeFunction(
2053 CGM.getModule(), OMPRTL___kmpc_restore_team_static_memory),
2054 Args);
2055 }
2056 } else {
2057 CGF.EmitRuntimeCall(
2058 OMPBuilder.getOrCreateRuntimeFunction(
2059 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack),
2060 I->getSecond().GlobalRecordAddr);
2061 }
2062 }
2063 }
2064 }
2065
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)2066 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
2067 const OMPExecutableDirective &D,
2068 SourceLocation Loc,
2069 llvm::Function *OutlinedFn,
2070 ArrayRef<llvm::Value *> CapturedVars) {
2071 if (!CGF.HaveInsertPoint())
2072 return;
2073
2074 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2075 /*Name=*/".zero.addr");
2076 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2077 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2078 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
2079 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2080 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2081 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2082 }
2083
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2084 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
2085 SourceLocation Loc,
2086 llvm::Function *OutlinedFn,
2087 ArrayRef<llvm::Value *> CapturedVars,
2088 const Expr *IfCond) {
2089 if (!CGF.HaveInsertPoint())
2090 return;
2091
2092 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars,
2093 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) {
2094 CGBuilderTy &Bld = CGF.Builder;
2095 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
2096 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
2097 if (WFn) {
2098 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
2099 // Remember for post-processing in worker loop.
2100 Work.emplace_back(WFn);
2101 }
2102 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
2103
2104 // Create a private scope that will globalize the arguments
2105 // passed from the outside of the target region.
2106 // TODO: Is that needed?
2107 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
2108
2109 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
2110 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
2111 "captured_vars_addrs");
2112 // There's something to share.
2113 if (!CapturedVars.empty()) {
2114 // Prepare for parallel region. Indicate the outlined function.
2115 ASTContext &Ctx = CGF.getContext();
2116 unsigned Idx = 0;
2117 for (llvm::Value *V : CapturedVars) {
2118 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
2119 llvm::Value *PtrV;
2120 if (V->getType()->isIntegerTy())
2121 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
2122 else
2123 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
2124 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
2125 Ctx.getPointerType(Ctx.VoidPtrTy));
2126 ++Idx;
2127 }
2128 }
2129
2130 llvm::Value *IfCondVal = nullptr;
2131 if (IfCond)
2132 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
2133 /* isSigned */ false);
2134 else
2135 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
2136
2137 assert(IfCondVal && "Expected a value");
2138 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2139 llvm::Value *Args[] = {
2140 RTLoc,
2141 getThreadID(CGF, Loc),
2142 IfCondVal,
2143 llvm::ConstantInt::get(CGF.Int32Ty, -1),
2144 llvm::ConstantInt::get(CGF.Int32Ty, -1),
2145 FnPtr,
2146 ID,
2147 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
2148 CGF.VoidPtrPtrTy),
2149 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
2150 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2151 CGM.getModule(), OMPRTL___kmpc_parallel_51),
2152 Args);
2153 };
2154
2155 RegionCodeGenTy RCG(ParallelGen);
2156 RCG(CGF);
2157 }
2158
syncCTAThreads(CodeGenFunction & CGF)2159 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
2160 // Always emit simple barriers!
2161 if (!CGF.HaveInsertPoint())
2162 return;
2163 // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
2164 // This function does not use parameters, so we can emit just default values.
2165 llvm::Value *Args[] = {
2166 llvm::ConstantPointerNull::get(
2167 cast<llvm::PointerType>(getIdentTyPointerTy())),
2168 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
2169 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2170 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
2171 Args);
2172 }
2173
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool,bool)2174 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
2175 SourceLocation Loc,
2176 OpenMPDirectiveKind Kind, bool,
2177 bool) {
2178 // Always emit simple barriers!
2179 if (!CGF.HaveInsertPoint())
2180 return;
2181 // Build call __kmpc_cancel_barrier(loc, thread_id);
2182 unsigned Flags = getDefaultFlagsForBarriers(Kind);
2183 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2184 getThreadID(CGF, Loc)};
2185
2186 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2187 CGM.getModule(), OMPRTL___kmpc_barrier),
2188 Args);
2189 }
2190
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2191 void CGOpenMPRuntimeGPU::emitCriticalRegion(
2192 CodeGenFunction &CGF, StringRef CriticalName,
2193 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
2194 const Expr *Hint) {
2195 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
2196 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
2197 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
2198 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
2199 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
2200
2201 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2202
2203 // Get the mask of active threads in the warp.
2204 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2205 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
2206 // Fetch team-local id of the thread.
2207 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2208
2209 // Get the width of the team.
2210 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
2211
2212 // Initialize the counter variable for the loop.
2213 QualType Int32Ty =
2214 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
2215 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
2216 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
2217 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
2218 /*isInit=*/true);
2219
2220 // Block checks if loop counter exceeds upper bound.
2221 CGF.EmitBlock(LoopBB);
2222 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
2223 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
2224 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
2225
2226 // Block tests which single thread should execute region, and which threads
2227 // should go straight to synchronisation point.
2228 CGF.EmitBlock(TestBB);
2229 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
2230 llvm::Value *CmpThreadToCounter =
2231 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
2232 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
2233
2234 // Block emits the body of the critical region.
2235 CGF.EmitBlock(BodyBB);
2236
2237 // Output the critical statement.
2238 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
2239 Hint);
2240
2241 // After the body surrounded by the critical region, the single executing
2242 // thread will jump to the synchronisation point.
2243 // Block waits for all threads in current team to finish then increments the
2244 // counter variable and returns to the loop.
2245 CGF.EmitBlock(SyncBB);
2246 // Reconverge active threads in the warp.
2247 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2248 CGM.getModule(), OMPRTL___kmpc_syncwarp),
2249 Mask);
2250
2251 llvm::Value *IncCounterVal =
2252 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
2253 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
2254 CGF.EmitBranch(LoopBB);
2255
2256 // Block that is reached when all threads in the team complete the region.
2257 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2258 }
2259
2260 /// Cast value to the specified type.
castValueToType(CodeGenFunction & CGF,llvm::Value * Val,QualType ValTy,QualType CastTy,SourceLocation Loc)2261 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
2262 QualType ValTy, QualType CastTy,
2263 SourceLocation Loc) {
2264 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
2265 "Cast type must sized.");
2266 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
2267 "Val type must sized.");
2268 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
2269 if (ValTy == CastTy)
2270 return Val;
2271 if (CGF.getContext().getTypeSizeInChars(ValTy) ==
2272 CGF.getContext().getTypeSizeInChars(CastTy))
2273 return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
2274 if (CastTy->isIntegerType() && ValTy->isIntegerType())
2275 return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
2276 CastTy->hasSignedIntegerRepresentation());
2277 Address CastItem = CGF.CreateMemTemp(CastTy);
2278 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2279 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
2280 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
2281 LValueBaseInfo(AlignmentSource::Type),
2282 TBAAAccessInfo());
2283 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
2284 LValueBaseInfo(AlignmentSource::Type),
2285 TBAAAccessInfo());
2286 }
2287
2288 /// This function creates calls to one of two shuffle functions to copy
2289 /// variables between lanes in a warp.
createRuntimeShuffleFunction(CodeGenFunction & CGF,llvm::Value * Elem,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)2290 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
2291 llvm::Value *Elem,
2292 QualType ElemType,
2293 llvm::Value *Offset,
2294 SourceLocation Loc) {
2295 CodeGenModule &CGM = CGF.CGM;
2296 CGBuilderTy &Bld = CGF.Builder;
2297 CGOpenMPRuntimeGPU &RT =
2298 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
2299 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
2300
2301 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
2302 assert(Size.getQuantity() <= 8 &&
2303 "Unsupported bitwidth in shuffle instruction.");
2304
2305 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
2306 ? OMPRTL___kmpc_shuffle_int32
2307 : OMPRTL___kmpc_shuffle_int64;
2308
2309 // Cast all types to 32- or 64-bit values before calling shuffle routines.
2310 QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
2311 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
2312 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
2313 llvm::Value *WarpSize =
2314 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
2315
2316 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
2317 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
2318 {ElemCast, Offset, WarpSize});
2319
2320 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
2321 }
2322
shuffleAndStore(CodeGenFunction & CGF,Address SrcAddr,Address DestAddr,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)2323 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
2324 Address DestAddr, QualType ElemType,
2325 llvm::Value *Offset, SourceLocation Loc) {
2326 CGBuilderTy &Bld = CGF.Builder;
2327
2328 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
2329 // Create the loop over the big sized data.
2330 // ptr = (void*)Elem;
2331 // ptrEnd = (void*) Elem + 1;
2332 // Step = 8;
2333 // while (ptr + Step < ptrEnd)
2334 // shuffle((int64_t)*ptr);
2335 // Step = 4;
2336 // while (ptr + Step < ptrEnd)
2337 // shuffle((int32_t)*ptr);
2338 // ...
2339 Address ElemPtr = DestAddr;
2340 Address Ptr = SrcAddr;
2341 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
2342 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
2343 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
2344 if (Size < CharUnits::fromQuantity(IntSize))
2345 continue;
2346 QualType IntType = CGF.getContext().getIntTypeForBitwidth(
2347 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
2348 /*Signed=*/1);
2349 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
2350 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
2351 ElemPtr =
2352 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
2353 if (Size.getQuantity() / IntSize > 1) {
2354 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
2355 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
2356 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
2357 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
2358 CGF.EmitBlock(PreCondBB);
2359 llvm::PHINode *PhiSrc =
2360 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
2361 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
2362 llvm::PHINode *PhiDest =
2363 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
2364 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
2365 Ptr = Address(PhiSrc, Ptr.getAlignment());
2366 ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
2367 llvm::Value *PtrDiff = Bld.CreatePtrDiff(
2368 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
2369 Ptr.getPointer(), CGF.VoidPtrTy));
2370 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
2371 ThenBB, ExitBB);
2372 CGF.EmitBlock(ThenBB);
2373 llvm::Value *Res = createRuntimeShuffleFunction(
2374 CGF,
2375 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
2376 LValueBaseInfo(AlignmentSource::Type),
2377 TBAAAccessInfo()),
2378 IntType, Offset, Loc);
2379 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
2380 LValueBaseInfo(AlignmentSource::Type),
2381 TBAAAccessInfo());
2382 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
2383 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
2384 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
2385 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
2386 CGF.EmitBranch(PreCondBB);
2387 CGF.EmitBlock(ExitBB);
2388 } else {
2389 llvm::Value *Res = createRuntimeShuffleFunction(
2390 CGF,
2391 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
2392 LValueBaseInfo(AlignmentSource::Type),
2393 TBAAAccessInfo()),
2394 IntType, Offset, Loc);
2395 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
2396 LValueBaseInfo(AlignmentSource::Type),
2397 TBAAAccessInfo());
2398 Ptr = Bld.CreateConstGEP(Ptr, 1);
2399 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
2400 }
2401 Size = Size % IntSize;
2402 }
2403 }
2404
2405 namespace {
2406 enum CopyAction : unsigned {
2407 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
2408 // the warp using shuffle instructions.
2409 RemoteLaneToThread,
2410 // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
2411 ThreadCopy,
2412 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
2413 ThreadToScratchpad,
2414 // ScratchpadToThread: Copy from a scratchpad array in global memory
2415 // containing team-reduced data to a thread's stack.
