1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/InstCombine/InstCombiner.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41
42 using namespace llvm;
43 using namespace PatternMatch;
44
45 #define DEBUG_TYPE "instcombine"
46
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero. If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombinerImpl & IC,Instruction & CxtI)50 static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
51 Instruction &CxtI) {
52 // If V has multiple uses, then we would have to do more analysis to determine
53 // if this is safe. For example, the use could be in dynamically unreached
54 // code.
55 if (!V->hasOneUse()) return nullptr;
56
57 bool MadeChange = false;
58
59 // ((1 << A) >>u B) --> (1 << (A-B))
60 // Because V cannot be zero, we know that B is less than A.
61 Value *A = nullptr, *B = nullptr, *One = nullptr;
62 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63 match(One, m_One())) {
64 A = IC.Builder.CreateSub(A, B);
65 return IC.Builder.CreateShl(One, A);
66 }
67
68 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69 // inexact. Similarly for <<.
70 BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71 if (I && I->isLogicalShift() &&
72 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73 // We know that this is an exact/nuw shift and that the input is a
74 // non-zero context as well.
75 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76 IC.replaceOperand(*I, 0, V2);
77 MadeChange = true;
78 }
79
80 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81 I->setIsExact();
82 MadeChange = true;
83 }
84
85 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86 I->setHasNoUnsignedWrap();
87 MadeChange = true;
88 }
89 }
90
91 // TODO: Lots more we could do here:
92 // If V is a phi node, we can call this on each of its operands.
93 // "select cond, X, 0" can simplify to "X".
94
95 return MadeChange ? V : nullptr;
96 }
97
98 // TODO: This is a specific form of a much more general pattern.
99 // We could detect a select with any binop identity constant, or we
100 // could use SimplifyBinOp to see if either arm of the select reduces.
101 // But that needs to be done carefully and/or while removing potential
102 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
foldMulSelectToNegate(BinaryOperator & I,InstCombiner::BuilderTy & Builder)103 static Value *foldMulSelectToNegate(BinaryOperator &I,
104 InstCombiner::BuilderTy &Builder) {
105 Value *Cond, *OtherOp;
106
107 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
110 m_Value(OtherOp))))
111 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
112
113 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
114 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
115 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
116 m_Value(OtherOp))))
117 return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
118
119 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
121 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
122 m_SpecificFP(-1.0))),
123 m_Value(OtherOp)))) {
124 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
125 Builder.setFastMathFlags(I.getFastMathFlags());
126 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
127 }
128
129 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
132 m_SpecificFP(1.0))),
133 m_Value(OtherOp)))) {
134 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
135 Builder.setFastMathFlags(I.getFastMathFlags());
136 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
137 }
138
139 return nullptr;
140 }
141
visitMul(BinaryOperator & I)142 Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
143 if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
144 SQ.getWithInstruction(&I)))
145 return replaceInstUsesWith(I, V);
146
147 if (SimplifyAssociativeOrCommutative(I))
148 return &I;
149
150 if (Instruction *X = foldVectorBinop(I))
151 return X;
152
153 if (Value *V = SimplifyUsingDistributiveLaws(I))
154 return replaceInstUsesWith(I, V);
155
156 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
157 unsigned BitWidth = I.getType()->getScalarSizeInBits();
158
159 // X * -1 == 0 - X
160 if (match(Op1, m_AllOnes())) {
161 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
162 if (I.hasNoSignedWrap())
163 BO->setHasNoSignedWrap();
164 return BO;
165 }
166
167 // Also allow combining multiply instructions on vectors.
168 {
169 Value *NewOp;
170 Constant *C1, *C2;
171 const APInt *IVal;
172 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
173 m_Constant(C1))) &&
174 match(C1, m_APInt(IVal))) {
175 // ((X << C2)*C1) == (X * (C1 << C2))
176 Constant *Shl = ConstantExpr::getShl(C1, C2);
177 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
178 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
179 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
180 BO->setHasNoUnsignedWrap();
181 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
182 Shl->isNotMinSignedValue())
183 BO->setHasNoSignedWrap();
184 return BO;
185 }
186
187 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
188 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
189 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
190 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
191
192 if (I.hasNoUnsignedWrap())
193 Shl->setHasNoUnsignedWrap();
194 if (I.hasNoSignedWrap()) {
195 const APInt *V;
196 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
197 Shl->setHasNoSignedWrap();
198 }
199
200 return Shl;
201 }
202 }
203 }
204
205 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
206 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
207 // The "* (1<<C)" thus becomes a potential shifting opportunity.
208 if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
209 return BinaryOperator::CreateMul(
210 NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
211 }
212
213 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
214 return FoldedMul;
215
216 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
217 return replaceInstUsesWith(I, FoldedMul);
218
219 // Simplify mul instructions with a constant RHS.
220 if (isa<Constant>(Op1)) {
221 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
222 Value *X;
223 Constant *C1;
224 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
225 Value *Mul = Builder.CreateMul(C1, Op1);
226 // Only go forward with the transform if C1*CI simplifies to a tidier
227 // constant.
