1 //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64LegalizerInfo.h"
15 #include "AArch64RegisterBankInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetOpcodes.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IntrinsicsAArch64.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/MathExtras.h"
29 #include <initializer_list>
30
31 #define DEBUG_TYPE "aarch64-legalinfo"
32
33 using namespace llvm;
34 using namespace LegalizeActions;
35 using namespace LegalizeMutations;
36 using namespace LegalityPredicates;
37
AArch64LegalizerInfo(const AArch64Subtarget & ST)38 AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
39 : ST(&ST) {
40 using namespace TargetOpcode;
41 const LLT p0 = LLT::pointer(0, 64);
42 const LLT s1 = LLT::scalar(1);
43 const LLT s8 = LLT::scalar(8);
44 const LLT s16 = LLT::scalar(16);
45 const LLT s32 = LLT::scalar(32);
46 const LLT s64 = LLT::scalar(64);
47 const LLT s128 = LLT::scalar(128);
48 const LLT s256 = LLT::scalar(256);
49 const LLT s512 = LLT::scalar(512);
50 const LLT v16s8 = LLT::vector(16, 8);
51 const LLT v8s8 = LLT::vector(8, 8);
52 const LLT v4s8 = LLT::vector(4, 8);
53 const LLT v8s16 = LLT::vector(8, 16);
54 const LLT v4s16 = LLT::vector(4, 16);
55 const LLT v2s16 = LLT::vector(2, 16);
56 const LLT v2s32 = LLT::vector(2, 32);
57 const LLT v4s32 = LLT::vector(4, 32);
58 const LLT v2s64 = LLT::vector(2, 64);
59 const LLT v2p0 = LLT::vector(2, p0);
60
61 std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
62 v16s8, v8s16, v4s32,
63 v2s64, v2p0,
64 /* End 128bit types */
65 /* Begin 64bit types */
66 v8s8, v4s16, v2s32};
67
68 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
69
70 // FIXME: support subtargets which have neon/fp-armv8 disabled.
71 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
72 computeTables();
73 return;
74 }
75
76 // Some instructions only support s16 if the subtarget has full 16-bit FP
77 // support.
78 const bool HasFP16 = ST.hasFullFP16();
79 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
80
81 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
82 .legalFor({p0, s1, s8, s16, s32, s64})
83 .legalFor(PackedVectorAllTypeList)
84 .clampScalar(0, s1, s64)
85 .widenScalarToNextPow2(0, 8)
86 .fewerElementsIf(
87 [=](const LegalityQuery &Query) {
88 return Query.Types[0].isVector() &&
89 (Query.Types[0].getElementType() != s64 ||
90 Query.Types[0].getNumElements() != 2);
91 },
92 [=](const LegalityQuery &Query) {
93 LLT EltTy = Query.Types[0].getElementType();
94 if (EltTy == s64)
95 return std::make_pair(0, LLT::vector(2, 64));
96 return std::make_pair(0, EltTy);
97 });
98
99 getActionDefinitionsBuilder(G_PHI).legalFor({p0, s16, s32, s64})
100 .legalFor(PackedVectorAllTypeList)
101 .clampScalar(0, s16, s64)
102 .widenScalarToNextPow2(0);
103
104 getActionDefinitionsBuilder(G_BSWAP)
105 .legalFor({s32, s64, v4s32, v2s32, v2s64})
106 .clampScalar(0, s32, s64)
107 .widenScalarToNextPow2(0);
108
109 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
110 .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
111 .scalarizeIf(
112 [=](const LegalityQuery &Query) {
113 return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
114 },
115 0)
116 .legalFor({v2s64})
117 .clampScalar(0, s32, s64)
118 .widenScalarToNextPow2(0)
119 .clampNumElements(0, v2s32, v4s32)
120 .clampNumElements(0, v2s64, v2s64)
121 .moreElementsToNextPow2(0);
122
123 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
124 .customIf([=](const LegalityQuery &Query) {
125 const auto &SrcTy = Query.Types[0];
126 const auto &AmtTy = Query.Types[1];
127 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
128 AmtTy.getSizeInBits() == 32;
129 })
130 .legalFor({
131 {s32, s32},
132 {s32, s64},
133 {s64, s64},
134 {v8s8, v8s8},
135 {v16s8, v16s8},
136 {v4s16, v4s16},
137 {v8s16, v8s16},
138 {v2s32, v2s32},
139 {v4s32, v4s32},
140 {v2s64, v2s64},
141 })
142 .clampScalar(1, s32, s64)
143 .clampScalar(0, s32, s64)
144 .widenScalarToNextPow2(0)
145 .clampNumElements(0, v2s32, v4s32)
146 .clampNumElements(0, v2s64, v2s64)
147 .moreElementsToNextPow2(0)
148 .minScalarSameAs(1, 0);
149
150 getActionDefinitionsBuilder(G_PTR_ADD)
151 .legalFor({{p0, s64}, {v2p0, v2s64}})
152 .clampScalar(1, s64, s64);
153
154 getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
155
156 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
157 .legalFor({s32, s64})
158 .libcallFor({s128})
159 .clampScalar(0, s32, s64)
160 .widenScalarToNextPow2(0)
161 .scalarize(0);
162
163 getActionDefinitionsBuilder({G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
164 .lowerFor({s1, s8, s16, s32, s64});
165
166 getActionDefinitionsBuilder({G_SMULO, G_UMULO}).lowerFor({{s64, s1}});
167
168 getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
169
170 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
171 .lowerIf([=](const LegalityQuery &Q) { return Q.Types[0].isScalar(); });
172
173 getActionDefinitionsBuilder(
174 {G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
175 .legalFor({{s32, s1}, {s64, s1}})
176 .clampScalar(0, s32, s64)
177 .widenScalarToNextPow2(0);
178
179 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
180 .legalFor({s32, s64, v2s64, v4s32, v2s32})
181 .clampNumElements(0, v2s32, v4s32)
182 .clampNumElements(0, v2s64, v2s64);
183
184 getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
185
186 getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
187 G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
188 G_FNEARBYINT, G_INTRINSIC_LRINT})
189 // If we don't have full FP16 support, then scalarize the elements of
190 // vectors containing fp16 types.