2416 ScratchpadToThread,
2417 };
2418 } // namespace
2419
2420 struct CopyOptionsTy {
2421 llvm::Value *RemoteLaneOffset;
2422 llvm::Value *ScratchpadIndex;
2423 llvm::Value *ScratchpadWidth;
2424 };
2425
2426 /// Emit instructions to copy a Reduce list, which contains partially
2427 /// aggregated values, in the specified direction.
emitReductionListCopy(CopyAction Action,CodeGenFunction & CGF,QualType ReductionArrayTy,ArrayRef<const Expr * > Privates,Address SrcBase,Address DestBase,CopyOptionsTy CopyOptions={nullptr, nullptr, nullptr})2428 static void emitReductionListCopy(
2429 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
2430 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
2431 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
2432
2433 CodeGenModule &CGM = CGF.CGM;
2434 ASTContext &C = CGM.getContext();
2435 CGBuilderTy &Bld = CGF.Builder;
2436
2437 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
2438 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
2439 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
2440
2441 // Iterates, element-by-element, through the source Reduce list and
2442 // make a copy.
2443 unsigned Idx = 0;
2444 unsigned Size = Privates.size();
2445 for (const Expr *Private : Privates) {
2446 Address SrcElementAddr = Address::invalid();
2447 Address DestElementAddr = Address::invalid();
2448 Address DestElementPtrAddr = Address::invalid();
2449 // Should we shuffle in an element from a remote lane?
2450 bool ShuffleInElement = false;
2451 // Set to true to update the pointer in the dest Reduce list to a
2452 // newly created element.
2453 bool UpdateDestListPtr = false;
2454 // Increment the src or dest pointer to the scratchpad, for each
2455 // new element.
2456 bool IncrScratchpadSrc = false;
2457 bool IncrScratchpadDest = false;
2458
2459 switch (Action) {
2460 case RemoteLaneToThread: {
2461 // Step 1.1: Get the address for the src element in the Reduce list.
2462 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
2463 SrcElementAddr = CGF.EmitLoadOfPointer(
2464 SrcElementPtrAddr,
2465 C.getPointerType(Private->getType())->castAs<PointerType>());
2466
2467 // Step 1.2: Create a temporary to store the element in the destination
2468 // Reduce list.
2469 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
2470 DestElementAddr =
2471 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
2472 ShuffleInElement = true;
2473 UpdateDestListPtr = true;
2474 break;
2475 }
2476 case ThreadCopy: {
2477 // Step 1.1: Get the address for the src element in the Reduce list.
2478 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
2479 SrcElementAddr = CGF.EmitLoadOfPointer(
2480 SrcElementPtrAddr,
2481 C.getPointerType(Private->getType())->castAs<PointerType>());
2482
2483 // Step 1.2: Get the address for dest element. The destination
2484 // element has already been created on the thread's stack.
2485 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
2486 DestElementAddr = CGF.EmitLoadOfPointer(
2487 DestElementPtrAddr,
2488 C.getPointerType(Private->getType())->castAs<PointerType>());
2489 break;
2490 }
2491 case ThreadToScratchpad: {
2492 // Step 1.1: Get the address for the src element in the Reduce list.
2493 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
2494 SrcElementAddr = CGF.EmitLoadOfPointer(
2495 SrcElementPtrAddr,
2496 C.getPointerType(Private->getType())->castAs<PointerType>());
2497
2498 // Step 1.2: Get the address for dest element:
2499 // address = base + index * ElementSizeInChars.
2500 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2501 llvm::Value *CurrentOffset =
2502 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
2503 llvm::Value *ScratchPadElemAbsolutePtrVal =
2504 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
2505 ScratchPadElemAbsolutePtrVal =
2506 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
2507 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
2508 C.getTypeAlignInChars(Private->getType()));
2509 IncrScratchpadDest = true;
2510 break;
2511 }
2512 case ScratchpadToThread: {
2513 // Step 1.1: Get the address for the src element in the scratchpad.
2514 // address = base + index * ElementSizeInChars.
2515 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2516 llvm::Value *CurrentOffset =
2517 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
2518 llvm::Value *ScratchPadElemAbsolutePtrVal =
2519 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
2520 ScratchPadElemAbsolutePtrVal =
2521 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
2522 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
2523 C.getTypeAlignInChars(Private->getType()));
2524 IncrScratchpadSrc = true;
2525
2526 // Step 1.2: Create a temporary to store the element in the destination
2527 // Reduce list.
2528 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
2529 DestElementAddr =
2530 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
2531 UpdateDestListPtr = true;
2532 break;
2533 }
2534 }
2535
2536 // Regardless of src and dest of copy, we emit the load of src
2537 // element as this is required in all directions
2538 SrcElementAddr = Bld.CreateElementBitCast(
2539 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
2540 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
2541 SrcElementAddr.getElementType());
2542
2543 // Now that all active lanes have read the element in the
2544 // Reduce list, shuffle over the value from the remote lane.
2545 if (ShuffleInElement) {
2546 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
2547 RemoteLaneOffset, Private->getExprLoc());
2548 } else {
2549 switch (CGF.getEvaluationKind(Private->getType())) {
2550 case TEK_Scalar: {
2551 llvm::Value *Elem = CGF.EmitLoadOfScalar(
2552 SrcElementAddr, /*Volatile=*/false, Private->getType(),
2553 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
2554 TBAAAccessInfo());
2555 // Store the source element value to the dest element address.
2556 CGF.EmitStoreOfScalar(
2557 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2558 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2559 break;
2560 }
2561 case TEK_Complex: {
2562 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2563 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2564 Private->getExprLoc());
2565 CGF.EmitStoreOfComplex(
2566 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2567 /*isInit=*/false);
2568 break;
2569 }
2570 case TEK_Aggregate:
2571 CGF.EmitAggregateCopy(
2572 CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2573 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2574 Private->getType(), AggValueSlot::DoesNotOverlap);
2575 break;
2576 }
2577 }
2578
2579 // Step 3.1: Modify reference in dest Reduce list as needed.
2580 // Modifying the reference in Reduce list to point to the newly
2581 // created element. The element is live in the current function
2582 // scope and that of functions it invokes (i.e., reduce_function).
2583 // RemoteReduceData[i] = (void*)&RemoteElem
2584 if (UpdateDestListPtr) {
2585 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2586 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2587 DestElementPtrAddr, /*Volatile=*/false,
2588 C.VoidPtrTy);
2589 }
2590
2591 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2592 // address of the next element in scratchpad memory, unless we're currently
2593 // processing the last one. Memory alignment is also taken care of here.
2594 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2595 llvm::Value *ScratchpadBasePtr =
2596 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2597 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2598 ScratchpadBasePtr = Bld.CreateNUWAdd(
2599 ScratchpadBasePtr,
2600 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2601
2602 // Take care of global memory alignment for performance
2603 ScratchpadBasePtr = Bld.CreateNUWSub(
2604 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2605 ScratchpadBasePtr = Bld.CreateUDiv(
2606 ScratchpadBasePtr,
2607 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2608 ScratchpadBasePtr = Bld.CreateNUWAdd(
2609 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2610 ScratchpadBasePtr = Bld.CreateNUWMul(
2611 ScratchpadBasePtr,
2612 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2613
2614 if (IncrScratchpadDest)
2615 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2616 else /* IncrScratchpadSrc = true */
2617 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2618 }
2619
2620 ++Idx;
2621 }
2622 }
2623
2624 /// This function emits a helper that gathers Reduce lists from the first
2625 /// lane of every active warp to lanes in the first warp.
2626 ///
2627 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2628 /// shared smem[warp_size];
2629 /// For all data entries D in reduce_data:
2630 /// sync
2631 /// If (I am the first lane in each warp)
2632 /// Copy my local D to smem[warp_id]
2633 /// sync
2634 /// if (I am the first warp)
2635 /// Copy smem[thread_id] to my local D
emitInterWarpCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc)2636 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2637 ArrayRef<const Expr *> Privates,
2638 QualType ReductionArrayTy,
2639 SourceLocation Loc) {
2640 ASTContext &C = CGM.getContext();
2641 llvm::Module &M = CGM.getModule();
2642
2643 // ReduceList: thread local Reduce list.
2644 // At the stage of the computation when this function is called, partially
2645 // aggregated values reside in the first lane of every active warp.
2646 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2647 C.VoidPtrTy, ImplicitParamDecl::Other);
2648 // NumWarps: number of warps active in the parallel region. This could
2649 // be smaller than 32 (max warps in a CTA) for partial block reduction.
2650 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2651 C.getIntTypeForBitwidth(32, /* Signed */ true),
2652 ImplicitParamDecl::Other);
2653 FunctionArgList Args;
2654 Args.push_back(&ReduceListArg);
2655 Args.push_back(&NumWarpsArg);
2656
2657 const CGFunctionInfo &CGFI =
2658 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2659 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2660 llvm::GlobalValue::InternalLinkage,
2661 "_omp_reduction_inter_warp_copy_func", &M);
2662 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2663 Fn->setDoesNotRecurse();
2664 CodeGenFunction CGF(CGM);
2665 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2666
2667 CGBuilderTy &Bld = CGF.Builder;
2668
2669 // This array is used as a medium to transfer, one reduce element at a time,
2670 // the data from the first lane of every warp to lanes in the first warp
2671 // in order to perform the final step of a reduction in a parallel region
2672 // (reduction across warps). The array is placed in NVPTX __shared__ memory
2673 // for reduced latency, as well as to have a distinct copy for concurrently
2674 // executing target regions. The array is declared with common linkage so
2675 // as to be shared across compilation units.
2676 StringRef TransferMediumName =
2677 "__openmp_nvptx_data_transfer_temporary_storage";
2678 llvm::GlobalVariable *TransferMedium =
2679 M.getGlobalVariable(TransferMediumName);
2680 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size);
2681 if (!TransferMedium) {
2682 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2683 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2684 TransferMedium = new llvm::GlobalVariable(
2685 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2686 llvm::UndefValue::get(Ty), TransferMediumName,
2687 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2688 SharedAddressSpace);
2689 CGM.addCompilerUsedGlobal(TransferMedium);
2690 }
2691
2692 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2693 // Get the CUDA thread id of the current OpenMP thread on the GPU.
2694 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2695 // nvptx_lane_id = nvptx_id % warpsize
2696 llvm::Value *LaneID = getNVPTXLaneID(CGF);
2697 // nvptx_warp_id = nvptx_id / warpsize
2698 llvm::Value *WarpID = getNVPTXWarpID(CGF);
2699
2700 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2701 Address LocalReduceList(
2702 Bld.CreatePointerBitCastOrAddrSpaceCast(
2703 CGF.EmitLoadOfScalar(
2704 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2705 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2706 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2707 CGF.getPointerAlign());
2708
2709 unsigned Idx = 0;
2710 for (const Expr *Private : Privates) {
2711 //
2712 // Warp master copies reduce element to transfer medium in __shared__
2713 // memory.
2714 //
2715 unsigned RealTySize =
2716 C.getTypeSizeInChars(Private->getType())
2717 .alignTo(C.getTypeAlignInChars(Private->getType()))
2718 .getQuantity();
2719 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2720 unsigned NumIters = RealTySize / TySize;
2721 if (NumIters == 0)
2722 continue;
2723 QualType CType = C.getIntTypeForBitwidth(
2724 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2725 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2726 CharUnits Align = CharUnits::fromQuantity(TySize);
2727 llvm::Value *Cnt = nullptr;
2728 Address CntAddr = Address::invalid();
2729 llvm::BasicBlock *PrecondBB = nullptr;
2730 llvm::BasicBlock *ExitBB = nullptr;
2731 if (NumIters > 1) {
2732 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2733 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2734 /*Volatile=*/false, C.IntTy);
2735 PrecondBB = CGF.createBasicBlock("precond");
2736 ExitBB = CGF.createBasicBlock("exit");
2737 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2738 // There is no need to emit line number for unconditional branch.