228 if (!match(Mul, m_Mul(m_Value(), m_Value())))
229 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
230 }
231 }
232
233 // abs(X) * abs(X) -> X * X
234 // nabs(X) * nabs(X) -> X * X
235 if (Op0 == Op1) {
236 Value *X, *Y;
237 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
238 if (SPF == SPF_ABS || SPF == SPF_NABS)
239 return BinaryOperator::CreateMul(X, X);
240
241 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
242 return BinaryOperator::CreateMul(X, X);
243 }
244
245 // -X * C --> X * -C
246 Value *X, *Y;
247 Constant *Op1C;
248 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
249 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
250
251 // -X * -Y --> X * Y
252 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
253 auto *NewMul = BinaryOperator::CreateMul(X, Y);
254 if (I.hasNoSignedWrap() &&
255 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
256 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
257 NewMul->setHasNoSignedWrap();
258 return NewMul;
259 }
260
261 // -X * Y --> -(X * Y)
262 // X * -Y --> -(X * Y)
263 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
264 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
265
266 // (X / Y) * Y = X - (X % Y)
267 // (X / Y) * -Y = (X % Y) - X
268 {
269 Value *Y = Op1;
270 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
271 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
272 Div->getOpcode() != Instruction::SDiv)) {
273 Y = Op0;
274 Div = dyn_cast<BinaryOperator>(Op1);
275 }
276 Value *Neg = dyn_castNegVal(Y);
277 if (Div && Div->hasOneUse() &&
278 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
279 (Div->getOpcode() == Instruction::UDiv ||
280 Div->getOpcode() == Instruction::SDiv)) {
281 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
282
283 // If the division is exact, X % Y is zero, so we end up with X or -X.
284 if (Div->isExact()) {
285 if (DivOp1 == Y)
286 return replaceInstUsesWith(I, X);
287 return BinaryOperator::CreateNeg(X);
288 }
289
290 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
291 : Instruction::SRem;
292 Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
293 if (DivOp1 == Y)
294 return BinaryOperator::CreateSub(X, Rem);
295 return BinaryOperator::CreateSub(Rem, X);
296 }
297 }
298
299 /// i1 mul -> i1 and.
300 if (I.getType()->isIntOrIntVectorTy(1))
301 return BinaryOperator::CreateAnd(Op0, Op1);
302
303 // X*(1 << Y) --> X << Y
304 // (1 << Y)*X --> X << Y
305 {
306 Value *Y;
307 BinaryOperator *BO = nullptr;
308 bool ShlNSW = false;
309 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
310 BO = BinaryOperator::CreateShl(Op1, Y);
311 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
312 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
313 BO = BinaryOperator::CreateShl(Op0, Y);
314 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
315 }
316 if (BO) {
317 if (I.hasNoUnsignedWrap())
318 BO->setHasNoUnsignedWrap();
319 if (I.hasNoSignedWrap() && ShlNSW)
320 BO->setHasNoSignedWrap();
321 return BO;
322 }
323 }
324
325 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
326 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
327 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
328 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
329 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
330 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
331 (Op0->hasOneUse() || Op1->hasOneUse())) {
332 Value *And = Builder.CreateAnd(X, Y, "mulbool");
333 return CastInst::Create(Instruction::ZExt, And, I.getType());
334 }
335 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
336 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
337 // Note: -1 * 1 == 1 * -1 == -1
338 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
339 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
340 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
341 (Op0->hasOneUse() || Op1->hasOneUse())) {
342 Value *And = Builder.CreateAnd(X, Y, "mulbool");
343 return CastInst::Create(Instruction::SExt, And, I.getType());
344 }
345
346 // (bool X) * Y --> X ? Y : 0
347 // Y * (bool X) --> X ? Y : 0
348 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
349 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
350 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
351 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
352
353 // (lshr X, 31) * Y --> (ashr X, 31) & Y
354 // Y * (lshr X, 31) --> (ashr X, 31) & Y
355 // TODO: We are not checking one-use because the elimination of the multiply
356 // is better for analysis?
357 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
358 // more similar to what we're doing above.
359 const APInt *C;
360 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
361 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
362 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
363 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
364
365 // ((ashr X, 31) | 1) * X --> abs(X)
366 // X * ((ashr X, 31) | 1) --> abs(X)
367 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
368 m_SpecificIntAllowUndef(BitWidth - 1)),
369 m_One()),
370 m_Deferred(X)))) {
371 Value *Abs = Builder.CreateBinaryIntrinsic(
372 Intrinsic::abs, X,
373 ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
374 Abs->takeName(&I);
375 return replaceInstUsesWith(I, Abs);
376 }
377
378 if (Instruction *Ext = narrowMathIfNoOverflow(I))
379 return Ext;
380
381 bool Changed = false;
382 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
383 Changed = true;
384 I.setHasNoSignedWrap(true);
385 }
386
387 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
388 Changed = true;
389 I.setHasNoUnsignedWrap(true);
390 }
391
392 return Changed ? &I : nullptr;
393 }
394
foldFPSignBitOps(BinaryOperator & I)395 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
396 BinaryOperator::BinaryOps Opcode = I.getOpcode();
397 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
398 "Expected fmul or fdiv");
399
400 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
401 Value *X, *Y;
402
403 // -X * -Y --> X * Y
404 // -X / -Y --> X / Y
405 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
406 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
407
408 // fabs(X) * fabs(X) -> X * X
409 // fabs(X) / fabs(X) -> X / X
410 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
411 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
412
413 // fabs(X) * fabs(Y) --> fabs(X * Y)
414 // fabs(X) / fabs(Y) --> fabs(X / Y)
415 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
416 (Op0->hasOneUse() || Op1->hasOneUse())) {
417 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
418 Builder.setFastMathFlags(I.getFastMathFlags());
419 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
420 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
421 Fabs->takeName(&I);
422 return replaceInstUsesWith(I, Fabs);
423 }
424
425 return nullptr;
426 }
427
visitFMul(BinaryOperator & I)428 Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
429 if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
430 I.getFastMathFlags(),
431 SQ.getWithInstruction(&I)))
432 return replaceInstUsesWith(I, V);
433
434 if (SimplifyAssociativeOrCommutative(I))
435 return &I;
436
437 if (Instruction *X = foldVectorBinop(I))
438 return X;
439
440 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
441 return FoldedMul;
442
443 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
444 return replaceInstUsesWith(I, FoldedMul);
445
446 if (Instruction *R = foldFPSignBitOps(I))
447 return R;
448
449 // X * -1.0 --> -X
450 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
451 if (match(Op1, m_SpecificFP(-1.0)))
452 return UnaryOperator::CreateFNegFMF(Op0, &I);
453
454 // -X * C --> X * -C
455 Value *X, *Y;
456 Constant *C;
457 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
458 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
459
460 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
461 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
462 return replaceInstUsesWith(I, V);
463
464 if (I.hasAllowReassoc()) {
465 // Reassociate constant RHS with another constant to form constant
466 // expression.
