1 #include "../include/KaleidoscopeJIT.h"
2 #include "llvm/ADT/APFloat.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "llvm/Transforms/InstCombine/InstCombine.h"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Transforms/Scalar/GVN.h"
20 #include <algorithm>
21 #include <cassert>
22 #include <cctype>
23 #include <cstdint>
24 #include <cstdio>
25 #include <cstdlib>
26 #include <map>
27 #include <memory>
28 #include <string>
29 #include <vector>
30
31 using namespace llvm;
32 using namespace llvm::orc;
33
34 //===----------------------------------------------------------------------===//
35 // Lexer
36 //===----------------------------------------------------------------------===//
37
38 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
39 // of these for known things.
40 enum Token {
41 tok_eof = -1,
42
43 // commands
44 tok_def = -2,
45 tok_extern = -3,
46
47 // primary
48 tok_identifier = -4,
49 tok_number = -5,
50
51 // control
52 tok_if = -6,
53 tok_then = -7,
54 tok_else = -8,
55 tok_for = -9,
56 tok_in = -10
57 };
58
59 static std::string IdentifierStr; // Filled in if tok_identifier
60 static double NumVal; // Filled in if tok_number
61
62 /// gettok - Return the next token from standard input.
gettok()63 static int gettok() {
64 static int LastChar = ' ';
65
66 // Skip any whitespace.
67 while (isspace(LastChar))
68 LastChar = getchar();
69
70 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
71 IdentifierStr = LastChar;
72 while (isalnum((LastChar = getchar())))
73 IdentifierStr += LastChar;
74
75 if (IdentifierStr == "def")
76 return tok_def;
77 if (IdentifierStr == "extern")
78 return tok_extern;
79 if (IdentifierStr == "if")
80 return tok_if;
81 if (IdentifierStr == "then")
82 return tok_then;
83 if (IdentifierStr == "else")
84 return tok_else;
85 if (IdentifierStr == "for")
86 return tok_for;
87 if (IdentifierStr == "in")
88 return tok_in;
89 return tok_identifier;
90 }
91
92 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
93 std::string NumStr;
94 do {
95 NumStr += LastChar;
96 LastChar = getchar();
97 } while (isdigit(LastChar) || LastChar == '.');
98
99 NumVal = strtod(NumStr.c_str(), nullptr);
100 return tok_number;
101 }
102
103 if (LastChar == '#') {
104 // Comment until end of line.
105 do
106 LastChar = getchar();
107 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
108
109 if (LastChar != EOF)
110 return gettok();
111 }
112
113 // Check for end of file. Don't eat the EOF.
114 if (LastChar == EOF)
115 return tok_eof;
116
117 // Otherwise, just return the character as its ascii value.
118 int ThisChar = LastChar;
119 LastChar = getchar();
120 return ThisChar;
121 }
122
123 //===----------------------------------------------------------------------===//
124 // Abstract Syntax Tree (aka Parse Tree)
125 //===----------------------------------------------------------------------===//
126
127 namespace {
128
129 /// ExprAST - Base class for all expression nodes.
130 class ExprAST {
131 public:
132 virtual ~ExprAST() = default;
133
134 virtual Value *codegen() = 0;
135 };
136
137 /// NumberExprAST - Expression class for numeric literals like "1.0".
138 class NumberExprAST : public ExprAST {
139 double Val;
140
141 public:
NumberExprAST(double Val)142 NumberExprAST(double Val) : Val(Val) {}
143
144 Value *codegen() override;
145 };
146
147 /// VariableExprAST - Expression class for referencing a variable, like "a".
148 class VariableExprAST : public ExprAST {
149 std::string Name;
150
151 public:
VariableExprAST(const std::string & Name)152 VariableExprAST(const std::string &Name) : Name(Name) {}
153
154 Value *codegen() override;
155 };
156
157 /// BinaryExprAST - Expression class for a binary operator.
158 class BinaryExprAST : public ExprAST {
159 char Op;
160 std::unique_ptr<ExprAST> LHS, RHS;
161
162 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)163 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
164 std::unique_ptr<ExprAST> RHS)
165 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
166
167 Value *codegen() override;
168 };
169
170 /// CallExprAST - Expression class for function calls.