2739 (void)ApplyDebugLocation::CreateEmpty(CGF);
2740 CGF.EmitBlock(PrecondBB);
2741 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2742 llvm::Value *Cmp =
2743 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2744 Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2745 CGF.EmitBlock(BodyBB);
2746 }
2747 // kmpc_barrier.
2748 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2749 /*EmitChecks=*/false,
2750 /*ForceSimpleCall=*/true);
2751 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2752 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2753 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2754
2755 // if (lane_id == 0)
2756 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2757 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2758 CGF.EmitBlock(ThenBB);
2759
2760 // Reduce element = LocalReduceList[i]
2761 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2762 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2763 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2764 // elemptr = ((CopyType*)(elemptrptr)) + I
2765 Address ElemPtr = Address(ElemPtrPtr, Align);
2766 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2767 if (NumIters > 1) {
2768 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
2769 ElemPtr.getAlignment());
2770 }
2771
2772 // Get pointer to location in transfer medium.
2773 // MediumPtr = &medium[warp_id]
2774 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2775 TransferMedium->getValueType(), TransferMedium,
2776 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2777 Address MediumPtr(MediumPtrVal, Align);
2778 // Casting to actual data type.
2779 // MediumPtr = (CopyType*)MediumPtrAddr;
2780 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2781
2782 // elem = *elemptr
2783 //*MediumPtr = elem
2784 llvm::Value *Elem = CGF.EmitLoadOfScalar(
2785 ElemPtr, /*Volatile=*/false, CType, Loc,
2786 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2787 // Store the source element value to the dest element address.
2788 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2789 LValueBaseInfo(AlignmentSource::Type),
2790 TBAAAccessInfo());
2791
2792 Bld.CreateBr(MergeBB);
2793
2794 CGF.EmitBlock(ElseBB);
2795 Bld.CreateBr(MergeBB);
2796
2797 CGF.EmitBlock(MergeBB);
2798
2799 // kmpc_barrier.
2800 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2801 /*EmitChecks=*/false,
2802 /*ForceSimpleCall=*/true);
2803
2804 //
2805 // Warp 0 copies reduce element from transfer medium.
2806 //
2807 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2808 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2809 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2810
2811 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2812 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2813 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2814
2815 // Up to 32 threads in warp 0 are active.
2816 llvm::Value *IsActiveThread =
2817 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2818 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2819
2820 CGF.EmitBlock(W0ThenBB);
2821
2822 // SrcMediumPtr = &medium[tid]
2823 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2824 TransferMedium->getValueType(), TransferMedium,
2825 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2826 Address SrcMediumPtr(SrcMediumPtrVal, Align);
2827 // SrcMediumVal = *SrcMediumPtr;
2828 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2829
2830 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2831 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2832 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2833 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2834 Address TargetElemPtr = Address(TargetElemPtrVal, Align);
2835 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2836 if (NumIters > 1) {
2837 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
2838 TargetElemPtr.getAlignment());
2839 }
2840
2841 // *TargetElemPtr = SrcMediumVal;
2842 llvm::Value *SrcMediumValue =
2843 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2844 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2845 CType);
2846 Bld.CreateBr(W0MergeBB);
2847
2848 CGF.EmitBlock(W0ElseBB);
2849 Bld.CreateBr(W0MergeBB);
2850
2851 CGF.EmitBlock(W0MergeBB);
2852
2853 if (NumIters > 1) {
2854 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2855 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2856 CGF.EmitBranch(PrecondBB);
2857 (void)ApplyDebugLocation::CreateEmpty(CGF);
2858 CGF.EmitBlock(ExitBB);
2859 }
2860 RealTySize %= TySize;
2861 }
2862 ++Idx;
2863 }
2864
2865 CGF.FinishFunction();
2866 return Fn;
2867 }
2868
2869 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2870 /// in the same warp. It uses shuffle instructions to copy over data from
2871 /// a remote lane's stack. The reduction algorithm performed is specified
2872 /// by the fourth parameter.
2873 ///
2874 /// Algorithm Versions.
2875 /// Full Warp Reduce (argument value 0):
2876 /// This algorithm assumes that all 32 lanes are active and gathers
2877 /// data from these 32 lanes, producing a single resultant value.
2878 /// Contiguous Partial Warp Reduce (argument value 1):
2879 /// This algorithm assumes that only a *contiguous* subset of lanes
2880 /// are active. This happens for the last warp in a parallel region
2881 /// when the user specified num_threads is not an integer multiple of
2882 /// 32. This contiguous subset always starts with the zeroth lane.
2883 /// Partial Warp Reduce (argument value 2):
2884 /// This algorithm gathers data from any number of lanes at any position.
2885 /// All reduced values are stored in the lowest possible lane. The set
2886 /// of problems every algorithm addresses is a super set of those
2887 /// addressable by algorithms with a lower version number. Overhead
2888 /// increases as algorithm version increases.
2889 ///
2890 /// Terminology
2891 /// Reduce element:
2892 /// Reduce element refers to the individual data field with primitive
2893 /// data types to be combined and reduced across threads.
2894 /// Reduce list:
2895 /// Reduce list refers to a collection of local, thread-private
2896 /// reduce elements.
2897 /// Remote Reduce list:
2898 /// Remote Reduce list refers to a collection of remote (relative to
2899 /// the current thread) reduce elements.
2900 ///
2901 /// We distinguish between three states of threads that are important to
2902 /// the implementation of this function.
2903 /// Alive threads:
2904 /// Threads in a warp executing the SIMT instruction, as distinguished from
2905 /// threads that are inactive due to divergent control flow.
2906 /// Active threads:
2907 /// The minimal set of threads that has to be alive upon entry to this
2908 /// function. The computation is correct iff active threads are alive.
2909 /// Some threads are alive but they are not active because they do not
2910 /// contribute to the computation in any useful manner. Turning them off
2911 /// may introduce control flow overheads without any tangible benefits.
2912 /// Effective threads:
2913 /// In order to comply with the argument requirements of the shuffle
2914 /// function, we must keep all lanes holding data alive. But at most
2915 /// half of them perform value aggregation; we refer to this half of
2916 /// threads as effective. The other half is simply handing off their
2917 /// data.
2918 ///
2919 /// Procedure
2920 /// Value shuffle:
2921 /// In this step active threads transfer data from higher lane positions
2922 /// in the warp to lower lane positions, creating Remote Reduce list.
2923 /// Value aggregation:
2924 /// In this step, effective threads combine their thread local Reduce list
2925 /// with Remote Reduce list and store the result in the thread local
2926 /// Reduce list.
2927 /// Value copy:
2928 /// In this step, we deal with the assumption made by algorithm 2
2929 /// (i.e. contiguity assumption). When we have an odd number of lanes
2930 /// active, say 2k+1, only k threads will be effective and therefore k
2931 /// new values will be produced. However, the Reduce list owned by the
2932 /// (2k+1)th thread is ignored in the value aggregation. Therefore
2933 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2934 /// that the contiguity assumption still holds.
emitShuffleAndReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,llvm::Function * ReduceFn,SourceLocation Loc)2935 static llvm::Function *emitShuffleAndReduceFunction(
2936 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2937 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2938 ASTContext &C = CGM.getContext();
2939
2940 // Thread local Reduce list used to host the values of data to be reduced.
2941 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2942 C.VoidPtrTy, ImplicitParamDecl::Other);
2943 // Current lane id; could be logical.
2944 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2945 ImplicitParamDecl::Other);
2946 // Offset of the remote source lane relative to the current lane.
2947 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2948 C.ShortTy, ImplicitParamDecl::Other);
2949 // Algorithm version. This is expected to be known at compile time.
2950 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2951 C.ShortTy, ImplicitParamDecl::Other);
2952 FunctionArgList Args;
2953 Args.push_back(&ReduceListArg);
2954 Args.push_back(&LaneIDArg);
2955 Args.push_back(&RemoteLaneOffsetArg);
2956 Args.push_back(&AlgoVerArg);
2957
2958 const CGFunctionInfo &CGFI =
2959 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2960 auto *Fn = llvm::Function::Create(
2961 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2962 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2963 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2964 Fn->setDoesNotRecurse();
2965
2966 CodeGenFunction CGF(CGM);
2967 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2968
2969 CGBuilderTy &Bld = CGF.Builder;
2970
2971 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2972 Address LocalReduceList(
2973 Bld.CreatePointerBitCastOrAddrSpaceCast(
2974 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2975 C.VoidPtrTy, SourceLocation()),
2976 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2977 CGF.getPointerAlign());
2978
2979 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2980 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2981 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2982
2983 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2984 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2985 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2986
2987 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2988 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2989 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2990
2991 // Create a local thread-private variable to host the Reduce list
2992 // from a remote lane.
2993 Address RemoteReduceList =
2994 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2995
2996 // This loop iterates through the list of reduce elements and copies,
2997 // element by element, from a remote lane in the warp to RemoteReduceList,
2998 // hosted on the thread's stack.
2999 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
3000 LocalReduceList, RemoteReduceList,
3001 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
3002 /*ScratchpadIndex=*/nullptr,
3003 /*ScratchpadWidth=*/nullptr});
3004
3005 // The actions to be performed on the Remote Reduce list is dependent
3006 // on the algorithm version.
3007 //
3008 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
3009 // LaneId % 2 == 0 && Offset > 0):
3010 // do the reduction value aggregation
3011 //
3012 // The thread local variable Reduce list is mutated in place to host the
3013 // reduced data, which is the aggregated value produced from local and
3014 // remote lanes.
3015 //
3016 // Note that AlgoVer is expected to be a constant integer known at compile
3017 // time.
3018 // When AlgoVer==0, the first conjunction evaluates to true, making
3019 // the entire predicate true during compile time.
3020 // When AlgoVer==1, the second conjunction has only the second part to be
3021 // evaluated during runtime. Other conjunctions evaluates to false
3022 // during compile time.
3023 // When AlgoVer==2, the third conjunction has only the second part to be
3024 // evaluated during runtime. Other conjunctions evaluates to false
3025 // during compile time.
3026 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
3027
3028 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
3029 llvm::Value *CondAlgo1 = Bld.CreateAnd(
3030 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
3031
3032 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
3033 llvm::Value *CondAlgo2 = Bld.CreateAnd(
3034 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
3035 CondAlgo2 = Bld.CreateAnd(
3036 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
3037
3038 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
3039 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
3040
3041 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
3042 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
3043 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
3044 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
3045
3046 CGF.EmitBlock(ThenBB);
3047 // reduce_function(LocalReduceList, RemoteReduceList)
3048 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3049 LocalReduceList.getPointer(), CGF.VoidPtrTy);
3050 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3051 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
3052 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3053 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
3054 Bld.CreateBr(MergeBB);
3055
3056 CGF.EmitBlock(ElseBB);
3057 Bld.CreateBr(MergeBB);
3058
3059 CGF.EmitBlock(MergeBB);
3060
3061 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
3062 // Reduce list.
