1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CriticalAntiDepBreaker class, which
10 // implements register anti-dependence breaking along a blocks
11 // critical path during post-RA scheduler.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CriticalAntiDepBreaker.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/ScheduleDAG.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cassert>
35 #include <utility>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "post-RA-sched"
40
CriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)41 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
42 const RegisterClassInfo &RCI)
43 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
44 TII(MF.getSubtarget().getInstrInfo()),
45 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
46 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
47 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
48
49 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
50
StartBlock(MachineBasicBlock * BB)51 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
52 const unsigned BBSize = BB->size();
53 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
54 // Clear out the register class data.
55 Classes[i] = nullptr;
56
57 // Initialize the indices to indicate that no registers are live.
58 KillIndices[i] = ~0u;
59 DefIndices[i] = BBSize;
60 }
61
62 // Clear "do not change" set.
63 KeepRegs.reset();
64
65 bool IsReturnBlock = BB->isReturnBlock();
66
67 // Examine the live-in regs of all successors.
68 for (const MachineBasicBlock *Succ : BB->successors())
69 for (const auto &LI : Succ->liveins()) {
70 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
71 unsigned Reg = *AI;
72 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
73 KillIndices[Reg] = BBSize;
74 DefIndices[Reg] = ~0u;
75 }
76 }
77
78 // Mark live-out callee-saved registers. In a return block this is
79 // all callee-saved registers. In non-return this is any
80 // callee-saved register that is not saved in the prolog.
81 const MachineFrameInfo &MFI = MF.getFrameInfo();
82 BitVector Pristine = MFI.getPristineRegs(MF);
83 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
84 ++I) {
85 unsigned Reg = *I;
86 if (!IsReturnBlock && !Pristine.test(Reg))
87 continue;
88 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
89 unsigned Reg = *AI;
90 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
91 KillIndices[Reg] = BBSize;
92 DefIndices[Reg] = ~0u;
93 }
94 }
95 }
96
FinishBlock()97 void CriticalAntiDepBreaker::FinishBlock() {
98 RegRefs.clear();
99 KeepRegs.reset();
100 }
101
Observe(MachineInstr & MI,unsigned Count,unsigned InsertPosIndex)102 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
103 unsigned InsertPosIndex) {
104 // Kill instructions can define registers but are really nops, and there might
105 // be a real definition earlier that needs to be paired with uses dominated by
106 // this kill.
107
108 // FIXME: It may be possible to remove the isKill() restriction once PR18663
109 // has been properly fixed. There can be value in processing kills as seen in
110 // the AggressiveAntiDepBreaker class.
111 if (MI.isDebugInstr() || MI.isKill())
112 return;
113 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
114
115 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
116 if (KillIndices[Reg] != ~0u) {
117 // If Reg is currently live, then mark that it can't be renamed as
118 // we don't know the extent of its live-range anymore (now that it
119 // has been scheduled).
120 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
121 KillIndices[Reg] = Count;
122 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
123 // Any register which was defined within the previous scheduling region
124 // may have been rescheduled and its lifetime may overlap with registers
125 // in ways not reflected in our current liveness state. For each such
126 // register, adjust the liveness state to be conservatively correct.
127 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
128
129 // Move the def index to the end of the previous region, to reflect
130 // that the def could theoretically have been scheduled at the end.
131 DefIndices[Reg] = InsertPosIndex;
132 }
133 }
134
135 PrescanInstruction(MI);
136 ScanInstruction(MI, Count);
137 }
138
139 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
140 /// critical path.
CriticalPathStep(const SUnit * SU)141 static const SDep *CriticalPathStep(const SUnit *SU) {
142 const SDep *Next = nullptr;
143 unsigned NextDepth = 0;
144 // Find the predecessor edge with the greatest depth.
145 for (const SDep &P : SU->Preds) {
146 const SUnit *PredSU = P.getSUnit();
147 unsigned PredLatency = P.getLatency();
148 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
149 // In the case of a latency tie, prefer an anti-dependency edge over
150 // other types of edges.