171 class CallExprAST : public ExprAST {
172 std::string Callee;
173 std::vector<std::unique_ptr<ExprAST>> Args;
174
175 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)176 CallExprAST(const std::string &Callee,
177 std::vector<std::unique_ptr<ExprAST>> Args)
178 : Callee(Callee), Args(std::move(Args)) {}
179
180 Value *codegen() override;
181 };
182
183 /// IfExprAST - Expression class for if/then/else.
184 class IfExprAST : public ExprAST {
185 std::unique_ptr<ExprAST> Cond, Then, Else;
186
187 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)188 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
189 std::unique_ptr<ExprAST> Else)
190 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
191
192 Value *codegen() override;
193 };
194
195 /// ForExprAST - Expression class for for/in.
196 class ForExprAST : public ExprAST {
197 std::string VarName;
198 std::unique_ptr<ExprAST> Start, End, Step, Body;
199
200 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)201 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
202 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
203 std::unique_ptr<ExprAST> Body)
204 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
205 Step(std::move(Step)), Body(std::move(Body)) {}
206
207 Value *codegen() override;
208 };
209
210 /// PrototypeAST - This class represents the "prototype" for a function,
211 /// which captures its name, and its argument names (thus implicitly the number
212 /// of arguments the function takes).
213 class PrototypeAST {
214 std::string Name;
215 std::vector<std::string> Args;
216
217 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args)218 PrototypeAST(const std::string &Name, std::vector<std::string> Args)
219 : Name(Name), Args(std::move(Args)) {}
220
221 Function *codegen();
getName() const222 const std::string &getName() const { return Name; }
223 };
224
225 /// FunctionAST - This class represents a function definition itself.
226 class FunctionAST {
227 std::unique_ptr<PrototypeAST> Proto;
228 std::unique_ptr<ExprAST> Body;
229
230 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)231 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
232 std::unique_ptr<ExprAST> Body)
233 : Proto(std::move(Proto)), Body(std::move(Body)) {}
234
235 Function *codegen();
236 };
237
238 } // end anonymous namespace
239
240 //===----------------------------------------------------------------------===//
241 // Parser
242 //===----------------------------------------------------------------------===//
243
244 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
245 /// token the parser is looking at. getNextToken reads another token from the
246 /// lexer and updates CurTok with its results.
247 static int CurTok;
getNextToken()248 static int getNextToken() { return CurTok = gettok(); }
249
250 /// BinopPrecedence - This holds the precedence for each binary operator that is
251 /// defined.
252 static std::map<char, int> BinopPrecedence;
253
254 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()255 static int GetTokPrecedence() {
256 if (!isascii(CurTok))
257 return -1;
258
259 // Make sure it's a declared binop.
260 int TokPrec = BinopPrecedence[CurTok];
261 if (TokPrec <= 0)
262 return -1;
263 return TokPrec;
264 }
265
266 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)267 std::unique_ptr<ExprAST> LogError(const char *Str) {
268 fprintf(stderr, "Error: %s\n", Str);
269 return nullptr;
270 }
271
LogErrorP(const char * Str)272 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
273 LogError(Str);
274 return nullptr;
275 }
276
277 static std::unique_ptr<ExprAST> ParseExpression();
278
279 /// numberexpr ::= number
ParseNumberExpr()280 static std::unique_ptr<ExprAST> ParseNumberExpr() {
281 auto Result = std::make_unique<NumberExprAST>(NumVal);
282 getNextToken(); // consume the number
283 return std::move(Result);
284 }
285
286 /// parenexpr ::= '(' expression ')'
ParseParenExpr()287 static std::unique_ptr<ExprAST> ParseParenExpr() {
288 getNextToken(); // eat (.
289 auto V = ParseExpression();
290 if (!V)
291 return nullptr;
292
293 if (CurTok != ')')
294 return LogError("expected ')'");
295 getNextToken(); // eat ).
296 return V;
297 }
298
299 /// identifierexpr
300 /// ::= identifier
301 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()302 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
303 std::string IdName = IdentifierStr;
304
305 getNextToken(); // eat identifier.