3063 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
3064 llvm::Value *CondCopy = Bld.CreateAnd(
3065 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
3066
3067 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
3068 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
3069 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
3070 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
3071
3072 CGF.EmitBlock(CpyThenBB);
3073 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
3074 RemoteReduceList, LocalReduceList);
3075 Bld.CreateBr(CpyMergeBB);
3076
3077 CGF.EmitBlock(CpyElseBB);
3078 Bld.CreateBr(CpyMergeBB);
3079
3080 CGF.EmitBlock(CpyMergeBB);
3081
3082 CGF.FinishFunction();
3083 return Fn;
3084 }
3085
3086 /// This function emits a helper that copies all the reduction variables from
3087 /// the team into the provided global buffer for the reduction variables.
3088 ///
3089 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
3090 /// For all data entries D in reduce_data:
3091 /// Copy local D to buffer.D[Idx]
emitListToGlobalCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)3092 static llvm::Value *emitListToGlobalCopyFunction(
3093 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3094 QualType ReductionArrayTy, SourceLocation Loc,
3095 const RecordDecl *TeamReductionRec,
3096 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3097 &VarFieldMap) {
3098 ASTContext &C = CGM.getContext();
3099
3100 // Buffer: global reduction buffer.
3101 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3102 C.VoidPtrTy, ImplicitParamDecl::Other);
3103 // Idx: index of the buffer.
3104 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3105 ImplicitParamDecl::Other);
3106 // ReduceList: thread local Reduce list.
3107 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3108 C.VoidPtrTy, ImplicitParamDecl::Other);
3109 FunctionArgList Args;
3110 Args.push_back(&BufferArg);
3111 Args.push_back(&IdxArg);
3112 Args.push_back(&ReduceListArg);
3113
3114 const CGFunctionInfo &CGFI =
3115 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3116 auto *Fn = llvm::Function::Create(
3117 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3118 "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
3119 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3120 Fn->setDoesNotRecurse();
3121 CodeGenFunction CGF(CGM);
3122 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3123
3124 CGBuilderTy &Bld = CGF.Builder;
3125
3126 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3127 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3128 Address LocalReduceList(
3129 Bld.CreatePointerBitCastOrAddrSpaceCast(
3130 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3131 C.VoidPtrTy, Loc),
3132 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3133 CGF.getPointerAlign());
3134 QualType StaticTy = C.getRecordType(TeamReductionRec);
3135 llvm::Type *LLVMReductionsBufferTy =
3136 CGM.getTypes().ConvertTypeForMem(StaticTy);
3137 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3138 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3139 LLVMReductionsBufferTy->getPointerTo());
3140 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3141 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3142 /*Volatile=*/false, C.IntTy,
3143 Loc)};
3144 unsigned Idx = 0;
3145 for (const Expr *Private : Privates) {
3146 // Reduce element = LocalReduceList[i]
3147 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3148 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3149 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3150 // elemptr = ((CopyType*)(elemptrptr)) + I
3151 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3152 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
3153 Address ElemPtr =
3154 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
3155 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
3156 // Global = Buffer.VD[Idx];
3157 const FieldDecl *FD = VarFieldMap.lookup(VD);
3158 LValue GlobLVal = CGF.EmitLValueForField(
3159 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3160 Address GlobAddr = GlobLVal.getAddress(CGF);
3161 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
3162 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
3163 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
3164 switch (CGF.getEvaluationKind(Private->getType())) {
3165 case TEK_Scalar: {
3166 llvm::Value *V = CGF.EmitLoadOfScalar(
3167 ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
3168 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
3169 CGF.EmitStoreOfScalar(V, GlobLVal);
3170 break;
3171 }
3172 case TEK_Complex: {
3173 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
3174 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
3175 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
3176 break;
3177 }
3178 case TEK_Aggregate:
3179 CGF.EmitAggregateCopy(GlobLVal,
3180 CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3181 Private->getType(), AggValueSlot::DoesNotOverlap);
3182 break;
3183 }
3184 ++Idx;
3185 }
3186
3187 CGF.FinishFunction();
3188 return Fn;
3189 }
3190
3191 /// This function emits a helper that reduces all the reduction variables from
3192 /// the team into the provided global buffer for the reduction variables.
3193 ///
3194 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
3195 /// void *GlobPtrs[];
3196 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
3197 /// ...
3198 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
3199 /// reduce_function(GlobPtrs, reduce_data);
emitListToGlobalReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)3200 static llvm::Value *emitListToGlobalReduceFunction(
3201 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3202 QualType ReductionArrayTy, SourceLocation Loc,
3203 const RecordDecl *TeamReductionRec,
3204 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3205 &VarFieldMap,
3206 llvm::Function *ReduceFn) {
3207 ASTContext &C = CGM.getContext();
3208
3209 // Buffer: global reduction buffer.
3210 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3211 C.VoidPtrTy, ImplicitParamDecl::Other);
3212 // Idx: index of the buffer.
3213 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3214 ImplicitParamDecl::Other);
3215 // ReduceList: thread local Reduce list.
3216 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3217 C.VoidPtrTy, ImplicitParamDecl::Other);
3218 FunctionArgList Args;
3219 Args.push_back(&BufferArg);
3220 Args.push_back(&IdxArg);
3221 Args.push_back(&ReduceListArg);
3222
3223 const CGFunctionInfo &CGFI =
3224 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3225 auto *Fn = llvm::Function::Create(
3226 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3227 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
3228 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3229 Fn->setDoesNotRecurse();
3230 CodeGenFunction CGF(CGM);
3231 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3232
3233 CGBuilderTy &Bld = CGF.Builder;
3234
3235 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3236 QualType StaticTy = C.getRecordType(TeamReductionRec);
3237 llvm::Type *LLVMReductionsBufferTy =
3238 CGM.getTypes().ConvertTypeForMem(StaticTy);
3239 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3240 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3241 LLVMReductionsBufferTy->getPointerTo());
3242
3243 // 1. Build a list of reduction variables.
3244 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3245 Address ReductionList =
3246 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3247 auto IPriv = Privates.begin();
3248 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3249 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3250 /*Volatile=*/false, C.IntTy,
3251 Loc)};
3252 unsigned Idx = 0;
3253 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
3254 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3255 // Global = Buffer.VD[Idx];
3256 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
3257 const FieldDecl *FD = VarFieldMap.lookup(VD);
3258 LValue GlobLVal = CGF.EmitLValueForField(
3259 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3260 Address GlobAddr = GlobLVal.getAddress(CGF);
3261 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
3262 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
3263 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
3264 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
3265 if ((*IPriv)->getType()->isVariablyModifiedType()) {
3266 // Store array size.
3267 ++Idx;
3268 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3269 llvm::Value *Size = CGF.Builder.CreateIntCast(
3270 CGF.getVLASize(
3271 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3272 .NumElts,
3273 CGF.SizeTy, /*isSigned=*/false);
3274 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3275 Elem);
3276 }
3277 }
3278
3279 // Call reduce_function(GlobalReduceList, ReduceList)
3280 llvm::Value *GlobalReduceList =
3281 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
3282 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3283 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
3284 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
3285 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3286 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
3287 CGF.FinishFunction();
3288 return Fn;
3289 }
3290
3291 /// This function emits a helper that copies all the reduction variables from
3292 /// the team into the provided global buffer for the reduction variables.
3293 ///
3294 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
3295 /// For all data entries D in reduce_data:
3296 /// Copy buffer.D[Idx] to local D;
emitGlobalToListCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)3297 static llvm::Value *emitGlobalToListCopyFunction(
3298 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3299 QualType ReductionArrayTy, SourceLocation Loc,
3300 const RecordDecl *TeamReductionRec,
3301 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3302 &VarFieldMap) {
3303 ASTContext &C = CGM.getContext();
3304
3305 // Buffer: global reduction buffer.
3306 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3307 C.VoidPtrTy, ImplicitParamDecl::Other);
3308 // Idx: index of the buffer.
3309 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3310 ImplicitParamDecl::Other);
3311 // ReduceList: thread local Reduce list.
3312 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3313 C.VoidPtrTy, ImplicitParamDecl::Other);
3314 FunctionArgList Args;
3315 Args.push_back(&BufferArg);
3316 Args.push_back(&IdxArg);
3317 Args.push_back(&ReduceListArg);
3318
3319 const CGFunctionInfo &CGFI =
3320 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3321 auto *Fn = llvm::Function::Create(
3322 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3323 "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
3324 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3325 Fn->setDoesNotRecurse();
3326 CodeGenFunction CGF(CGM);
3327 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3328
3329 CGBuilderTy &Bld = CGF.Builder;
3330
3331 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3332 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3333 Address LocalReduceList(
3334 Bld.CreatePointerBitCastOrAddrSpaceCast(
3335 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3336 C.VoidPtrTy, Loc),
3337 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3338 CGF.getPointerAlign());
3339 QualType StaticTy = C.getRecordType(TeamReductionRec);
3340 llvm::Type *LLVMReductionsBufferTy =
3341 CGM.getTypes().ConvertTypeForMem(StaticTy);
3342 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3343 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3344 LLVMReductionsBufferTy->getPointerTo());
3345
3346 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3347 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3348 /*Volatile=*/false, C.IntTy,
3349 Loc)};
3350 unsigned Idx = 0;
3351 for (const Expr *Private : Privates) {
3352 // Reduce element = LocalReduceList[i]
3353 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3354 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3355 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3356 // elemptr = ((CopyType*)(elemptrptr)) + I
3357 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3358 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
3359 Address ElemPtr =
3360 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
3361 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
3362 // Global = Buffer.VD[Idx];
3363 const FieldDecl *FD = VarFieldMap.lookup(VD);
3364 LValue GlobLVal = CGF.EmitLValueForField(
3365 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3366 Address GlobAddr = GlobLVal.getAddress(CGF);
3367 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
3368 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
3369 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
3370 switch (CGF.getEvaluationKind(Private->getType())) {
3371 case TEK_Scalar: {
3372 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
3373 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
3374 LValueBaseInfo(AlignmentSource::Type),
3375 TBAAAccessInfo());
3376 break;
3377 }
3378 case TEK_Complex: {
3379 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
3380 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3381 /*isInit=*/false);
3382 break;
3383 }
3384 case TEK_Aggregate:
3385 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3386 GlobLVal, Private->getType(),
3387 AggValueSlot::DoesNotOverlap);
3388 break;
3389 }
3390 ++Idx;
3391 }
3392
3393 CGF.FinishFunction();
3394 return Fn;
3395 }
3396
3397 /// This function emits a helper that reduces all the reduction variables from
3398 /// the team into the provided global buffer for the reduction variables.
3399 ///
3400 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
3401 /// void *GlobPtrs[];
3402 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
3403 /// ...
3404 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
3405 /// reduce_function(reduce_data, GlobPtrs);
emitGlobalToListReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)3406 static llvm::Value *emitGlobalToListReduceFunction(
3407 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3408 QualType ReductionArrayTy, SourceLocation Loc,
3409 const RecordDecl *TeamReductionRec,
3410 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3411 &VarFieldMap,
3412 llvm::Function *ReduceFn) {
3413 ASTContext &C = CGM.getContext();
3414
3415 // Buffer: global reduction buffer.
3416 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3417 C.VoidPtrTy, ImplicitParamDecl::Other);
3418 // Idx: index of the buffer.