191 .fewerElementsIf(
192 [=, &ST](const LegalityQuery &Query) {
193 const auto &Ty = Query.Types[0];
194 return Ty.isVector() && Ty.getElementType() == s16 &&
195 !ST.hasFullFP16();
196 },
197 [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
198 // If we don't have full FP16 support, then widen s16 to s32 if we
199 // encounter it.
200 .widenScalarIf(
201 [=, &ST](const LegalityQuery &Query) {
202 return Query.Types[0] == s16 && !ST.hasFullFP16();
203 },
204 [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
205 .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
206
207 getActionDefinitionsBuilder(
208 {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
209 // We need a call for these, so we always need to scalarize.
210 .scalarize(0)
211 // Regardless of FP16 support, widen 16-bit elements to 32-bits.
212 .minScalar(0, s32)
213 .libcallFor({s32, s64, v2s32, v4s32, v2s64});
214
215 getActionDefinitionsBuilder(G_INSERT)
216 .unsupportedIf([=](const LegalityQuery &Query) {
217 return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
218 })
219 .legalIf([=](const LegalityQuery &Query) {
220 const LLT &Ty0 = Query.Types[0];
221 const LLT &Ty1 = Query.Types[1];
222 if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
223 return false;
224 return isPowerOf2_32(Ty1.getSizeInBits()) &&
225 (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
226 })
227 .clampScalar(0, s32, s64)
228 .widenScalarToNextPow2(0)
229 .maxScalarIf(typeInSet(0, {s32}), 1, s16)
230 .maxScalarIf(typeInSet(0, {s64}), 1, s32)
231 .widenScalarToNextPow2(1);
232
233 getActionDefinitionsBuilder(G_EXTRACT)
234 .unsupportedIf([=](const LegalityQuery &Query) {
235 return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
236 })
237 .legalIf([=](const LegalityQuery &Query) {
238 const LLT &Ty0 = Query.Types[0];
239 const LLT &Ty1 = Query.Types[1];
240 if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
241 return false;
242 if (Ty1 == p0)
243 return true;
244 return isPowerOf2_32(Ty0.getSizeInBits()) &&
245 (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
246 })
247 .clampScalar(1, s32, s128)
248 .widenScalarToNextPow2(1)
249 .maxScalarIf(typeInSet(1, {s32}), 0, s16)
250 .maxScalarIf(typeInSet(1, {s64}), 0, s32)
251 .widenScalarToNextPow2(0);
252
253 getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
254 .legalForTypesWithMemDesc({{s32, p0, 8, 8},
255 {s32, p0, 16, 8},
256 {s32, p0, 32, 8},
257 {s64, p0, 8, 2},
258 {s64, p0, 16, 2},
259 {s64, p0, 32, 4},
260 {s64, p0, 64, 8},
261 {p0, p0, 64, 8},
262 {v2s32, p0, 64, 8}})
263 .clampScalar(0, s32, s64)
264 .widenScalarToNextPow2(0)
265 // TODO: We could support sum-of-pow2's but the lowering code doesn't know
266 // how to do that yet.
267 .unsupportedIfMemSizeNotPow2()
268 // Lower anything left over into G_*EXT and G_LOAD
269 .lower();
270
271 auto IsPtrVecPred = [=](const LegalityQuery &Query) {
272 const LLT &ValTy = Query.Types[0];
273 if (!ValTy.isVector())
274 return false;
275 const LLT EltTy = ValTy.getElementType();
276 return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
277 };
278
279 getActionDefinitionsBuilder(G_LOAD)
280 .legalForTypesWithMemDesc({{s8, p0, 8, 8},
281 {s16, p0, 16, 8},
282 {s32, p0, 32, 8},
283 {s64, p0, 64, 8},
284 {p0, p0, 64, 8},
285 {s128, p0, 128, 8},
286 {v8s8, p0, 64, 8},
287 {v16s8, p0, 128, 8},
288 {v4s16, p0, 64, 8},
289 {v8s16, p0, 128, 8},
290 {v2s32, p0, 64, 8},
291 {v4s32, p0, 128, 8},
292 {v2s64, p0, 128, 8}})
293 // These extends are also legal
294 .legalForTypesWithMemDesc({{s32, p0, 8, 8}, {s32, p0, 16, 8}})
295 .clampScalar(0, s8, s64)
296 .lowerIfMemSizeNotPow2()
297 // Lower any any-extending loads left into G_ANYEXT and G_LOAD
298 .lowerIf([=](const LegalityQuery &Query) {
