1 //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the performOptimizedStructLayout interface.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Support/OptimizedStructLayout.h"
14
15 using namespace llvm;
16
17 using Field = OptimizedStructLayoutField;
18
19 #ifndef NDEBUG
checkValidLayout(ArrayRef<Field> Fields,uint64_t Size,Align MaxAlign)20 static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size,
21 Align MaxAlign) {
22 uint64_t LastEnd = 0;
23 Align ComputedMaxAlign;
24 for (auto &Field : Fields) {
25 assert(Field.hasFixedOffset() &&
26 "didn't assign a fixed offset to field");
27 assert(isAligned(Field.Alignment, Field.Offset) &&
28 "didn't assign a correctly-aligned offset to field");
29 assert(Field.Offset >= LastEnd &&
30 "didn't assign offsets in ascending order");
31 LastEnd = Field.getEndOffset();
32 assert(Field.Alignment <= MaxAlign &&
33 "didn't compute MaxAlign correctly");
34 ComputedMaxAlign = std::max(Field.Alignment, MaxAlign);
35 }
36 assert(LastEnd == Size && "didn't compute LastEnd correctly");
37 assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly");
38 }
39 #endif
40
41 std::pair<uint64_t, Align>
performOptimizedStructLayout(MutableArrayRef<Field> Fields)42 llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) {
43 #ifndef NDEBUG
44 // Do some simple precondition checks.
45 {
46 bool InFixedPrefix = true;
47 size_t LastEnd = 0;
48 for (auto &Field : Fields) {
49 assert(Field.Size > 0 && "field of zero size");
50 if (Field.hasFixedOffset()) {
51 assert(InFixedPrefix &&
52 "fixed-offset fields are not a strict prefix of array");
53 assert(LastEnd <= Field.Offset &&
54 "fixed-offset fields overlap or are not in order");
55 LastEnd = Field.getEndOffset();
56 assert(LastEnd > Field.Offset &&
57 "overflow in fixed-offset end offset");
58 } else {
59 InFixedPrefix = false;
60 }
61 }
62 }
63 #endif
64
65 // Do an initial pass over the fields.
66 Align MaxAlign;
67
68 // Find the first flexible-offset field, tracking MaxAlign.
69 auto FirstFlexible = Fields.begin(), E = Fields.end();
70 while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) {
71 MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment);
72 ++FirstFlexible;
73 }
74
75 // If there are no flexible fields, we're done.
76 if (FirstFlexible == E) {
77 uint64_t Size = 0;
78 if (!Fields.empty())
79 Size = Fields.back().getEndOffset();
80
81 #ifndef NDEBUG
82 checkValidLayout(Fields, Size, MaxAlign);
83 #endif
84 return std::make_pair(Size, MaxAlign);
85 }
86
87 // Walk over the flexible-offset fields, tracking MaxAlign and
88 // assigning them a unique number in order of their appearance.
89 // We'll use this unique number in the comparison below so that
90 // we can use array_pod_sort, which isn't stable. We won't use it
91 // past that point.
92 {
93 uintptr_t UniqueNumber = 0;
94 for (auto I = FirstFlexible; I != E; ++I) {
95 I->Scratch = reinterpret_cast<void*>(UniqueNumber++);
96 MaxAlign = std::max(MaxAlign, I->Alignment);
97 }
98 }
99
100 // Sort the flexible elements in order of decreasing alignment,
101 // then decreasing size, and then the original order as recorded
102 // in Scratch. The decreasing-size aspect of this is only really
103 // important if we get into the gap-filling stage below, but it
104 // doesn't hurt here.
105 array_pod_sort(FirstFlexible, E,
106 [](const Field *lhs, const Field *rhs) -> int {
107 // Decreasing alignment.
108 if (lhs->Alignment != rhs->Alignment)
109 return (lhs->Alignment < rhs->Alignment ? 1 : -1);
110
111 // Decreasing size.
112 if (lhs->Size != rhs->Size)
113 return (lhs->Size < rhs->Size ? 1 : -1);
114
115 // Original order.