3419 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3420 ImplicitParamDecl::Other);
3421 // ReduceList: thread local Reduce list.
3422 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3423 C.VoidPtrTy, ImplicitParamDecl::Other);
3424 FunctionArgList Args;
3425 Args.push_back(&BufferArg);
3426 Args.push_back(&IdxArg);
3427 Args.push_back(&ReduceListArg);
3428
3429 const CGFunctionInfo &CGFI =
3430 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3431 auto *Fn = llvm::Function::Create(
3432 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3433 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
3434 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3435 Fn->setDoesNotRecurse();
3436 CodeGenFunction CGF(CGM);
3437 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3438
3439 CGBuilderTy &Bld = CGF.Builder;
3440
3441 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3442 QualType StaticTy = C.getRecordType(TeamReductionRec);
3443 llvm::Type *LLVMReductionsBufferTy =
3444 CGM.getTypes().ConvertTypeForMem(StaticTy);
3445 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3446 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3447 LLVMReductionsBufferTy->getPointerTo());
3448
3449 // 1. Build a list of reduction variables.
3450 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3451 Address ReductionList =
3452 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3453 auto IPriv = Privates.begin();
3454 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3455 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3456 /*Volatile=*/false, C.IntTy,
3457 Loc)};
3458 unsigned Idx = 0;
3459 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
3460 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3461 // Global = Buffer.VD[Idx];
3462 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
3463 const FieldDecl *FD = VarFieldMap.lookup(VD);
3464 LValue GlobLVal = CGF.EmitLValueForField(
3465 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3466 Address GlobAddr = GlobLVal.getAddress(CGF);
3467 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
3468 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
3469 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
3470 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
3471 if ((*IPriv)->getType()->isVariablyModifiedType()) {
3472 // Store array size.
3473 ++Idx;
3474 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3475 llvm::Value *Size = CGF.Builder.CreateIntCast(
3476 CGF.getVLASize(
3477 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3478 .NumElts,
3479 CGF.SizeTy, /*isSigned=*/false);
3480 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3481 Elem);
3482 }
3483 }
3484
3485 // Call reduce_function(ReduceList, GlobalReduceList)
3486 llvm::Value *GlobalReduceList =
3487 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
3488 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3489 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
3490 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
3491 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3492 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
3493 CGF.FinishFunction();
3494 return Fn;
3495 }
3496
3497 ///
3498 /// Design of OpenMP reductions on the GPU
3499 ///
3500 /// Consider a typical OpenMP program with one or more reduction
3501 /// clauses:
3502 ///
3503 /// float foo;
3504 /// double bar;
3505 /// #pragma omp target teams distribute parallel for \
3506 /// reduction(+:foo) reduction(*:bar)
3507 /// for (int i = 0; i < N; i++) {
3508 /// foo += A[i]; bar *= B[i];
3509 /// }
3510 ///
3511 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
3512 /// all teams. In our OpenMP implementation on the NVPTX device an
3513 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
3514 /// within a team are mapped to CUDA threads within a threadblock.
3515 /// Our goal is to efficiently aggregate values across all OpenMP
3516 /// threads such that:
3517 ///
3518 /// - the compiler and runtime are logically concise, and
3519 /// - the reduction is performed efficiently in a hierarchical
3520 /// manner as follows: within OpenMP threads in the same warp,
3521 /// across warps in a threadblock, and finally across teams on
3522 /// the NVPTX device.
3523 ///
3524 /// Introduction to Decoupling
3525 ///
3526 /// We would like to decouple the compiler and the runtime so that the
3527 /// latter is ignorant of the reduction variables (number, data types)
3528 /// and the reduction operators. This allows a simpler interface
3529 /// and implementation while still attaining good performance.
3530 ///
3531 /// Pseudocode for the aforementioned OpenMP program generated by the
3532 /// compiler is as follows:
3533 ///
3534 /// 1. Create private copies of reduction variables on each OpenMP
3535 /// thread: 'foo_private', 'bar_private'
3536 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
3537 /// to it and writes the result in 'foo_private' and 'bar_private'
3538 /// respectively.
3539 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
3540 /// and store the result on the team master:
3541 ///
3542 /// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
3543 /// reduceData, shuffleReduceFn, interWarpCpyFn)
3544 ///
3545 /// where:
3546 /// struct ReduceData {
3547 /// double *foo;
3548 /// double *bar;
3549 /// } reduceData
3550 /// reduceData.foo = &foo_private
3551 /// reduceData.bar = &bar_private
3552 ///
3553 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3554 /// auxiliary functions generated by the compiler that operate on
3555 /// variables of type 'ReduceData'. They aid the runtime perform
3556 /// algorithmic steps in a data agnostic manner.
3557 ///
3558 /// 'shuffleReduceFn' is a pointer to a function that reduces data
3559 /// of type 'ReduceData' across two OpenMP threads (lanes) in the
3560 /// same warp. It takes the following arguments as input:
3561 ///
3562 /// a. variable of type 'ReduceData' on the calling lane,
3563 /// b. its lane_id,
3564 /// c. an offset relative to the current lane_id to generate a
3565 /// remote_lane_id. The remote lane contains the second
3566 /// variable of type 'ReduceData' that is to be reduced.
3567 /// d. an algorithm version parameter determining which reduction
3568 /// algorithm to use.
3569 ///
3570 /// 'shuffleReduceFn' retrieves data from the remote lane using
3571 /// efficient GPU shuffle intrinsics and reduces, using the
3572 /// algorithm specified by the 4th parameter, the two operands
3573 /// element-wise. The result is written to the first operand.
3574 ///
3575 /// Different reduction algorithms are implemented in different
3576 /// runtime functions, all calling 'shuffleReduceFn' to perform
3577 /// the essential reduction step. Therefore, based on the 4th
3578 /// parameter, this function behaves slightly differently to
3579 /// cooperate with the runtime to ensure correctness under
3580 /// different circumstances.
3581 ///
3582 /// 'InterWarpCpyFn' is a pointer to a function that transfers
3583 /// reduced variables across warps. It tunnels, through CUDA
3584 /// shared memory, the thread-private data of type 'ReduceData'
3585 /// from lane 0 of each warp to a lane in the first warp.
3586 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3587 /// The last team writes the global reduced value to memory.
3588 ///
3589 /// ret = __kmpc_nvptx_teams_reduce_nowait(...,
3590 /// reduceData, shuffleReduceFn, interWarpCpyFn,
3591 /// scratchpadCopyFn, loadAndReduceFn)
3592 ///
3593 /// 'scratchpadCopyFn' is a helper that stores reduced
3594 /// data from the team master to a scratchpad array in
3595 /// global memory.
3596 ///
3597 /// 'loadAndReduceFn' is a helper that loads data from
3598 /// the scratchpad array and reduces it with the input
3599 /// operand.
3600 ///
3601 /// These compiler generated functions hide address
3602 /// calculation and alignment information from the runtime.
3603 /// 5. if ret == 1:
3604 /// The team master of the last team stores the reduced
3605 /// result to the globals in memory.
3606 /// foo += reduceData.foo; bar *= reduceData.bar
3607 ///
3608 ///
3609 /// Warp Reduction Algorithms
3610 ///
3611 /// On the warp level, we have three algorithms implemented in the
3612 /// OpenMP runtime depending on the number of active lanes:
3613 ///
3614 /// Full Warp Reduction
3615 ///
3616 /// The reduce algorithm within a warp where all lanes are active
3617 /// is implemented in the runtime as follows:
3618 ///
3619 /// full_warp_reduce(void *reduce_data,
3620 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3621 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3622 /// ShuffleReduceFn(reduce_data, 0, offset, 0);
3623 /// }
3624 ///
3625 /// The algorithm completes in log(2, WARPSIZE) steps.
3626 ///
3627 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3628 /// not used therefore we save instructions by not retrieving lane_id
3629 /// from the corresponding special registers. The 4th parameter, which
3630 /// represents the version of the algorithm being used, is set to 0 to
3631 /// signify full warp reduction.
3632 ///
3633 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3634 ///
3635 /// #reduce_elem refers to an element in the local lane's data structure
3636 /// #remote_elem is retrieved from a remote lane
3637 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3638 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3639 ///
3640 /// Contiguous Partial Warp Reduction
3641 ///
3642 /// This reduce algorithm is used within a warp where only the first
3643 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
3644 /// number of OpenMP threads in a parallel region is not a multiple of
3645 /// WARPSIZE. The algorithm is implemented in the runtime as follows:
3646 ///
3647 /// void
3648 /// contiguous_partial_reduce(void *reduce_data,
3649 /// kmp_ShuffleReductFctPtr ShuffleReduceFn,
3650 /// int size, int lane_id) {
3651 /// int curr_size;
3652 /// int offset;
3653 /// curr_size = size;
3654 /// mask = curr_size/2;
3655 /// while (offset>0) {
3656 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3657 /// curr_size = (curr_size+1)/2;
3658 /// offset = curr_size/2;
3659 /// }
3660 /// }
3661 ///
3662 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3663 ///
3664 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3665 /// if (lane_id < offset)
3666 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
3667 /// else
3668 /// reduce_elem = remote_elem
3669 ///
3670 /// This algorithm assumes that the data to be reduced are located in a
3671 /// contiguous subset of lanes starting from the first. When there is
3672 /// an odd number of active lanes, the data in the last lane is not
3673 /// aggregated with any other lane's dat but is instead copied over.
3674 ///
3675 /// Dispersed Partial Warp Reduction
3676 ///
3677 /// This algorithm is used within a warp when any discontiguous subset of
3678 /// lanes are active. It is used to implement the reduction operation
3679 /// across lanes in an OpenMP simd region or in a nested parallel region.
3680 ///
3681 /// void
3682 /// dispersed_partial_reduce(void *reduce_data,
3683 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3684 /// int size, remote_id;
3685 /// int logical_lane_id = number_of_active_lanes_before_me() * 2;
3686 /// do {
3687 /// remote_id = next_active_lane_id_right_after_me();
3688 /// # the above function returns 0 of no active lane
3689 /// # is present right after the current lane.
3690 /// size = number_of_active_lanes_in_this_warp();
3691 /// logical_lane_id /= 2;
3692 /// ShuffleReduceFn(reduce_data, logical_lane_id,
3693 /// remote_id-1-threadIdx.x, 2);
3694 /// } while (logical_lane_id % 2 == 0 && size > 1);
3695 /// }
3696 ///
3697 /// There is no assumption made about the initial state of the reduction.
3698 /// Any number of lanes (>=1) could be active at any position. The reduction
3699 /// result is returned in the first active lane.
3700 ///
3701 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3702 ///
3703 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3704 /// if (lane_id % 2 == 0 && offset > 0)
3705 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
3706 /// else
3707 /// reduce_elem = remote_elem
3708 ///
3709 ///
3710 /// Intra-Team Reduction
3711 ///
3712 /// This function, as implemented in the runtime call
3713 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3714 /// threads in a team. It first reduces within a warp using the
3715 /// aforementioned algorithms. We then proceed to gather all such
3716 /// reduced values at the first warp.
3717 ///
3718 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3719 /// data from each of the "warp master" (zeroth lane of each warp, where
3720 /// warp-reduced data is held) to the zeroth warp. This step reduces (in
3721 /// a mathematical sense) the problem of reduction across warp masters in
3722 /// a block to the problem of warp reduction.