299 return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
300 })
301 .widenScalarToNextPow2(0)
302 .clampMaxNumElements(0, s8, 16)
303 .clampMaxNumElements(0, s16, 8)
304 .clampMaxNumElements(0, s32, 4)
305 .clampMaxNumElements(0, s64, 2)
306 .customIf(IsPtrVecPred);
307
308 getActionDefinitionsBuilder(G_STORE)
309 .legalForTypesWithMemDesc({{s8, p0, 8, 8},
310 {s16, p0, 8, 8}, // truncstorei8 from s16
311 {s32, p0, 8, 8}, // truncstorei8 from s32
312 {s64, p0, 8, 8}, // truncstorei8 from s64
313 {s16, p0, 16, 8},
314 {s32, p0, 16, 8}, // truncstorei16 from s32
315 {s64, p0, 16, 8}, // truncstorei16 from s64
316 {s32, p0, 8, 8},
317 {s32, p0, 16, 8},
318 {s32, p0, 32, 8},
319 {s64, p0, 64, 8},
320 {s64, p0, 32, 8}, // truncstorei32 from s64
321 {p0, p0, 64, 8},
322 {s128, p0, 128, 8},
323 {v16s8, p0, 128, 8},
324 {v8s8, p0, 64, 8},
325 {v4s16, p0, 64, 8},
326 {v8s16, p0, 128, 8},
327 {v2s32, p0, 64, 8},
328 {v4s32, p0, 128, 8},
329 {v2s64, p0, 128, 8}})
330 .clampScalar(0, s8, s64)
331 .lowerIfMemSizeNotPow2()
332 .lowerIf([=](const LegalityQuery &Query) {
333 return Query.Types[0].isScalar() &&
334 Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
335 })
336 // Maximum: sN * k = 128
337 .clampMaxNumElements(0, s8, 16)
338 .clampMaxNumElements(0, s16, 8)
339 .clampMaxNumElements(0, s32, 4)
340 .clampMaxNumElements(0, s64, 2)
341 .customIf(IsPtrVecPred);
342
343 // Constants
344 getActionDefinitionsBuilder(G_CONSTANT)
345 .legalFor({p0, s8, s16, s32, s64})
346 .clampScalar(0, s8, s64)
347 .widenScalarToNextPow2(0);
348 getActionDefinitionsBuilder(G_FCONSTANT)
349 .legalIf([=](const LegalityQuery &Query) {
350 const auto &Ty = Query.Types[0];
351 if (HasFP16 && Ty == s16)
352 return true;
353 return Ty == s32 || Ty == s64 || Ty == s128;
354 })
355 .clampScalar(0, MinFPScalar, s128);
356
357 getActionDefinitionsBuilder({G_ICMP, G_FCMP})
358 .legalFor({{s32, s32},
359 {s32, s64},
360 {s32, p0},
361 {v4s32, v4s32},
362 {v2s32, v2s32},
363 {v2s64, v2s64},
364 {v2s64, v2p0},
365 {v4s16, v4s16},
366 {v8s16, v8s16},
367 {v8s8, v8s8},
368 {v16s8, v16s8}})
369 .clampScalar(1, s32, s64)
370 .clampScalar(0, s32, s32)
371 .minScalarEltSameAsIf(
372 [=](const LegalityQuery &Query) {
373 const LLT &Ty = Query.Types[0];
374 const LLT &SrcTy = Query.Types[1];
375 return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
376 Ty.getElementType() != SrcTy.getElementType();
377 },
378 0, 1)
379 .minScalarOrEltIf(
380 [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
381 1, s32)
382 .minScalarOrEltIf(
383 [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
384 s64)
385 .widenScalarOrEltToNextPow2(1)
386 .clampNumElements(0, v2s32, v4s32);
387
388 // Extensions
389 auto ExtLegalFunc = [=](const LegalityQuery &Query) {
390 unsigned DstSize = Query.Types[0].getSizeInBits();
391
392 if (DstSize == 128 && !Query.Types[0].isVector())
393 return false; // Extending to a scalar s128 needs narrowing.
394
395 // Make sure that we have something that will fit in a register, and
396 // make sure it's a power of 2.
397 if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
398 return false;
399
400 const LLT &SrcTy = Query.Types[1];
401
402 // Special case for s1.
403 if (SrcTy == s1)
404 return true;
405
406 // Make sure we fit in a register otherwise. Don't bother checking that
407 // the source type is below 128 bits. We shouldn't be allowing anything
408 // through which is wider than the destination in the first place.
409 unsigned SrcSize = SrcTy.getSizeInBits();
410 if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
411 return false;
412
413 return true;
414 };
415 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
416 .legalIf(ExtLegalFunc)
417 .clampScalar(0, s64, s64); // Just for s128, others are handled above.