306
307 if (CurTok != '(') // Simple variable ref.
308 return std::make_unique<VariableExprAST>(IdName);
309
310 // Call.
311 getNextToken(); // eat (
312 std::vector<std::unique_ptr<ExprAST>> Args;
313 if (CurTok != ')') {
314 while (true) {
315 if (auto Arg = ParseExpression())
316 Args.push_back(std::move(Arg));
317 else
318 return nullptr;
319
320 if (CurTok == ')')
321 break;
322
323 if (CurTok != ',')
324 return LogError("Expected ')' or ',' in argument list");
325 getNextToken();
326 }
327 }
328
329 // Eat the ')'.
330 getNextToken();
331
332 return std::make_unique<CallExprAST>(IdName, std::move(Args));
333 }
334
335 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()336 static std::unique_ptr<ExprAST> ParseIfExpr() {
337 getNextToken(); // eat the if.
338
339 // condition.
340 auto Cond = ParseExpression();
341 if (!Cond)
342 return nullptr;
343
344 if (CurTok != tok_then)
345 return LogError("expected then");
346 getNextToken(); // eat the then
347
348 auto Then = ParseExpression();
349 if (!Then)
350 return nullptr;
351
352 if (CurTok != tok_else)
353 return LogError("expected else");
354
355 getNextToken();
356
357 auto Else = ParseExpression();
358 if (!Else)
359 return nullptr;
360
361 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
362 std::move(Else));
363 }
364
365 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()366 static std::unique_ptr<ExprAST> ParseForExpr() {
367 getNextToken(); // eat the for.
368
369 if (CurTok != tok_identifier)
370 return LogError("expected identifier after for");
371
372 std::string IdName = IdentifierStr;
373 getNextToken(); // eat identifier.
374
375 if (CurTok != '=')
376 return LogError("expected '=' after for");
377 getNextToken(); // eat '='.
378
379 auto Start = ParseExpression();
380 if (!Start)
381 return nullptr;
382 if (CurTok != ',')
383 return LogError("expected ',' after for start value");
384 getNextToken();
385
386 auto End = ParseExpression();
387 if (!End)
388 return nullptr;
389
390 // The step value is optional.
391 std::unique_ptr<ExprAST> Step;
392 if (CurTok == ',') {
393 getNextToken();
394 Step = ParseExpression();
395 if (!Step)
396 return nullptr;
397 }
398
399 if (CurTok != tok_in)
400 return LogError("expected 'in' after for");
401 getNextToken(); // eat 'in'.
402
403 auto Body = ParseExpression();
404 if (!Body)
405 return nullptr;
406
407 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
408 std::move(Step), std::move(Body));
409 }
410
411 /// primary
412 /// ::= identifierexpr
413 /// ::= numberexpr
414 /// ::= parenexpr
415 /// ::= ifexpr
416 /// ::= forexpr
ParsePrimary()417 static std::unique_ptr<ExprAST> ParsePrimary() {
418 switch (CurTok) {
419 default:
420 return LogError("unknown token when expecting an expression");
421 case tok_identifier:
422 return ParseIdentifierExpr();
423 case tok_number:
424 return ParseNumberExpr();
425 case '(':
426 return ParseParenExpr();
427 case tok_if:
428 return ParseIfExpr();
429 case tok_for:
430 return ParseForExpr();
431 }
432 }
433
434 /// binoprhs
435 /// ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)436 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
437 std::unique_ptr<ExprAST> LHS) {
438 // If this is a binop, find its precedence.
439 while (true) {
440 int TokPrec = GetTokPrecedence();
441
442 // If this is a binop that binds at least as tightly as the current binop,
443 // consume it, otherwise we are done.
444 if (TokPrec < ExprPrec)
445 return LHS;
446
447 // Okay, we know this is a binop.
448 int BinOp = CurTok;
449 getNextToken(); // eat binop
450
451 // Parse the primary expression after the binary operator.
452 auto RHS = ParsePrimary();
453 if (!RHS)
454 return nullptr;
455
456 // If BinOp binds less tightly with RHS than the operator after RHS, let
457 // the pending operator take RHS as its LHS.