467 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
468 Constant *C1;
469 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
470 // (C1 / X) * C --> (C * C1) / X
471 Constant *CC1 = ConstantExpr::getFMul(C, C1);
472 if (CC1->isNormalFP())
473 return BinaryOperator::CreateFDivFMF(CC1, X, &I);
474 }
475 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
476 // (X / C1) * C --> X * (C / C1)
477 Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
478 if (CDivC1->isNormalFP())
479 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
480
481 // If the constant was a denormal, try reassociating differently.
482 // (X / C1) * C --> X / (C1 / C)
483 Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
484 if (Op0->hasOneUse() && C1DivC->isNormalFP())
485 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
486 }
487
488 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
489 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
490 // further folds and (X * C) + C2 is 'fma'.
491 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
492 // (X + C1) * C --> (X * C) + (C * C1)
493 Constant *CC1 = ConstantExpr::getFMul(C, C1);
494 Value *XC = Builder.CreateFMulFMF(X, C, &I);
495 return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
496 }
497 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
498 // (C1 - X) * C --> (C * C1) - (X * C)
499 Constant *CC1 = ConstantExpr::getFMul(C, C1);
500 Value *XC = Builder.CreateFMulFMF(X, C, &I);
501 return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
502 }
503 }
504
505 Value *Z;
506 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
507 m_Value(Z)))) {
508 // Sink division: (X / Y) * Z --> (X * Z) / Y
509 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
510 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
511 }
512
513 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
514 // nnan disallows the possibility of returning a number if both operands are
515 // negative (in that case, we should return NaN).
516 if (I.hasNoNaNs() &&
517 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
518 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
519 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
520 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
521 return replaceInstUsesWith(I, Sqrt);
522 }
523
524 // The following transforms are done irrespective of the number of uses
525 // for the expression "1.0/sqrt(X)".
526 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
527 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
528 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
529 // has the necessary (reassoc) fast-math-flags.
530 if (I.hasNoSignedZeros() &&
531 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
532 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
533 return BinaryOperator::CreateFDivFMF(X, Y, &I);
534 if (I.hasNoSignedZeros() &&
535 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
536 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
537 return BinaryOperator::CreateFDivFMF(X, Y, &I);
538
539 // Like the similar transform in instsimplify, this requires 'nsz' because
540 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
541 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
542 Op0->hasNUses(2)) {
543 // Peek through fdiv to find squaring of square root:
544 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
545 if (match(Op0, m_FDiv(m_Value(X),
546 m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
547 Value *XX = Builder.CreateFMulFMF(X, X, &I);
548 return BinaryOperator::CreateFDivFMF(XX, Y, &I);
549 }
550 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
551 if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
552 m_Value(X)))) {
553 Value *XX = Builder.CreateFMulFMF(X, X, &I);
554 return BinaryOperator::CreateFDivFMF(Y, XX, &I);
555 }
556 }
557
558 // exp(X) * exp(Y) -> exp(X + Y)
559 // Match as long as at least one of exp has only one use.
560 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
561 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
562 (Op0->hasOneUse() || Op1->hasOneUse())) {
563 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
564 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
565 return replaceInstUsesWith(I, Exp);
566 }
567
568 // exp2(X) * exp2(Y) -> exp2(X + Y)
569 // Match as long as at least one of exp2 has only one use.
570 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
571 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
572 (Op0->hasOneUse() || Op1->hasOneUse())) {
573 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
574 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
575 return replaceInstUsesWith(I, Exp2);
576 }
577
578 // (X*Y) * X => (X*X) * Y where Y != X
579 // The purpose is two-fold:
580 // 1) to form a power expression (of X).
581 // 2) potentially shorten the critical path: After transformation, the
582 // latency of the instruction Y is amortized by the expression of X*X,
583 // and therefore Y is in a "less critical" position compared to what it
584 // was before the transformation.
585 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
586 Op1 != Y) {
587 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
588 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
589 }
590 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
591 Op0 != Y) {
592 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
593 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
594 }
595 }
596
597 // log2(X * 0.5) * Y = log2(X) * Y - Y
598 if (I.isFast()) {
599 IntrinsicInst *Log2 = nullptr;
600 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
601 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
602 Log2 = cast<IntrinsicInst>(Op0);
603 Y = Op1;
604 }
605 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
606 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
607 Log2 = cast<IntrinsicInst>(Op1);
608 Y = Op0;
609 }
610 if (Log2) {
611 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
612 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
613 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
614 }
615 }
616
617 return nullptr;
618 }
619
620 /// Fold a divide or remainder with a select instruction divisor when one of the
621 /// select operands is zero. In that case, we can use the other select operand
622 /// because div/rem by zero is undefined.
simplifyDivRemOfSelectWithZeroOp(BinaryOperator & I)623 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
624 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
625 if (!SI)
626 return false;
627
628 int NonNullOperand;
629 if (match(SI->getTrueValue(), m_Zero()))
630 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
631 NonNullOperand = 2;
632 else if (match(SI->getFalseValue(), m_Zero()))
633 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
634 NonNullOperand = 1;
635 else
636 return false;
637
638 // Change the div/rem to use 'Y' instead of the select.