151 if (NextDepth < PredTotalLatency ||
152 (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) {
153 NextDepth = PredTotalLatency;
154 Next = &P;
155 }
156 }
157 return Next;
158 }
159
PrescanInstruction(MachineInstr & MI)160 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
161 // It's not safe to change register allocation for source operands of
162 // instructions that have special allocation requirements. Also assume all
163 // registers used in a call must not be changed (ABI).
164 // FIXME: The issue with predicated instruction is more complex. We are being
165 // conservative here because the kill markers cannot be trusted after
166 // if-conversion:
167 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
168 // ...
169 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
170 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
171 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
172 //
173 // The first R6 kill is not really a kill since it's killed by a predicated
174 // instruction which may not be executed. The second R6 def may or may not
175 // re-define R6 so it's not safe to change it since the last R6 use cannot be
176 // changed.
177 bool Special =
178 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
179
180 // Scan the register operands for this instruction and update
181 // Classes and RegRefs.
182 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
183 MachineOperand &MO = MI.getOperand(i);
184 if (!MO.isReg()) continue;
185 Register Reg = MO.getReg();
186 if (Reg == 0) continue;
187 const TargetRegisterClass *NewRC = nullptr;
188
189 if (i < MI.getDesc().getNumOperands())
190 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
191
192 // For now, only allow the register to be changed if its register
193 // class is consistent across all uses.
194 if (!Classes[Reg] && NewRC)
195 Classes[Reg] = NewRC;
196 else if (!NewRC || Classes[Reg] != NewRC)
197 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
198
199 // Now check for aliases.
200 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
201 // If an alias of the reg is used during the live range, give up.
202 // Note that this allows us to skip checking if AntiDepReg
203 // overlaps with any of the aliases, among other things.
204 unsigned AliasReg = *AI;
205 if (Classes[AliasReg]) {
206 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
207 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
208 }
209 }
210
211 // If we're still willing to consider this register, note the reference.
212 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
213 RegRefs.insert(std::make_pair(Reg, &MO));
214
215 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
216 // it or any of its sub or super regs. We need to use KeepRegs to mark the
217 // reg because not all uses of the same reg within an instruction are
218 // necessarily tagged as tied.
219 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
220 // def register but not the second (see PR20020 for details).
221 // FIXME: can this check be relaxed to account for undef uses
222 // of a register? In the above 'xor' example, the uses of %eax are undef, so
223 // earlier instructions could still replace %eax even though the 'xor'
224 // itself can't be changed.
225 if (MI.isRegTiedToUseOperand(i) &&
226 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
227 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
228 SubRegs.isValid(); ++SubRegs) {
229 KeepRegs.set(*SubRegs);
230 }
231 for (MCSuperRegIterator SuperRegs(Reg, TRI);
232 SuperRegs.isValid(); ++SuperRegs) {
233 KeepRegs.set(*SuperRegs);
234 }
235 }
236
237 if (MO.isUse() && Special) {
238 if (!KeepRegs.test(Reg)) {
239 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
240 SubRegs.isValid(); ++SubRegs)
241 KeepRegs.set(*SubRegs);
242 }
243 }
244 }
245 }
246
ScanInstruction(MachineInstr & MI,unsigned Count)247 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
248 // Update liveness.
249 // Proceeding upwards, registers that are defed but not used in this
250 // instruction are now dead.
251 assert(!MI.isKill() && "Attempting to scan a kill instruction");
252
253 if (!TII->isPredicated(MI)) {
254 // Predicated defs are modeled as read + write, i.e. similar to two
255 // address updates.