3723 ///
3724 ///
3725 /// Inter-Team Reduction
3726 ///
3727 /// Once a team has reduced its data to a single value, it is stored in
3728 /// a global scratchpad array. Since each team has a distinct slot, this
3729 /// can be done without locking.
3730 ///
3731 /// The last team to write to the scratchpad array proceeds to reduce the
3732 /// scratchpad array. One or more workers in the last team use the helper
3733 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3734 /// the k'th worker reduces every k'th element.
3735 ///
3736 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3737 /// reduce across workers and compute a globally reduced value.
3738 ///
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)3739 void CGOpenMPRuntimeGPU::emitReduction(
3740 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3741 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3742 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3743 if (!CGF.HaveInsertPoint())
3744 return;
3745
3746 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3747 #ifndef NDEBUG
3748 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3749 #endif
3750
3751 if (Options.SimpleReduction) {
3752 assert(!TeamsReduction && !ParallelReduction &&
3753 "Invalid reduction selection in emitReduction.");
3754 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3755 ReductionOps, Options);
3756 return;
3757 }
3758
3759 assert((TeamsReduction || ParallelReduction) &&
3760 "Invalid reduction selection in emitReduction.");
3761
3762 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3763 // RedList, shuffle_reduce_func, interwarp_copy_func);
3764 // or
3765 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3766 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3767 llvm::Value *ThreadId = getThreadID(CGF, Loc);
3768
3769 llvm::Value *Res;
3770 ASTContext &C = CGM.getContext();
3771 // 1. Build a list of reduction variables.
3772 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3773 auto Size = RHSExprs.size();
3774 for (const Expr *E : Privates) {
3775 if (E->getType()->isVariablyModifiedType())
3776 // Reserve place for array size.
3777 ++Size;
3778 }
3779 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3780 QualType ReductionArrayTy =
3781 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3782 /*IndexTypeQuals=*/0);
3783 Address ReductionList =
3784 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3785 auto IPriv = Privates.begin();
3786 unsigned Idx = 0;
3787 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3788 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3789 CGF.Builder.CreateStore(
3790 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3791 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3792 Elem);
3793 if ((*IPriv)->getType()->isVariablyModifiedType()) {
3794 // Store array size.
3795 ++Idx;
3796 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3797 llvm::Value *Size = CGF.Builder.CreateIntCast(
3798 CGF.getVLASize(
3799 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3800 .NumElts,
3801 CGF.SizeTy, /*isSigned=*/false);
3802 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3803 Elem);
3804 }
3805 }
3806
3807 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3808 ReductionList.getPointer(), CGF.VoidPtrTy);
3809 llvm::Function *ReductionFn = emitReductionFunction(
3810 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3811 LHSExprs, RHSExprs, ReductionOps);
3812 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3813 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3814 CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3815 llvm::Value *InterWarpCopyFn =
3816 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3817
3818 if (ParallelReduction) {
3819 llvm::Value *Args[] = {RTLoc,
3820 ThreadId,
3821 CGF.Builder.getInt32(RHSExprs.size()),
3822 ReductionArrayTySize,
3823 RL,
3824 ShuffleAndReduceFn,
3825 InterWarpCopyFn};
3826
3827 Res = CGF.EmitRuntimeCall(
3828 OMPBuilder.getOrCreateRuntimeFunction(
3829 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3830 Args);
3831 } else {
3832 assert(TeamsReduction && "expected teams reduction.");
3833 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3834 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3835 int Cnt = 0;
3836 for (const Expr *DRE : Privates) {
3837 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3838 ++Cnt;
3839 }
3840 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3841 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3842 C.getLangOpts().OpenMPCUDAReductionBufNum);
3843 TeamsReductions.push_back(TeamReductionRec);
3844 if (!KernelTeamsReductionPtr) {
3845 KernelTeamsReductionPtr = new llvm::GlobalVariable(
3846 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3847 llvm::GlobalValue::InternalLinkage, nullptr,
3848 "_openmp_teams_reductions_buffer_$_$ptr");
3849 }
3850 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3851 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3852 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3853 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3854 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3855 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3856 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3857 ReductionFn);
3858 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3859 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3860 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3861 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3862 ReductionFn);
3863
3864 llvm::Value *Args[] = {
3865 RTLoc,
3866 ThreadId,
3867 GlobalBufferPtr,
3868 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3869 RL,
3870 ShuffleAndReduceFn,
3871 InterWarpCopyFn,
3872 GlobalToBufferCpyFn,
3873 GlobalToBufferRedFn,
3874 BufferToGlobalCpyFn,
3875 BufferToGlobalRedFn};
3876
3877 Res = CGF.EmitRuntimeCall(
3878 OMPBuilder.getOrCreateRuntimeFunction(
3879 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3880 Args);
3881 }
3882
3883 // 5. Build if (res == 1)
3884 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3885 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3886 llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3887 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3888 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3889
3890 // 6. Build then branch: where we have reduced values in the master
3891 // thread in each team.
3892 // __kmpc_end_reduce{_nowait}(<gtid>);
3893 // break;
3894 CGF.EmitBlock(ThenBB);
3895
3896 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3897 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3898 this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3899 auto IPriv = Privates.begin();
3900 auto ILHS = LHSExprs.begin();
3901 auto IRHS = RHSExprs.begin();
3902 for (const Expr *E : ReductionOps) {
3903 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3904 cast<DeclRefExpr>(*IRHS));
3905 ++IPriv;
3906 ++ILHS;
3907 ++IRHS;
3908 }
3909 };
3910 llvm::Value *EndArgs[] = {ThreadId};
3911 RegionCodeGenTy RCG(CodeGen);
3912 NVPTXActionTy Action(
3913 nullptr, llvm::None,
3914 OMPBuilder.getOrCreateRuntimeFunction(
3915 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3916 EndArgs);
3917 RCG.setAction(Action);
3918 RCG(CGF);
3919 // There is no need to emit line number for unconditional branch.
3920 (void)ApplyDebugLocation::CreateEmpty(CGF);
3921 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3922 }
3923
3924 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const3925 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3926 const VarDecl *NativeParam) const {
3927 if (!NativeParam->getType()->isReferenceType())
3928 return NativeParam;
3929 QualType ArgType = NativeParam->getType();
3930 QualifierCollector QC;
3931 const Type *NonQualTy = QC.strip(ArgType);
3932 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3933 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3934 if (Attr->getCaptureKind() == OMPC_map) {
3935 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3936 LangAS::opencl_global);
3937 } else if (Attr->getCaptureKind() == OMPC_firstprivate &&
3938 PointeeTy.isConstant(CGM.getContext())) {
3939 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3940 LangAS::opencl_generic);
3941 }
3942 }
3943 ArgType = CGM.getContext().getPointerType(PointeeTy);
3944 QC.addRestrict();
3945 enum { NVPTX_local_addr = 5 };
3946 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3947 ArgType = QC.apply(CGM.getContext(), ArgType);
3948 if (isa<ImplicitParamDecl>(NativeParam))
3949 return ImplicitParamDecl::Create(
3950 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3951 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3952 return ParmVarDecl::Create(
3953 CGM.getContext(),
3954 const_cast<DeclContext *>(NativeParam->getDeclContext()),
3955 NativeParam->getBeginLoc(), NativeParam->getLocation(),
3956 NativeParam->getIdentifier(), ArgType,
3957 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3958 }
3959
3960 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const3961 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3962 const VarDecl *NativeParam,
3963 const VarDecl *TargetParam) const {
3964 assert(NativeParam != TargetParam &&
3965 NativeParam->getType()->isReferenceType() &&
3966 "Native arg must not be the same as target arg.");
3967 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3968 QualType NativeParamType = NativeParam->getType();
3969 QualifierCollector QC;
3970 const Type *NonQualTy = QC.strip(NativeParamType);
3971 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3972 unsigned NativePointeeAddrSpace =
3973 CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3974 QualType TargetTy = TargetParam->getType();
3975 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3976 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3977 // First cast to generic.
3978 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3979 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
3980 /*AddrSpace=*/0));
3981 // Cast from generic to native address space.
3982 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3983 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
3984 NativePointeeAddrSpace));
3985 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3986 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3987 NativeParamType);
3988 return NativeParamAddr;
3989 }
3990
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const3991 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3992 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3993 ArrayRef<llvm::Value *> Args) const {
3994 SmallVector<llvm::Value *, 4> TargetArgs;
3995 TargetArgs.reserve(Args.size());
3996 auto *FnType = OutlinedFn.getFunctionType();
3997 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3998 if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3999 TargetArgs.append(std::next(Args.begin(), I), Args.end());
4000 break;
4001 }
4002 llvm::Type *TargetType = FnType->getParamType(I);
4003 llvm::Value *NativeArg = Args[I];
4004 if (!TargetType->isPointerTy()) {
4005 TargetArgs.emplace_back(NativeArg);
4006 continue;
4007 }
4008 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4009 NativeArg,
4010 NativeArg->getType()->getPointerElementType()->getPointerTo());
4011 TargetArgs.emplace_back(
4012 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
4013 }
4014 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
4015 }
4016
4017 /// Emit function which wraps the outline parallel region
4018 /// and controls the arguments which are passed to this function.
4019 /// The wrapper ensures that the outlined function is called
4020 /// with the correct arguments when data is shared.
createParallelDataSharingWrapper(llvm::Function * OutlinedParallelFn,const OMPExecutableDirective & D)4021 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
4022 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
4023 ASTContext &Ctx = CGM.getContext();
4024 const auto &CS = *D.getCapturedStmt(OMPD_parallel);
4025
4026 // Create a function that takes as argument the source thread.
4027 FunctionArgList WrapperArgs;
4028 QualType Int16QTy =
4029 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
4030 QualType Int32QTy =
4031 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
4032 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
4033 /*Id=*/nullptr, Int16QTy,
4034 ImplicitParamDecl::Other);
4035 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
4036 /*Id=*/nullptr, Int32QTy,
4037 ImplicitParamDecl::Other);
4038 WrapperArgs.emplace_back(&ParallelLevelArg);
4039 WrapperArgs.emplace_back(&WrapperArg);
4040
4041 const CGFunctionInfo &CGFI =
4042 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
4043
4044 auto *Fn = llvm::Function::Create(
4045 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
4046 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
4047
4048 // Ensure we do not inline the function. This is trivially true for the ones
4049 // passed to __kmpc_fork_call but the ones calles in serialized regions
4050 // could be inlined. This is not a perfect but it is closer to the invariant
4051 // we want, namely, every data environment starts with a new function.
4052 // TODO: We should pass the if condition to the runtime function and do the
4053 // handling there. Much cleaner code.
4054 Fn->addFnAttr(llvm::Attribute::NoInline);
4055
4056 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
4057 Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
4058 Fn->setDoesNotRecurse();
4059
4060 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
4061 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
4062 D.getBeginLoc(), D.getBeginLoc());
4063
4064 const auto *RD = CS.getCapturedRecordDecl();
4065 auto CurField = RD->field_begin();
4066
4067 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
4068 /*Name=*/".zero.addr");
4069 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
4070 // Get the array of arguments.
4071 SmallVector<llvm::Value *, 8> Args;
4072
4073 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
4074 Args.emplace_back(ZeroAddr.getPointer());
4075
4076 CGBuilderTy &Bld = CGF.Builder;
4077 auto CI = CS.capture_begin();
4078
4079 // Use global memory for data sharing.
4080 // Handle passing of global args to workers.