418
419 getActionDefinitionsBuilder(G_TRUNC)
420 .minScalarOrEltIf(
421 [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
422 0, s8)
423 .customIf([=](const LegalityQuery &Query) {
424 LLT DstTy = Query.Types[0];
425 LLT SrcTy = Query.Types[1];
426 return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
427 })
428 .alwaysLegal();
429
430 getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
431
432 // FP conversions
433 getActionDefinitionsBuilder(G_FPTRUNC)
434 .legalFor(
435 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
436 .clampMaxNumElements(0, s32, 2);
437 getActionDefinitionsBuilder(G_FPEXT)
438 .legalFor(
439 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
440 .clampMaxNumElements(0, s64, 2);
441
442 // Conversions
443 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
444 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
445 .clampScalar(0, s32, s64)
446 .widenScalarToNextPow2(0)
447 .clampScalar(1, s32, s64)
448 .widenScalarToNextPow2(1);
449
450 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
451 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
452 .clampScalar(1, s32, s64)
453 .minScalarSameAs(1, 0)
454 .clampScalar(0, s32, s64)
455 .widenScalarToNextPow2(0);
456
457 // Control-flow
458 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
459 getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
460
461 getActionDefinitionsBuilder(G_SELECT)
462 .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
463 .clampScalar(0, s32, s64)
464 .widenScalarToNextPow2(0)
465 .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
466 .lowerIf(isVector(0));
467
468 // Pointer-handling
469 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
470
471 if (TM.getCodeModel() == CodeModel::Small)
472 getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
473 else
474 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
475
476 getActionDefinitionsBuilder(G_PTRTOINT)
477 .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
478 .maxScalar(0, s64)
479 .widenScalarToNextPow2(0, /*Min*/ 8);
480
481 getActionDefinitionsBuilder(G_INTTOPTR)
482 .unsupportedIf([&](const LegalityQuery &Query) {
483 return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
484 })
485 .legalFor({{p0, s64}});
486
487 // Casts for 32 and 64-bit width type are just copies.
488 // Same for 128-bit width type, except they are on the FPR bank.
489 getActionDefinitionsBuilder(G_BITCAST)
490 // FIXME: This is wrong since G_BITCAST is not allowed to change the
491 // number of bits but it's what the previous code described and fixing
492 // it breaks tests.
493 .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
494 v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
495 v2p0});
496
497 getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
498
499 // va_list must be a pointer, but most sized types are pretty easy to handle
500 // as the destination.
501 getActionDefinitionsBuilder(G_VAARG)
502 .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
503 .clampScalar(0, s8, s64)
504 .widenScalarToNextPow2(0, /*Min*/ 8);
505
506 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
507 .lowerIf(
508 all(typeInSet(0, {s8, s16, s32, s64, s128}), typeIs(1, s1), typeIs(2, p0)));
509
510 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
511 .legalIf(all(typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0)))
512 .customIf([](const LegalityQuery &Query) {
513 return Query.Types[0].getSizeInBits() == 128;
514 });
515
516 getActionDefinitionsBuilder(
517 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
518 G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
519 G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
520 .legalIf(all(typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0)));
521
522 getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
523
524 // Merge/Unmerge
525 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
526 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
527 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
528
529 auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
530 const LLT &Ty = Query.Types[TypeIdx];
531 if (Ty.isVector()) {
532 const LLT &EltTy = Ty.getElementType();
533 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
534 return true;
535 if (!isPowerOf2_32(EltTy.getSizeInBits()))
536 return true;
537 }
538 return false;
539 };
540
541 // FIXME: This rule is horrible, but specifies the same as what we had
542 // before with the particularly strange definitions removed (e.g.
543 // s8 = G_MERGE_VALUES s32, s32).
544 // Part of the complexity comes from these ops being extremely flexible. For
545 // example, you can build/decompose vectors with it, concatenate vectors,
546 // etc. and in addition to this you can also bitcast with it at the same
547 // time. We've been considering breaking it up into multiple ops to make it
548 // more manageable throughout the backend.
549 getActionDefinitionsBuilder(Op)
550 // Break up vectors with weird elements into scalars
551 .fewerElementsIf(
552 [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
553 scalarize(0))
554 .fewerElementsIf(
555 [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
556 scalarize(1))
557 // Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
558 // or 384.
559 .clampScalar(BigTyIdx, s8, s512)
560 .widenScalarIf(
561 [=](const LegalityQuery &Query) {
562 const LLT &Ty = Query.Types[BigTyIdx];
563 return !isPowerOf2_32(Ty.getSizeInBits()) &&
564 Ty.getSizeInBits() % 64 != 0;
565 },
566 [=](const LegalityQuery &Query) {
567 // Pick the next power of 2, or a multiple of 64 over 128.
568 // Whichever is smaller.
569 const LLT &Ty = Query.Types[BigTyIdx];
570 unsigned NewSizeInBits = 1
571 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
572 if (NewSizeInBits >= 256) {
573 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
574 if (RoundedTo < NewSizeInBits)
575 NewSizeInBits = RoundedTo;
576 }
577 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
578 })
579 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
580 // worth considering the multiples of 64 since 2*192 and 2*384 are not
581 // valid.
582 .clampScalar(LitTyIdx, s8, s256)
583 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
584 // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
585 // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
586 // At this point it's simple enough to accept the legal types.
587 .legalIf([=](const LegalityQuery &Query) {
588 const LLT &BigTy = Query.Types[BigTyIdx];
589 const LLT &LitTy = Query.Types[LitTyIdx];
590 if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
591 return false;
592 if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
593 return false;
594 return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
595 })
596 // Any vectors left are the wrong size. Scalarize them.
597 .scalarize(0)
598 .scalarize(1);
599 }
600
601 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
602 .unsupportedIf([=](const LegalityQuery &Query) {
603 const LLT &EltTy = Query.Types[1].getElementType();
604 return Query.Types[0] != EltTy;
605 })
606 .minScalar(2, s64)
607 .legalIf([=](const LegalityQuery &Query) {
608 const LLT &VecTy = Query.Types[1];
609 return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
610 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
611 VecTy == v16s8 || VecTy == v2s32 || VecTy == v2p0;
612 })
613 .minScalarOrEltIf(
614 [=](const LegalityQuery &Query) {
615 // We want to promote to <M x s1> to <M x s64> if that wouldn't
616 // cause the total vec size to be > 128b.