256 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
257 MachineOperand &MO = MI.getOperand(i);
258
259 if (MO.isRegMask()) {
260 auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) {
261 for (MCSubRegIterator SRI(PhysReg, TRI, true); SRI.isValid(); ++SRI)
262 if (!MO.clobbersPhysReg(*SRI))
263 return false;
264
265 return true;
266 };
267
268 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
269 if (ClobbersPhysRegAndSubRegs(i)) {
270 DefIndices[i] = Count;
271 KillIndices[i] = ~0u;
272 KeepRegs.reset(i);
273 Classes[i] = nullptr;
274 RegRefs.erase(i);
275 }
276 }
277 }
278
279 if (!MO.isReg()) continue;
280 Register Reg = MO.getReg();
281 if (Reg == 0) continue;
282 if (!MO.isDef()) continue;
283
284 // Ignore two-addr defs.
285 if (MI.isRegTiedToUseOperand(i))
286 continue;
287
288 // If we've already marked this reg as unchangeable, don't remove
289 // it or any of its subregs from KeepRegs.
290 bool Keep = KeepRegs.test(Reg);
291
292 // For the reg itself and all subregs: update the def to current;
293 // reset the kill state, any restrictions, and references.
294 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
295 unsigned SubregReg = *SRI;
296 DefIndices[SubregReg] = Count;
297 KillIndices[SubregReg] = ~0u;
298 Classes[SubregReg] = nullptr;
299 RegRefs.erase(SubregReg);
300 if (!Keep)
301 KeepRegs.reset(SubregReg);
302 }
303 // Conservatively mark super-registers as unusable.
304 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
305 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
306 }
307 }
308 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
309 MachineOperand &MO = MI.getOperand(i);
310 if (!MO.isReg()) continue;
311 Register Reg = MO.getReg();
312 if (Reg == 0) continue;
313 if (!MO.isUse()) continue;
314
315 const TargetRegisterClass *NewRC = nullptr;
316 if (i < MI.getDesc().getNumOperands())
317 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
318
319 // For now, only allow the register to be changed if its register
320 // class is consistent across all uses.
321 if (!Classes[Reg] && NewRC)
322 Classes[Reg] = NewRC;
323 else if (!NewRC || Classes[Reg] != NewRC)
324 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
325
326 RegRefs.insert(std::make_pair(Reg, &MO));
327
328 // It wasn't previously live but now it is, this is a kill.
329 // Repeat for all aliases.
330 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
331 unsigned AliasReg = *AI;
332 if (KillIndices[AliasReg] == ~0u) {
333 KillIndices[AliasReg] = Count;
334 DefIndices[AliasReg] = ~0u;
335 }
336 }
337 }
338 }
339
340 // Check all machine operands that reference the antidependent register and must
341 // be replaced by NewReg. Return true if any of their parent instructions may
342 // clobber the new register.
343 //
344 // Note: AntiDepReg may be referenced by a two-address instruction such that
345 // it's use operand is tied to a def operand. We guard against the case in which
346 // the two-address instruction also defines NewReg, as may happen with
347 // pre/postincrement loads. In this case, both the use and def operands are in
348 // RegRefs because the def is inserted by PrescanInstruction and not erased
349 // during ScanInstruction. So checking for an instruction with definitions of
350 // both NewReg and AntiDepReg covers it.
351 bool
isNewRegClobberedByRefs(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned NewReg)352 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
353 RegRefIter RegRefEnd,
354 unsigned NewReg) {
355 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
356 MachineOperand *RefOper = I->second;
357
358 // Don't allow the instruction defining AntiDepReg to earlyclobber its
359 // operands, in case they may be assigned to NewReg. In this case antidep
360 // breaking must fail, but it's too rare to bother optimizing.
361 if (RefOper->isDef() && RefOper->isEarlyClobber())
362 return true;
363
364 // Handle cases in which this instruction defines NewReg.
365 MachineInstr *MI = RefOper->getParent();
366 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
367 const MachineOperand &CheckOper = MI->getOperand(i);
368
369 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
370 return true;
371
372 if (!CheckOper.isReg() || !CheckOper.isDef() ||
373 CheckOper.getReg() != NewReg)
374 continue;
375
376 // Don't allow the instruction to define NewReg and AntiDepReg.
377 // When AntiDepReg is renamed it will be an illegal op.
