1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "R600ISelLowering.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/IntrinsicsR600.h"
23
24 using namespace llvm;
25
26 #include "R600GenCallingConv.inc"
27
R600TargetLowering(const TargetMachine & TM,const R600Subtarget & STI)28 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
29 const R600Subtarget &STI)
30 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
31 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
32 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
33 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
34 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
35 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
36 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
37
38 setBooleanContents(ZeroOrNegativeOneBooleanContent);
39 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
40
41 computeRegisterProperties(Subtarget->getRegisterInfo());
42
43 // Legalize loads and stores to the private address space.
44 setOperationAction(ISD::LOAD, MVT::i32, Custom);
45 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
46 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
47
48 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49 // spaces, so it is custom lowered to handle those where it isn't.
50 for (MVT VT : MVT::integer_valuetypes()) {
51 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
52 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
53 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
54
55 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
56 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
57 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
58
59 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
60 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
61 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
62 }
63
64 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
65 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
66 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
67 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
68
69 setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
70 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
71 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
72
73 setOperationAction(ISD::STORE, MVT::i8, Custom);
74 setOperationAction(ISD::STORE, MVT::i32, Custom);
75 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
76 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
77
78 setTruncStoreAction(MVT::i32, MVT::i8, Custom);
79 setTruncStoreAction(MVT::i32, MVT::i16, Custom);
80 // We need to include these since trunc STORES to PRIVATE need
81 // special handling to accommodate RMW
82 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
83 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
84 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
85 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
86 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
87 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
88 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
89 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
90 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
91 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
92
93 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
94 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
95 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
96
97 // Set condition code actions
98 setCondCodeAction(ISD::SETO, MVT::f32, Expand);
99 setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
100 setCondCodeAction(ISD::SETLT, MVT::f32, Expand);
101 setCondCodeAction(ISD::SETLE, MVT::f32, Expand);
102 setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
103 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
104 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
105 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
106 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
107 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
108 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
109 setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
110
111 setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
112 setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
113 setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
114 setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
115
116 setOperationAction(ISD::FCOS, MVT::f32, Custom);
117 setOperationAction(ISD::FSIN, MVT::f32, Custom);
118
119 setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
120 setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
121
122 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
123 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
124 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
125
126 setOperationAction(ISD::FSUB, MVT::f32, Expand);
127
128 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
129 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
130 setOperationAction(ISD::FRINT, MVT::f64, Custom);
131 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
132
133 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
134 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
135
136 setOperationAction(ISD::SETCC, MVT::i32, Expand);
137 setOperationAction(ISD::SETCC, MVT::f32, Expand);
138 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
139 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
140 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
141 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
142
143 setOperationAction(ISD::SELECT, MVT::i32, Expand);
144 setOperationAction(ISD::SELECT, MVT::f32, Expand);
145 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
146 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
147
148 // ADD, SUB overflow.
149 // TODO: turn these into Legal?
150 if (Subtarget->hasCARRY())
151 setOperationAction(ISD::UADDO, MVT::i32, Custom);
152
153 if (Subtarget->hasBORROW())
154 setOperationAction(ISD::USUBO, MVT::i32, Custom);
155
156 // Expand sign extension of vectors
157 if (!Subtarget->hasBFE())
158 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
159
160 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
161 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
162
163 if (!Subtarget->hasBFE())
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
167
168 if (!Subtarget->hasBFE())
169 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
170 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
171 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
172
173 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
174 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
175 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
176
177 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
178
179 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
180
181 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
182 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
183 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
184 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
185
186 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
187 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
188 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
189 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
190
191 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
192 // to be Legal/Custom in order to avoid library calls.
193 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
194 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
195 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
196
197 if (!Subtarget->hasFMA()) {
198 setOperationAction(ISD::FMA, MVT::f32, Expand);
199 setOperationAction(ISD::FMA, MVT::f64, Expand);
200 }
201
202 // FIXME: May need no denormals check
203 setOperationAction(ISD::FMAD, MVT::f32, Legal);
204
205 if (!Subtarget->hasBFI()) {
206 // fcopysign can be done in a single instruction with BFI.
207 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
208 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
209 }
210
211 if (!Subtarget->hasBCNT(32))
212 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
213
214 if (!Subtarget->hasBCNT(64))
215 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
216
217 if (Subtarget->hasFFBH())
218 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
219
220 if (Subtarget->hasFFBL())
221 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
222
223 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
224 // need it for R600.
225 if (Subtarget->hasBFE())
226 setHasExtractBitsInsn(true);
227
228 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
229
230 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
231 for (MVT VT : ScalarIntVTs) {
232 setOperationAction(ISD::ADDC, VT, Expand);
233 setOperationAction(ISD::SUBC, VT, Expand);
234 setOperationAction(ISD::ADDE, VT, Expand);
235 setOperationAction(ISD::SUBE, VT, Expand);
236 }
237
238 // LLVM will expand these to atomic_cmp_swap(0)
239 // and atomic_swap, respectively.
240 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
241 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
242
243 // We need to custom lower some of the intrinsics
244 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
245 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
246
247 setSchedulingPreference(Sched::Source);
248
249 setTargetDAGCombine(ISD::FP_ROUND);
250 setTargetDAGCombine(ISD::FP_TO_SINT);
251 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
252 setTargetDAGCombine(ISD::SELECT_CC);
253 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
254 setTargetDAGCombine(ISD::LOAD);
255 }
256
isEOP(MachineBasicBlock::iterator I)257 static inline bool isEOP(MachineBasicBlock::iterator I) {
258 if (std::next(I) == I->getParent()->end())
259 return false;
260 return std::next(I)->getOpcode() == R600::RETURN;
261 }
262
263 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const264 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
265 MachineBasicBlock *BB) const {
266 MachineFunction *MF = BB->getParent();
267 MachineRegisterInfo &MRI = MF->getRegInfo();
268 MachineBasicBlock::iterator I = MI;
269 const R600InstrInfo *TII = Subtarget->getInstrInfo();
270
271 switch (MI.getOpcode()) {
272 default:
273 // Replace LDS_*_RET instruction that don't have any uses with the
274 // equivalent LDS_*_NORET instruction.
275 if (TII->isLDSRetInstr(MI.getOpcode())) {
276 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
277 assert(DstIdx != -1);
278 MachineInstrBuilder NewMI;
279 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
280 // LDS_1A2D support and remove this special case.