458 int NextPrec = GetTokPrecedence();
459 if (TokPrec < NextPrec) {
460 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
461 if (!RHS)
462 return nullptr;
463 }
464
465 // Merge LHS/RHS.
466 LHS =
467 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
468 }
469 }
470
471 /// expression
472 /// ::= primary binoprhs
473 ///
ParseExpression()474 static std::unique_ptr<ExprAST> ParseExpression() {
475 auto LHS = ParsePrimary();
476 if (!LHS)
477 return nullptr;
478
479 return ParseBinOpRHS(0, std::move(LHS));
480 }
481
482 /// prototype
483 /// ::= id '(' id* ')'
ParsePrototype()484 static std::unique_ptr<PrototypeAST> ParsePrototype() {
485 if (CurTok != tok_identifier)
486 return LogErrorP("Expected function name in prototype");
487
488 std::string FnName = IdentifierStr;
489 getNextToken();
490
491 if (CurTok != '(')
492 return LogErrorP("Expected '(' in prototype");
493
494 std::vector<std::string> ArgNames;
495 while (getNextToken() == tok_identifier)
496 ArgNames.push_back(IdentifierStr);
497 if (CurTok != ')')
498 return LogErrorP("Expected ')' in prototype");
499
500 // success.
501 getNextToken(); // eat ')'.
502
503 return std::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
504 }
505
506 /// definition ::= 'def' prototype expression
ParseDefinition()507 static std::unique_ptr<FunctionAST> ParseDefinition() {
508 getNextToken(); // eat def.
509 auto Proto = ParsePrototype();
510 if (!Proto)
511 return nullptr;
512
513 if (auto E = ParseExpression())
514 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
515 return nullptr;
516 }
517
518 /// toplevelexpr ::= expression
ParseTopLevelExpr()519 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
520 if (auto E = ParseExpression()) {
521 // Make an anonymous proto.
522 auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
523 std::vector<std::string>());
524 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
525 }
526 return nullptr;
527 }
528
529 /// external ::= 'extern' prototype
ParseExtern()530 static std::unique_ptr<PrototypeAST> ParseExtern() {
531 getNextToken(); // eat extern.
532 return ParsePrototype();
533 }
534
535 //===----------------------------------------------------------------------===//
536 // Code Generation
537 //===----------------------------------------------------------------------===//
538
539 static std::unique_ptr<LLVMContext> TheContext;
540 static std::unique_ptr<Module> TheModule;
541 static std::unique_ptr<IRBuilder<>> Builder;
542 static std::map<std::string, Value *> NamedValues;
543 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
544 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
545 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
546 static ExitOnError ExitOnErr;
547
LogErrorV(const char * Str)548 Value *LogErrorV(const char *Str) {
549 LogError(Str);
550 return nullptr;
551 }
552
getFunction(std::string Name)553 Function *getFunction(std::string Name) {
554 // First, see if the function has already been added to the current module.
555 if (auto *F = TheModule->getFunction(Name))
556 return F;
557
558 // If not, check whether we can codegen the declaration from some existing
559 // prototype.
560 auto FI = FunctionProtos.find(Name);
561 if (FI != FunctionProtos.end())
562 return FI->second->codegen();
563
564 // If no existing prototype exists, return null.
565 return nullptr;
566 }
567
codegen()568 Value *NumberExprAST::codegen() {
569 return ConstantFP::get(*TheContext, APFloat(Val));
570 }
571
codegen()572 Value *VariableExprAST::codegen() {
573 // Look this variable up in the function.
574 Value *V = NamedValues[Name];
575 if (!V)
576 return LogErrorV("Unknown variable name");
577 return V;
578 }
579
codegen()580 Value *BinaryExprAST::codegen() {
581 Value *L = LHS->codegen();
582 Value *R = RHS->codegen();
583 if (!L || !R)
584 return nullptr;
585
586 switch (Op) {
587 case '+':
588 return Builder->CreateFAdd(L, R, "addtmp");
589 case '-':
590 return Builder->CreateFSub(L, R, "subtmp");
591 case '*':
592 return Builder->CreateFMul(L, R, "multmp");
593 case '<':
594 L = Builder->CreateFCmpULT(L, R, "cmptmp");
595 // Convert bool 0/1 to double 0.0 or 1.0
596 return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
597 default:
598 return LogErrorV("invalid binary operator");
599 }
600 }
601
codegen()602 Value *CallExprAST::codegen() {
603 // Look up the name in the global module table.