378 if (RefOper->isDef())
379 return true;
380
381 // Don't allow an instruction using AntiDepReg to be earlyclobbered by
382 // NewReg.
383 if (CheckOper.isEarlyClobber())
384 return true;
385
386 // Don't allow inline asm to define NewReg at all. Who knows what it's
387 // doing with it.
388 if (MI->isInlineAsm())
389 return true;
390 }
391 }
392 return false;
393 }
394
395 unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned AntiDepReg,unsigned LastNewReg,const TargetRegisterClass * RC,SmallVectorImpl<unsigned> & Forbid)396 findSuitableFreeRegister(RegRefIter RegRefBegin,
397 RegRefIter RegRefEnd,
398 unsigned AntiDepReg,
399 unsigned LastNewReg,
400 const TargetRegisterClass *RC,
401 SmallVectorImpl<unsigned> &Forbid) {
402 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
403 for (unsigned i = 0; i != Order.size(); ++i) {
404 unsigned NewReg = Order[i];
405 // Don't replace a register with itself.
406 if (NewReg == AntiDepReg) continue;
407 // Don't replace a register with one that was recently used to repair
408 // an anti-dependence with this AntiDepReg, because that would
409 // re-introduce that anti-dependence.
410 if (NewReg == LastNewReg) continue;
411 // If any instructions that define AntiDepReg also define the NewReg, it's
412 // not suitable. For example, Instruction with multiple definitions can
413 // result in this condition.
414 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
415 // If NewReg is dead and NewReg's most recent def is not before
416 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
417 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
418 && "Kill and Def maps aren't consistent for AntiDepReg!");
419 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
420 && "Kill and Def maps aren't consistent for NewReg!");
421 if (KillIndices[NewReg] != ~0u ||
422 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
423 KillIndices[AntiDepReg] > DefIndices[NewReg])
424 continue;
425 // If NewReg overlaps any of the forbidden registers, we can't use it.
426 bool Forbidden = false;
427 for (unsigned R : Forbid)
428 if (TRI->regsOverlap(NewReg, R)) {
429 Forbidden = true;
430 break;
431 }
432 if (Forbidden) continue;
433 return NewReg;
434 }
435
436 // No registers are free and available!
437 return 0;
438 }
439
440 unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)441 BreakAntiDependencies(const std::vector<SUnit> &SUnits,
442 MachineBasicBlock::iterator Begin,
443 MachineBasicBlock::iterator End,
444 unsigned InsertPosIndex,
445 DbgValueVector &DbgValues) {
446 // The code below assumes that there is at least one instruction,
447 // so just duck out immediately if the block is empty.
448 if (SUnits.empty()) return 0;
449
450 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
451 // This is used for updating debug information.
452 //
453 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
454 DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
455
456 // Find the node at the bottom of the critical path.
457 const SUnit *Max = nullptr;
458 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
459 const SUnit *SU = &SUnits[i];
460 MISUnitMap[SU->getInstr()] = SU;
461 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
462 Max = SU;
463 }
464 assert(Max && "Failed to find bottom of the critical path");
465
466 #ifndef NDEBUG
467 {
468 LLVM_DEBUG(dbgs() << "Critical path has total latency "
469 << (Max->getDepth() + Max->Latency) << "\n");
470 LLVM_DEBUG(dbgs() << "Available regs:");
471 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
472 if (KillIndices[Reg] == ~0u)
473 LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
474 }
475 LLVM_DEBUG(dbgs() << '\n');
476 }
477 #endif
478
479 // Track progress along the critical path through the SUnit graph as we walk
480 // the instructions.
481 const SUnit *CriticalPathSU = Max;
482 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
483
484 // Consider this pattern:
485 // A = ...
486 // ... = A
487 // A = ...
488 // ... = A
489 // A = ...
490 // ... = A
491 // A = ...
492 // ... = A
493 // There are three anti-dependencies here, and without special care,
494 // we'd break all of them using the same register:
495 // A = ...
496 // ... = A
497 // B = ...