281 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
282 MI.getOpcode() == R600::LDS_CMPST_RET)
283 return BB;
284
285 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
286 TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
287 for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
288 NewMI.add(MI.getOperand(i));
289 }
290 } else {
291 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
292 }
293 break;
294
295 case R600::FABS_R600: {
296 MachineInstr *NewMI = TII->buildDefaultInstruction(
297 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
298 MI.getOperand(1).getReg());
299 TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
300 break;
301 }
302
303 case R600::FNEG_R600: {
304 MachineInstr *NewMI = TII->buildDefaultInstruction(
305 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
306 MI.getOperand(1).getReg());
307 TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
308 break;
309 }
310
311 case R600::MASK_WRITE: {
312 Register maskedRegister = MI.getOperand(0).getReg();
313 assert(maskedRegister.isVirtual());
314 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
315 TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
316 break;
317 }
318
319 case R600::MOV_IMM_F32:
320 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
321 .getFPImm()
322 ->getValueAPF()
323 .bitcastToAPInt()
324 .getZExtValue());
325 break;
326
327 case R600::MOV_IMM_I32:
328 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
329 MI.getOperand(1).getImm());
330 break;
331
332 case R600::MOV_IMM_GLOBAL_ADDR: {
333 //TODO: Perhaps combine this instruction with the next if possible
334 auto MIB = TII->buildDefaultInstruction(
335 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
336 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
337 //TODO: Ugh this is rather ugly
338 MIB->getOperand(Idx) = MI.getOperand(1);
339 break;
340 }
341
342 case R600::CONST_COPY: {
343 MachineInstr *NewMI = TII->buildDefaultInstruction(
344 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
345 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
346 MI.getOperand(1).getImm());
347 break;
348 }
349
350 case R600::RAT_WRITE_CACHELESS_32_eg:
351 case R600::RAT_WRITE_CACHELESS_64_eg:
352 case R600::RAT_WRITE_CACHELESS_128_eg:
353 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
354 .add(MI.getOperand(0))
355 .add(MI.getOperand(1))
356 .addImm(isEOP(I)); // Set End of program bit
357 break;
358
359 case R600::RAT_STORE_TYPED_eg:
360 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
361 .add(MI.getOperand(0))
362 .add(MI.getOperand(1))
363 .add(MI.getOperand(2))
364 .addImm(isEOP(I)); // Set End of program bit
365 break;
366
367 case R600::BRANCH:
368 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
369 .add(MI.getOperand(0));
370 break;
371
372 case R600::BRANCH_COND_f32: {
373 MachineInstr *NewMI =
374 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
375 R600::PREDICATE_BIT)
376 .add(MI.getOperand(1))
377 .addImm(R600::PRED_SETNE)
378 .addImm(0); // Flags
379 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
380 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
381 .add(MI.getOperand(0))
382 .addReg(R600::PREDICATE_BIT, RegState::Kill);
383 break;
384 }
385
386 case R600::BRANCH_COND_i32: {
387 MachineInstr *NewMI =
388 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
389 R600::PREDICATE_BIT)
390 .add(MI.getOperand(1))
391 .addImm(R600::PRED_SETNE_INT)
392 .addImm(0); // Flags
393 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
394 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
395 .add(MI.getOperand(0))
396 .addReg(R600::PREDICATE_BIT, RegState::Kill);
397 break;
398 }
399
400 case R600::EG_ExportSwz:
401 case R600::R600_ExportSwz: {
402 // Instruction is left unmodified if its not the last one of its type
403 bool isLastInstructionOfItsType = true;
404 unsigned InstExportType = MI.getOperand(1).getImm();
405 for (MachineBasicBlock::iterator NextExportInst = std::next(I),
406 EndBlock = BB->end(); NextExportInst != EndBlock;
407 NextExportInst = std::next(NextExportInst)) {
408 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
409 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
410 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
411 .getImm();
412 if (CurrentInstExportType == InstExportType) {
413 isLastInstructionOfItsType = false;
414 break;
415 }
416 }
417 }
418 bool EOP = isEOP(I);
419 if (!EOP && !isLastInstructionOfItsType)
420 return BB;
421 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
422 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
423 .add(MI.getOperand(0))
424 .add(MI.getOperand(1))
425 .add(MI.getOperand(2))
426 .add(MI.getOperand(3))
427 .add(MI.getOperand(4))
428 .add(MI.getOperand(5))
429 .add(MI.getOperand(6))
430 .addImm(CfInst)
431 .addImm(EOP);
432 break;
433 }
434 case R600::RETURN: {
435 return BB;
436 }
437 }
438
439 MI.eraseFromParent();
440 return BB;
441 }
442
443 //===----------------------------------------------------------------------===//
444 // Custom DAG Lowering Operations
445 //===----------------------------------------------------------------------===//
446
LowerOperation(SDValue Op,SelectionDAG & DAG) const447 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
448 MachineFunction &MF = DAG.getMachineFunction();
449 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
450 switch (Op.getOpcode()) {
451 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
452 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
453 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
454 case ISD::SHL_PARTS:
455 case ISD::SRA_PARTS:
456 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
457 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
458 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
459 case ISD::FCOS:
460 case ISD::FSIN: return LowerTrig(Op, DAG);
461 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
462 case ISD::STORE: return LowerSTORE(Op, DAG);
463 case ISD::LOAD: {
464 SDValue Result = LowerLOAD(Op, DAG);
465 assert((!Result.getNode() ||
466 Result.getNode()->getNumValues() == 2) &&
467 "Load should return a value and a chain");
468 return Result;
469 }
470
471 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
472 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
473 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
474 case ISD::INTRINSIC_VOID: {
475 SDValue Chain = Op.getOperand(0);
476 unsigned IntrinsicID =
477 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
478 switch (IntrinsicID) {
479 case Intrinsic::r600_store_swizzle: {
480 SDLoc DL(Op);
481 const SDValue Args[8] = {
482 Chain,
483 Op.getOperand(2), // Export Value
484 Op.getOperand(3), // ArrayBase
485 Op.getOperand(4), // Type
486 DAG.getConstant(0, DL, MVT::i32), // SWZ_X
487 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
488 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
489 DAG.getConstant(3, DL, MVT::i32) // SWZ_W
490 };
491 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
492 }
493
494 // default for switch(IntrinsicID)
495 default: break;
496 }
497 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
498 break;
499 }
500 case ISD::INTRINSIC_WO_CHAIN: {
501 unsigned IntrinsicID =
502 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
503 EVT VT = Op.getValueType();
504 SDLoc DL(Op);
505 switch (IntrinsicID) {
506 case Intrinsic::r600_tex:
507 case Intrinsic::r600_texc: {
508 unsigned TextureOp;
509 switch (IntrinsicID) {
510 case Intrinsic::r600_tex:
511 TextureOp = 0;
512 break;
513 case Intrinsic::r600_texc:
514 TextureOp = 1;
515 break;
516 default:
517 llvm_unreachable("unhandled texture operation");
518 }
519
520 SDValue TexArgs[19] = {
521 DAG.getConstant(TextureOp, DL, MVT::i32),
522 Op.getOperand(1),
523 DAG.getConstant(0, DL, MVT::i32),
524 DAG.getConstant(1, DL, MVT::i32),
525 DAG.getConstant(2, DL, MVT::i32),
526 DAG.getConstant(3, DL, MVT::i32),
527 Op.getOperand(2),
528 Op.getOperand(3),
529 Op.getOperand(4),
530 DAG.getConstant(0, DL, MVT::i32),
531 DAG.getConstant(1, DL, MVT::i32),
532 DAG.getConstant(2, DL, MVT::i32),
533 DAG.getConstant(3, DL, MVT::i32),
534 Op.getOperand(5),
535 Op.getOperand(6),
536 Op.getOperand(7),
537 Op.getOperand(8),
538 Op.getOperand(9),
539 Op.getOperand(10)
540 };
541 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
542 }
543 case Intrinsic::r600_dot4: {
544 SDValue Args[8] = {
545 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
546 DAG.getConstant(0, DL, MVT::i32)),
547 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
548 DAG.getConstant(0, DL, MVT::i32)),
549 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
550 DAG.getConstant(1, DL, MVT::i32)),
551 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
552 DAG.getConstant(1, DL, MVT::i32)),
553 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
554 DAG.getConstant(2, DL, MVT::i32)),
555 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
556 DAG.getConstant(2, DL, MVT::i32)),
557 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
558 DAG.getConstant(3, DL, MVT::i32)),
559 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
560 DAG.getConstant(3, DL, MVT::i32))
561 };
562 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
563 }
564
565 case Intrinsic::r600_implicitarg_ptr: {
566 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
567 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
568 return DAG.getConstant(ByteOffset, DL, PtrVT);
569 }
570 case Intrinsic::r600_read_ngroups_x:
571 return LowerImplicitParameter(DAG, VT, DL, 0);
572 case Intrinsic::r600_read_ngroups_y:
573 return LowerImplicitParameter(DAG, VT, DL, 1);
574 case Intrinsic::r600_read_ngroups_z:
575 return LowerImplicitParameter(DAG, VT, DL, 2);
576 case Intrinsic::r600_read_global_size_x:
577 return LowerImplicitParameter(DAG, VT, DL, 3);
578 case Intrinsic::r600_read_global_size_y:
579 return LowerImplicitParameter(DAG, VT, DL, 4);
580 case Intrinsic::r600_read_global_size_z:
581 return LowerImplicitParameter(DAG, VT, DL, 5);
582 case Intrinsic::r600_read_local_size_x:
583 return LowerImplicitParameter(DAG, VT, DL, 6);
584 case Intrinsic::r600_read_local_size_y:
585 return LowerImplicitParameter(DAG, VT, DL, 7);
586 case Intrinsic::r600_read_local_size_z:
587 return LowerImplicitParameter(DAG, VT, DL, 8);
588
589 case Intrinsic::r600_read_tgid_x:
590 case Intrinsic::amdgcn_workgroup_id_x:
591 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
592 R600::T1_X, VT);
593 case Intrinsic::r600_read_tgid_y:
594 case Intrinsic::amdgcn_workgroup_id_y:
595 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
596 R600::T1_Y, VT);
597 case Intrinsic::r600_read_tgid_z:
598 case Intrinsic::amdgcn_workgroup_id_z:
599 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
600 R600::T1_Z, VT);
601 case Intrinsic::r600_read_tidig_x:
602 case Intrinsic::amdgcn_workitem_id_x:
603 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
604 R600::T0_X, VT);
605 case Intrinsic::r600_read_tidig_y:
606 case Intrinsic::amdgcn_workitem_id_y:
607 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
608 R600::T0_Y, VT);
609 case Intrinsic::r600_read_tidig_z:
610 case Intrinsic::amdgcn_workitem_id_z:
611 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
612 R600::T0_Z, VT);
613
614 case Intrinsic::r600_recipsqrt_ieee:
615 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
616
617 case Intrinsic::r600_recipsqrt_clamped:
618 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
619 default:
620 return Op;
621 }
622
623 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
624 break;
625 }
626 } // end switch(Op.getOpcode())
627 return SDValue();
628 }
629
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const630 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
631 SmallVectorImpl<SDValue> &Results,
632 SelectionDAG &DAG) const {
633 switch (N->getOpcode()) {
634 default:
635 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
636 return;
637 case ISD::FP_TO_UINT:
638 if (N->getValueType(0) == MVT::i1) {
639 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
640 return;
641 }
642 // Since we don't care about out of bounds values we can use FP_TO_SINT for
643 // uints too. The DAGLegalizer code for uint considers some extra cases
644 // which are not necessary here.
