1 /* $NetBSD: ntp_calendar.c,v 1.11 2020/05/25 20:47:24 christos Exp $ */
2
3 /*
4 * ntp_calendar.c - calendar and helper functions
5 *
6 * Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
7 * The contents of 'html/copyright.html' apply.
8 *
9 * --------------------------------------------------------------------
10 * Some notes on the implementation:
11 *
12 * Calendar algorithms thrive on the division operation, which is one of
13 * the slowest numerical operations in any CPU. What saves us here from
14 * abysmal performance is the fact that all divisions are divisions by
15 * constant numbers, and most compilers can do this by a multiplication
16 * operation. But this might not work when using the div/ldiv/lldiv
17 * function family, because many compilers are not able to do inline
18 * expansion of the code with following optimisation for the
19 * constant-divider case.
20 *
21 * Also div/ldiv/lldiv are defined in terms of int/long/longlong, which
22 * are inherently target dependent. Nothing that could not be cured with
23 * autoconf, but still a mess...
24 *
25 * Furthermore, we need floor division in many places. C either leaves
26 * the division behaviour undefined (< C99) or demands truncation to
27 * zero (>= C99), so additional steps are required to make sure the
28 * algorithms work. The {l,ll}div function family is requested to
29 * truncate towards zero, which is also the wrong direction for our
30 * purpose.
31 *
32 * For all this, all divisions by constant are coded manually, even when
33 * there is a joined div/mod operation: The optimiser should sort that
34 * out, if possible. Most of the calculations are done with unsigned
35 * types, explicitely using two's complement arithmetics where
36 * necessary. This minimises the dependecies to compiler and target,
37 * while still giving reasonable to good performance.
38 *
39 * The implementation uses a few tricks that exploit properties of the
40 * two's complement: Floor division on negative dividents can be
41 * executed by using the one's complement of the divident. One's
42 * complement can be easily created using XOR and a mask.
43 *
44 * Finally, check for overflow conditions is minimal. There are only two
45 * calculation steps in the whole calendar that potentially suffer from
46 * an internal overflow, and these are coded in a way that avoids
47 * it. All other functions do not suffer from internal overflow and
48 * simply return the result truncated to 32 bits.
49 */
50
51 #include <config.h>
52 #include <sys/types.h>
53
54 #include "ntp_types.h"
55 #include "ntp_calendar.h"
56 #include "ntp_stdlib.h"
57 #include "ntp_fp.h"
58 #include "ntp_unixtime.h"
59
60 #include "ntpd.h"
61 #include "lib_strbuf.h"
62
63 /* For now, let's take the conservative approach: if the target property
64 * macros are not defined, check a few well-known compiler/architecture
65 * settings. Default is to assume that the representation of signed
66 * integers is unknown and shift-arithmetic-right is not available.
67 */
68 #ifndef TARGET_HAS_2CPL
69 # if defined(__GNUC__)
70 # if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
71 # define TARGET_HAS_2CPL 1
72 # else
73 # define TARGET_HAS_2CPL 0
74 # endif
75 # elif defined(_MSC_VER)
76 # if defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM)
77 # define TARGET_HAS_2CPL 1
78 # else
79 # define TARGET_HAS_2CPL 0
80 # endif
81 # else
82 # define TARGET_HAS_2CPL 0
83 # endif
84 #endif
85
86 #ifndef TARGET_HAS_SAR
87 # define TARGET_HAS_SAR 0
88 #endif
89
90 #if !defined(HAVE_64BITREGS) && defined(UINT64_MAX) && (SIZE_MAX >= UINT64_MAX)
91 # define HAVE_64BITREGS
92 #endif
93
94 /*
95 *---------------------------------------------------------------------
96 * replacing the 'time()' function
97 *---------------------------------------------------------------------
98 */
99
100 static systime_func_ptr systime_func = &time;
101 static inline time_t now(void);
102
103
104 systime_func_ptr
ntpcal_set_timefunc(systime_func_ptr nfunc)105 ntpcal_set_timefunc(
106 systime_func_ptr nfunc
107 )
108 {
109 systime_func_ptr res;
110
111 res = systime_func;
112 if (NULL == nfunc)
113 nfunc = &time;
114 systime_func = nfunc;
115
116 return res;
117 }
118
119
120 static inline time_t
now(void)121 now(void)
122 {
123 return (*systime_func)(NULL);
124 }
125
126 /*
127 *---------------------------------------------------------------------
128 * Get sign extension mask and unsigned 2cpl rep for a signed integer
129 *---------------------------------------------------------------------
130 */
131
132 static inline uint32_t
int32_sflag(const int32_t v)133 int32_sflag(
134 const int32_t v)
135 {
136 # if TARGET_HAS_2CPL && TARGET_HAS_SAR && SIZEOF_INT >= 4
137
138 /* Let's assume that shift is the fastest way to get the sign
139 * extension of of a signed integer. This might not always be
140 * true, though -- On 8bit CPUs or machines without barrel
141 * shifter this will kill the performance. So we make sure
142 * we do this only if 'int' has at least 4 bytes.