498 // ... = B
499 // B = ...
500 // ... = B
501 // B = ...
502 // ... = B
503 // because at each anti-dependence, B is the first register that
504 // isn't A which is free. This re-introduces anti-dependencies
505 // at all but one of the original anti-dependencies that we were
506 // trying to break. To avoid this, keep track of the most recent
507 // register that each register was replaced with, avoid
508 // using it to repair an anti-dependence on the same register.
509 // This lets us produce this:
510 // A = ...
511 // ... = A
512 // B = ...
513 // ... = B
514 // C = ...
515 // ... = C
516 // B = ...
517 // ... = B
518 // This still has an anti-dependence on B, but at least it isn't on the
519 // original critical path.
520 //
521 // TODO: If we tracked more than one register here, we could potentially
522 // fix that remaining critical edge too. This is a little more involved,
523 // because unlike the most recent register, less recent registers should
524 // still be considered, though only if no other registers are available.
525 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
526
527 // Attempt to break anti-dependence edges on the critical path. Walk the
528 // instructions from the bottom up, tracking information about liveness
529 // as we go to help determine which registers are available.
530 unsigned Broken = 0;
531 unsigned Count = InsertPosIndex - 1;
532 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
533 MachineInstr &MI = *--I;
534 // Kill instructions can define registers but are really nops, and there
535 // might be a real definition earlier that needs to be paired with uses
536 // dominated by this kill.
537
538 // FIXME: It may be possible to remove the isKill() restriction once PR18663
539 // has been properly fixed. There can be value in processing kills as seen
540 // in the AggressiveAntiDepBreaker class.
541 if (MI.isDebugInstr() || MI.isKill())
542 continue;
543
544 // Check if this instruction has a dependence on the critical path that
545 // is an anti-dependence that we may be able to break. If it is, set
546 // AntiDepReg to the non-zero register associated with the anti-dependence.
547 //
548 // We limit our attention to the critical path as a heuristic to avoid
549 // breaking anti-dependence edges that aren't going to significantly
550 // impact the overall schedule. There are a limited number of registers
551 // and we want to save them for the important edges.
552 //
553 // TODO: Instructions with multiple defs could have multiple
554 // anti-dependencies. The current code here only knows how to break one
555 // edge per instruction. Note that we'd have to be able to break all of
556 // the anti-dependencies in an instruction in order to be effective.
557 unsigned AntiDepReg = 0;
558 if (&MI == CriticalPathMI) {
559 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
560 const SUnit *NextSU = Edge->getSUnit();
561
562 // Only consider anti-dependence edges.
563 if (Edge->getKind() == SDep::Anti) {
564 AntiDepReg = Edge->getReg();
565 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
566 if (!MRI.isAllocatable(AntiDepReg))
567 // Don't break anti-dependencies on non-allocatable registers.
568 AntiDepReg = 0;
569 else if (KeepRegs.test(AntiDepReg))
570 // Don't break anti-dependencies if a use down below requires
571 // this exact register.
572 AntiDepReg = 0;
573 else {
574 // If the SUnit has other dependencies on the SUnit that it
575 // anti-depends on, don't bother breaking the anti-dependency
576 // since those edges would prevent such units from being
577 // scheduled past each other regardless.
578 //
579 // Also, if there are dependencies on other SUnits with the
580 // same register as the anti-dependency, don't attempt to
581 // break it.
582 for (const SDep &P : CriticalPathSU->Preds)
583 if (P.getSUnit() == NextSU
584 ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg)
585 : (P.getKind() == SDep::Data &&
586 P.getReg() == AntiDepReg)) {
587 AntiDepReg = 0;
588 break;
589 }
590 }
591 }
592 CriticalPathSU = NextSU;
593 CriticalPathMI = CriticalPathSU->getInstr();
594 } else {
595 // We've reached the end of the critical path.