645 LLVM_FALLTHROUGH;
646 case ISD::FP_TO_SINT: {
647 if (N->getValueType(0) == MVT::i1) {
648 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
649 return;
650 }
651
652 SDValue Result;
653 if (expandFP_TO_SINT(N, Result, DAG))
654 Results.push_back(Result);
655 return;
656 }
657 case ISD::SDIVREM: {
658 SDValue Op = SDValue(N, 1);
659 SDValue RES = LowerSDIVREM(Op, DAG);
660 Results.push_back(RES);
661 Results.push_back(RES.getValue(1));
662 break;
663 }
664 case ISD::UDIVREM: {
665 SDValue Op = SDValue(N, 0);
666 LowerUDIVREM64(Op, DAG, Results);
667 break;
668 }
669 }
670 }
671
vectorToVerticalVector(SelectionDAG & DAG,SDValue Vector) const672 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
673 SDValue Vector) const {
674 SDLoc DL(Vector);
675 EVT VecVT = Vector.getValueType();
676 EVT EltVT = VecVT.getVectorElementType();
677 SmallVector<SDValue, 8> Args;
678
679 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
680 Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
681 DAG.getVectorIdxConstant(i, DL)));
682 }
683
684 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
685 }
686
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const687 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
688 SelectionDAG &DAG) const {
689 SDLoc DL(Op);
690 SDValue Vector = Op.getOperand(0);
691 SDValue Index = Op.getOperand(1);
692
693 if (isa<ConstantSDNode>(Index) ||
694 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
695 return Op;
696
697 Vector = vectorToVerticalVector(DAG, Vector);
698 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
699 Vector, Index);
700 }
701
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const702 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
703 SelectionDAG &DAG) const {
704 SDLoc DL(Op);
705 SDValue Vector = Op.getOperand(0);
706 SDValue Value = Op.getOperand(1);
707 SDValue Index = Op.getOperand(2);
708
709 if (isa<ConstantSDNode>(Index) ||
710 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
711 return Op;
712
713 Vector = vectorToVerticalVector(DAG, Vector);
714 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
715 Vector, Value, Index);
716 return vectorToVerticalVector(DAG, Insert);
717 }
718
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const719 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
720 SDValue Op,
721 SelectionDAG &DAG) const {
722 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
723 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
724 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
725
726 const DataLayout &DL = DAG.getDataLayout();
727 const GlobalValue *GV = GSD->getGlobal();
728 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
729
730 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
731 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
732 }
733
LowerTrig(SDValue Op,SelectionDAG & DAG) const734 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
735 // On hw >= R700, COS/SIN input must be between -1. and 1.
736 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
737 EVT VT = Op.getValueType();
738 SDValue Arg = Op.getOperand(0);
739 SDLoc DL(Op);
740
741 // TODO: Should this propagate fast-math-flags?
742 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
743 DAG.getNode(ISD::FADD, DL, VT,
744 DAG.getNode(ISD::FMUL, DL, VT, Arg,
745 DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
746 DAG.getConstantFP(0.5, DL, MVT::f32)));
747 unsigned TrigNode;
748 switch (Op.getOpcode()) {
749 case ISD::FCOS:
750 TrigNode = AMDGPUISD::COS_HW;
751 break;
752 case ISD::FSIN:
753 TrigNode = AMDGPUISD::SIN_HW;
754 break;
755 default:
756 llvm_unreachable("Wrong trig opcode");
757 }
758 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
759 DAG.getNode(ISD::FADD, DL, VT, FractPart,
760 DAG.getConstantFP(-0.5, DL, MVT::f32)));
761 if (Gen >= AMDGPUSubtarget::R700)
762 return TrigVal;
763 // On R600 hw, COS/SIN input must be between -Pi and Pi.
764 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
765 DAG.getConstantFP(numbers::pif, DL, MVT::f32));
766 }
767
LowerShiftParts(SDValue Op,SelectionDAG & DAG) const768 SDValue R600TargetLowering::LowerShiftParts(SDValue Op,
769 SelectionDAG &DAG) const {
770 SDValue Lo, Hi;
771 expandShiftParts(Op.getNode(), Lo, Hi, DAG);
772 return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
773 }
774
LowerUADDSUBO(SDValue Op,SelectionDAG & DAG,unsigned mainop,unsigned ovf) const775 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
776 unsigned mainop, unsigned ovf) const {
777 SDLoc DL(Op);
778 EVT VT = Op.getValueType();
779
780 SDValue Lo = Op.getOperand(0);
781 SDValue Hi = Op.getOperand(1);
782
783 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
784 // Extend sign.
785 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
786 DAG.getValueType(MVT::i1));
787
788 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
789
790 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
791 }
792
lowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const793 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
794 SDLoc DL(Op);
795 return DAG.getNode(
796 ISD::SETCC,
797 DL,
798 MVT::i1,
799 Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
800 DAG.getCondCode(ISD::SETEQ));
801 }
802
lowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const803 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
804 SDLoc DL(Op);
805 return DAG.getNode(
806 ISD::SETCC,
807 DL,
808 MVT::i1,
809 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
810 DAG.getCondCode(ISD::SETEQ));
811 }
812
LowerImplicitParameter(SelectionDAG & DAG,EVT VT,const SDLoc & DL,unsigned DwordOffset) const813 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
814 const SDLoc &DL,
815 unsigned DwordOffset) const {
816 unsigned ByteOffset = DwordOffset * 4;
817 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
818 AMDGPUAS::PARAM_I_ADDRESS);
819
820 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
821 assert(isInt<16>(ByteOffset));
822
823 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
824 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
825 MachinePointerInfo(ConstantPointerNull::get(PtrType)));
826 }
827
isZero(SDValue Op) const828 bool R600TargetLowering::isZero(SDValue Op) const {
829 if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
830 return Cst->isNullValue();
831 } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
832 return CstFP->isZero();
833 } else {
834 return false;
835 }
836 }
837
isHWTrueValue(SDValue Op) const838 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
839 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
840 return CFP->isExactlyValue(1.0);
841 }
842 return isAllOnesConstant(Op);
843 }
844
isHWFalseValue(SDValue Op) const845 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
846 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
847 return CFP->getValueAPF().isZero();
848 }
849 return isNullConstant(Op);
850 }
851
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const852 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
853 SDLoc DL(Op);
854 EVT VT = Op.getValueType();
855
856 SDValue LHS = Op.getOperand(0);
857 SDValue RHS = Op.getOperand(1);
858 SDValue True = Op.getOperand(2);
859 SDValue False = Op.getOperand(3);
860 SDValue CC = Op.getOperand(4);
861 SDValue Temp;
862
863 if (VT == MVT::f32) {
864 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
865 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
866 if (MinMax)
867 return MinMax;
868 }
869
870 // LHS and RHS are guaranteed to be the same value type
871 EVT CompareVT = LHS.getValueType();
872
873 // Check if we can lower this to a native operation.