116 auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch);
117 auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch);
118 if (lhsNumber != rhsNumber)
119 return (lhsNumber < rhsNumber ? -1 : 1);
120
121 return 0;
122 });
123
124 // Do a quick check for whether that sort alone has given us a perfect
125 // layout with no interior padding. This is very common: if the
126 // fixed-layout fields have no interior padding, and they end at a
127 // sufficiently-aligned offset for all the flexible-layout fields,
128 // and the flexible-layout fields all have sizes that are multiples
129 // of their alignment, then this will reliably trigger.
130 {
131 bool HasPadding = false;
132 uint64_t LastEnd = 0;
133
134 // Walk the fixed-offset fields.
135 for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
136 assert(I->hasFixedOffset());
137 if (LastEnd != I->Offset) {
138 HasPadding = true;
139 break;
140 }
141 LastEnd = I->getEndOffset();
142 }
143
144 // Walk the flexible-offset fields, optimistically assigning fixed
145 // offsets. Note that we maintain a strict division between the
146 // fixed-offset and flexible-offset fields, so if we end up
147 // discovering padding later in this loop, we can just abandon this
148 // work and we'll ignore the offsets we already assigned.
149 if (!HasPadding) {
150 for (auto I = FirstFlexible; I != E; ++I) {
151 auto Offset = alignTo(LastEnd, I->Alignment);
152 if (LastEnd != Offset) {
153 HasPadding = true;
154 break;
155 }
156 I->Offset = Offset;
157 LastEnd = I->getEndOffset();
158 }
159 }
160
161 // If we already have a perfect layout, we're done.
162 if (!HasPadding) {
163 #ifndef NDEBUG
164 checkValidLayout(Fields, LastEnd, MaxAlign);
165 #endif
166 return std::make_pair(LastEnd, MaxAlign);
167 }
168 }
169
170 // The algorithm sketch at this point is as follows.
171 //
172 // Consider the padding gaps between fixed-offset fields in ascending
173 // order. Let LastEnd be the offset of the first byte following the
174 // field before the gap, or 0 if the gap is at the beginning of the
175 // structure. Find the "best" flexible-offset field according to the
176 // criteria below. If no such field exists, proceed to the next gap.
177 // Otherwise, add the field at the first properly-aligned offset for
178 // that field that is >= LastEnd, then update LastEnd and repeat in
179 // order to fill any remaining gap following that field.
180 //
181 // Next, let LastEnd to be the offset of the first byte following the
182 // last fixed-offset field, or 0 if there are no fixed-offset fields.
183 // While there are flexible-offset fields remaining, find the "best"
184 // flexible-offset field according to the criteria below, add it at
185 // the first properly-aligned offset for that field that is >= LastEnd,
186 // and update LastEnd to the first byte following the field.
187 //
188 // The "best" field is chosen by the following criteria, considered
189 // strictly in order:
190 //
191 // - When filling a gap betweeen fields, the field must fit.
192 // - A field is preferred if it requires less padding following LastEnd.
193 // - A field is preferred if it is more aligned.
194 // - A field is preferred if it is larger.
195 // - A field is preferred if it appeared earlier in the initial order.
196 //
197 // Minimizing leading padding is a greedy attempt to avoid padding
198 // entirely. Preferring more-aligned fields is an attempt to eliminate
199 // stricter constraints earlier, with the idea that weaker alignment
200 // constraints may be resolvable with less padding elsewhere. These
201 // These two rules are sufficient to ensure that we get the optimal
202 // layout in the "C-style" case. Preferring larger fields tends to take
203 // better advantage of large gaps and may be more likely to have a size
204 // that's a multiple of a useful alignment. Preferring the initial
205 // order may help somewhat with locality but is mostly just a way of
206 // ensuring deterministic output.
207 //
208 // Note that this algorithm does not guarantee a minimal layout. Picking
209 // a larger object greedily may leave a gap that cannot be filled as
210 // efficiently. Unfortunately, solving this perfectly is an NP-complete
211 // problem (by reduction from bin-packing: let B_i be the bin sizes and
212 // O_j be the object sizes; add fixed-offset fields such that the gaps
213 // between them have size B_i, and add flexible-offset fields with
214 // alignment 1 and size O_j; if the layout size is equal to the end of
215 // the last fixed-layout field, the objects fit in the bins; note that
216 // this doesn't even require the complexity of alignment).