596 CriticalPathSU = nullptr;
597 CriticalPathMI = nullptr;
598 }
599 }
600
601 PrescanInstruction(MI);
602
603 SmallVector<unsigned, 2> ForbidRegs;
604
605 // If MI's defs have a special allocation requirement, don't allow
606 // any def registers to be changed. Also assume all registers
607 // defined in a call must not be changed (ABI).
608 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
609 // If this instruction's defs have special allocation requirement, don't
610 // break this anti-dependency.
611 AntiDepReg = 0;
612 else if (AntiDepReg) {
613 // If this instruction has a use of AntiDepReg, breaking it
614 // is invalid. If the instruction defines other registers,
615 // save a list of them so that we don't pick a new register
616 // that overlaps any of them.
617 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
618 MachineOperand &MO = MI.getOperand(i);
619 if (!MO.isReg()) continue;
620 Register Reg = MO.getReg();
621 if (Reg == 0) continue;
622 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
623 AntiDepReg = 0;
624 break;
625 }
626 if (MO.isDef() && Reg != AntiDepReg)
627 ForbidRegs.push_back(Reg);
628 }
629 }
630
631 // Determine AntiDepReg's register class, if it is live and is
632 // consistently used within a single class.
633 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
634 : nullptr;
635 assert((AntiDepReg == 0 || RC != nullptr) &&
636 "Register should be live if it's causing an anti-dependence!");
637 if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
638 AntiDepReg = 0;
639
640 // Look for a suitable register to use to break the anti-dependence.
641 //
642 // TODO: Instead of picking the first free register, consider which might
643 // be the best.
644 if (AntiDepReg != 0) {
645 std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
646 std::multimap<unsigned, MachineOperand *>::iterator>
647 Range = RegRefs.equal_range(AntiDepReg);
648 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
649 AntiDepReg,
650 LastNewReg[AntiDepReg],
651 RC, ForbidRegs)) {
652 LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
653 << printReg(AntiDepReg, TRI) << " with "
654 << RegRefs.count(AntiDepReg) << " references"
655 << " using " << printReg(NewReg, TRI) << "!\n");
656
657 // Update the references to the old register to refer to the new
658 // register.
659 for (std::multimap<unsigned, MachineOperand *>::iterator
660 Q = Range.first, QE = Range.second; Q != QE; ++Q) {
661 Q->second->setReg(NewReg);
662 // If the SU for the instruction being updated has debug information
663 // related to the anti-dependency register, make sure to update that
664 // as well.
665 const SUnit *SU = MISUnitMap[Q->second->getParent()];
666 if (!SU) continue;
667 UpdateDbgValues(DbgValues, Q->second->getParent(),
668 AntiDepReg, NewReg);
669 }
670
671 // We just went back in time and modified history; the
672 // liveness information for the anti-dependence reg is now
673 // inconsistent. Set the state as if it were dead.
674 Classes[NewReg] = Classes[AntiDepReg];
675 DefIndices[NewReg] = DefIndices[AntiDepReg];
676 KillIndices[NewReg] = KillIndices[AntiDepReg];
677 assert(((KillIndices[NewReg] == ~0u) !=
678 (DefIndices[NewReg] == ~0u)) &&
679 "Kill and Def maps aren't consistent for NewReg!");
680
681 Classes[AntiDepReg] = nullptr;
682 DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
683 KillIndices[AntiDepReg] = ~0u;
684 assert(((KillIndices[AntiDepReg] == ~0u) !=
685 (DefIndices[AntiDepReg] == ~0u)) &&
686 "Kill and Def maps aren't consistent for AntiDepReg!");
687
688 RegRefs.erase(AntiDepReg);
689 LastNewReg[AntiDepReg] = NewReg;
690 ++Broken;
691 }
692 }
693
694 ScanInstruction(MI, Count);
695 }
696
697 return Broken;
698 }
699
700 AntiDepBreaker *
createCriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)701 llvm::createCriticalAntiDepBreaker(MachineFunction &MFi,
702 const RegisterClassInfo &RCI) {
703 return new CriticalAntiDepBreaker(MFi, RCI);
704 }
705