604 Function *CalleeF = getFunction(Callee);
605 if (!CalleeF)
606 return LogErrorV("Unknown function referenced");
607
608 // If argument mismatch error.
609 if (CalleeF->arg_size() != Args.size())
610 return LogErrorV("Incorrect # arguments passed");
611
612 std::vector<Value *> ArgsV;
613 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
614 ArgsV.push_back(Args[i]->codegen());
615 if (!ArgsV.back())
616 return nullptr;
617 }
618
619 return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
620 }
621
codegen()622 Value *IfExprAST::codegen() {
623 Value *CondV = Cond->codegen();
624 if (!CondV)
625 return nullptr;
626
627 // Convert condition to a bool by comparing non-equal to 0.0.
628 CondV = Builder->CreateFCmpONE(
629 CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
630
631 Function *TheFunction = Builder->GetInsertBlock()->getParent();
632
633 // Create blocks for the then and else cases. Insert the 'then' block at the
634 // end of the function.
635 BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
636 BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
637 BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
638
639 Builder->CreateCondBr(CondV, ThenBB, ElseBB);
640
641 // Emit then value.
642 Builder->SetInsertPoint(ThenBB);
643
644 Value *ThenV = Then->codegen();
645 if (!ThenV)
646 return nullptr;
647
648 Builder->CreateBr(MergeBB);
649 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
650 ThenBB = Builder->GetInsertBlock();
651
652 // Emit else block.
653 TheFunction->getBasicBlockList().push_back(ElseBB);
654 Builder->SetInsertPoint(ElseBB);
655
656 Value *ElseV = Else->codegen();
657 if (!ElseV)
658 return nullptr;
659
660 Builder->CreateBr(MergeBB);
661 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
662 ElseBB = Builder->GetInsertBlock();
663
664 // Emit merge block.
665 TheFunction->getBasicBlockList().push_back(MergeBB);
666 Builder->SetInsertPoint(MergeBB);
667 PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
668
669 PN->addIncoming(ThenV, ThenBB);
670 PN->addIncoming(ElseV, ElseBB);
671 return PN;
672 }
673
674 // Output for-loop as:
675 // ...
676 // start = startexpr
677 // goto loop
678 // loop:
679 // variable = phi [start, loopheader], [nextvariable, loopend]
680 // ...
681 // bodyexpr
682 // ...
683 // loopend:
684 // step = stepexpr
685 // nextvariable = variable + step
686 // endcond = endexpr
687 // br endcond, loop, endloop
688 // outloop:
codegen()689 Value *ForExprAST::codegen() {
690 // Emit the start code first, without 'variable' in scope.
691 Value *StartVal = Start->codegen();
692 if (!StartVal)
693 return nullptr;
694
695 // Make the new basic block for the loop header, inserting after current
696 // block.
697 Function *TheFunction = Builder->GetInsertBlock()->getParent();
698 BasicBlock *PreheaderBB = Builder->GetInsertBlock();
699 BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
700
701 // Insert an explicit fall through from the current block to the LoopBB.
702 Builder->CreateBr(LoopBB);
703
704 // Start insertion in LoopBB.
705 Builder->SetInsertPoint(LoopBB);
706
707 // Start the PHI node with an entry for Start.
708 PHINode *Variable =
709 Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, VarName);
710 Variable->addIncoming(StartVal, PreheaderBB);
711
712 // Within the loop, the variable is defined equal to the PHI node. If it
713 // shadows an existing variable, we have to restore it, so save it now.
714 Value *OldVal = NamedValues[VarName];
715 NamedValues[VarName] = Variable;
716
717 // Emit the body of the loop. This, like any other expr, can change the
718 // current BB. Note that we ignore the value computed by the body, but don't
719 // allow an error.