874
875 // Try to lower to a SET* instruction:
876 //
877 // SET* can match the following patterns:
878 //
879 // select_cc f32, f32, -1, 0, cc_supported
880 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
881 // select_cc i32, i32, -1, 0, cc_supported
882 //
883
884 // Move hardware True/False values to the correct operand.
885 if (isHWTrueValue(False) && isHWFalseValue(True)) {
886 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
887 ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
888 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
889 std::swap(False, True);
890 CC = DAG.getCondCode(InverseCC);
891 } else {
892 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
893 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
894 std::swap(False, True);
895 std::swap(LHS, RHS);
896 CC = DAG.getCondCode(SwapInvCC);
897 }
898 }
899 }
900
901 if (isHWTrueValue(True) && isHWFalseValue(False) &&
902 (CompareVT == VT || VT == MVT::i32)) {
903 // This can be matched by a SET* instruction.
904 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
905 }
906
907 // Try to lower to a CND* instruction:
908 //
909 // CND* can match the following patterns:
910 //
911 // select_cc f32, 0.0, f32, f32, cc_supported
912 // select_cc f32, 0.0, i32, i32, cc_supported
913 // select_cc i32, 0, f32, f32, cc_supported
914 // select_cc i32, 0, i32, i32, cc_supported
915 //
916
917 // Try to move the zero value to the RHS
918 if (isZero(LHS)) {
919 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
920 // Try swapping the operands
921 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
922 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
923 std::swap(LHS, RHS);
924 CC = DAG.getCondCode(CCSwapped);
925 } else {
926 // Try inverting the conditon and then swapping the operands
927 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
928 CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
929 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
930 std::swap(True, False);
931 std::swap(LHS, RHS);
932 CC = DAG.getCondCode(CCSwapped);
933 }
934 }
935 }
936 if (isZero(RHS)) {
937 SDValue Cond = LHS;
938 SDValue Zero = RHS;
939 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
940 if (CompareVT != VT) {
941 // Bitcast True / False to the correct types. This will end up being
942 // a nop, but it allows us to define only a single pattern in the
943 // .TD files for each CND* instruction rather than having to have
944 // one pattern for integer True/False and one for fp True/False
945 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
946 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
947 }
948
949 switch (CCOpcode) {
950 case ISD::SETONE:
951 case ISD::SETUNE:
952 case ISD::SETNE:
953 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
954 Temp = True;
955 True = False;
956 False = Temp;
957 break;
958 default:
959 break;
960 }
961 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
962 Cond, Zero,
963 True, False,
964 DAG.getCondCode(CCOpcode));
965 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
966 }
967
968 // If we make it this for it means we have no native instructions to handle
969 // this SELECT_CC, so we must lower it.
970 SDValue HWTrue, HWFalse;
971
972 if (CompareVT == MVT::f32) {
973 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
974 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
975 } else if (CompareVT == MVT::i32) {
976 HWTrue = DAG.getConstant(-1, DL, CompareVT);
977 HWFalse = DAG.getConstant(0, DL, CompareVT);
978 }
979 else {
980 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
981 }
982
983 // Lower this unsupported SELECT_CC into a combination of two supported
984 // SELECT_CC operations.
985 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
986
987 return DAG.getNode(ISD::SELECT_CC, DL, VT,
988 Cond, HWFalse,
989 True, False,
990 DAG.getCondCode(ISD::SETNE));
991 }
992
993 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to
994 /// convert these pointers to a register index. Each register holds
995 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
996 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
997 /// for indirect addressing.
stackPtrToRegIndex(SDValue Ptr,unsigned StackWidth,SelectionDAG & DAG) const998 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
999 unsigned StackWidth,
1000 SelectionDAG &DAG) const {
1001 unsigned SRLPad;
1002 switch(StackWidth) {
1003 case 1:
1004 SRLPad = 2;
1005 break;
1006 case 2:
1007 SRLPad = 3;
1008 break;
1009 case 4:
1010 SRLPad = 4;
1011 break;
1012 default: llvm_unreachable("Invalid stack width");
1013 }
1014
1015 SDLoc DL(Ptr);
1016 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1017 DAG.getConstant(SRLPad, DL, MVT::i32));
1018 }
1019
getStackAddress(unsigned StackWidth,unsigned ElemIdx,unsigned & Channel,unsigned & PtrIncr) const1020 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1021 unsigned ElemIdx,
1022 unsigned &Channel,
1023 unsigned &PtrIncr) const {
1024 switch (StackWidth) {
1025 default:
1026 case 1:
1027 Channel = 0;
1028 if (ElemIdx > 0) {
1029 PtrIncr = 1;
1030 } else {
1031 PtrIncr = 0;
1032 }
1033 break;
1034 case 2:
1035 Channel = ElemIdx % 2;
1036 if (ElemIdx == 2) {
1037 PtrIncr = 1;
1038 } else {
1039 PtrIncr = 0;
1040 }
1041 break;
1042 case 4:
1043 Channel = ElemIdx;
1044 PtrIncr = 0;
1045 break;
1046 }
1047 }
1048
lowerPrivateTruncStore(StoreSDNode * Store,SelectionDAG & DAG) const1049 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1050 SelectionDAG &DAG) const {
1051 SDLoc DL(Store);
1052 //TODO: Who creates the i8 stores?
1053 assert(Store->isTruncatingStore()
1054 || Store->getValue().getValueType() == MVT::i8);
1055 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1056
1057 SDValue Mask;
1058 if (Store->getMemoryVT() == MVT::i8) {
1059 assert(Store->getAlignment() >= 1);
1060 Mask = DAG.getConstant(0xff, DL, MVT::i32);
1061 } else if (Store->getMemoryVT() == MVT::i16) {
1062 assert(Store->getAlignment() >= 2);
1063 Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1064 } else {
1065 llvm_unreachable("Unsupported private trunc store");
1066 }
1067
1068 SDValue OldChain = Store->getChain();
1069 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1070 // Skip dummy
1071 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1072 SDValue BasePtr = Store->getBasePtr();
1073 SDValue Offset = Store->getOffset();
1074 EVT MemVT = Store->getMemoryVT();
1075
1076 SDValue LoadPtr = BasePtr;
1077 if (!Offset.isUndef()) {
1078 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1079 }
1080
1081 // Get dword location
1082 // TODO: this should be eliminated by the future SHR ptr, 2
1083 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1084 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1085
1086 // Load dword
1087 // TODO: can we be smarter about machine pointer info?
1088 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1089 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1090
1091 Chain = Dst.getValue(1);
1092
1093 // Get offset in dword
1094 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1095 DAG.getConstant(0x3, DL, MVT::i32));
1096
1097 // Convert byte offset to bit shift
1098 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1099 DAG.getConstant(3, DL, MVT::i32));
1100
1101 // TODO: Contrary to the name of the functiom,
1102 // it also handles sub i32 non-truncating stores (like i1)
1103 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1104 Store->getValue());
1105
1106 // Mask the value to the right type
1107 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1108
1109 // Shift the value in place
1110 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1111 MaskedValue, ShiftAmt);
1112
1113 // Shift the mask in place
1114 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1115
1116 // Invert the mask. NOTE: if we had native ROL instructions we could
1117 // use inverted mask
1118 DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1119
1120 // Cleanup the target bits
1121 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1122
1123 // Add the new bits
1124 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1125
1126 // Store dword
1127 // TODO: Can we be smarter about MachinePointerInfo?
1128 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1129
1130 // If we are part of expanded vector, make our neighbors depend on this store
1131 if (VectorTrunc) {
1132 // Make all other vector elements depend on this store
1133 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1134 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1135 }
1136 return NewStore;
1137 }
1138
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1139 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1140 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1141 unsigned AS = StoreNode->getAddressSpace();
1142
1143 SDValue Chain = StoreNode->getChain();
1144 SDValue Ptr = StoreNode->getBasePtr();
1145 SDValue Value = StoreNode->getValue();
1146
1147 EVT VT = Value.getValueType();
1148 EVT MemVT = StoreNode->getMemoryVT();
1149 EVT PtrVT = Ptr.getValueType();
1150
1151 SDLoc DL(Op);
1152
1153 const bool TruncatingStore = StoreNode->isTruncatingStore();
1154
1155 // Neither LOCAL nor PRIVATE can do vectors at the moment
1156 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1157 TruncatingStore) &&
1158 VT.isVector()) {
1159 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1160 // Add an extra level of chain to isolate this vector
1161 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1162 // TODO: can the chain be replaced without creating a new store?
