1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
18 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/MachineSizeOpts.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/StackProtector.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/Target/TargetMachine.h"
32
33 #define DEBUG_TYPE "globalisel-utils"
34
35 using namespace llvm;
36 using namespace MIPatternMatch;
37
constrainRegToClass(MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,Register Reg,const TargetRegisterClass & RegClass)38 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
39 const TargetInstrInfo &TII,
40 const RegisterBankInfo &RBI, Register Reg,
41 const TargetRegisterClass &RegClass) {
42 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
43 return MRI.createVirtualRegister(&RegClass);
44
45 return Reg;
46 }
47
constrainOperandRegClass(const MachineFunction & MF,const TargetRegisterInfo & TRI,MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,MachineInstr & InsertPt,const TargetRegisterClass & RegClass,MachineOperand & RegMO)48 Register llvm::constrainOperandRegClass(
49 const MachineFunction &MF, const TargetRegisterInfo &TRI,
50 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
51 const RegisterBankInfo &RBI, MachineInstr &InsertPt,
52 const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
53 Register Reg = RegMO.getReg();
54 // Assume physical registers are properly constrained.
55 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
56
57 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
58 // If we created a new virtual register because the class is not compatible
59 // then create a copy between the new and the old register.
60 if (ConstrainedReg != Reg) {
61 MachineBasicBlock::iterator InsertIt(&InsertPt);
62 MachineBasicBlock &MBB = *InsertPt.getParent();
63 if (RegMO.isUse()) {
64 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
65 TII.get(TargetOpcode::COPY), ConstrainedReg)
66 .addReg(Reg);
67 } else {
68 assert(RegMO.isDef() && "Must be a definition");
69 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
70 TII.get(TargetOpcode::COPY), Reg)
71 .addReg(ConstrainedReg);
72 }
73 if (GISelChangeObserver *Observer = MF.getObserver()) {
74 Observer->changingInstr(*RegMO.getParent());
75 }
76 RegMO.setReg(ConstrainedReg);
77 if (GISelChangeObserver *Observer = MF.getObserver()) {
78 Observer->changedInstr(*RegMO.getParent());
79 }
80 } else {
81 if (GISelChangeObserver *Observer = MF.getObserver()) {
82 if (!RegMO.isDef()) {
83 MachineInstr *RegDef = MRI.getVRegDef(Reg);
84 Observer->changedInstr(*RegDef);
85 }
86 Observer->changingAllUsesOfReg(MRI, Reg);
87 Observer->finishedChangingAllUsesOfReg();
88 }
89 }
90 return ConstrainedReg;
91 }
92
constrainOperandRegClass(const MachineFunction & MF,const TargetRegisterInfo & TRI,MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,MachineInstr & InsertPt,const MCInstrDesc & II,MachineOperand & RegMO,unsigned OpIdx)93 Register llvm::constrainOperandRegClass(
94 const MachineFunction &MF, const TargetRegisterInfo &TRI,
95 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
96 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
97 MachineOperand &RegMO, unsigned OpIdx) {
98 Register Reg = RegMO.getReg();
99 // Assume physical registers are properly constrained.
100 assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
101
102 const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
103 // Some of the target independent instructions, like COPY, may not impose any
104 // register class constraints on some of their operands: If it's a use, we can
105 // skip constraining as the instruction defining the register would constrain
106 // it.
107
108 // We can't constrain unallocatable register classes, because we can't create
109 // virtual registers for these classes, so we need to let targets handled this
110 // case.
111 if (RegClass && !RegClass->isAllocatable())
112 RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
113
114 if (!RegClass) {
115 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
116 "Register class constraint is required unless either the "
117 "instruction is target independent or the operand is a use");
118 // FIXME: Just bailing out like this here could be not enough, unless we
119 // expect the users of this function to do the right thing for PHIs and
120 // COPY:
121 // v1 = COPY v0
122 // v2 = COPY v1
123 // v1 here may end up not being constrained at all. Please notice that to
124 // reproduce the issue we likely need a destination pattern of a selection
125 // rule producing such extra copies, not just an input GMIR with them as
126 // every existing target using selectImpl handles copies before calling it
127 // and they never reach this function.