143 */
144 return (uint32_t)(v >> 31);
145
146 # else
147
148 /* This should be a rather generic approach for getting a sign
149 * extension mask...
150 */
151 return UINT32_C(0) - (uint32_t)(v < 0);
152
153 # endif
154 }
155
156 static inline int32_t
uint32_2cpl_to_int32(const uint32_t vu)157 uint32_2cpl_to_int32(
158 const uint32_t vu)
159 {
160 int32_t v;
161
162 # if TARGET_HAS_2CPL
163
164 /* Just copy through the 32 bits from the unsigned value if
165 * we're on a two's complement target.
166 */
167 v = (int32_t)vu;
168
169 # else
170
171 /* Convert to signed integer, making sure signed integer
172 * overflow cannot happen. Again, the optimiser might or might
173 * not find out that this is just a copy of 32 bits on a target
174 * with two's complement representation for signed integers.
175 */
176 if (vu > INT32_MAX)
177 v = -(int32_t)(~vu) - 1;
178 else
179 v = (int32_t)vu;
180
181 # endif
182
183 return v;
184 }
185
186 /*
187 *---------------------------------------------------------------------
188 * Convert between 'time_t' and 'vint64'
189 *---------------------------------------------------------------------
190 */
191 vint64
time_to_vint64(const time_t * ptt)192 time_to_vint64(
193 const time_t * ptt
194 )
195 {
196 vint64 res;
197 time_t tt;
198
199 tt = *ptt;
200
201 # if SIZEOF_TIME_T <= 4
202
203 res.D_s.hi = 0;
204 if (tt < 0) {
205 res.D_s.lo = (uint32_t)-tt;
206 M_NEG(res.D_s.hi, res.D_s.lo);
207 } else {
208 res.D_s.lo = (uint32_t)tt;
209 }
210
211 # elif defined(HAVE_INT64)
212
213 res.q_s = tt;
214
215 # else
216 /*
217 * shifting negative signed quantities is compiler-dependent, so
218 * we better avoid it and do it all manually. And shifting more
219 * than the width of a quantity is undefined. Also a don't do!
220 */
221 if (tt < 0) {
222 tt = -tt;
223 res.D_s.lo = (uint32_t)tt;
224 res.D_s.hi = (uint32_t)(tt >> 32);
225 M_NEG(res.D_s.hi, res.D_s.lo);
226 } else {
227 res.D_s.lo = (uint32_t)tt;
228 res.D_s.hi = (uint32_t)(tt >> 32);
229 }
230
231 # endif
232
233 return res;
234 }
235
236
237 time_t
vint64_to_time(const vint64 * tv)238 vint64_to_time(
239 const vint64 *tv
240 )
241 {
242 time_t res;
243
244 # if SIZEOF_TIME_T <= 4
245
246 res = (time_t)tv->D_s.lo;
247
248 # elif defined(HAVE_INT64)
249
250 res = (time_t)tv->q_s;
251
252 # else
253
254 res = ((time_t)tv->d_s.hi << 32) | tv->D_s.lo;
255
256 # endif
257
258 return res;
259 }
260
261 /*
262 *---------------------------------------------------------------------
263 * Get the build date & time
264 *---------------------------------------------------------------------
265 */
266 int
ntpcal_get_build_date(struct calendar * jd)267 ntpcal_get_build_date(
268 struct calendar * jd
269 )
270 {
271 /* The C standard tells us the format of '__DATE__':
272 *
273 * __DATE__ The date of translation of the preprocessing
274 * translation unit: a character string literal of the form "Mmm
275 * dd yyyy", where the names of the months are the same as those
276 * generated by the asctime function, and the first character of
277 * dd is a space character if the value is less than 10. If the
278 * date of translation is not available, an
279 * implementation-defined valid date shall be supplied.
280 *
281 * __TIME__ The time of translation of the preprocessing
282 * translation unit: a character string literal of the form
283 * "hh:mm:ss" as in the time generated by the asctime
284 * function. If the time of translation is not available, an
285 * implementation-defined valid time shall be supplied.
286 *
287 * Note that MSVC declares DATE and TIME to be in the local time
288 * zone, while neither the C standard nor the GCC docs make any
289 * statement about this. As a result, we may be +/-12hrs off
290 * UTC. But for practical purposes, this should not be a
291 * problem.