1163 SDValue NewStore = DAG.getTruncStore(
1164 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1165 MemVT, StoreNode->getAlignment(),
1166 StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1167 StoreNode = cast<StoreSDNode>(NewStore);
1168 }
1169
1170 return scalarizeVectorStore(StoreNode, DAG);
1171 }
1172
1173 Align Alignment = StoreNode->getAlign();
1174 if (Alignment < MemVT.getStoreSize() &&
1175 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
1176 StoreNode->getMemOperand()->getFlags(),
1177 nullptr)) {
1178 return expandUnalignedStore(StoreNode, DAG);
1179 }
1180
1181 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1182 DAG.getConstant(2, DL, PtrVT));
1183
1184 if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1185 // It is beneficial to create MSKOR here instead of combiner to avoid
1186 // artificial dependencies introduced by RMW
1187 if (TruncatingStore) {
1188 assert(VT.bitsLE(MVT::i32));
1189 SDValue MaskConstant;
1190 if (MemVT == MVT::i8) {
1191 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1192 } else {
1193 assert(MemVT == MVT::i16);
1194 assert(StoreNode->getAlignment() >= 2);
1195 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1196 }
1197
1198 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1199 DAG.getConstant(0x00000003, DL, PtrVT));
1200 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1201 DAG.getConstant(3, DL, VT));
1202
1203 // Put the mask in correct place
1204 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1205
1206 // Put the value bits in correct place
1207 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1208 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1209
1210 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1211 // vector instead.
1212 SDValue Src[4] = {
1213 ShiftedValue,
1214 DAG.getConstant(0, DL, MVT::i32),
1215 DAG.getConstant(0, DL, MVT::i32),
1216 Mask
1217 };
1218 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1219 SDValue Args[3] = { Chain, Input, DWordAddr };
1220 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1221 Op->getVTList(), Args, MemVT,
1222 StoreNode->getMemOperand());
1223 } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1224 // Convert pointer from byte address to dword address.
1225 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1226
1227 if (StoreNode->isIndexed()) {
1228 llvm_unreachable("Indexed stores not supported yet");
1229 } else {
1230 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1231 }
1232 return Chain;
1233 }
1234 }
1235
1236 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1237 if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1238 return SDValue();
1239
1240 if (MemVT.bitsLT(MVT::i32))
1241 return lowerPrivateTruncStore(StoreNode, DAG);
1242
1243 // Standard i32+ store, tag it with DWORDADDR to note that the address
1244 // has been shifted
1245 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1246 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1247 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1248 }
1249
1250 // Tagged i32+ stores will be matched by patterns
1251 return SDValue();
1252 }
1253
1254 // return (512 + (kc_bank << 12)
1255 static int
ConstantAddressBlock(unsigned AddressSpace)1256 ConstantAddressBlock(unsigned AddressSpace) {
1257 switch (AddressSpace) {
1258 case AMDGPUAS::CONSTANT_BUFFER_0:
1259 return 512;
1260 case AMDGPUAS::CONSTANT_BUFFER_1:
1261 return 512 + 4096;
1262 case AMDGPUAS::CONSTANT_BUFFER_2:
1263 return 512 + 4096 * 2;
1264 case AMDGPUAS::CONSTANT_BUFFER_3:
1265 return 512 + 4096 * 3;
1266 case AMDGPUAS::CONSTANT_BUFFER_4:
1267 return 512 + 4096 * 4;
1268 case AMDGPUAS::CONSTANT_BUFFER_5:
1269 return 512 + 4096 * 5;
1270 case AMDGPUAS::CONSTANT_BUFFER_6:
1271 return 512 + 4096 * 6;
1272 case AMDGPUAS::CONSTANT_BUFFER_7:
1273 return 512 + 4096 * 7;
1274 case AMDGPUAS::CONSTANT_BUFFER_8:
1275 return 512 + 4096 * 8;
1276 case AMDGPUAS::CONSTANT_BUFFER_9:
1277 return 512 + 4096 * 9;
1278 case AMDGPUAS::CONSTANT_BUFFER_10:
1279 return 512 + 4096 * 10;
1280 case AMDGPUAS::CONSTANT_BUFFER_11:
1281 return 512 + 4096 * 11;
1282 case AMDGPUAS::CONSTANT_BUFFER_12:
1283 return 512 + 4096 * 12;
1284 case AMDGPUAS::CONSTANT_BUFFER_13:
1285 return 512 + 4096 * 13;
1286 case AMDGPUAS::CONSTANT_BUFFER_14:
1287 return 512 + 4096 * 14;
1288 case AMDGPUAS::CONSTANT_BUFFER_15:
1289 return 512 + 4096 * 15;
1290 default:
1291 return -1;
1292 }
1293 }
1294
lowerPrivateExtLoad(SDValue Op,SelectionDAG & DAG) const1295 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1296 SelectionDAG &DAG) const {
1297 SDLoc DL(Op);
1298 LoadSDNode *Load = cast<LoadSDNode>(Op);
1299 ISD::LoadExtType ExtType = Load->getExtensionType();
1300 EVT MemVT = Load->getMemoryVT();
1301 assert(Load->getAlignment() >= MemVT.getStoreSize());
1302
1303 SDValue BasePtr = Load->getBasePtr();
1304 SDValue Chain = Load->getChain();
1305 SDValue Offset = Load->getOffset();
1306
1307 SDValue LoadPtr = BasePtr;
1308 if (!Offset.isUndef()) {
1309 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1310 }
1311
1312 // Get dword location
1313 // NOTE: this should be eliminated by the future SHR ptr, 2
1314 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1315 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1316
1317 // Load dword
1318 // TODO: can we be smarter about machine pointer info?
1319 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1320 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1321
1322 // Get offset within the register.
1323 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1324 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1325
1326 // Bit offset of target byte (byteIdx * 8).
1327 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1328 DAG.getConstant(3, DL, MVT::i32));
1329
1330 // Shift to the right.
1331 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1332
1333 // Eliminate the upper bits by setting them to ...
1334 EVT MemEltVT = MemVT.getScalarType();
1335
1336 if (ExtType == ISD::SEXTLOAD) { // ... ones.
1337 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1338 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1339 } else { // ... or zeros.
1340 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1341 }
1342
1343 SDValue Ops[] = {
1344 Ret,
1345 Read.getValue(1) // This should be our output chain
1346 };
1347
1348 return DAG.getMergeValues(Ops, DL);
1349 }
1350
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1351 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1352 LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1353 unsigned AS = LoadNode->getAddressSpace();
1354 EVT MemVT = LoadNode->getMemoryVT();
1355 ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1356
1357 if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1358 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1359 return lowerPrivateExtLoad(Op, DAG);
1360 }
1361
1362 SDLoc DL(Op);
1363 EVT VT = Op.getValueType();
1364 SDValue Chain = LoadNode->getChain();
1365 SDValue Ptr = LoadNode->getBasePtr();
1366
1367 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1368 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1369 VT.isVector()) {
1370 SDValue Ops[2];
1371 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1372 return DAG.getMergeValues(Ops, DL);
1373 }
1374
1375 // This is still used for explicit load from addrspace(8)
1376 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1377 if (ConstantBlock > -1 &&
1378 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1379 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1380 SDValue Result;
1381 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1382 isa<ConstantSDNode>(Ptr)) {
1383 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1384 } else {
1385 //TODO: Does this even work?