128 return Reg;
129 }
130 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
131 RegMO);
132 }
133
constrainSelectedInstRegOperands(MachineInstr & I,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)134 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
135 const TargetInstrInfo &TII,
136 const TargetRegisterInfo &TRI,
137 const RegisterBankInfo &RBI) {
138 assert(!isPreISelGenericOpcode(I.getOpcode()) &&
139 "A selected instruction is expected");
140 MachineBasicBlock &MBB = *I.getParent();
141 MachineFunction &MF = *MBB.getParent();
142 MachineRegisterInfo &MRI = MF.getRegInfo();
143
144 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
145 MachineOperand &MO = I.getOperand(OpI);
146
147 // There's nothing to be done on non-register operands.
148 if (!MO.isReg())
149 continue;
150
151 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
152 assert(MO.isReg() && "Unsupported non-reg operand");
153
154 Register Reg = MO.getReg();
155 // Physical registers don't need to be constrained.
156 if (Register::isPhysicalRegister(Reg))
157 continue;
158
159 // Register operands with a value of 0 (e.g. predicate operands) don't need
160 // to be constrained.
161 if (Reg == 0)
162 continue;
163
164 // If the operand is a vreg, we should constrain its regclass, and only
165 // insert COPYs if that's impossible.
166 // constrainOperandRegClass does that for us.
167 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
168
169 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
170 // done.
171 if (MO.isUse()) {
172 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
173 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
174 I.tieOperands(DefIdx, OpI);
175 }
176 }
177 return true;
178 }
179
canReplaceReg(Register DstReg,Register SrcReg,MachineRegisterInfo & MRI)180 bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
181 MachineRegisterInfo &MRI) {
182 // Give up if either DstReg or SrcReg is a physical register.
183 if (DstReg.isPhysical() || SrcReg.isPhysical())
184 return false;
185 // Give up if the types don't match.
186 if (MRI.getType(DstReg) != MRI.getType(SrcReg))
187 return false;
188 // Replace if either DstReg has no constraints or the register
189 // constraints match.
190 return !MRI.getRegClassOrRegBank(DstReg) ||
191 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
192 }
193
isTriviallyDead(const MachineInstr & MI,const MachineRegisterInfo & MRI)194 bool llvm::isTriviallyDead(const MachineInstr &MI,
195 const MachineRegisterInfo &MRI) {
196 // FIXME: This logical is mostly duplicated with
197 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
198 // MachineInstr::isLabel?
199
200 // Don't delete frame allocation labels.
201 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
202 return false;
203 // LIFETIME markers should be preserved even if they seem dead.
204 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
205 MI.getOpcode() == TargetOpcode::LIFETIME_END)
206 return false;
207
208 // If we can move an instruction, we can remove it. Otherwise, it has
209 // a side-effect of some sort.
210 bool SawStore = false;
211 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
212 return false;
213
214 // Instructions without side-effects are dead iff they only define dead vregs.
215 for (auto &MO : MI.operands()) {
216 if (!MO.isReg() || !MO.isDef())
217 continue;
218
219 Register Reg = MO.getReg();
220 if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
221 return false;
222 }
223 return true;
224 }
225
reportGISelDiagnostic(DiagnosticSeverity Severity,MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)226 static void reportGISelDiagnostic(DiagnosticSeverity Severity,
227 MachineFunction &MF,
228 const TargetPassConfig &TPC,
229 MachineOptimizationRemarkEmitter &MORE,
230 MachineOptimizationRemarkMissed &R) {
231 bool IsFatal = Severity == DS_Error &&
232 TPC.isGlobalISelAbortEnabled();
233 // Print the function name explicitly if we don't have a debug location (which
234 // makes the diagnostic less useful) or if we're going to emit a raw error.
235 if (!R.getLocation().isValid() || IsFatal)
236 R << (" (in function: " + MF.getName() + ")").str();
237
238 if (IsFatal)
239 report_fatal_error(R.getMsg());
240 else
241 MORE.emit(R);
242 }
243
reportGISelWarning(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)244 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
245 MachineOptimizationRemarkEmitter &MORE,
246 MachineOptimizationRemarkMissed &R) {
247 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
248 }
249
reportGISelFailure(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)250 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
251 MachineOptimizationRemarkEmitter &MORE,
252 MachineOptimizationRemarkMissed &R) {
253 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
254 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
255 }
256
reportGISelFailure(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,const char * PassName,StringRef Msg,const MachineInstr & MI)257 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
258 MachineOptimizationRemarkEmitter &MORE,
259 const char *PassName, StringRef Msg,
260 const MachineInstr &MI) {
261 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
262 MI.getDebugLoc(), MI.getParent());
263 R << Msg;
264 // Printing MI is expensive; only do it if expensive remarks are enabled.