639 replaceOperand(I, 1, SI->getOperand(NonNullOperand));
640
641 // Okay, we know we replace the operand of the div/rem with 'Y' with no
642 // problem. However, the select, or the condition of the select may have
643 // multiple uses. Based on our knowledge that the operand must be non-zero,
644 // propagate the known value for the select into other uses of it, and
645 // propagate a known value of the condition into its other users.
646
647 // If the select and condition only have a single use, don't bother with this,
648 // early exit.
649 Value *SelectCond = SI->getCondition();
650 if (SI->use_empty() && SelectCond->hasOneUse())
651 return true;
652
653 // Scan the current block backward, looking for other uses of SI.
654 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
655 Type *CondTy = SelectCond->getType();
656 while (BBI != BBFront) {
657 --BBI;
658 // If we found an instruction that we can't assume will return, so
659 // information from below it cannot be propagated above it.
660 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
661 break;
662
663 // Replace uses of the select or its condition with the known values.
664 for (Use &Op : BBI->operands()) {
665 if (Op == SI) {
666 replaceUse(Op, SI->getOperand(NonNullOperand));
667 Worklist.push(&*BBI);
668 } else if (Op == SelectCond) {
669 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
670 : ConstantInt::getFalse(CondTy));
671 Worklist.push(&*BBI);
672 }
673 }
674
675 // If we past the instruction, quit looking for it.
676 if (&*BBI == SI)
677 SI = nullptr;
678 if (&*BBI == SelectCond)
679 SelectCond = nullptr;
680
681 // If we ran out of things to eliminate, break out of the loop.
682 if (!SelectCond && !SI)
683 break;
684
685 }
686 return true;
687 }
688
689 /// True if the multiply can not be expressed in an int this size.
multiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)690 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
691 bool IsSigned) {
692 bool Overflow;
693 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
694 return Overflow;
695 }
696
697 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
isMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)698 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
699 bool IsSigned) {
700 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
701
702 // Bail if we will divide by zero.
703 if (C2.isNullValue())
704 return false;
705
706 // Bail if we would divide INT_MIN by -1.
707 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
708 return false;
709
710 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
711 if (IsSigned)
712 APInt::sdivrem(C1, C2, Quotient, Remainder);
713 else
714 APInt::udivrem(C1, C2, Quotient, Remainder);
715
716 return Remainder.isMinValue();
717 }
718
719 /// This function implements the transforms common to both integer division
720 /// instructions (udiv and sdiv). It is called by the visitors to those integer
721 /// division instructions.
722 /// Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)723 Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
724 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
725 bool IsSigned = I.getOpcode() == Instruction::SDiv;
726 Type *Ty = I.getType();
727
728 // The RHS is known non-zero.
729 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
730 return replaceOperand(I, 1, V);
731
732 // Handle cases involving: [su]div X, (select Cond, Y, Z)
733 // This does not apply for fdiv.
734 if (simplifyDivRemOfSelectWithZeroOp(I))
735 return &I;
736
737 const APInt *C2;
738 if (match(Op1, m_APInt(C2))) {
739 Value *X;
740 const APInt *C1;
741
742 // (X / C1) / C2 -> X / (C1*C2)
743 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
744 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
745 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
746 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
747 return BinaryOperator::Create(I.getOpcode(), X,
748 ConstantInt::get(Ty, Product));
749 }
750
751 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
752 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
753 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
754
755 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
756 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
757 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
758 ConstantInt::get(Ty, Quotient));
759 NewDiv->setIsExact(I.isExact());
760 return NewDiv;
761 }
762
763 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
764 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
765 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
766 ConstantInt::get(Ty, Quotient));
767 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
768 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
769 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
770 return Mul;
771 }
772 }
773
774 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
775 *C1 != C1->getBitWidth() - 1) ||
776 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
777 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
778 APInt C1Shifted = APInt::getOneBitSet(
779 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
780
781 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
782 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
783 auto *BO = BinaryOperator::Create(I.getOpcode(), X,
784 ConstantInt::get(Ty, Quotient));
785 BO->setIsExact(I.isExact());
786 return BO;
787 }
788
789 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
790 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
791 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
792 ConstantInt::get(Ty, Quotient));
793 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
794 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
795 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
796 return Mul;
797 }
798 }
799
800 if (!C2->isNullValue()) // avoid X udiv 0
801 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
802 return FoldedDiv;
803 }
804
805 if (match(Op0, m_One())) {
806 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
807 if (IsSigned) {
808 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
809 // result is one, if Op1 is -1 then the result is minus one, otherwise
810 // it's zero.
811 Value *Inc = Builder.CreateAdd(Op1, Op0);
812 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
813 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
814 } else {
815 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
816 // result is one, otherwise it's zero.
817 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
818 }
819 }
820
821 // See if we can fold away this div instruction.