1386 // non-constant ptr can't be folded, keeps it as a v4f32 load
1387 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1388 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1389 DAG.getConstant(4, DL, MVT::i32)),
1390 DAG.getConstant(LoadNode->getAddressSpace() -
1391 AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1392 );
1393 }
1394
1395 if (!VT.isVector()) {
1396 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1397 DAG.getConstant(0, DL, MVT::i32));
1398 }
1399
1400 SDValue MergedValues[2] = {
1401 Result,
1402 Chain
1403 };
1404 return DAG.getMergeValues(MergedValues, DL);
1405 }
1406
1407 // For most operations returning SDValue() will result in the node being
1408 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1409 // need to manually expand loads that may be legal in some address spaces and
1410 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1411 // compute shaders, since the data is sign extended when it is uploaded to the
1412 // buffer. However SEXT loads from other address spaces are not supported, so
1413 // we need to expand them here.
1414 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1415 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1416 SDValue NewLoad = DAG.getExtLoad(
1417 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1418 LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1419 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1420 DAG.getValueType(MemVT));
1421
1422 SDValue MergedValues[2] = { Res, Chain };
1423 return DAG.getMergeValues(MergedValues, DL);
1424 }
1425
1426 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1427 return SDValue();
1428 }
1429
1430 // DWORDADDR ISD marks already shifted address
1431 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1432 assert(VT == MVT::i32);
1433 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1434 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1435 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1436 }
1437 return SDValue();
1438 }
1439
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const1440 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1441 SDValue Chain = Op.getOperand(0);
1442 SDValue Cond = Op.getOperand(1);
1443 SDValue Jump = Op.getOperand(2);
1444
1445 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1446 Chain, Jump, Cond);
1447 }
1448
lowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1449 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1450 SelectionDAG &DAG) const {
1451 MachineFunction &MF = DAG.getMachineFunction();
1452 const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1453
1454 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1455
1456 unsigned FrameIndex = FIN->getIndex();
1457 Register IgnoredFrameReg;
1458 StackOffset Offset =
1459 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1460 return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1461 SDLoc(Op), Op.getValueType());
1462 }
1463
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const1464 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1465 bool IsVarArg) const {
1466 switch (CC) {
1467 case CallingConv::AMDGPU_KERNEL:
1468 case CallingConv::SPIR_KERNEL:
1469 case CallingConv::C:
1470 case CallingConv::Fast:
1471 case CallingConv::Cold:
1472 llvm_unreachable("kernels should not be handled here");
1473 case CallingConv::AMDGPU_VS:
1474 case CallingConv::AMDGPU_GS:
1475 case CallingConv::AMDGPU_PS:
1476 case CallingConv::AMDGPU_CS:
1477 case CallingConv::AMDGPU_HS:
1478 case CallingConv::AMDGPU_ES:
1479 case CallingConv::AMDGPU_LS:
1480 return CC_R600;
1481 default:
1482 report_fatal_error("Unsupported calling convention.");
1483 }
1484 }
1485
1486 /// XXX Only kernel functions are supported, so we can assume for now that
1487 /// every function is a kernel function, but in the future we should use
1488 /// separate calling conventions for kernel and non-kernel functions.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1489 SDValue R600TargetLowering::LowerFormalArguments(
1490 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1491 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1492 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1493 SmallVector<CCValAssign, 16> ArgLocs;
1494 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1495 *DAG.getContext());
1496 MachineFunction &MF = DAG.getMachineFunction();
1497 SmallVector<ISD::InputArg, 8> LocalIns;
1498
1499 if (AMDGPU::isShader(CallConv)) {
1500 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1501 } else {
1502 analyzeFormalArgumentsCompute(CCInfo, Ins);
1503 }
1504
1505 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1506 CCValAssign &VA = ArgLocs[i];
1507 const ISD::InputArg &In = Ins[i];
1508 EVT VT = In.VT;
1509 EVT MemVT = VA.getLocVT();
1510 if (!VT.isVector() && MemVT.isVector()) {
1511 // Get load source type if scalarized.
1512 MemVT = MemVT.getVectorElementType();
1513 }
1514
1515 if (AMDGPU::isShader(CallConv)) {
1516 Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1517 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1518 InVals.push_back(Register);
1519 continue;
1520 }
1521
1522 // i64 isn't a legal type, so the register type used ends up as i32, which
1523 // isn't expected here. It attempts to create this sextload, but it ends up
1524 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1525 // for <1 x i64>.
1526
1527 // The first 36 bytes of the input buffer contains information about
1528 // thread group and global sizes.
1529 ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1530 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1531 // FIXME: This should really check the extload type, but the handling of
1532 // extload vector parameters seems to be broken.
1533
1534 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1535 Ext = ISD::SEXTLOAD;
1536 }
1537
1538 // Compute the offset from the value.
1539 // XXX - I think PartOffset should give you this, but it seems to give the
1540 // size of the register which isn't useful.
1541
1542 unsigned PartOffset = VA.getLocMemOffset();
1543 unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1544
1545 MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1546 SDValue Arg = DAG.getLoad(
1547 ISD::UNINDEXED, Ext, VT, DL, Chain,
1548 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1549 PtrInfo,
1550 MemVT, Alignment, MachineMemOperand::MONonTemporal |
1551 MachineMemOperand::MODereferenceable |
1552 MachineMemOperand::MOInvariant);
1553
1554 InVals.push_back(Arg);
1555 }
1556 return Chain;
1557 }
1558
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1559 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1560 EVT VT) const {
1561 if (!VT.isVector())
1562 return MVT::i32;
1563 return VT.changeVectorElementTypeToInteger();
1564 }
1565
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG) const1566 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1567 const SelectionDAG &DAG) const {
1568 // Local and Private addresses do not handle vectors. Limit to i32
1569 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1570 return (MemVT.getSizeInBits() <= 32);
1571 }
1572 return true;
1573 }
1574
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * IsFast) const1575 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1576 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1577 bool *IsFast) const {
1578 if (IsFast)
1579 *IsFast = false;
1580
1581 if (!VT.isSimple() || VT == MVT::Other)
1582 return false;
1583
1584 if (VT.bitsLT(MVT::i32))
1585 return false;
1586
1587 // TODO: This is a rough estimate.
1588 if (IsFast)
1589 *IsFast = true;
1590
1591 return VT.bitsGT(MVT::i32) && Alignment >= Align(4);
1592 }
1593
CompactSwizzlableVector(SelectionDAG & DAG,SDValue VectorEntry,DenseMap<unsigned,unsigned> & RemapSwizzle)1594 static SDValue CompactSwizzlableVector(
1595 SelectionDAG &DAG, SDValue VectorEntry,
1596 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1597 assert(RemapSwizzle.empty());
1598
1599 SDLoc DL(VectorEntry);
1600 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1601
1602 SDValue NewBldVec[4];
1603 for (unsigned i = 0; i < 4; i++)
1604 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1605 DAG.getIntPtrConstant(i, DL));
1606
1607 for (unsigned i = 0; i < 4; i++) {
1608 if (NewBldVec[i].isUndef())
1609 // We mask write here to teach later passes that the ith element of this
1610 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1611 // break false dependencies and additionnaly make assembly easier to read.