4081 Address GlobalArgs =
4082 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
4083 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
4084 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
4085 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4086 CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
4087 DataSharingArgs);
4088
4089 // Retrieve the shared variables from the list of references returned
4090 // by the runtime. Pass the variables to the outlined function.
4091 Address SharedArgListAddress = Address::invalid();
4092 if (CS.capture_size() > 0 ||
4093 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
4094 SharedArgListAddress = CGF.EmitLoadOfPointer(
4095 GlobalArgs, CGF.getContext()
4096 .getPointerType(CGF.getContext().getPointerType(
4097 CGF.getContext().VoidPtrTy))
4098 .castAs<PointerType>());
4099 }
4100 unsigned Idx = 0;
4101 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
4102 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
4103 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4104 Src, CGF.SizeTy->getPointerTo());
4105 llvm::Value *LB = CGF.EmitLoadOfScalar(
4106 TypedAddress,
4107 /*Volatile=*/false,
4108 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
4109 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
4110 Args.emplace_back(LB);
4111 ++Idx;
4112 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
4113 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4114 Src, CGF.SizeTy->getPointerTo());
4115 llvm::Value *UB = CGF.EmitLoadOfScalar(
4116 TypedAddress,
4117 /*Volatile=*/false,
4118 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
4119 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
4120 Args.emplace_back(UB);
4121 ++Idx;
4122 }
4123 if (CS.capture_size() > 0) {
4124 ASTContext &CGFContext = CGF.getContext();
4125 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
4126 QualType ElemTy = CurField->getType();
4127 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
4128 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4129 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
4130 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
4131 /*Volatile=*/false,
4132 CGFContext.getPointerType(ElemTy),
4133 CI->getLocation());
4134 if (CI->capturesVariableByCopy() &&
4135 !CI->getCapturedVar()->getType()->isAnyPointerType()) {
4136 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
4137 CI->getLocation());
4138 }
4139 Args.emplace_back(Arg);
4140 }
4141 }
4142
4143 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
4144 CGF.FinishFunction();
4145 return Fn;
4146 }
4147
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)4148 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
4149 const Decl *D) {
4150 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
4151 return;
4152
4153 assert(D && "Expected function or captured|block decl.");
4154 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
4155 "Function is registered already.");
4156 assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
4157 "Team is set but not processed.");
4158 const Stmt *Body = nullptr;
4159 bool NeedToDelayGlobalization = false;
4160 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4161 Body = FD->getBody();
4162 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
4163 Body = BD->getBody();
4164 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
4165 Body = CD->getBody();
4166 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
4167 if (NeedToDelayGlobalization &&
4168 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
4169 return;
4170 }
4171 if (!Body)
4172 return;
4173 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
4174 VarChecker.Visit(Body);
4175 const RecordDecl *GlobalizedVarsRecord =
4176 VarChecker.getGlobalizedRecord(IsInTTDRegion);
4177 TeamAndReductions.first = nullptr;
4178 TeamAndReductions.second.clear();
4179 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
4180 VarChecker.getEscapedVariableLengthDecls();
4181 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
4182 return;
4183 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
4184 I->getSecond().MappedParams =
4185 std::make_unique<CodeGenFunction::OMPMapVars>();
4186 I->getSecond().GlobalRecord = GlobalizedVarsRecord;
4187 I->getSecond().EscapedParameters.insert(
4188 VarChecker.getEscapedParameters().begin(),
4189 VarChecker.getEscapedParameters().end());
4190 I->getSecond().EscapedVariableLengthDecls.append(
4191 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
4192 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
4193 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
4194 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
4195 const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
4196 Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
4197 }
4198 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
4199 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
4200 VarChecker.Visit(Body);
4201 I->getSecond().SecondaryGlobalRecord =
4202 VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
4203 I->getSecond().SecondaryLocalVarData.emplace();
4204 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
4205 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
4206 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
4207 const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
4208 Data.insert(
4209 std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
4210 }
4211 }
4212 if (!NeedToDelayGlobalization) {
4213 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
4214 struct GlobalizationScope final : EHScopeStack::Cleanup {
4215 GlobalizationScope() = default;
4216
4217 void Emit(CodeGenFunction &CGF, Flags flags) override {
4218 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
4219 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
4220 }
4221 };
4222 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
4223 }
4224 }
4225
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)4226 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
4227 const VarDecl *VD) {
4228 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
4229 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
4230 auto AS = LangAS::Default;
4231 switch (A->getAllocatorType()) {
4232 // Use the default allocator here as by default local vars are
4233 // threadlocal.
4234 case OMPAllocateDeclAttr::OMPNullMemAlloc:
4235 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
4236 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
4237 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
4238 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
4239 // Follow the user decision - use default allocation.
4240 return Address::invalid();
4241 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
4242 // TODO: implement aupport for user-defined allocators.
4243 return Address::invalid();
4244 case OMPAllocateDeclAttr::OMPConstMemAlloc:
4245 AS = LangAS::cuda_constant;
4246 break;
4247 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
4248 AS = LangAS::cuda_shared;
4249 break;
4250 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
4251 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
4252 break;
4253 }
4254 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
4255 auto *GV = new llvm::GlobalVariable(
4256 CGM.getModule(), VarTy, /*isConstant=*/false,
4257 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
4258 VD->getName(),
4259 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
4260 CGM.getContext().getTargetAddressSpace(AS));
4261 CharUnits Align = CGM.getContext().getDeclAlign(VD);
4262 GV->setAlignment(Align.getAsAlign());
4263 return Address(
4264 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4265 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
4266 VD->getType().getAddressSpace()))),
4267 Align);
4268 }
4269
4270 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
4271 return Address::invalid();
4272
4273 VD = VD->getCanonicalDecl();
4274 auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
4275 if (I == FunctionGlobalizedDecls.end())
4276 return Address::invalid();
4277 auto VDI = I->getSecond().LocalVarData.find(VD);
4278 if (VDI != I->getSecond().LocalVarData.end())
4279 return VDI->second.PrivateAddr;
4280 if (VD->hasAttrs()) {
4281 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
4282 E(VD->attr_end());
4283 IT != E; ++IT) {
4284 auto VDI = I->getSecond().LocalVarData.find(
4285 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
4286 ->getCanonicalDecl());
4287 if (VDI != I->getSecond().LocalVarData.end())
4288 return VDI->second.PrivateAddr;
4289 }
4290 }
4291
4292 return Address::invalid();
4293 }
4294
functionFinished(CodeGenFunction & CGF)4295 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
4296 FunctionGlobalizedDecls.erase(CGF.CurFn);
4297 CGOpenMPRuntime::functionFinished(CGF);
4298 }
4299
getDefaultDistScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPDistScheduleClauseKind & ScheduleKind,llvm::Value * & Chunk) const4300 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
4301 CodeGenFunction &CGF, const OMPLoopDirective &S,
4302 OpenMPDistScheduleClauseKind &ScheduleKind,
4303 llvm::Value *&Chunk) const {
4304 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
4305 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
4306 ScheduleKind = OMPC_DIST_SCHEDULE_static;
4307 Chunk = CGF.EmitScalarConversion(
4308 RT.getGPUNumThreads(CGF),
4309 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4310 S.getIterationVariable()->getType(), S.getBeginLoc());
4311 return;
4312 }
4313 CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
4314 CGF, S, ScheduleKind, Chunk);
4315 }
4316
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const4317 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
4318 CodeGenFunction &CGF, const OMPLoopDirective &S,
4319 OpenMPScheduleClauseKind &ScheduleKind,
4320 const Expr *&ChunkExpr) const {
4321 ScheduleKind = OMPC_SCHEDULE_static;
4322 // Chunk size is 1 in this case.
4323 llvm::APInt ChunkSize(32, 1);
4324 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
4325 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4326 SourceLocation());
4327 }
4328
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const4329 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
4330 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
4331 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
4332 " Expected target-based directive.");
4333 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
4334 for (const CapturedStmt::Capture &C : CS->captures()) {
4335 // Capture variables captured by reference in lambdas for target-based
4336 // directives.
4337 if (!C.capturesVariable())
4338 continue;
4339 const VarDecl *VD = C.getCapturedVar();
4340 const auto *RD = VD->getType()
4341 .getCanonicalType()
4342 .getNonReferenceType()
4343 ->getAsCXXRecordDecl();
4344 if (!RD || !RD->isLambda())
4345 continue;
4346 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
4347 LValue VDLVal;
4348 if (VD->getType().getCanonicalType()->isReferenceType())
4349 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
4350 else
4351 VDLVal = CGF.MakeAddrLValue(
4352 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
4353 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
4354 FieldDecl *ThisCapture = nullptr;
4355 RD->getCaptureFields(Captures, ThisCapture);
4356 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
4357 LValue ThisLVal =
4358 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
4359 llvm::Value *CXXThis = CGF.LoadCXXThis();
4360 CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
4361 }
4362 for (const LambdaCapture &LC : RD->captures()) {
4363 if (LC.getCaptureKind() != LCK_ByRef)
4364 continue;
4365 const VarDecl *VD = LC.getCapturedVar();
4366 if (!CS->capturesVariable(VD))
4367 continue;
4368 auto It = Captures.find(VD);
4369 assert(It != Captures.end() && "Found lambda capture without field.");
4370 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
4371 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
4372 if (VD->getType().getCanonicalType()->isReferenceType())
4373 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
4374 VD->getType().getCanonicalType())
4375 .getAddress(CGF);
4376 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
4377 }
4378 }
4379 }
4380
getDefaultFirstprivateAddressSpace() const4381 unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const {
4382 return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
4383 }
4384
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)4385 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
4386 LangAS &AS) {
4387 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
4388 return false;
4389 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
4390 switch(A->getAllocatorType()) {
4391 case OMPAllocateDeclAttr::OMPNullMemAlloc:
4392 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
4393 // Not supported, fallback to the default mem space.