822 if (SimplifyDemandedInstructionBits(I))
823 return &I;
824
825 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
826 Value *X, *Z;
827 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
828 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
829 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
830 return BinaryOperator::Create(I.getOpcode(), X, Op1);
831
832 // (X << Y) / X -> 1 << Y
833 Value *Y;
834 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
835 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
836 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
837 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
838
839 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
840 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
841 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
842 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
843 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
844 replaceOperand(I, 0, ConstantInt::get(Ty, 1));
845 replaceOperand(I, 1, Y);
846 return &I;
847 }
848 }
849
850 return nullptr;
851 }
852
853 static const unsigned MaxDepth = 6;
854
855 namespace {
856
857 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
858 const BinaryOperator &I,
859 InstCombinerImpl &IC);
860
861 /// Used to maintain state for visitUDivOperand().
862 struct UDivFoldAction {
863 /// Informs visitUDiv() how to fold this operand. This can be zero if this
864 /// action joins two actions together.
865 FoldUDivOperandCb FoldAction;
866
867 /// Which operand to fold.
868 Value *OperandToFold;
869
870 union {
871 /// The instruction returned when FoldAction is invoked.
872 Instruction *FoldResult;
873
874 /// Stores the LHS action index if this action joins two actions together.
875 size_t SelectLHSIdx;
876 };
877
UDivFoldAction__anon75882b290111::UDivFoldAction878 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
879 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction__anon75882b290111::UDivFoldAction880 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
881 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
882 };
883
884 } // end anonymous namespace
885
886 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombinerImpl & IC)887 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
888 const BinaryOperator &I,
889 InstCombinerImpl &IC) {
890 Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
891 if (!C1)
892 llvm_unreachable("Failed to constant fold udiv -> logbase2");
893 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
894 if (I.isExact())
895 LShr->setIsExact();
896 return LShr;
897 }
898
899 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
900 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombinerImpl & IC)901 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
902 InstCombinerImpl &IC) {
903 Value *ShiftLeft;
904 if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
905 ShiftLeft = Op1;
906
907 Constant *CI;
908 Value *N;
909 if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
910 llvm_unreachable("match should never fail here!");
911 Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
912 if (!Log2Base)
913 llvm_unreachable("getLogBase2 should never fail here!");
914 N = IC.Builder.CreateAdd(N, Log2Base);
915 if (Op1 != ShiftLeft)
916 N = IC.Builder.CreateZExt(N, Op1->getType());
917 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
918 if (I.isExact())
919 LShr->setIsExact();
920 return LShr;
921 }
922
923 // Recursively visits the possible right hand operands of a udiv
924 // instruction, seeing through select instructions, to determine if we can
925 // replace the udiv with something simpler. If we find that an operand is not
926 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)927 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
928 SmallVectorImpl<UDivFoldAction> &Actions,
929 unsigned Depth = 0) {
930 // FIXME: assert that Op1 isn't/doesn't contain undef.
931
932 // Check to see if this is an unsigned division with an exact power of 2,
933 // if so, convert to a right shift.
934 if (match(Op1, m_Power2())) {
935 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
936 return Actions.size();
937 }
938
939 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
940 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
941 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
942 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
943 return Actions.size();
944 }
945
946 // The remaining tests are all recursive, so bail out if we hit the limit.
947 if (Depth++ == MaxDepth)
948 return 0;
949
950 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
951 // FIXME: missed optimization: if one of the hands of select is/contains
952 // undef, just directly pick the other one.
953 // FIXME: can both hands contain undef?
954 if (size_t LHSIdx =
955 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
956 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
957 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
958 return Actions.size();
959 }
960
961 return 0;
962 }
963
964 /// If we have zero-extended operands of an unsigned div or rem, we may be able
965 /// to narrow the operation (sink the zext below the math).
narrowUDivURem(BinaryOperator & I,InstCombiner::BuilderTy & Builder)966 static Instruction *narrowUDivURem(BinaryOperator &I,
967 InstCombiner::BuilderTy &Builder) {
968 Instruction::BinaryOps Opcode = I.getOpcode();
969 Value *N = I.getOperand(0);
970 Value *D = I.getOperand(1);
971 Type *Ty = I.getType();
972 Value *X, *Y;
973 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
974 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
975 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
976 // urem (zext X), (zext Y) --> zext (urem X, Y)
977 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
978 return new ZExtInst(NarrowOp, Ty);
979 }
980
981 Constant *C;
982 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
983 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
984 // If the constant is the same in the smaller type, use the narrow version.
985 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
986 if (ConstantExpr::getZExt(TruncC, Ty) != C)
987 return nullptr;
988
989 // udiv (zext X), C --> zext (udiv X, C')
990 // urem (zext X), C --> zext (urem X, C')
991 // udiv C, (zext X) --> zext (udiv C', X)
992 // urem C, (zext X) --> zext (urem C', X)
993 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
994 : Builder.CreateBinOp(Opcode, TruncC, X);
995 return new ZExtInst(NarrowOp, Ty);
996 }
997
998 return nullptr;
999 }
1000
visitUDiv(BinaryOperator & I)1001 Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1002 if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1003 SQ.getWithInstruction(&I)))
1004 return replaceInstUsesWith(I, V);
1005
1006 if (Instruction *X = foldVectorBinop(I))
1007 return X;
1008
1009 // Handle the integer div common cases
1010 if (Instruction *Common = commonIDivTransforms(I))
1011 return Common;
1012
1013 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1014 Value *X;
1015 const APInt *C1, *C2;
1016 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1017 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1018 bool Overflow;
1019 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1020 if (!Overflow) {
1021 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1022 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1023 X, ConstantInt::get(X->getType(), C2ShlC1));
1024 if (IsExact)
1025 BO->setIsExact();
1026 return BO;
1027 }
1028 }
1029
1030 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1031 // TODO: Could use isKnownNegative() to handle non-constant values.