1612 RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1613 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1614 if (C->isZero()) {
1615 RemapSwizzle[i] = 4; // SEL_0
1616 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1617 } else if (C->isExactlyValue(1.0)) {
1618 RemapSwizzle[i] = 5; // SEL_1
1619 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1620 }
1621 }
1622
1623 if (NewBldVec[i].isUndef())
1624 continue;
1625
1626 for (unsigned j = 0; j < i; j++) {
1627 if (NewBldVec[i] == NewBldVec[j]) {
1628 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1629 RemapSwizzle[i] = j;
1630 break;
1631 }
1632 }
1633 }
1634
1635 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1636 NewBldVec);
1637 }
1638
ReorganizeVector(SelectionDAG & DAG,SDValue VectorEntry,DenseMap<unsigned,unsigned> & RemapSwizzle)1639 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1640 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1641 assert(RemapSwizzle.empty());
1642
1643 SDLoc DL(VectorEntry);
1644 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1645
1646 SDValue NewBldVec[4];
1647 bool isUnmovable[4] = {false, false, false, false};
1648 for (unsigned i = 0; i < 4; i++)
1649 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1650 DAG.getIntPtrConstant(i, DL));
1651
1652 for (unsigned i = 0; i < 4; i++) {
1653 RemapSwizzle[i] = i;
1654 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1655 unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1656 ->getZExtValue();
1657 if (i == Idx)
1658 isUnmovable[Idx] = true;
1659 }
1660 }
1661
1662 for (unsigned i = 0; i < 4; i++) {
1663 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1664 unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1665 ->getZExtValue();
1666 if (isUnmovable[Idx])
1667 continue;
1668 // Swap i and Idx
1669 std::swap(NewBldVec[Idx], NewBldVec[i]);
1670 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1671 break;
1672 }
1673 }
1674
1675 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1676 NewBldVec);
1677 }
1678
OptimizeSwizzle(SDValue BuildVector,SDValue Swz[4],SelectionDAG & DAG,const SDLoc & DL) const1679 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1680 SelectionDAG &DAG,
1681 const SDLoc &DL) const {
1682 // Old -> New swizzle values
1683 DenseMap<unsigned, unsigned> SwizzleRemap;
1684
1685 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1686 for (unsigned i = 0; i < 4; i++) {
1687 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1688 if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1689 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1690 }
1691
1692 SwizzleRemap.clear();
1693 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1694 for (unsigned i = 0; i < 4; i++) {
1695 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1696 if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1697 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1698 }
1699
1700 return BuildVector;
1701 }
1702
constBufferLoad(LoadSDNode * LoadNode,int Block,SelectionDAG & DAG) const1703 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1704 SelectionDAG &DAG) const {
1705 SDLoc DL(LoadNode);
1706 EVT VT = LoadNode->getValueType(0);
1707 SDValue Chain = LoadNode->getChain();
1708 SDValue Ptr = LoadNode->getBasePtr();
1709 assert (isa<ConstantSDNode>(Ptr));
1710
1711 //TODO: Support smaller loads
1712 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1713 return SDValue();
1714
1715 if (LoadNode->getAlignment() < 4)
1716 return SDValue();
1717
1718 int ConstantBlock = ConstantAddressBlock(Block);
1719
1720 SDValue Slots[4];
1721 for (unsigned i = 0; i < 4; i++) {
1722 // We want Const position encoded with the following formula :
1723 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1724 // const_index is Ptr computed by llvm using an alignment of 16.
1725 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1726 // then div by 4 at the ISel step
1727 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1728 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1729 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1730 }
1731 EVT NewVT = MVT::v4i32;
1732 unsigned NumElements = 4;
1733 if (VT.isVector()) {
1734 NewVT = VT;
1735 NumElements = VT.getVectorNumElements();
1736 }
1737 SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1738 if (!VT.isVector()) {
1739 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1740 DAG.getConstant(0, DL, MVT::i32));
1741 }
1742 SDValue MergedValues[2] = {
1743 Result,
1744 Chain
1745 };
1746 return DAG.getMergeValues(MergedValues, DL);
1747 }
1748
1749 //===----------------------------------------------------------------------===//
1750 // Custom DAG Optimizations
1751 //===----------------------------------------------------------------------===//
1752
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1753 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1754 DAGCombinerInfo &DCI) const {
1755 SelectionDAG &DAG = DCI.DAG;
1756 SDLoc DL(N);
1757
1758 switch (N->getOpcode()) {
1759 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1760 case ISD::FP_ROUND: {
1761 SDValue Arg = N->getOperand(0);
1762 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1763 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1764 Arg.getOperand(0));
1765 }
1766 break;
1767 }
1768
1769 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1770 // (i32 select_cc f32, f32, -1, 0 cc)
1771 //
1772 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1773 // this to one of the SET*_DX10 instructions.
1774 case ISD::FP_TO_SINT: {
1775 SDValue FNeg = N->getOperand(0);
1776 if (FNeg.getOpcode() != ISD::FNEG) {
1777 return SDValue();
1778 }
1779 SDValue SelectCC = FNeg.getOperand(0);
1780 if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1781 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1782 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1783 !isHWTrueValue(SelectCC.getOperand(2)) ||
1784 !isHWFalseValue(SelectCC.getOperand(3))) {
1785 return SDValue();
1786 }
1787
1788 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1789 SelectCC.getOperand(0), // LHS
1790 SelectCC.getOperand(1), // RHS
1791 DAG.getConstant(-1, DL, MVT::i32), // True
1792 DAG.getConstant(0, DL, MVT::i32), // False
1793 SelectCC.getOperand(4)); // CC
1794 }
1795
1796 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1797 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1798 case ISD::INSERT_VECTOR_ELT: {
1799 SDValue InVec = N->getOperand(0);
1800 SDValue InVal = N->getOperand(1);
1801 SDValue EltNo = N->getOperand(2);
1802
1803 // If the inserted element is an UNDEF, just use the input vector.
1804 if (InVal.isUndef())
1805 return InVec;
1806
1807 EVT VT = InVec.getValueType();
1808
1809 // If we can't generate a legal BUILD_VECTOR, exit
1810 if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1811 return SDValue();
1812
1813 // Check that we know which element is being inserted
1814 if (!isa<ConstantSDNode>(EltNo))
1815 return SDValue();
1816 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1817
1818 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1819 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1820 // vector elements.
1821 SmallVector<SDValue, 8> Ops;
1822 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1823 Ops.append(InVec.getNode()->op_begin(),
1824 InVec.getNode()->op_end());
1825 } else if (InVec.isUndef()) {
1826 unsigned NElts = VT.getVectorNumElements();
1827 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1828 } else {
1829 return SDValue();
1830 }
1831
1832 // Insert the element
1833 if (Elt < Ops.size()) {
1834 // All the operands of BUILD_VECTOR must have the same type;
1835 // we enforce that here.
1836 EVT OpVT = Ops[0].getValueType();
1837 if (InVal.getValueType() != OpVT)
1838 InVal = OpVT.bitsGT(InVal.getValueType()) ?
1839 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1840 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1841 Ops[Elt] = InVal;
1842 }
1843
1844 // Return the new vector
1845 return DAG.getBuildVector(VT, DL, Ops);
1846 }
1847
1848 // Extract_vec (Build_vector) generated by custom lowering
1849 // also needs to be customly combined
1850 case ISD::EXTRACT_VECTOR_ELT: {
1851 SDValue Arg = N->getOperand(0);
1852 if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1853 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1854 unsigned Element = Const->getZExtValue();
1855 return Arg->getOperand(Element);
1856 }
1857 }
1858 if (Arg.getOpcode() == ISD::BITCAST &&
1859 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1860 (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1861 Arg.getValueType().getVectorNumElements())) {
1862 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1863 unsigned Element = Const->getZExtValue();
1864 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1865 Arg->getOperand(0).getOperand(Element));
1866 }
1867 }
1868 break;
1869 }
1870
1871 case ISD::SELECT_CC: {
1872 // Try common optimizations
1873 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1874 return Ret;
1875
1876 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1877 // selectcc x, y, a, b, inv(cc)
1878 //
1879 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1880 // selectcc x, y, a, b, cc
1881 SDValue LHS = N->getOperand(0);
1882 if (LHS.getOpcode() != ISD::SELECT_CC) {
1883 return SDValue();
1884 }
1885
1886 SDValue RHS = N->getOperand(1);
1887 SDValue True = N->getOperand(2);
1888 SDValue False = N->getOperand(3);
1889 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1890
1891 if (LHS.getOperand(2).getNode() != True.getNode() ||
1892 LHS.getOperand(3).getNode() != False.getNode() ||
1893 RHS.getNode() != False.getNode()) {
1894 return SDValue();
1895 }
1896
1897 switch (NCC) {
1898 default: return SDValue();
1899 case ISD::SETNE: return LHS;
1900 case ISD::SETEQ: {
1901 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1902 LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1903 if (DCI.isBeforeLegalizeOps() ||
1904 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1905 return DAG.getSelectCC(DL,
1906 LHS.getOperand(0),
1907 LHS.getOperand(1),
1908 LHS.getOperand(2),
1909 LHS.getOperand(3),
1910 LHSCC);
1911 break;
1912 }