265 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
266 R << ": " << ore::MNV("Inst", MI);
267 reportGISelFailure(MF, TPC, MORE, R);
268 }
269
getConstantVRegVal(Register VReg,const MachineRegisterInfo & MRI)270 Optional<APInt> llvm::getConstantVRegVal(Register VReg,
271 const MachineRegisterInfo &MRI) {
272 Optional<ValueAndVReg> ValAndVReg =
273 getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
274 assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
275 "Value found while looking through instrs");
276 if (!ValAndVReg)
277 return None;
278 return ValAndVReg->Value;
279 }
280
getConstantVRegSExtVal(Register VReg,const MachineRegisterInfo & MRI)281 Optional<int64_t> llvm::getConstantVRegSExtVal(Register VReg,
282 const MachineRegisterInfo &MRI) {
283 Optional<APInt> Val = getConstantVRegVal(VReg, MRI);
284 if (Val && Val->getBitWidth() <= 64)
285 return Val->getSExtValue();
286 return None;
287 }
288
getConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs,bool HandleFConstant,bool LookThroughAnyExt)289 Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
290 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
291 bool HandleFConstant, bool LookThroughAnyExt) {
292 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
293 MachineInstr *MI;
294 auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
295 return Opcode == TargetOpcode::G_CONSTANT ||
296 (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
297 };
298 auto GetImmediateValue = [HandleFConstant,
299 &MRI](const MachineInstr &MI) -> Optional<APInt> {
300 const MachineOperand &CstVal = MI.getOperand(1);
301 if (!CstVal.isImm() && !CstVal.isCImm() &&
302 (!HandleFConstant || !CstVal.isFPImm()))
303 return None;
304 if (!CstVal.isFPImm()) {
305 unsigned BitWidth =
306 MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
307 APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
308 : CstVal.getCImm()->getValue();
309 assert(Val.getBitWidth() == BitWidth &&
310 "Value bitwidth doesn't match definition type");
311 return Val;
312 }
313 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
314 };
315 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
316 LookThroughInstrs) {
317 switch (MI->getOpcode()) {
318 case TargetOpcode::G_ANYEXT:
319 if (!LookThroughAnyExt)
320 return None;
321 LLVM_FALLTHROUGH;
322 case TargetOpcode::G_TRUNC:
323 case TargetOpcode::G_SEXT:
324 case TargetOpcode::G_ZEXT:
325 SeenOpcodes.push_back(std::make_pair(
326 MI->getOpcode(),
327 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
328 VReg = MI->getOperand(1).getReg();
329 break;
330 case TargetOpcode::COPY:
331 VReg = MI->getOperand(1).getReg();
332 if (Register::isPhysicalRegister(VReg))
333 return None;
334 break;
335 case TargetOpcode::G_INTTOPTR:
336 VReg = MI->getOperand(1).getReg();
337 break;
338 default:
339 return None;
340 }
341 }
342 if (!MI || !IsConstantOpcode(MI->getOpcode()))
343 return None;
344
345 Optional<APInt> MaybeVal = GetImmediateValue(*MI);
346 if (!MaybeVal)
347 return None;
348 APInt &Val = *MaybeVal;
349 while (!SeenOpcodes.empty()) {
350 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
351 switch (OpcodeAndSize.first) {
352 case TargetOpcode::G_TRUNC:
353 Val = Val.trunc(OpcodeAndSize.second);
354 break;
355 case TargetOpcode::G_ANYEXT:
356 case TargetOpcode::G_SEXT:
357 Val = Val.sext(OpcodeAndSize.second);
358 break;
359 case TargetOpcode::G_ZEXT:
360 Val = Val.zext(OpcodeAndSize.second);
361 break;
362 }
363 }
364
365 return ValueAndVReg{Val, VReg};
366 }
367
getConstantIntVRegVal(Register VReg,const MachineRegisterInfo & MRI)368 const ConstantInt *llvm::getConstantIntVRegVal(Register VReg,
369 const MachineRegisterInfo &MRI) {
370 MachineInstr *MI = MRI.getVRegDef(VReg);
371 if (MI->getOpcode() != TargetOpcode::G_CONSTANT)
372 return nullptr;
373 return MI->getOperand(1).getCImm();
374 }
375
376 const ConstantFP *
getConstantFPVRegVal(Register VReg,const MachineRegisterInfo & MRI)377 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
378 MachineInstr *MI = MRI.getVRegDef(VReg);
379 if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
380 return nullptr;
381 return MI->getOperand(1).getFPImm();