617 return Query.Types[1].getNumElements() <= 2;
618 },
619 0, s64)
620 .minScalarOrEltIf(
621 [=](const LegalityQuery &Query) {
622 return Query.Types[1].getNumElements() <= 4;
623 },
624 0, s32)
625 .minScalarOrEltIf(
626 [=](const LegalityQuery &Query) {
627 return Query.Types[1].getNumElements() <= 8;
628 },
629 0, s16)
630 .minScalarOrEltIf(
631 [=](const LegalityQuery &Query) {
632 return Query.Types[1].getNumElements() <= 16;
633 },
634 0, s8)
635 .minScalarOrElt(0, s8); // Worst case, we need at least s8.
636
637 getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
638 .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
639
640 getActionDefinitionsBuilder(G_BUILD_VECTOR)
641 .legalFor({{v8s8, s8},
642 {v16s8, s8},
643 {v4s16, s16},
644 {v8s16, s16},
645 {v2s32, s32},
646 {v4s32, s32},
647 {v2p0, p0},
648 {v2s64, s64}})
649 .clampNumElements(0, v4s32, v4s32)
650 .clampNumElements(0, v2s64, v2s64)
651 .minScalarSameAs(1, 0);
652
653 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC).lower();
654
655 getActionDefinitionsBuilder(G_CTLZ)
656 .legalForCartesianProduct(
657 {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
658 .scalarize(1);
659 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF).lower();
660
661 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
662 .legalIf([=](const LegalityQuery &Query) {
663 const LLT &DstTy = Query.Types[0];
664 const LLT &SrcTy = Query.Types[1];
665 // For now just support the TBL2 variant which needs the source vectors
666 // to be the same size as the dest.
667 if (DstTy != SrcTy)
668 return false;
669 for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
670 if (DstTy == Ty)
671 return true;
672 }
673 return false;
674 })
675 // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
676 // just want those lowered into G_BUILD_VECTOR
677 .lowerIf([=](const LegalityQuery &Query) {
678 return !Query.Types[1].isVector();
679 })
680 .clampNumElements(0, v4s32, v4s32)
681 .clampNumElements(0, v2s64, v2s64);
682
683 getActionDefinitionsBuilder(G_CONCAT_VECTORS)
684 .legalFor({{v4s32, v2s32}, {v8s16, v4s16}});
685
686 getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
687
688 getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
689 return Query.Types[0] == p0 && Query.Types[1] == s64;
690 });
691
692 getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
693
694 getActionDefinitionsBuilder({G_BZERO, G_MEMCPY, G_MEMMOVE, G_MEMSET})
695 .libcall();
696
697 // FIXME: Legal types are only legal with NEON.
698 getActionDefinitionsBuilder(G_ABS)
699 .lowerIf(isScalar(0))
700 .legalFor(PackedVectorAllTypeList);
701
702 getActionDefinitionsBuilder(G_VECREDUCE_FADD)
703 // We only have FADDP to do reduction-like operations. Lower the rest.
704 .legalFor({{s32, v2s32}, {s64, v2s64}})
705 .clampMaxNumElements(1, s64, 2)
706 .clampMaxNumElements(1, s32, 2)
707 .lower();
708
709 getActionDefinitionsBuilder(G_VECREDUCE_ADD)
710 .legalFor(
711 {{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s32, v2s32}, {s64, v2s64}})
712 .clampMaxNumElements(1, s64, 2)
713 .clampMaxNumElements(1, s32, 4)
714 .lower();
715
716 getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
717 .lowerIf([=](const LegalityQuery &Q) { return Q.Types[0].isScalar(); });
718
719 getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
720
721 getActionDefinitionsBuilder(G_ROTR)
722 .legalFor({{s32, s64}, {s64, s64}})
723 .customIf([=](const LegalityQuery &Q) {
724 return Q.Types[0].isScalar() && Q.Types[1].getScalarSizeInBits() < 64;
725 })
726 .lower();
727 getActionDefinitionsBuilder(G_ROTL).lower();
728
729 getActionDefinitionsBuilder({G_SBFX, G_UBFX})
730 .customFor({{s32, s32}, {s64, s64}});
731
732 // TODO: Custom legalization for s128
733 // TODO: v2s64, v2s32, v4s32, v4s16, v8s16
734 // TODO: Use generic lowering when custom lowering is not possible.
735 auto always = [=](const LegalityQuery &Q) { return true; };
736 getActionDefinitionsBuilder(G_CTPOP)
737 .legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
738 .clampScalar(0, s32, s128)
739 .widenScalarToNextPow2(0)
740 .minScalarEltSameAsIf(always, 1, 0)
741 .maxScalarEltSameAsIf(always, 1, 0)
742 .customFor({{s32, s32}, {s64, s64}});
743
744 computeTables();
745 verify(*ST.getInstrInfo());
746 }
747
legalizeCustom(LegalizerHelper & Helper,MachineInstr & MI) const748 bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
749 MachineInstr &MI) const {
750 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
751 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
752 GISelChangeObserver &Observer = Helper.Observer;
753 switch (MI.getOpcode()) {
754 default:
755 // No idea what to do.