1032 Type *Ty = I.getType();
1033 if (match(Op1, m_Negative())) {
1034 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1035 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1036 }
1037 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1038 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1039 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1040 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1041 }
1042
1043 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1044 return NarrowDiv;
1045
1046 // If the udiv operands are non-overflowing multiplies with a common operand,
1047 // then eliminate the common factor:
1048 // (A * B) / (A * X) --> B / X (and commuted variants)
1049 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1050 // TODO: If -reassociation handled this generally, we could remove this.
1051 Value *A, *B;
1052 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1053 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1054 match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1055 return BinaryOperator::CreateUDiv(B, X);
1056 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1057 match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1058 return BinaryOperator::CreateUDiv(A, X);
1059 }
1060
1061 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1062 SmallVector<UDivFoldAction, 6> UDivActions;
1063 if (visitUDivOperand(Op0, Op1, I, UDivActions))
1064 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1065 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1066 Value *ActionOp1 = UDivActions[i].OperandToFold;
1067 Instruction *Inst;
1068 if (Action)
1069 Inst = Action(Op0, ActionOp1, I, *this);
1070 else {
1071 // This action joins two actions together. The RHS of this action is
1072 // simply the last action we processed, we saved the LHS action index in
1073 // the joining action.
1074 size_t SelectRHSIdx = i - 1;
1075 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1076 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1077 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1078 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1079 SelectLHS, SelectRHS);
1080 }
1081
1082 // If this is the last action to process, return it to the InstCombiner.
1083 // Otherwise, we insert it before the UDiv and record it so that we may
1084 // use it as part of a joining action (i.e., a SelectInst).
1085 if (e - i != 1) {
1086 Inst->insertBefore(&I);
1087 UDivActions[i].FoldResult = Inst;
1088 } else
1089 return Inst;
1090 }
1091
1092 return nullptr;
1093 }
1094
visitSDiv(BinaryOperator & I)1095 Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1096 if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1097 SQ.getWithInstruction(&I)))
1098 return replaceInstUsesWith(I, V);
1099
1100 if (Instruction *X = foldVectorBinop(I))
1101 return X;
1102
1103 // Handle the integer div common cases
1104 if (Instruction *Common = commonIDivTransforms(I))
1105 return Common;
1106
1107 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1108 Type *Ty = I.getType();
1109 Value *X;
1110 // sdiv Op0, -1 --> -Op0
1111 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1112 if (match(Op1, m_AllOnes()) ||
1113 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1114 return BinaryOperator::CreateNeg(Op0);
1115
1116 // X / INT_MIN --> X == INT_MIN
1117 if (match(Op1, m_SignMask()))
1118 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1119
1120 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1121 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1122 if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1123 match(Op1, m_NegatedPower2()))) {
1124 bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1125 if (DivisorWasNegative)
1126 Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1127 auto *AShr = BinaryOperator::CreateExactAShr(
1128 Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1129 if (!DivisorWasNegative)
1130 return AShr;
1131 Builder.Insert(AShr);
1132 AShr->setName(I.getName() + ".neg");
1133 return BinaryOperator::CreateNeg(AShr, I.getName());
1134 }
1135
1136 const APInt *Op1C;
1137 if (match(Op1, m_APInt(Op1C))) {
1138 // If the dividend is sign-extended and the constant divisor is small enough
1139 // to fit in the source type, shrink the division to the narrower type:
1140 // (sext X) sdiv C --> sext (X sdiv C)
1141 Value *Op0Src;
1142 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1143 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1144
1145 // In the general case, we need to make sure that the dividend is not the
1146 // minimum signed value because dividing that by -1 is UB. But here, we
1147 // know that the -1 divisor case is already handled above.
1148
1149 Constant *NarrowDivisor =
1150 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1151 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1152 return new SExtInst(NarrowOp, Ty);
1153 }
1154
1155 // -X / C --> X / -C (if the negation doesn't overflow).
1156 // TODO: This could be enhanced to handle arbitrary vector constants by
1157 // checking if all elements are not the min-signed-val.
1158 if (!Op1C->isMinSignedValue() &&
1159 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1160 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1161 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1162 BO->setIsExact(I.isExact());
1163 return BO;
1164 }
1165 }
1166
1167 // -X / Y --> -(X / Y)
1168 Value *Y;
1169 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1170 return BinaryOperator::CreateNSWNeg(
1171 Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1172
1173 // abs(X) / X --> X > -1 ? 1 : -1
1174 // X / abs(X) --> X > -1 ? 1 : -1
1175 if (match(&I, m_c_BinOp(
1176 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1177 m_Deferred(X)))) {
1178 Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1179 Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1180 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1181 }
1182
1183 // If the sign bits of both operands are zero (i.e. we can prove they are
1184 // unsigned inputs), turn this into a udiv.
1185 APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1186 if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1187 if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1188 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1189 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1190 BO->setIsExact(I.isExact());
1191 return BO;
1192 }
1193
1194 if (match(Op1, m_NegatedPower2())) {
1195 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1196 // -> -(X udiv (1 << C)) -> -(X u>> C)
1197 return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
1198 Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1199 }
1200
1201 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1202 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1203 // Safe because the only negative value (1 << Y) can take on is
1204 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1205 // the sign bit set.