382 }
383
384 Optional<DefinitionAndSourceRegister>
getDefSrcRegIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)385 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
386 Register DefSrcReg = Reg;
387 auto *DefMI = MRI.getVRegDef(Reg);
388 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
389 if (!DstTy.isValid())
390 return None;
391 unsigned Opc = DefMI->getOpcode();
392 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
393 Register SrcReg = DefMI->getOperand(1).getReg();
394 auto SrcTy = MRI.getType(SrcReg);
395 if (!SrcTy.isValid())
396 break;
397 DefMI = MRI.getVRegDef(SrcReg);
398 DefSrcReg = SrcReg;
399 Opc = DefMI->getOpcode();
400 }
401 return DefinitionAndSourceRegister{DefMI, DefSrcReg};
402 }
403
getDefIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)404 MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
405 const MachineRegisterInfo &MRI) {
406 Optional<DefinitionAndSourceRegister> DefSrcReg =
407 getDefSrcRegIgnoringCopies(Reg, MRI);
408 return DefSrcReg ? DefSrcReg->MI : nullptr;
409 }
410
getSrcRegIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)411 Register llvm::getSrcRegIgnoringCopies(Register Reg,
412 const MachineRegisterInfo &MRI) {
413 Optional<DefinitionAndSourceRegister> DefSrcReg =
414 getDefSrcRegIgnoringCopies(Reg, MRI);
415 return DefSrcReg ? DefSrcReg->Reg : Register();
416 }
417
getOpcodeDef(unsigned Opcode,Register Reg,const MachineRegisterInfo & MRI)418 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
419 const MachineRegisterInfo &MRI) {
420 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
421 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
422 }
423
getAPFloatFromSize(double Val,unsigned Size)424 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
425 if (Size == 32)
426 return APFloat(float(Val));
427 if (Size == 64)
428 return APFloat(Val);
429 if (Size != 16)
430 llvm_unreachable("Unsupported FPConstant size");
431 bool Ignored;
432 APFloat APF(Val);
433 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
434 return APF;
435 }
436
ConstantFoldBinOp(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)437 Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1,
438 const Register Op2,
439 const MachineRegisterInfo &MRI) {
440 auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
441 if (!MaybeOp2Cst)
442 return None;
443
444 auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
445 if (!MaybeOp1Cst)
446 return None;
447
448 const APInt &C1 = *MaybeOp1Cst;
449 const APInt &C2 = *MaybeOp2Cst;
450 switch (Opcode) {
451 default:
452 break;
453 case TargetOpcode::G_ADD:
454 return C1 + C2;
455 case TargetOpcode::G_AND:
456 return C1 & C2;
457 case TargetOpcode::G_ASHR:
458 return C1.ashr(C2);
459 case TargetOpcode::G_LSHR:
460 return C1.lshr(C2);
461 case TargetOpcode::G_MUL:
462 return C1 * C2;
463 case TargetOpcode::G_OR:
464 return C1 | C2;
465 case TargetOpcode::G_SHL:
466 return C1 << C2;
467 case TargetOpcode::G_SUB:
468 return C1 - C2;
469 case TargetOpcode::G_XOR:
470 return C1 ^ C2;
471 case TargetOpcode::G_UDIV:
472 if (!C2.getBoolValue())
473 break;
474 return C1.udiv(C2);
475 case TargetOpcode::G_SDIV:
476 if (!C2.getBoolValue())
477 break;
478 return C1.sdiv(C2);
479 case TargetOpcode::G_UREM:
480 if (!C2.getBoolValue())
481 break;
482 return C1.urem(C2);
483 case TargetOpcode::G_SREM:
484 if (!C2.getBoolValue())
485 break;
486 return C1.srem(C2);
487 }
488
489 return None;
490 }
491
ConstantFoldFPBinOp(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)492 Optional<APFloat> llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
493 const Register Op2,
494 const MachineRegisterInfo &MRI) {
495 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
496 if (!Op2Cst)
497 return None;
498
499 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
500 if (!Op1Cst)
501 return None;
502
503 APFloat C1 = Op1Cst->getValueAPF();
504 const APFloat &C2 = Op2Cst->getValueAPF();
505 switch (Opcode) {
506 case TargetOpcode::G_FADD:
507 C1.add(C2, APFloat::rmNearestTiesToEven);
508 return C1;
509 case TargetOpcode::G_FSUB:
510 C1.subtract(C2, APFloat::rmNearestTiesToEven);
511 return C1;
512 case TargetOpcode::G_FMUL:
513 C1.multiply(C2, APFloat::rmNearestTiesToEven);
514 return C1;
515 case TargetOpcode::G_FDIV:
516 C1.divide(C2, APFloat::rmNearestTiesToEven);
517 return C1;
518 case TargetOpcode::G_FREM:
519 C1.mod(C2);
520 return C1;
521 case TargetOpcode::G_FCOPYSIGN:
522 C1.copySign(C2);
523 return C1;
524 case TargetOpcode::G_FMINNUM:
525 return minnum(C1, C2);
526 case TargetOpcode::G_FMAXNUM:
527 return maxnum(C1, C2);
528 case TargetOpcode::G_FMINIMUM:
529 return minimum(C1, C2);
530 case TargetOpcode::G_FMAXIMUM:
531 return maximum(C1, C2);
532 case TargetOpcode::G_FMINNUM_IEEE:
533 case TargetOpcode::G_FMAXNUM_IEEE:
534 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
535 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
536 // and currently there isn't a nice wrapper in APFloat for the version with
537 // correct snan handling.
538 break;
539 default:
540 break;
541 }
542
543 return None;
544 }
545
isKnownNeverNaN(Register Val,const MachineRegisterInfo & MRI,bool SNaN)546 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
547 bool SNaN) {
548 const MachineInstr *DefMI = MRI.getVRegDef(Val);
549 if (!DefMI)
550 return false;
551
552 const TargetMachine& TM = DefMI->getMF()->getTarget();
553 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
554 return true;
555
556 // If the value is a constant, we can obviously see if it is a NaN or not.
557 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
558 return !FPVal->getValueAPF().isNaN() ||
559 (SNaN && !FPVal->getValueAPF().isSignaling());
560 }
561
562 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
563 for (const auto &Op : DefMI->uses())
564 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
565 return false;
566 return true;
567 }
568
569 switch (DefMI->getOpcode()) {
570 default:
571 break;
572 case TargetOpcode::G_FMINNUM_IEEE:
573 case TargetOpcode::G_FMAXNUM_IEEE: {
574 if (SNaN)
575 return true;
576 // This can return a NaN if either operand is an sNaN, or if both operands
577 // are NaN.
578 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
579 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
580 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
581 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
582 }
583 case TargetOpcode::G_FMINNUM:
584 case TargetOpcode::G_FMAXNUM: {
585 // Only one needs to be known not-nan, since it will be returned if the
586 // other ends up being one.
587 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
588 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
589 }
590 }
591
592 if (SNaN) {
593 // FP operations quiet. For now, just handle the ones inserted during
594 // legalization.
595 switch (DefMI->getOpcode()) {
596 case TargetOpcode::G_FPEXT:
597 case TargetOpcode::G_FPTRUNC:
598 case TargetOpcode::G_FCANONICALIZE:
599 return true;
600 default:
601 return false;
602 }
603 }
604
605 return false;
606 }
607
inferAlignFromPtrInfo(MachineFunction & MF,const MachinePointerInfo & MPO)608 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
609 const MachinePointerInfo &MPO) {
610 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
611 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
612 MachineFrameInfo &MFI = MF.getFrameInfo();
613 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
614 MPO.Offset);
615 }
616
617 if (const Value *V = MPO.V.dyn_cast<const Value *>()) {
618 const Module *M = MF.getFunction().getParent();
619 return V->getPointerAlignment(M->getDataLayout());
620 }
621
622 return Align(1);
623 }
624
getFunctionLiveInPhysReg(MachineFunction & MF,const TargetInstrInfo & TII,MCRegister PhysReg,const TargetRegisterClass & RC,LLT RegTy)625 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
626 const TargetInstrInfo &TII,
627 MCRegister PhysReg,
628 const TargetRegisterClass &RC,
629 LLT RegTy) {
630 DebugLoc DL; // FIXME: Is no location the right choice?
631 MachineBasicBlock &EntryMBB = MF.front();
632 MachineRegisterInfo &MRI = MF.getRegInfo();
633 Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
634 if (LiveIn) {
635 MachineInstr *Def = MRI.getVRegDef(LiveIn);
636 if (Def) {
637 // FIXME: Should the verifier check this is in the entry block?