217
218 // The implementation below is essentially just an optimized version of
219 // scanning the list of remaining fields looking for the best, which
220 // would be O(n^2). In the worst case, it doesn't improve on that.
221 // However, in practice it'll just scan the array of alignment bins
222 // and consider the first few elements from one or two bins. The
223 // number of bins is bounded by a small constant: alignments are powers
224 // of two that are vanishingly unlikely to be over 64 and fairly unlikely
225 // to be over 8. And multiple elements only need to be considered when
226 // filling a gap between fixed-offset fields, which doesn't happen very
227 // often. We could use a data structure within bins that optimizes for
228 // finding the best-sized match, but it would require allocating memory
229 // and copying data, so it's unlikely to be worthwhile.
230
231
232 // Start by organizing the flexible-offset fields into bins according to
233 // their alignment. We expect a small enough number of bins that we
234 // don't care about the asymptotic costs of walking this.
235 struct AlignmentQueue {
236 /// The minimum size of anything currently in this queue.
237 uint64_t MinSize;
238
239 /// The head of the queue. A singly-linked list. The order here should
240 /// be consistent with the earlier sort, i.e. the elements should be
241 /// monotonically descending in size and otherwise in the original order.
242 ///
243 /// We remove the queue from the array as soon as this is empty.
244 OptimizedStructLayoutField *Head;
245
246 /// The alignment requirement of the queue.
247 Align Alignment;
248
249 static Field *getNext(Field *Cur) {
250 return static_cast<Field *>(Cur->Scratch);
251 }
252 };
253 SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment;
254 for (auto I = FirstFlexible; I != E; ) {
255 auto Head = I;
256 auto Alignment = I->Alignment;
257
258 uint64_t MinSize = I->Size;
259 auto LastInQueue = I;
260 for (++I; I != E && I->Alignment == Alignment; ++I) {
261 LastInQueue->Scratch = I;
262 LastInQueue = I;
263 MinSize = std::min(MinSize, I->Size);
264 }
265 LastInQueue->Scratch = nullptr;
266
267 FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment});
268 }
269
270 #ifndef NDEBUG
271 // Verify that we set the queues up correctly.
272 auto checkQueues = [&]{
273 bool FirstQueue = true;
274 Align LastQueueAlignment;
275 for (auto &Queue : FlexibleFieldsByAlignment) {
276 assert((FirstQueue || Queue.Alignment < LastQueueAlignment) &&
277 "bins not in order of descending alignment");
278 LastQueueAlignment = Queue.Alignment;
279 FirstQueue = false;
280
281 assert(Queue.Head && "queue was empty");
282 uint64_t LastSize = ~(uint64_t)0;
283 for (auto I = Queue.Head; I; I = Queue.getNext(I)) {
284 assert(I->Alignment == Queue.Alignment && "bad field in queue");
285 assert(I->Size <= LastSize && "queue not in descending size order");
286 LastSize = I->Size;
287 }
288 }
289 };
290 checkQueues();
291 #endif
292
293 /// Helper function to remove a field from a queue.
294 auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) {
295 assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur);
296
297 // If we're removing Cur from a non-initial position, splice it out
298 // of the linked list.
299 if (Last) {
300 Last->Scratch = Cur->Scratch;
301
302 // If Cur was the last field in the list, we need to update MinSize.
303 // We can just use the last field's size because the list is in
304 // descending order of size.
305 if (!Cur->Scratch)
306 Queue->MinSize = Last->Size;
307
308 // Otherwise, replace the head.
309 } else {
310 if (auto NewHead = Queue->getNext(Cur))
311 Queue->Head = NewHead;
312
313 // If we just emptied the queue, destroy its bin.
314 else
315 FlexibleFieldsByAlignment.erase(Queue);
316 }
317 };
318
319 // Do layout into a local array. Doing this in-place on Fields is
320 // not really feasible.
321 SmallVector<Field, 16> Layout;
322 Layout.reserve(Fields.size());
323
324 // The offset that we're currently looking to insert at (or after).
325 uint64_t LastEnd = 0;
326
327 // Helper function to splice Cur out of the given queue and add it
328 // to the layout at the given offset.