756 return false;
757 case TargetOpcode::G_VAARG:
758 return legalizeVaArg(MI, MRI, MIRBuilder);
759 case TargetOpcode::G_LOAD:
760 case TargetOpcode::G_STORE:
761 return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
762 case TargetOpcode::G_SHL:
763 case TargetOpcode::G_ASHR:
764 case TargetOpcode::G_LSHR:
765 return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
766 case TargetOpcode::G_GLOBAL_VALUE:
767 return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
768 case TargetOpcode::G_TRUNC:
769 return legalizeVectorTrunc(MI, Helper);
770 case TargetOpcode::G_SBFX:
771 case TargetOpcode::G_UBFX:
772 return legalizeBitfieldExtract(MI, MRI, Helper);
773 case TargetOpcode::G_ROTR:
774 return legalizeRotate(MI, MRI, Helper);
775 case TargetOpcode::G_CTPOP:
776 return legalizeCTPOP(MI, MRI, Helper);
777 case TargetOpcode::G_ATOMIC_CMPXCHG:
778 return legalizeAtomicCmpxchg128(MI, MRI, Helper);
779 }
780
781 llvm_unreachable("expected switch to return");
782 }
783
legalizeRotate(MachineInstr & MI,MachineRegisterInfo & MRI,LegalizerHelper & Helper) const784 bool AArch64LegalizerInfo::legalizeRotate(MachineInstr &MI,
785 MachineRegisterInfo &MRI,
786 LegalizerHelper &Helper) const {
787 // To allow for imported patterns to match, we ensure that the rotate amount
788 // is 64b with an extension.
789 Register AmtReg = MI.getOperand(2).getReg();
790 LLT AmtTy = MRI.getType(AmtReg);
791 (void)AmtTy;
792 assert(AmtTy.isScalar() && "Expected a scalar rotate");
793 assert(AmtTy.getSizeInBits() < 64 && "Expected this rotate to be legal");
794 auto NewAmt = Helper.MIRBuilder.buildSExt(LLT::scalar(64), AmtReg);
795 Helper.Observer.changingInstr(MI);
796 MI.getOperand(2).setReg(NewAmt.getReg(0));
797 Helper.Observer.changedInstr(MI);
798 return true;
799 }
800
extractParts(Register Reg,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)801 static void extractParts(Register Reg, MachineRegisterInfo &MRI,
802 MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
803 SmallVectorImpl<Register> &VRegs) {
804 for (int I = 0; I < NumParts; ++I)
805 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
806 MIRBuilder.buildUnmerge(VRegs, Reg);
807 }
808
legalizeVectorTrunc(MachineInstr & MI,LegalizerHelper & Helper) const809 bool AArch64LegalizerInfo::legalizeVectorTrunc(
810 MachineInstr &MI, LegalizerHelper &Helper) const {
811 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
812 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
813 // Similar to how operand splitting is done in SelectiondDAG, we can handle
814 // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
815 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
816 // %lo16(<4 x s16>) = G_TRUNC %inlo
817 // %hi16(<4 x s16>) = G_TRUNC %inhi
818 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
819 // %res(<8 x s8>) = G_TRUNC %in16
820
821 Register DstReg = MI.getOperand(0).getReg();
822 Register SrcReg = MI.getOperand(1).getReg();
823 LLT DstTy = MRI.getType(DstReg);
824 LLT SrcTy = MRI.getType(SrcReg);
825 assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
826 isPowerOf2_32(SrcTy.getSizeInBits()));
827
828 // Split input type.
829 LLT SplitSrcTy = SrcTy.changeNumElements(SrcTy.getNumElements() / 2);
830 // First, split the source into two smaller vectors.
831 SmallVector<Register, 2> SplitSrcs;
832 extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
833
834 // Truncate the splits into intermediate narrower elements.
835 LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
836 for (unsigned I = 0; I < SplitSrcs.size(); ++I)
837 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
838
839 auto Concat = MIRBuilder.buildConcatVectors(
840 DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
841
842 Helper.Observer.changingInstr(MI);
843 MI.getOperand(1).setReg(Concat.getReg(0));
844 Helper.Observer.changedInstr(MI);
845 return true;
846 }
847
legalizeSmallCMGlobalValue(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const848 bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
849 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
850 GISelChangeObserver &Observer) const {
851 assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
852 // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
853 // G_ADD_LOW instructions.
854 // By splitting this here, we can optimize accesses in the small code model by
855 // folding in the G_ADD_LOW into the load/store offset.
856 auto &GlobalOp = MI.getOperand(1);
857 const auto* GV = GlobalOp.getGlobal();
858 if (GV->isThreadLocal())
859 return true; // Don't want to modify TLS vars.
860
861 auto &TM = ST->getTargetLowering()->getTargetMachine();
862 unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
863
864 if (OpFlags & AArch64II::MO_GOT)
865 return true;
866
867 auto Offset = GlobalOp.getOffset();
868 Register DstReg = MI.getOperand(0).getReg();
869 auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
870 .addGlobalAddress(GV, Offset, OpFlags | AArch64II::MO_PAGE);
871 // Set the regclass on the dest reg too.
872 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
873
874 // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
875 // by creating a MOVK that sets bits 48-63 of the register to (global address
876 // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
877 // prevent an incorrect tag being generated during relocation when the the
878 // global appears before the code section. Without the offset, a global at
879 // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
880 // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
881 // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
882 // instead of `0xf`.
883 // This assumes that we're in the small code model so we can assume a binary
884 // size of <= 4GB, which makes the untagged PC relative offset positive. The
885 // binary must also be loaded into address range [0, 2^48). Both of these
886 // properties need to be ensured at runtime when using tagged addresses.