1206 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1207 BO->setIsExact(I.isExact());
1208 return BO;
1209 }
1210 }
1211
1212 return nullptr;
1213 }
1214
1215 /// Remove negation and try to convert division into multiplication.
foldFDivConstantDivisor(BinaryOperator & I)1216 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1217 Constant *C;
1218 if (!match(I.getOperand(1), m_Constant(C)))
1219 return nullptr;
1220
1221 // -X / C --> X / -C
1222 Value *X;
1223 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1224 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1225
1226 // If the constant divisor has an exact inverse, this is always safe. If not,
1227 // then we can still create a reciprocal if fast-math-flags allow it and the
1228 // constant is a regular number (not zero, infinite, or denormal).
1229 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1230 return nullptr;
1231
1232 // Disallow denormal constants because we don't know what would happen
1233 // on all targets.
1234 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1235 // denorms are flushed?
1236 auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1237 if (!RecipC->isNormalFP())
1238 return nullptr;
1239
1240 // X / C --> X * (1 / C)
1241 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1242 }
1243
1244 /// Remove negation and try to reassociate constant math.
foldFDivConstantDividend(BinaryOperator & I)1245 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1246 Constant *C;
1247 if (!match(I.getOperand(0), m_Constant(C)))
1248 return nullptr;
1249
1250 // C / -X --> -C / X
1251 Value *X;
1252 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1253 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1254
1255 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1256 return nullptr;
1257
1258 // Try to reassociate C / X expressions where X includes another constant.
1259 Constant *C2, *NewC = nullptr;
1260 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1261 // C / (X * C2) --> (C / C2) / X
1262 NewC = ConstantExpr::getFDiv(C, C2);
1263 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1264 // C / (X / C2) --> (C * C2) / X
1265 NewC = ConstantExpr::getFMul(C, C2);
1266 }
1267 // Disallow denormal constants because we don't know what would happen
1268 // on all targets.
1269 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1270 // denorms are flushed?
1271 if (!NewC || !NewC->isNormalFP())
1272 return nullptr;
1273
1274 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1275 }
1276
1277 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
foldFDivPowDivisor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1278 static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1279 InstCombiner::BuilderTy &Builder) {
1280 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1281 auto *II = dyn_cast<IntrinsicInst>(Op1);
1282 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1283 !I.hasAllowReciprocal())
1284 return nullptr;
1285
1286 // Z / pow(X, Y) --> Z * pow(X, -Y)
1287 // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1288 // In the general case, this creates an extra instruction, but fmul allows
1289 // for better canonicalization and optimization than fdiv.
1290 Intrinsic::ID IID = II->getIntrinsicID();
1291 SmallVector<Value *> Args;
1292 switch (IID) {
1293 case Intrinsic::pow:
1294 Args.push_back(II->getArgOperand(0));
1295 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1296 break;
1297 case Intrinsic::powi:
1298 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1299 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1300 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1301 // non-standard results, so this corner case should be acceptable if the
1302 // code rules out INF values.
1303 if (!I.hasNoInfs())
1304 return nullptr;
1305 Args.push_back(II->getArgOperand(0));
1306 Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1307 break;
1308 case Intrinsic::exp:
1309 case Intrinsic::exp2:
1310 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1311 break;
1312 default:
1313 return nullptr;
1314 }
1315 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1316 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1317 }
1318
visitFDiv(BinaryOperator & I)1319 Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1320 if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1321 I.getFastMathFlags(),
1322 SQ.getWithInstruction(&I)))
1323 return replaceInstUsesWith(I, V);
1324
1325 if (Instruction *X = foldVectorBinop(I))
1326 return X;
1327
1328 if (Instruction *R = foldFDivConstantDivisor(I))
1329 return R;
1330
1331 if (Instruction *R = foldFDivConstantDividend(I))
1332 return R;
1333
1334 if (Instruction *R = foldFPSignBitOps(I))
1335 return R;
1336
1337 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1338 if (isa<Constant>(Op0))
1339 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1340 if (Instruction *R = FoldOpIntoSelect(I, SI))
1341 return R;
1342
1343 if (isa<Constant>(Op1))
1344 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1345 if (Instruction *R = FoldOpIntoSelect(I, SI))
1346 return R;
1347
1348 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1349 Value *X, *Y;
1350 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1351 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1352 // (X / Y) / Z => X / (Y * Z)
1353 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1354 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1355 }
1356 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1357 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1358 // Z / (X / Y) => (Y * Z) / X
1359 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1360 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1361 }
1362 // Z / (1.0 / Y) => (Y * Z)
1363 //
1364 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1365 // m_OneUse check is avoided because even in the case of the multiple uses
1366 // for 1.0/Y, the number of instructions remain the same and a division is
1367 // replaced by a multiplication.
1368 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1369 return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1370 }
1371
1372 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1373 // sin(X) / cos(X) -> tan(X)
1374 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1375 Value *X;
1376 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1377 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1378 bool IsCot =
1379 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1380 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1381
1382 if ((IsTan || IsCot) &&
1383 hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1384 IRBuilder<> B(&I);
1385 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1386 B.setFastMathFlags(I.getFastMathFlags());
1387 AttributeList Attrs =
1388 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1389 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1390 LibFunc_tanl, B, Attrs);
1391 if (IsCot)
1392 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1393 return replaceInstUsesWith(I, Res);
1394 }
1395 }
1396
1397 // X / (X * Y) --> 1.0 / Y
1398 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1399 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1400 Value *X, *Y;
1401 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1402 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1403 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1404 replaceOperand(I, 1, Y);
1405 return &I;
1406 }
1407
1408 // X / fabs(X) -> copysign(1.0, X)
1409 // fabs(X) / X -> copysign(1.0, X)
1410 if (I.hasNoNaNs() && I.hasNoInfs() &&
1411 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1412 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1413 Value *V = Builder.CreateBinaryIntrinsic(
1414 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1415 return replaceInstUsesWith(I, V);
1416 }
1417
1418 if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1419 return Mul;
1420
1421 return nullptr;
1422 }
1423
1424 /// This function implements the transforms common to both integer remainder
1425 /// instructions (urem and srem). It is called by the visitors to those integer
1426 /// remainder instructions.