329 auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur,
330 uint64_t Offset) -> bool {
331 assert(Offset == alignTo(LastEnd, Cur->Alignment));
332
333 // Splice out. This potentially invalidates Queue.
334 spliceFromQueue(Queue, Last, Cur);
335
336 // Add Cur to the layout.
337 Layout.push_back(*Cur);
338 Layout.back().Offset = Offset;
339 LastEnd = Layout.back().getEndOffset();
340
341 // Always return true so that we can be tail-called.
342 return true;
343 };
344
345 // Helper function to try to find a field in the given queue that'll
346 // fit starting at StartOffset but before EndOffset (if present).
347 // Note that this never fails if EndOffset is not provided.
348 auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue,
349 uint64_t StartOffset,
350 Optional<uint64_t> EndOffset) -> bool {
351 assert(Queue->Head);
352 assert(StartOffset == alignTo(LastEnd, Queue->Alignment));
353
354 // Figure out the maximum size that a field can be, and ignore this
355 // queue if there's nothing in it that small.
356 auto MaxViableSize =
357 (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0);
358 if (Queue->MinSize > MaxViableSize) return false;
359
360 // Find the matching field. Note that this should always find
361 // something because of the MinSize check above.
362 for (Field *Cur = Queue->Head, *Last = nullptr; true;
363 Last = Cur, Cur = Queue->getNext(Cur)) {
364 assert(Cur && "didn't find a match in queue despite its MinSize");
365 if (Cur->Size <= MaxViableSize)
366 return addToLayout(Queue, Last, Cur, StartOffset);
367 }
368
369 llvm_unreachable("didn't find a match in queue despite its MinSize");
370 };
371
372 // Helper function to find the "best" flexible-offset field according
373 // to the criteria described above.
374 auto tryAddBestField = [&](Optional<uint64_t> BeforeOffset) -> bool {
375 auto QueueB = FlexibleFieldsByAlignment.begin();
376 auto QueueE = FlexibleFieldsByAlignment.end();
377
378 // Start by looking for the most-aligned queue that doesn't need any
379 // leading padding after LastEnd.
380 auto FirstQueueToSearch = QueueB;
381 for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) {
382 if (isAligned(FirstQueueToSearch->Alignment, LastEnd))
383 break;
384 }
385
386 uint64_t Offset = LastEnd;
387 while (true) {
388 // Invariant: all of the queues in [FirstQueueToSearch, QueueE)
389 // require the same initial padding offset.
390
391 // Search those queues in descending order of alignment for a
392 // satisfactory field.
393 for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) {
394 if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset))
395 return true;
396 }
397
398 // Okay, we don't need to scan those again.
399 QueueE = FirstQueueToSearch;
400
401 // If we started from the first queue, we're done.
402 if (FirstQueueToSearch == QueueB)
403 return false;
404
405 // Otherwise, scan backwards to find the most-aligned queue that
406 // still has minimal leading padding after LastEnd.
407 --FirstQueueToSearch;
408 Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment);
409 while (FirstQueueToSearch != QueueB &&
410 Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment))
411 --FirstQueueToSearch;
412 }
413 };
414
415 // Phase 1: fill the gaps between fixed-offset fields with the best
416 // flexible-offset field that fits.
417 for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
418 while (LastEnd != I->Offset) {
419 if (!tryAddBestField(I->Offset))
420 break;
421 }
422 Layout.push_back(*I);
423 LastEnd = I->getEndOffset();
424 }
425
426 #ifndef NDEBUG
427 checkQueues();
428 #endif
429
430 // Phase 2: repeatedly add the best flexible-offset field until
431 // they're all gone.
432 while (!FlexibleFieldsByAlignment.empty()) {
433 bool Success = tryAddBestField(None);
434 assert(Success && "didn't find a field with no fixed limit?");
435 (void) Success;
436 }
437
438 // Copy the layout back into place.
439 assert(Layout.size() == Fields.size());
440 memcpy(Fields.data(), Layout.data(),
441 Fields.size() * sizeof(OptimizedStructLayoutField));
442
443 #ifndef NDEBUG
444 // Make a final check that the layout is valid.
445 checkValidLayout(Fields, LastEnd, MaxAlign);
446 #endif
447
448 return std::make_pair(LastEnd, MaxAlign);
449 }
450