887 if (OpFlags & AArch64II::MO_TAGGED) {
888 assert(!Offset &&
889 "Should not have folded in an offset for a tagged global!");
890 ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
891 .addGlobalAddress(GV, 0x100000000,
892 AArch64II::MO_PREL | AArch64II::MO_G3)
893 .addImm(48);
894 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
895 }
896
897 MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
898 .addGlobalAddress(GV, Offset,
899 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
900 MI.eraseFromParent();
901 return true;
902 }
903
legalizeIntrinsic(LegalizerHelper & Helper,MachineInstr & MI) const904 bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
905 MachineInstr &MI) const {
906 return true;
907 }
908
legalizeShlAshrLshr(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const909 bool AArch64LegalizerInfo::legalizeShlAshrLshr(
910 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
911 GISelChangeObserver &Observer) const {
912 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
913 MI.getOpcode() == TargetOpcode::G_LSHR ||
914 MI.getOpcode() == TargetOpcode::G_SHL);
915 // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
916 // imported patterns can select it later. Either way, it will be legal.
917 Register AmtReg = MI.getOperand(2).getReg();
918 auto VRegAndVal = getConstantVRegValWithLookThrough(AmtReg, MRI);
919 if (!VRegAndVal)
920 return true;
921 // Check the shift amount is in range for an immediate form.
922 int64_t Amount = VRegAndVal->Value.getSExtValue();
923 if (Amount > 31)
924 return true; // This will have to remain a register variant.
925 auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
926 Observer.changingInstr(MI);
927 MI.getOperand(2).setReg(ExtCst.getReg(0));
928 Observer.changedInstr(MI);
929 return true;
930 }
931
legalizeLoadStore(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const932 bool AArch64LegalizerInfo::legalizeLoadStore(
933 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
934 GISelChangeObserver &Observer) const {
935 assert(MI.getOpcode() == TargetOpcode::G_STORE ||
936 MI.getOpcode() == TargetOpcode::G_LOAD);
937 // Here we just try to handle vector loads/stores where our value type might
938 // have pointer elements, which the SelectionDAG importer can't handle. To
939 // allow the existing patterns for s64 to fire for p0, we just try to bitcast
940 // the value to use s64 types.
941
942 // Custom legalization requires the instruction, if not deleted, must be fully
943 // legalized. In order to allow further legalization of the inst, we create
944 // a new instruction and erase the existing one.
945
946 Register ValReg = MI.getOperand(0).getReg();
947 const LLT ValTy = MRI.getType(ValReg);
948
949 if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
950 ValTy.getElementType().getAddressSpace() != 0) {
951 LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
952 return false;
953 }
954
955 unsigned PtrSize = ValTy.getElementType().getSizeInBits();
956 const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
957 auto &MMO = **MI.memoperands_begin();
958 if (MI.getOpcode() == TargetOpcode::G_STORE) {
959 auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
960 MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
961 } else {
962 auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
963 MIRBuilder.buildBitcast(ValReg, NewLoad);
964 }
965 MI.eraseFromParent();
966 return true;
967 }
968
legalizeVaArg(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder) const969 bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
970 MachineRegisterInfo &MRI,
971 MachineIRBuilder &MIRBuilder) const {
972 MachineFunction &MF = MIRBuilder.getMF();
973 Align Alignment(MI.getOperand(2).getImm());
974 Register Dst = MI.getOperand(0).getReg();
975 Register ListPtr = MI.getOperand(1).getReg();
976
977 LLT PtrTy = MRI.getType(ListPtr);
978 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
979
980 const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
981 const Align PtrAlign = Align(PtrSize);
982 auto List = MIRBuilder.buildLoad(
983 PtrTy, ListPtr,
984 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
985 PtrSize, PtrAlign));
986
987 MachineInstrBuilder DstPtr;
988 if (Alignment > PtrAlign) {
989 // Realign the list to the actual required alignment.
990 auto AlignMinus1 =
991 MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
992 auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
993 DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
994 } else
995 DstPtr = List;
996
997 uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
998 MIRBuilder.buildLoad(
999 Dst, DstPtr,
1000 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
1001 ValSize, std::max(Alignment, PtrAlign)));
1002
1003 auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
1004
1005 auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
1006
1007 MIRBuilder.buildStore(NewList, ListPtr,
1008 *MF.getMachineMemOperand(MachinePointerInfo(),
1009 MachineMemOperand::MOStore,
1010 PtrSize, PtrAlign));
1011
1012 MI.eraseFromParent();
1013 return true;
1014 }
1015
legalizeBitfieldExtract(MachineInstr & MI,MachineRegisterInfo & MRI,LegalizerHelper & Helper) const1016 bool AArch64LegalizerInfo::legalizeBitfieldExtract(
1017 MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
1018 // Only legal if we can select immediate forms.
1019 // TODO: Lower this otherwise.
1020 return getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI) &&
1021 getConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
1022 }
1023
legalizeCTPOP(MachineInstr & MI,MachineRegisterInfo & MRI,LegalizerHelper & Helper) const1024 bool AArch64LegalizerInfo::legalizeCTPOP(MachineInstr &MI,
1025 MachineRegisterInfo &MRI,
1026 LegalizerHelper &Helper) const {
1027 // While there is no integer popcount instruction, it can
1028 // be more efficiently lowered to the following sequence that uses
1029 // AdvSIMD registers/instructions as long as the copies to/from
1030 // the AdvSIMD registers are cheap.