638 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
639 return LiveIn;
640 }
641
642 // It's possible the incoming argument register and copy was added during
643 // lowering, but later deleted due to being/becoming dead. If this happens,
644 // re-insert the copy.
645 } else {
646 // The live in register was not present, so add it.
647 LiveIn = MF.addLiveIn(PhysReg, &RC);
648 if (RegTy.isValid())
649 MRI.setType(LiveIn, RegTy);
650 }
651
652 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
653 .addReg(PhysReg);
654 if (!EntryMBB.isLiveIn(PhysReg))
655 EntryMBB.addLiveIn(PhysReg);
656 return LiveIn;
657 }
658
ConstantFoldExtOp(unsigned Opcode,const Register Op1,uint64_t Imm,const MachineRegisterInfo & MRI)659 Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1,
660 uint64_t Imm,
661 const MachineRegisterInfo &MRI) {
662 auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
663 if (MaybeOp1Cst) {
664 switch (Opcode) {
665 default:
666 break;
667 case TargetOpcode::G_SEXT_INREG: {
668 LLT Ty = MRI.getType(Op1);
669 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
670 }
671 }
672 }
673 return None;
674 }
675
isKnownToBeAPowerOfTwo(Register Reg,const MachineRegisterInfo & MRI,GISelKnownBits * KB)676 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
677 GISelKnownBits *KB) {
678 Optional<DefinitionAndSourceRegister> DefSrcReg =
679 getDefSrcRegIgnoringCopies(Reg, MRI);
680 if (!DefSrcReg)
681 return false;
682
683 const MachineInstr &MI = *DefSrcReg->MI;
684 const LLT Ty = MRI.getType(Reg);
685
686 switch (MI.getOpcode()) {
687 case TargetOpcode::G_CONSTANT: {
688 unsigned BitWidth = Ty.getScalarSizeInBits();
689 const ConstantInt *CI = MI.getOperand(1).getCImm();
690 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
691 }
692 case TargetOpcode::G_SHL: {
693 // A left-shift of a constant one will have exactly one bit set because
694 // shifting the bit off the end is undefined.
695
696 // TODO: Constant splat
697 if (auto ConstLHS = getConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
698 if (*ConstLHS == 1)
699 return true;
700 }
701
702 break;
703 }
704 case TargetOpcode::G_LSHR: {
705 if (auto ConstLHS = getConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
706 if (ConstLHS->isSignMask())
707 return true;
708 }
709
710 break;
711 }
712 case TargetOpcode::G_BUILD_VECTOR: {
713 // TODO: Probably should have a recursion depth guard since you could have
714 // bitcasted vector elements.
715 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
716 if (!isKnownToBeAPowerOfTwo(MI.getOperand(I).getReg(), MRI, KB))
717 return false;
718 }
719
720 return true;
721 }
722 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
723 // Only handle constants since we would need to know if number of leading
724 // zeros is greater than the truncation amount.
725 const unsigned BitWidth = Ty.getScalarSizeInBits();
726 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
727 auto Const = getConstantVRegVal(MI.getOperand(I).getReg(), MRI);
728 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
729 return false;
730 }
731
732 return true;
733 }
734 default:
735 break;
736 }
737
738 if (!KB)
739 return false;
740
741 // More could be done here, though the above checks are enough
742 // to handle some common cases.
743
744 // Fall back to computeKnownBits to catch other known cases.
745 KnownBits Known = KB->getKnownBits(Reg);
746 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
747 }
748
getSelectionDAGFallbackAnalysisUsage(AnalysisUsage & AU)749 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
750 AU.addPreserved<StackProtector>();
751 }
752
getLCMSize(unsigned OrigSize,unsigned TargetSize)753 static unsigned getLCMSize(unsigned OrigSize, unsigned TargetSize) {
754 unsigned Mul = OrigSize * TargetSize;
755 unsigned GCDSize = greatestCommonDivisor(OrigSize, TargetSize);
756 return Mul / GCDSize;
757 }
758
getLCMType(LLT OrigTy,LLT TargetTy)759 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
760 const unsigned OrigSize = OrigTy.getSizeInBits();
761 const unsigned TargetSize = TargetTy.getSizeInBits();
762
763 if (OrigSize == TargetSize)
764 return OrigTy;
765
766 if (OrigTy.isVector()) {
767 const LLT OrigElt = OrigTy.getElementType();
768
769 if (TargetTy.isVector()) {
770 const LLT TargetElt = TargetTy.getElementType();
771
772 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
773 int GCDElts = greatestCommonDivisor(OrigTy.getNumElements(),
774 TargetTy.getNumElements());
775 // Prefer the original element type.