1913 }
1914 return SDValue();
1915 }
1916
1917 case AMDGPUISD::R600_EXPORT: {
1918 SDValue Arg = N->getOperand(1);
1919 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1920 break;
1921
1922 SDValue NewArgs[8] = {
1923 N->getOperand(0), // Chain
1924 SDValue(),
1925 N->getOperand(2), // ArrayBase
1926 N->getOperand(3), // Type
1927 N->getOperand(4), // SWZ_X
1928 N->getOperand(5), // SWZ_Y
1929 N->getOperand(6), // SWZ_Z
1930 N->getOperand(7) // SWZ_W
1931 };
1932 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
1933 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
1934 }
1935 case AMDGPUISD::TEXTURE_FETCH: {
1936 SDValue Arg = N->getOperand(1);
1937 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1938 break;
1939
1940 SDValue NewArgs[19] = {
1941 N->getOperand(0),
1942 N->getOperand(1),
1943 N->getOperand(2),
1944 N->getOperand(3),
1945 N->getOperand(4),
1946 N->getOperand(5),
1947 N->getOperand(6),
1948 N->getOperand(7),
1949 N->getOperand(8),
1950 N->getOperand(9),
1951 N->getOperand(10),
1952 N->getOperand(11),
1953 N->getOperand(12),
1954 N->getOperand(13),
1955 N->getOperand(14),
1956 N->getOperand(15),
1957 N->getOperand(16),
1958 N->getOperand(17),
1959 N->getOperand(18),
1960 };
1961 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
1962 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
1963 }
1964
1965 case ISD::LOAD: {
1966 LoadSDNode *LoadNode = cast<LoadSDNode>(N);
1967 SDValue Ptr = LoadNode->getBasePtr();
1968 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
1969 isa<ConstantSDNode>(Ptr))
1970 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
1971 break;
1972 }
1973
1974 default: break;
1975 }
1976
1977 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1978 }
1979
FoldOperand(SDNode * ParentNode,unsigned SrcIdx,SDValue & Src,SDValue & Neg,SDValue & Abs,SDValue & Sel,SDValue & Imm,SelectionDAG & DAG) const1980 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
1981 SDValue &Src, SDValue &Neg, SDValue &Abs,
1982 SDValue &Sel, SDValue &Imm,
1983 SelectionDAG &DAG) const {
1984 const R600InstrInfo *TII = Subtarget->getInstrInfo();
1985 if (!Src.isMachineOpcode())
1986 return false;
1987
1988 switch (Src.getMachineOpcode()) {
1989 case R600::FNEG_R600:
1990 if (!Neg.getNode())
1991 return false;
1992 Src = Src.getOperand(0);
1993 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1994 return true;
1995 case R600::FABS_R600:
1996 if (!Abs.getNode())
1997 return false;
1998 Src = Src.getOperand(0);
1999 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2000 return true;
2001 case R600::CONST_COPY: {
2002 unsigned Opcode = ParentNode->getMachineOpcode();
2003 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2004
2005 if (!Sel.getNode())
2006 return false;
2007
2008 SDValue CstOffset = Src.getOperand(0);
2009 if (ParentNode->getValueType(0).isVector())
2010 return false;
2011
2012 // Gather constants values
2013 int SrcIndices[] = {
2014 TII->getOperandIdx(Opcode, R600::OpName::src0),
2015 TII->getOperandIdx(Opcode, R600::OpName::src1),
2016 TII->getOperandIdx(Opcode, R600::OpName::src2),
2017 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2018 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2019 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2020 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2021 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2022 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2023 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2024 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2025 };
2026 std::vector<unsigned> Consts;
2027 for (int OtherSrcIdx : SrcIndices) {
2028 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2029 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2030 continue;
2031 if (HasDst) {
2032 OtherSrcIdx--;
2033 OtherSelIdx--;
2034 }
2035 if (RegisterSDNode *Reg =
2036 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2037 if (Reg->getReg() == R600::ALU_CONST) {
2038 ConstantSDNode *Cst
2039 = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2040 Consts.push_back(Cst->getZExtValue());
2041 }
2042 }
2043 }
2044
2045 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2046 Consts.push_back(Cst->getZExtValue());
2047 if (!TII->fitsConstReadLimitations(Consts)) {
2048 return false;
2049 }
2050
2051 Sel = CstOffset;
2052 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2053 return true;
2054 }
2055 case R600::MOV_IMM_GLOBAL_ADDR:
2056 // Check if the Imm slot is used. Taken from below.
2057 if (cast<ConstantSDNode>(Imm)->getZExtValue())
2058 return false;
2059 Imm = Src.getOperand(0);
2060 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2061 return true;
2062 case R600::MOV_IMM_I32:
2063 case R600::MOV_IMM_F32: {
2064 unsigned ImmReg = R600::ALU_LITERAL_X;
2065 uint64_t ImmValue = 0;
2066
2067 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2068 ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2069 float FloatValue = FPC->getValueAPF().convertToFloat();
2070 if (FloatValue == 0.0) {
2071 ImmReg = R600::ZERO;
2072 } else if (FloatValue == 0.5) {
2073 ImmReg = R600::HALF;
2074 } else if (FloatValue == 1.0) {
2075 ImmReg = R600::ONE;
2076 } else {
2077 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2078 }
2079 } else {
2080 ConstantSDNode *C = cast<ConstantSDNode>(Src.getOperand(0));
2081 uint64_t Value = C->getZExtValue();
2082 if (Value == 0) {
2083 ImmReg = R600::ZERO;
2084 } else if (Value == 1) {
2085 ImmReg = R600::ONE_INT;
2086 } else {
2087 ImmValue = Value;
2088 }
2089 }
2090
2091 // Check that we aren't already using an immediate.
2092 // XXX: It's possible for an instruction to have more than one
2093 // immediate operand, but this is not supported yet.
2094 if (ImmReg == R600::ALU_LITERAL_X) {
2095 if (!Imm.getNode())
2096 return false;
2097 ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2098 if (C->getZExtValue())
2099 return false;
2100 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2101 }
2102 Src = DAG.getRegister(ImmReg, MVT::i32);
2103 return true;
2104 }
2105 default:
2106 return false;
2107 }
2108 }
2109
2110 /// Fold the instructions after selecting them
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const2111 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2112 SelectionDAG &DAG) const {
2113 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2114 if (!Node->isMachineOpcode())
2115 return Node;
2116
2117 unsigned Opcode = Node->getMachineOpcode();
2118 SDValue FakeOp;
2119
2120 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2121
2122 if (Opcode == R600::DOT_4) {
2123 int OperandIdx[] = {
2124 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2125 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2126 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2127 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2128 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2129 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2130 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2131 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2132 };
2133 int NegIdx[] = {
2134 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2135 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2136 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2137 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2138 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2139 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2140 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2141 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2142 };
2143 int AbsIdx[] = {
2144 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2145 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2146 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2147 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2148 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2149 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2150 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2151 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2152 };
2153 for (unsigned i = 0; i < 8; i++) {
2154 if (OperandIdx[i] < 0)
2155 return Node;
2156 SDValue &Src = Ops[OperandIdx[i] - 1];
2157 SDValue &Neg = Ops[NegIdx[i] - 1];
2158 SDValue &Abs = Ops[AbsIdx[i] - 1];
2159 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2160 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2161 if (HasDst)
2162 SelIdx--;
2163 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2164 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2165 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2166 }
2167 } else if (Opcode == R600::REG_SEQUENCE) {
2168 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2169 SDValue &Src = Ops[i];
2170 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2171 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2172 }
2173 } else {
2174 if (!TII->hasInstrModifiers(Opcode))
2175 return Node;
2176 int OperandIdx[] = {
2177 TII->getOperandIdx(Opcode, R600::OpName::src0),
2178 TII->getOperandIdx(Opcode, R600::OpName::src1),
2179 TII->getOperandIdx(Opcode, R600::OpName::src2)
2180 };
2181 int NegIdx[] = {
2182 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2183 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2184 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2185 };
2186 int AbsIdx[] = {
2187 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2188 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2189 -1
2190 };
2191 for (unsigned i = 0; i < 3; i++) {
2192 if (OperandIdx[i] < 0)
2193 return Node;
2194 SDValue &Src = Ops[OperandIdx[i] - 1];
2195 SDValue &Neg = Ops[NegIdx[i] - 1];
2196 SDValue FakeAbs;
2197 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2198 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2199 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2200 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2201 if (HasDst) {
2202 SelIdx--;
2203 ImmIdx--;
2204 }
2205 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2206 SDValue &Imm = Ops[ImmIdx];
2207 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2208 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2209 }
2210 }
2211
2212 return Node;
2213 }
2214