1031 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
1032 // CNT V0.8B, V0.8B // 8xbyte pop-counts
1033 // ADDV B0, V0.8B // sum 8xbyte pop-counts
1034 // UMOV X0, V0.B[0] // copy byte result back to integer reg
1035 if (!ST->hasNEON() ||
1036 MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat))
1037 return false;
1038 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1039 Register Dst = MI.getOperand(0).getReg();
1040 Register Val = MI.getOperand(1).getReg();
1041 LLT Ty = MRI.getType(Val);
1042
1043 // TODO: Handle vector types.
1044 assert(!Ty.isVector() && "Vector types not handled yet!");
1045 assert(Ty == MRI.getType(Dst) &&
1046 "Expected src and dst to have the same type!");
1047 // TODO: Handle s128.
1048 unsigned Size = Ty.getSizeInBits();
1049 assert((Size == 32 || Size == 64) && "Expected only 32 or 64 bit scalars!");
1050 if (Size == 32)
1051 Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
1052 const LLT V8S8 = LLT::vector(8, LLT::scalar(8));
1053 Val = MIRBuilder.buildBitcast(V8S8, Val).getReg(0);
1054 auto CTPOP = MIRBuilder.buildCTPOP(V8S8, Val);
1055 auto UADDLV =
1056 MIRBuilder
1057 .buildIntrinsic(Intrinsic::aarch64_neon_uaddlv, {LLT::scalar(32)},
1058 /*HasSideEffects = */ false)
1059 .addUse(CTPOP.getReg(0));
1060 if (Size == 64)
1061 MIRBuilder.buildZExt(Dst, UADDLV);
1062 else
1063 UADDLV->getOperand(0).setReg(Dst);
1064 MI.eraseFromParent();
1065 return true;
1066 }
1067
legalizeAtomicCmpxchg128(MachineInstr & MI,MachineRegisterInfo & MRI,LegalizerHelper & Helper) const1068 bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
1069 MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
1070 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1071 LLT s64 = LLT::scalar(64);
1072 auto Addr = MI.getOperand(1).getReg();
1073 auto DesiredI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(2));
1074 auto NewI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(3));
1075 auto DstLo = MRI.createGenericVirtualRegister(s64);
1076 auto DstHi = MRI.createGenericVirtualRegister(s64);
1077
1078 MachineInstrBuilder CAS;
1079 if (ST->hasLSE()) {
1080 // We have 128-bit CASP instructions taking XSeqPair registers, which are
1081 // s128. We need the merge/unmerge to bracket the expansion and pair up with
1082 // the rest of the MIR so we must reassemble the extracted registers into a
1083 // 128-bit known-regclass one with code like this:
1084 //
1085 // %in1 = REG_SEQUENCE Lo, Hi ; One for each input
1086 // %out = CASP %in1, ...
1087 // %OldLo = G_EXTRACT %out, 0
1088 // %OldHi = G_EXTRACT %out, 64
1089 auto Ordering = (*MI.memoperands_begin())->getOrdering();
1090 unsigned Opcode;
1091 switch (Ordering) {
1092 case AtomicOrdering::Acquire:
1093 Opcode = AArch64::CASPAX;
1094 break;
1095 case AtomicOrdering::Release:
1096 Opcode = AArch64::CASPLX;
1097 break;
1098 case AtomicOrdering::AcquireRelease:
1099 case AtomicOrdering::SequentiallyConsistent:
1100 Opcode = AArch64::CASPALX;
1101 break;
1102 default:
1103 Opcode = AArch64::CASPX;
1104 break;
1105 }
1106
1107 LLT s128 = LLT::scalar(128);
1108 auto CASDst = MRI.createGenericVirtualRegister(s128);
1109 auto CASDesired = MRI.createGenericVirtualRegister(s128);
1110 auto CASNew = MRI.createGenericVirtualRegister(s128);
1111 MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
1112 .addUse(DesiredI->getOperand(0).getReg())
1113 .addImm(AArch64::sube64)
1114 .addUse(DesiredI->getOperand(1).getReg())
1115 .addImm(AArch64::subo64);
1116 MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
1117 .addUse(NewI->getOperand(0).getReg())
1118 .addImm(AArch64::sube64)
1119 .addUse(NewI->getOperand(1).getReg())
1120 .addImm(AArch64::subo64);
1121
1122 CAS = MIRBuilder.buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
1123
1124 MIRBuilder.buildExtract({DstLo}, {CASDst}, 0);
1125 MIRBuilder.buildExtract({DstHi}, {CASDst}, 64);
1126 } else {
1127 // The -O0 CMP_SWAP_128 is friendlier to generate code for because LDXP/STXP
1128 // can take arbitrary registers so it just has the normal GPR64 operands the
1129 // rest of AArch64 is expecting.
1130 auto Scratch = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1131 CAS = MIRBuilder.buildInstr(AArch64::CMP_SWAP_128, {DstLo, DstHi, Scratch},
1132 {Addr, DesiredI->getOperand(0),
1133 DesiredI->getOperand(1), NewI->getOperand(0),
1134 NewI->getOperand(1)});
1135 }
1136
1137 CAS.cloneMemRefs(MI);
1138 constrainSelectedInstRegOperands(*CAS, *ST->getInstrInfo(),
1139 *MRI.getTargetRegisterInfo(),
1140 *ST->getRegBankInfo());
1141
1142 MIRBuilder.buildMerge(MI.getOperand(0), {DstLo, DstHi});
1143 MI.eraseFromParent();
1144 return true;
1145 }
1146