4394 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
4395 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
4396 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
4397 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
4398 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
4399 AS = LangAS::Default;
4400 return true;
4401 case OMPAllocateDeclAttr::OMPConstMemAlloc:
4402 AS = LangAS::cuda_constant;
4403 return true;
4404 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
4405 AS = LangAS::cuda_shared;
4406 return true;
4407 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
4408 llvm_unreachable("Expected predefined allocator for the variables with the "
4409 "static storage.");
4410 }
4411 return false;
4412 }
4413
4414 // Get current CudaArch and ignore any unknown values
getCudaArch(CodeGenModule & CGM)4415 static CudaArch getCudaArch(CodeGenModule &CGM) {
4416 if (!CGM.getTarget().hasFeature("ptx"))
4417 return CudaArch::UNKNOWN;
4418 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
4419 if (Feature.getValue()) {
4420 CudaArch Arch = StringToCudaArch(Feature.getKey());
4421 if (Arch != CudaArch::UNKNOWN)
4422 return Arch;
4423 }
4424 }
4425 return CudaArch::UNKNOWN;
4426 }
4427
4428 /// Check to see if target architecture supports unified addressing which is
4429 /// a restriction for OpenMP requires clause "unified_shared_memory".
processRequiresDirective(const OMPRequiresDecl * D)4430 void CGOpenMPRuntimeGPU::processRequiresDirective(
4431 const OMPRequiresDecl *D) {
4432 for (const OMPClause *Clause : D->clauselists()) {
4433 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
4434 CudaArch Arch = getCudaArch(CGM);
4435 switch (Arch) {
4436 case CudaArch::SM_20:
4437 case CudaArch::SM_21:
4438 case CudaArch::SM_30:
4439 case CudaArch::SM_32:
4440 case CudaArch::SM_35:
4441 case CudaArch::SM_37:
4442 case CudaArch::SM_50:
4443 case CudaArch::SM_52:
4444 case CudaArch::SM_53: {
4445 SmallString<256> Buffer;
4446 llvm::raw_svector_ostream Out(Buffer);
4447 Out << "Target architecture " << CudaArchToString(Arch)
4448 << " does not support unified addressing";
4449 CGM.Error(Clause->getBeginLoc(), Out.str());
4450 return;
4451 }
4452 case CudaArch::SM_60:
4453 case CudaArch::SM_61:
4454 case CudaArch::SM_62:
4455 case CudaArch::SM_70:
4456 case CudaArch::SM_72:
4457 case CudaArch::SM_75:
4458 case CudaArch::SM_80:
4459 case CudaArch::SM_86:
4460 case CudaArch::GFX600:
4461 case CudaArch::GFX601:
4462 case CudaArch::GFX602:
4463 case CudaArch::GFX700:
4464 case CudaArch::GFX701:
4465 case CudaArch::GFX702:
4466 case CudaArch::GFX703:
4467 case CudaArch::GFX704:
4468 case CudaArch::GFX705:
4469 case CudaArch::GFX801:
4470 case CudaArch::GFX802:
4471 case CudaArch::GFX803:
4472 case CudaArch::GFX805:
4473 case CudaArch::GFX810:
4474 case CudaArch::GFX900:
4475 case CudaArch::GFX902:
4476 case CudaArch::GFX904:
4477 case CudaArch::GFX906:
4478 case CudaArch::GFX908:
4479 case CudaArch::GFX909:
4480 case CudaArch::GFX90a:
4481 case CudaArch::GFX90c:
4482 case CudaArch::GFX1010:
4483 case CudaArch::GFX1011:
4484 case CudaArch::GFX1012:
4485 case CudaArch::GFX1030:
4486 case CudaArch::GFX1031:
4487 case CudaArch::GFX1032:
4488 case CudaArch::GFX1033:
4489 case CudaArch::GFX1034:
4490 case CudaArch::UNUSED:
4491 case CudaArch::UNKNOWN:
4492 break;
4493 case CudaArch::LAST:
4494 llvm_unreachable("Unexpected Cuda arch.");
4495 }
4496 }
4497 }
4498 CGOpenMPRuntime::processRequiresDirective(D);
4499 }
4500
4501 /// Get number of SMs and number of blocks per SM.
getSMsBlocksPerSM(CodeGenModule & CGM)4502 static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
4503 std::pair<unsigned, unsigned> Data;
4504 if (CGM.getLangOpts().OpenMPCUDANumSMs)
4505 Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
4506 if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
4507 Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
4508 if (Data.first && Data.second)
4509 return Data;
4510 switch (getCudaArch(CGM)) {
4511 case CudaArch::SM_20:
4512 case CudaArch::SM_21:
4513 case CudaArch::SM_30:
4514 case CudaArch::SM_32:
4515 case CudaArch::SM_35:
4516 case CudaArch::SM_37:
4517 case CudaArch::SM_50:
4518 case CudaArch::SM_52:
4519 case CudaArch::SM_53:
4520 return {16, 16};
4521 case CudaArch::SM_60:
4522 case CudaArch::SM_61:
4523 case CudaArch::SM_62:
4524 return {56, 32};
4525 case CudaArch::SM_70:
4526 case CudaArch::SM_72:
4527 case CudaArch::SM_75:
4528 case CudaArch::SM_80:
4529 case CudaArch::SM_86:
4530 return {84, 32};
4531 case CudaArch::GFX600:
4532 case CudaArch::GFX601:
4533 case CudaArch::GFX602:
4534 case CudaArch::GFX700:
4535 case CudaArch::GFX701:
4536 case CudaArch::GFX702:
4537 case CudaArch::GFX703:
4538 case CudaArch::GFX704:
4539 case CudaArch::GFX705:
4540 case CudaArch::GFX801:
4541 case CudaArch::GFX802:
4542 case CudaArch::GFX803:
4543 case CudaArch::GFX805:
4544 case CudaArch::GFX810:
4545 case CudaArch::GFX900:
4546 case CudaArch::GFX902:
4547 case CudaArch::GFX904:
4548 case CudaArch::GFX906:
4549 case CudaArch::GFX908:
4550 case CudaArch::GFX909:
4551 case CudaArch::GFX90a:
4552 case CudaArch::GFX90c:
4553 case CudaArch::GFX1010:
4554 case CudaArch::GFX1011:
4555 case CudaArch::GFX1012:
4556 case CudaArch::GFX1030:
4557 case CudaArch::GFX1031:
4558 case CudaArch::GFX1032:
4559 case CudaArch::GFX1033:
4560 case CudaArch::GFX1034:
4561 case CudaArch::UNUSED:
4562 case CudaArch::UNKNOWN:
4563 break;
4564 case CudaArch::LAST:
4565 llvm_unreachable("Unexpected Cuda arch.");
4566 }
4567 llvm_unreachable("Unexpected NVPTX target without ptx feature.");
4568 }
4569
clear()4570 void CGOpenMPRuntimeGPU::clear() {
4571 if (!GlobalizedRecords.empty() &&
4572 !CGM.getLangOpts().OpenMPCUDATargetParallel) {
4573 ASTContext &C = CGM.getContext();
4574 llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
4575 llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
4576 RecordDecl *StaticRD = C.buildImplicitRecord(
4577 "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
4578 StaticRD->startDefinition();
4579 RecordDecl *SharedStaticRD = C.buildImplicitRecord(
4580 "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
4581 SharedStaticRD->startDefinition();
4582 for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
4583 if (Records.Records.empty())
4584 continue;
4585 unsigned Size = 0;
4586 unsigned RecAlignment = 0;
4587 for (const RecordDecl *RD : Records.Records) {
4588 QualType RDTy = C.getRecordType(RD);
4589 unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
4590 RecAlignment = std::max(RecAlignment, Alignment);
4591 unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
4592 Size =
4593 llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
4594 }
4595 Size = llvm::alignTo(Size, RecAlignment);
4596 llvm::APInt ArySize(/*numBits=*/64, Size);
4597 QualType SubTy = C.getConstantArrayType(
4598 C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4599 const bool UseSharedMemory = Size <= SharedMemorySize;
4600 auto *Field =
4601 FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
4602 SourceLocation(), SourceLocation(), nullptr, SubTy,
4603 C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
4604 /*BW=*/nullptr, /*Mutable=*/false,
4605 /*InitStyle=*/ICIS_NoInit);
4606 Field->setAccess(AS_public);
4607 if (UseSharedMemory) {
4608 SharedStaticRD->addDecl(Field);
4609 SharedRecs.push_back(&Records);
4610 } else {
4611 StaticRD->addDecl(Field);
4612 GlobalRecs.push_back(&Records);
4613 }
4614 Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
4615 Records.UseSharedMemory->setInitializer(
4616 llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
4617 }
4618 // Allocate SharedMemorySize buffer for the shared memory.
4619 // FIXME: nvlink does not handle weak linkage correctly (object with the
4620 // different size are reported as erroneous).
4621 // Restore this code as sson as nvlink is fixed.
4622 if (!SharedStaticRD->field_empty()) {
4623 llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
4624 QualType SubTy = C.getConstantArrayType(
4625 C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4626 auto *Field = FieldDecl::Create(
4627 C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
4628 C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
4629 /*BW=*/nullptr, /*Mutable=*/false,
4630 /*InitStyle=*/ICIS_NoInit);
4631 Field->setAccess(AS_public);
4632 SharedStaticRD->addDecl(Field);
4633 }
4634 SharedStaticRD->completeDefinition();
4635 if (!SharedStaticRD->field_empty()) {
4636 QualType StaticTy = C.getRecordType(SharedStaticRD);
4637 llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
4638 auto *GV = new llvm::GlobalVariable(
4639 CGM.getModule(), LLVMStaticTy,
4640 /*isConstant=*/false, llvm::GlobalValue::WeakAnyLinkage,
4641 llvm::UndefValue::get(LLVMStaticTy),
4642 "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
4643 llvm::GlobalValue::NotThreadLocal,
4644 C.getTargetAddressSpace(LangAS::cuda_shared));
4645 auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
4646 GV, CGM.VoidPtrTy);
4647 for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
4648 Rec->Buffer->replaceAllUsesWith(Replacement);
4649 Rec->Buffer->eraseFromParent();
4650 }
4651 }
4652 StaticRD->completeDefinition();
4653 if (!StaticRD->field_empty()) {
4654 QualType StaticTy = C.getRecordType(StaticRD);
4655 std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
4656 llvm::APInt Size1(32, SMsBlockPerSM.second);
4657 QualType Arr1Ty =
4658 C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal,
4659 /*IndexTypeQuals=*/0);
4660 llvm::APInt Size2(32, SMsBlockPerSM.first);
4661 QualType Arr2Ty =
4662 C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal,
4663 /*IndexTypeQuals=*/0);
4664 llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
4665 // FIXME: nvlink does not handle weak linkage correctly (object with the
4666 // different size are reported as erroneous).
4667 // Restore CommonLinkage as soon as nvlink is fixed.
4668 auto *GV = new llvm::GlobalVariable(
4669 CGM.getModule(), LLVMArr2Ty,
4670 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
4671 llvm::Constant::getNullValue(LLVMArr2Ty),
4672 "_openmp_static_glob_rd_$_");
4673 auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
4674 GV, CGM.VoidPtrTy);
4675 for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
4676 Rec->Buffer->replaceAllUsesWith(Replacement);
4677 Rec->Buffer->eraseFromParent();
4678 }
4679 }
4680 }
4681 if (!TeamsReductions.empty()) {
4682 ASTContext &C = CGM.getContext();
4683 RecordDecl *StaticRD = C.buildImplicitRecord(
4684 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
4685 StaticRD->startDefinition();
4686 for (const RecordDecl *TeamReductionRec : TeamsReductions) {
4687 QualType RecTy = C.getRecordType(TeamReductionRec);
4688 auto *Field = FieldDecl::Create(
4689 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
4690 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
4691 /*BW=*/nullptr, /*Mutable=*/false,
4692 /*InitStyle=*/ICIS_NoInit);
4693 Field->setAccess(AS_public);
4694 StaticRD->addDecl(Field);
4695 }
4696 StaticRD->completeDefinition();
4697 QualType StaticTy = C.getRecordType(StaticRD);
4698 llvm::Type *LLVMReductionsBufferTy =
4699 CGM.getTypes().ConvertTypeForMem(StaticTy);
4700 // FIXME: nvlink does not handle weak linkage correctly (object with the
4701 // different size are reported as erroneous).
4702 // Restore CommonLinkage as soon as nvlink is fixed.
4703 auto *GV = new llvm::GlobalVariable(
4704 CGM.getModule(), LLVMReductionsBufferTy,
4705 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
4706 llvm::Constant::getNullValue(LLVMReductionsBufferTy),
4707 "_openmp_teams_reductions_buffer_$_");
4708 KernelTeamsReductionPtr->setInitializer(
4709 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4710 CGM.VoidPtrTy));
4711 }
4712 CGOpenMPRuntime::clear();
4713 }
4714