720 if (!Body->codegen())
721 return nullptr;
722
723 // Emit the step value.
724 Value *StepVal = nullptr;
725 if (Step) {
726 StepVal = Step->codegen();
727 if (!StepVal)
728 return nullptr;
729 } else {
730 // If not specified, use 1.0.
731 StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
732 }
733
734 Value *NextVar = Builder->CreateFAdd(Variable, StepVal, "nextvar");
735
736 // Compute the end condition.
737 Value *EndCond = End->codegen();
738 if (!EndCond)
739 return nullptr;
740
741 // Convert condition to a bool by comparing non-equal to 0.0.
742 EndCond = Builder->CreateFCmpONE(
743 EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
744
745 // Create the "after loop" block and insert it.
746 BasicBlock *LoopEndBB = Builder->GetInsertBlock();
747 BasicBlock *AfterBB =
748 BasicBlock::Create(*TheContext, "afterloop", TheFunction);
749
750 // Insert the conditional branch into the end of LoopEndBB.
751 Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
752
753 // Any new code will be inserted in AfterBB.
754 Builder->SetInsertPoint(AfterBB);
755
756 // Add a new entry to the PHI node for the backedge.
757 Variable->addIncoming(NextVar, LoopEndBB);
758
759 // Restore the unshadowed variable.
760 if (OldVal)
761 NamedValues[VarName] = OldVal;
762 else
763 NamedValues.erase(VarName);
764
765 // for expr always returns 0.0.
766 return Constant::getNullValue(Type::getDoubleTy(*TheContext));
767 }
768
codegen()769 Function *PrototypeAST::codegen() {
770 // Make the function type: double(double,double) etc.
771 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
772 FunctionType *FT =
773 FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
774
775 Function *F =
776 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
777
778 // Set names for all arguments.
779 unsigned Idx = 0;
780 for (auto &Arg : F->args())
781 Arg.setName(Args[Idx++]);
782
783 return F;
784 }
785
codegen()786 Function *FunctionAST::codegen() {
787 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
788 // reference to it for use below.
789 auto &P = *Proto;
790 FunctionProtos[Proto->getName()] = std::move(Proto);
791 Function *TheFunction = getFunction(P.getName());
792 if (!TheFunction)
793 return nullptr;
794
795 // Create a new basic block to start insertion into.
796 BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
797 Builder->SetInsertPoint(BB);
798
799 // Record the function arguments in the NamedValues map.
800 NamedValues.clear();
801 for (auto &Arg : TheFunction->args())
802 NamedValues[std::string(Arg.getName())] = &Arg;
803
804 if (Value *RetVal = Body->codegen()) {
805 // Finish off the function.
806 Builder->CreateRet(RetVal);
807
808 // Validate the generated code, checking for consistency.
809 verifyFunction(*TheFunction);
810
811 // Run the optimizer on the function.
812 TheFPM->run(*TheFunction);
813
814 return TheFunction;
815 }
816
817 // Error reading body, remove function.
818 TheFunction->eraseFromParent();
819 return nullptr;
820 }
821
822 //===----------------------------------------------------------------------===//
823 // Top-Level parsing and JIT Driver
824 //===----------------------------------------------------------------------===//
825
InitializeModuleAndPassManager()826 static void InitializeModuleAndPassManager() {
827 // Open a new module.
828 TheContext = std::make_unique<LLVMContext>();
829 TheModule = std::make_unique<Module>("my cool jit", *TheContext);
830 TheModule->setDataLayout(TheJIT->getDataLayout());
831
832 // Create a new builder for the module.
833 Builder = std::make_unique<IRBuilder<>>(*TheContext);
834
835 // Create a new pass manager attached to it.
836 TheFPM = std::make_unique<legacy::FunctionPassManager>(TheModule.get());
837
838 // Do simple "peephole" optimizations and bit-twiddling optzns.
839 TheFPM->add(createInstructionCombiningPass());
840 // Reassociate expressions.
841 TheFPM->add(createReassociatePass());
842 // Eliminate Common SubExpressions.
843 TheFPM->add(createGVNPass());
844 // Simplify the control flow graph (deleting unreachable blocks, etc).