776 int Mul = OrigTy.getNumElements() * TargetTy.getNumElements();
777 return LLT::vector(Mul / GCDElts, OrigTy.getElementType());
778 }
779 } else {
780 if (OrigElt.getSizeInBits() == TargetSize)
781 return OrigTy;
782 }
783
784 unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
785 return LLT::vector(LCMSize / OrigElt.getSizeInBits(), OrigElt);
786 }
787
788 if (TargetTy.isVector()) {
789 unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
790 return LLT::vector(LCMSize / OrigSize, OrigTy);
791 }
792
793 unsigned LCMSize = getLCMSize(OrigSize, TargetSize);
794
795 // Preserve pointer types.
796 if (LCMSize == OrigSize)
797 return OrigTy;
798 if (LCMSize == TargetSize)
799 return TargetTy;
800
801 return LLT::scalar(LCMSize);
802 }
803
getGCDType(LLT OrigTy,LLT TargetTy)804 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
805 const unsigned OrigSize = OrigTy.getSizeInBits();
806 const unsigned TargetSize = TargetTy.getSizeInBits();
807
808 if (OrigSize == TargetSize)
809 return OrigTy;
810
811 if (OrigTy.isVector()) {
812 LLT OrigElt = OrigTy.getElementType();
813 if (TargetTy.isVector()) {
814 LLT TargetElt = TargetTy.getElementType();
815 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
816 int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
817 TargetTy.getNumElements());
818 return LLT::scalarOrVector(GCD, OrigElt);
819 }
820 } else {
821 // If the source is a vector of pointers, return a pointer element.
822 if (OrigElt.getSizeInBits() == TargetSize)
823 return OrigElt;
824 }
825
826 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize);
827 if (GCD == OrigElt.getSizeInBits())
828 return OrigElt;
829
830 // If we can't produce the original element type, we have to use a smaller
831 // scalar.
832 if (GCD < OrigElt.getSizeInBits())
833 return LLT::scalar(GCD);
834 return LLT::vector(GCD / OrigElt.getSizeInBits(), OrigElt);
835 }
836
837 if (TargetTy.isVector()) {
838 // Try to preserve the original element type.
839 LLT TargetElt = TargetTy.getElementType();
840 if (TargetElt.getSizeInBits() == OrigSize)
841 return OrigTy;
842 }
843
844 unsigned GCD = greatestCommonDivisor(OrigSize, TargetSize);
845 return LLT::scalar(GCD);
846 }
847
getSplatIndex(MachineInstr & MI)848 Optional<int> llvm::getSplatIndex(MachineInstr &MI) {
849 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
850 "Only G_SHUFFLE_VECTOR can have a splat index!");
851 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
852 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
853
854 // If all elements are undefined, this shuffle can be considered a splat.
855 // Return 0 for better potential for callers to simplify.
856 if (FirstDefinedIdx == Mask.end())
857 return 0;
858
859 // Make sure all remaining elements are either undef or the same
860 // as the first non-undef value.
861 int SplatValue = *FirstDefinedIdx;
862 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
863 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
864 return None;
865
866 return SplatValue;
867 }
868
isBuildVectorOp(unsigned Opcode)869 static bool isBuildVectorOp(unsigned Opcode) {
870 return Opcode == TargetOpcode::G_BUILD_VECTOR ||
871 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
872 }
873
874 // TODO: Handle mixed undef elements.
isBuildVectorConstantSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,int64_t SplatValue)875 static bool isBuildVectorConstantSplat(const MachineInstr &MI,
876 const MachineRegisterInfo &MRI,
877 int64_t SplatValue) {
878 if (!isBuildVectorOp(MI.getOpcode()))
879 return false;
880
881 const unsigned NumOps = MI.getNumOperands();
882 for (unsigned I = 1; I != NumOps; ++I) {
883 Register Element = MI.getOperand(I).getReg();
884 if (!mi_match(Element, MRI, m_SpecificICst(SplatValue)))
885 return false;
886 }
887
888 return true;
889 }
890
891 Optional<int64_t>
getBuildVectorConstantSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI)892 llvm::getBuildVectorConstantSplat(const MachineInstr &MI,
893 const MachineRegisterInfo &MRI) {
894 if (!isBuildVectorOp(MI.getOpcode()))
895 return None;
896
897 const unsigned NumOps = MI.getNumOperands();
898 Optional<int64_t> Scalar;
899 for (unsigned I = 1; I != NumOps; ++I) {
900 Register Element = MI.getOperand(I).getReg();
901 int64_t ElementValue;
902 if (!mi_match(Element, MRI, m_ICst(ElementValue)))
903 return None;
904 if (!Scalar)
905 Scalar = ElementValue;
906 else if (*Scalar != ElementValue)
907 return None;
908 }
909
910 return Scalar;
911 }
912
isBuildVectorAllZeros(const MachineInstr & MI,const MachineRegisterInfo & MRI)913 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
914 const MachineRegisterInfo &MRI) {
915 return isBuildVectorConstantSplat(MI, MRI, 0);
916 }
917
isBuildVectorAllOnes(const MachineInstr & MI,const MachineRegisterInfo & MRI)918 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
919 const MachineRegisterInfo &MRI) {
920 return isBuildVectorConstantSplat(MI, MRI, -1);
921 }
922
getVectorSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI)923 Optional<RegOrConstant> llvm::getVectorSplat(const MachineInstr &MI,
924 const MachineRegisterInfo &MRI) {
925 unsigned Opc = MI.getOpcode();
926 if (!isBuildVectorOp(Opc))
927 return None;
928 if (auto Splat = getBuildVectorConstantSplat(MI, MRI))
929 return RegOrConstant(*Splat);
930 auto Reg = MI.getOperand(1).getReg();
931 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()),
932 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
933 return None;
934 return RegOrConstant(Reg);
935 }
936
matchUnaryPredicate(const MachineRegisterInfo & MRI,Register Reg,std::function<bool (const Constant * ConstVal)> Match,bool AllowUndefs)937 bool llvm::matchUnaryPredicate(
938 const MachineRegisterInfo &MRI, Register Reg,
939 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
940
941 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
942 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
943 return Match(nullptr);
944
945 // TODO: Also handle fconstant
946 if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
947 return Match(Def->getOperand(1).getCImm());
948
949 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
950 return false;
951
952 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
953 Register SrcElt = Def->getOperand(I).getReg();
954 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
955 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
956 if (!Match(nullptr))
957 return false;
958 continue;
959 }
960
961 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
962 !Match(SrcDef->getOperand(1).getCImm()))
963 return false;
964 }
965
966 return true;
967 }
968
isConstTrueVal(const TargetLowering & TLI,int64_t Val,bool IsVector,bool IsFP)969 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
970 bool IsFP) {
971 switch (TLI.getBooleanContents(IsVector, IsFP)) {
972 case TargetLowering::UndefinedBooleanContent:
973 return Val & 0x1;
974 case TargetLowering::ZeroOrOneBooleanContent:
975 return Val == 1;
976 case TargetLowering::ZeroOrNegativeOneBooleanContent:
977 return Val == -1;
978 }
979 llvm_unreachable("Invalid boolean contents");
980 }
981
getICmpTrueVal(const TargetLowering & TLI,bool IsVector,bool IsFP)982 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
983 bool IsFP) {
984 switch (TLI.getBooleanContents(IsVector, IsFP)) {
985 case TargetLowering::UndefinedBooleanContent:
986 case TargetLowering::ZeroOrOneBooleanContent:
987 return 1;
988 case TargetLowering::ZeroOrNegativeOneBooleanContent:
989 return -1;
990 }
991 llvm_unreachable("Invalid boolean contents");
992 }
993
shouldOptForSize(const MachineBasicBlock & MBB,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)994 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
995 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
996 const auto &F = MBB.getParent()->getFunction();
997 return F.hasOptSize() || F.hasMinSize() ||
998 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
999 }
1000
getIntrinsicID(const MachineInstr & MI)1001 unsigned llvm::getIntrinsicID(const MachineInstr &MI) {
1002 #ifndef NDEBUG
1003 unsigned Opc = MI.getOpcode();
1004 assert(Opc == TargetOpcode::G_INTRINSIC ||
1005 Opc == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1006 #endif
1007 return MI.getOperand(MI.getNumExplicitDefs()).getIntrinsicID();
1008 }
1009