1427 /// Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1428 Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1429 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1430
1431 // The RHS is known non-zero.
1432 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1433 return replaceOperand(I, 1, V);
1434
1435 // Handle cases involving: rem X, (select Cond, Y, Z)
1436 if (simplifyDivRemOfSelectWithZeroOp(I))
1437 return &I;
1438
1439 if (isa<Constant>(Op1)) {
1440 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1441 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1442 if (Instruction *R = FoldOpIntoSelect(I, SI))
1443 return R;
1444 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1445 const APInt *Op1Int;
1446 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1447 (I.getOpcode() == Instruction::URem ||
1448 !Op1Int->isMinSignedValue())) {
1449 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1450 // predecessor blocks, so do this only if we know the srem or urem
1451 // will not fault.
1452 if (Instruction *NV = foldOpIntoPhi(I, PN))
1453 return NV;
1454 }
1455 }
1456
1457 // See if we can fold away this rem instruction.
1458 if (SimplifyDemandedInstructionBits(I))
1459 return &I;
1460 }
1461 }
1462
1463 return nullptr;
1464 }
1465
visitURem(BinaryOperator & I)1466 Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1467 if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1468 SQ.getWithInstruction(&I)))
1469 return replaceInstUsesWith(I, V);
1470
1471 if (Instruction *X = foldVectorBinop(I))
1472 return X;
1473
1474 if (Instruction *common = commonIRemTransforms(I))
1475 return common;
1476
1477 if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1478 return NarrowRem;
1479
1480 // X urem Y -> X and Y-1, where Y is a power of 2,
1481 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1482 Type *Ty = I.getType();
1483 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1484 // This may increase instruction count, we don't enforce that Y is a
1485 // constant.
1486 Constant *N1 = Constant::getAllOnesValue(Ty);
1487 Value *Add = Builder.CreateAdd(Op1, N1);
1488 return BinaryOperator::CreateAnd(Op0, Add);
1489 }
1490
1491 // 1 urem X -> zext(X != 1)
1492 if (match(Op0, m_One())) {
1493 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1494 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1495 }
1496
1497 // X urem C -> X < C ? X : X - C, where C >= signbit.
1498 if (match(Op1, m_Negative())) {
1499 Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1500 Value *Sub = Builder.CreateSub(Op0, Op1);
1501 return SelectInst::Create(Cmp, Op0, Sub);
1502 }
1503
1504 // If the divisor is a sext of a boolean, then the divisor must be max
1505 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1506 // max unsigned value. In that case, the remainder is 0:
1507 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1508 Value *X;
1509 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1510 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1511 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1512 }
1513
1514 return nullptr;
1515 }
1516
visitSRem(BinaryOperator & I)1517 Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1518 if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1519 SQ.getWithInstruction(&I)))
1520 return replaceInstUsesWith(I, V);
1521
1522 if (Instruction *X = foldVectorBinop(I))
1523 return X;
1524
1525 // Handle the integer rem common cases
1526 if (Instruction *Common = commonIRemTransforms(I))
1527 return Common;
1528
1529 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1530 {
1531 const APInt *Y;
1532 // X % -Y -> X % Y
1533 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1534 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1535 }
1536
1537 // -X srem Y --> -(X srem Y)
1538 Value *X, *Y;
1539 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1540 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1541
1542 // If the sign bits of both operands are zero (i.e. we can prove they are
1543 // unsigned inputs), turn this into a urem.
1544 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1545 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1546 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1547 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1548 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1549 }
1550
1551 // If it's a constant vector, flip any negative values positive.
1552 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1553 Constant *C = cast<Constant>(Op1);
1554 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1555
1556 bool hasNegative = false;
1557 bool hasMissing = false;
1558 for (unsigned i = 0; i != VWidth; ++i) {
1559 Constant *Elt = C->getAggregateElement(i);
1560 if (!Elt) {
1561 hasMissing = true;
1562 break;
1563 }
1564
1565 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1566 if (RHS->isNegative())
1567 hasNegative = true;
1568 }
1569
1570 if (hasNegative && !hasMissing) {
1571 SmallVector<Constant *, 16> Elts(VWidth);
1572 for (unsigned i = 0; i != VWidth; ++i) {
1573 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1574 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1575 if (RHS->isNegative())
1576 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1577 }
1578 }
1579
1580 Constant *NewRHSV = ConstantVector::get(Elts);
1581 if (NewRHSV != C) // Don't loop on -MININT
1582 return replaceOperand(I, 1, NewRHSV);
1583 }
1584 }
1585
1586 return nullptr;
1587 }
1588
visitFRem(BinaryOperator & I)1589 Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1590 if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1591 I.getFastMathFlags(),
1592 SQ.getWithInstruction(&I)))
1593 return replaceInstUsesWith(I, V);
1594
1595 if (Instruction *X = foldVectorBinop(I))
1596 return X;
1597
1598 return nullptr;
1599 }
1600