845 TheFPM->add(createCFGSimplificationPass());
846
847 TheFPM->doInitialization();
848 }
849
HandleDefinition()850 static void HandleDefinition() {
851 if (auto FnAST = ParseDefinition()) {
852 if (auto *FnIR = FnAST->codegen()) {
853 fprintf(stderr, "Read function definition:");
854 FnIR->print(errs());
855 fprintf(stderr, "\n");
856 ExitOnErr(TheJIT->addModule(
857 ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
858 InitializeModuleAndPassManager();
859 }
860 } else {
861 // Skip token for error recovery.
862 getNextToken();
863 }
864 }
865
HandleExtern()866 static void HandleExtern() {
867 if (auto ProtoAST = ParseExtern()) {
868 if (auto *FnIR = ProtoAST->codegen()) {
869 fprintf(stderr, "Read extern: ");
870 FnIR->print(errs());
871 fprintf(stderr, "\n");
872 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
873 }
874 } else {
875 // Skip token for error recovery.
876 getNextToken();
877 }
878 }
879
HandleTopLevelExpression()880 static void HandleTopLevelExpression() {
881 // Evaluate a top-level expression into an anonymous function.
882 if (auto FnAST = ParseTopLevelExpr()) {
883 if (FnAST->codegen()) {
884 // Create a ResourceTracker to track JIT'd memory allocated to our
885 // anonymous expression -- that way we can free it after executing.
886 auto RT = TheJIT->getMainJITDylib().createResourceTracker();
887
888 auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
889 ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
890 InitializeModuleAndPassManager();
891
892 // Search the JIT for the __anon_expr symbol.
893 auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
894
895 // Get the symbol's address and cast it to the right type (takes no
896 // arguments, returns a double) so we can call it as a native function.
897 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
898 fprintf(stderr, "Evaluated to %f\n", FP());
899
900 // Delete the anonymous expression module from the JIT.
901 ExitOnErr(RT->remove());
902 }
903 } else {
904 // Skip token for error recovery.
905 getNextToken();
906 }
907 }
908
909 /// top ::= definition | external | expression | ';'
MainLoop()910 static void MainLoop() {
911 while (true) {
912 fprintf(stderr, "ready> ");
913 switch (CurTok) {
914 case tok_eof:
915 return;
916 case ';': // ignore top-level semicolons.
917 getNextToken();
918 break;
919 case tok_def:
920 HandleDefinition();
921 break;
922 case tok_extern:
923 HandleExtern();
924 break;
925 default:
926 HandleTopLevelExpression();
927 break;
928 }
929 }
930 }
931
932 //===----------------------------------------------------------------------===//
933 // "Library" functions that can be "extern'd" from user code.
934 //===----------------------------------------------------------------------===//
935
936 #ifdef _WIN32
937 #define DLLEXPORT __declspec(dllexport)
938 #else
939 #define DLLEXPORT
940 #endif
941
942 /// putchard - putchar that takes a double and returns 0.
putchard(double X)943 extern "C" DLLEXPORT double putchard(double X) {
944 fputc((char)X, stderr);
945 return 0;
946 }
947
948 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)949 extern "C" DLLEXPORT double printd(double X) {
950 fprintf(stderr, "%f\n", X);
951 return 0;
952 }
953
954 //===----------------------------------------------------------------------===//
955 // Main driver code.
956 //===----------------------------------------------------------------------===//
957
main()958 int main() {
959 InitializeNativeTarget();
960 InitializeNativeTargetAsmPrinter();
961 InitializeNativeTargetAsmParser();
962
963 // Install standard binary operators.
964 // 1 is lowest precedence.
965 BinopPrecedence['<'] = 10;
966 BinopPrecedence['+'] = 20;
967 BinopPrecedence['-'] = 20;
968 BinopPrecedence['*'] = 40; // highest.
969
970 // Prime the first token.
971 fprintf(stderr, "ready> ");
972 getNextToken();
973
974 TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
975
976 InitializeModuleAndPassManager();
977
978 // Run the main "interpreter loop" now.
979 MainLoop();
980
981 return 0;
982 }
983