292 *
293 */
294 # ifdef MKREPRO_DATE
295 static const char build[] = MKREPRO_TIME "/" MKREPRO_DATE;
296 # else
297 static const char build[] = __TIME__ "/" __DATE__;
298 # endif
299 static const char mlist[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
300
301 char monstr[4];
302 const char * cp;
303 unsigned short hour, minute, second, day, year;
304 /* Note: The above quantities are used for sscanf 'hu' format,
305 * so using 'uint16_t' is contra-indicated!
306 */
307
308 # ifdef DEBUG
309 static int ignore = 0;
310 # endif
311
312 ZERO(*jd);
313 jd->year = 1970;
314 jd->month = 1;
315 jd->monthday = 1;
316
317 # ifdef DEBUG
318 /* check environment if build date should be ignored */
319 if (0 == ignore) {
320 const char * envstr;
321 envstr = getenv("NTPD_IGNORE_BUILD_DATE");
322 ignore = 1 + (envstr && (!*envstr || !strcasecmp(envstr, "yes")));
323 }
324 if (ignore > 1)
325 return FALSE;
326 # endif
327
328 if (6 == sscanf(build, "%hu:%hu:%hu/%3s %hu %hu",
329 &hour, &minute, &second, monstr, &day, &year)) {
330 cp = strstr(mlist, monstr);
331 if (NULL != cp) {
332 jd->year = year;
333 jd->month = (uint8_t)((cp - mlist) / 3 + 1);
334 jd->monthday = (uint8_t)day;
335 jd->hour = (uint8_t)hour;
336 jd->minute = (uint8_t)minute;
337 jd->second = (uint8_t)second;
338
339 return TRUE;
340 }
341 }
342
343 return FALSE;
344 }
345
346
347 /*
348 *---------------------------------------------------------------------
349 * basic calendar stuff
350 *---------------------------------------------------------------------
351 */
352
353 /*
354 * Some notes on the terminology:
355 *
356 * We use the proleptic Gregorian calendar, which is the Gregorian
357 * calendar extended in both directions ad infinitum. This totally
358 * disregards the fact that this calendar was invented in 1582, and
359 * was adopted at various dates over the world; sometimes even after
360 * the start of the NTP epoch.
361 *
362 * Normally date parts are given as current cycles, while time parts
363 * are given as elapsed cycles:
364 *
365 * 1970-01-01/03:04:05 means 'IN the 1970st. year, IN the first month,
366 * ON the first day, with 3hrs, 4minutes and 5 seconds elapsed.
367 *
368 * The basic calculations for this calendar implementation deal with
369 * ELAPSED date units, which is the number of full years, full months
370 * and full days before a date: 1970-01-01 would be (1969, 0, 0) in
371 * that notation.
372 *
373 * To ease the numeric computations, month and day values outside the
374 * normal range are acceptable: 2001-03-00 will be treated as the day
375 * before 2001-03-01, 2000-13-32 will give the same result as
376 * 2001-02-01 and so on.
377 *
378 * 'rd' or 'RD' is used as an abbreviation for the latin 'rata die'
379 * (day number). This is the number of days elapsed since 0000-12-31
380 * in the proleptic Gregorian calendar. The begin of the Christian Era
381 * (0001-01-01) is RD(1).
382 */
383
384 /*
385 * ====================================================================
386 *
387 * General algorithmic stuff
388 *
389 * ====================================================================
390 */
391
392 /*
393 *---------------------------------------------------------------------
394 * fast modulo 7 operations (floor/mathematical convention)
395 *---------------------------------------------------------------------
396 */
397 int
u32mod7(uint32_t x)398 u32mod7(
399 uint32_t x
400 )
401 {
402 /* This is a combination of tricks from "Hacker's Delight" with
403 * some modifications, like a multiplication that rounds up to
404 * drop the final adjustment stage.
405 *
406 * Do a partial reduction by digit sum to keep the value in the
407 * range permitted for the mul/shift stage. There are several
408 * possible and absolutely equivalent shift/mask combinations;
409 * this one is ARM-friendly because of a mask that fits into 16
410 * bit.
411 */
412 x = (x >> 15) + (x & UINT32_C(0x7FFF));
413 /* Take reminder as (mod 8) by mul/shift. Since the multiplier
414 * was calculated using ceil() instead of floor(), it skips the
415 * value '7' properly.
416 * M <- ceil(ldexp(8/7, 29))
417 */
418 return (int)((x * UINT32_C(0x24924925)) >> 29);
419 }
420
421 int
i32mod7(int32_t x)422 i32mod7(
423 int32_t x
424 )
425 {
426 /* We add (2**32 - 2**32 % 7), which is (2**32 - 4), to negative
427 * numbers to map them into the postive range. Only the term '-4'
428 * survives, obviously.
429 */
430 uint32_t ux = (uint32_t)x;
431 return u32mod7((x < 0) ? (ux - 4u) : ux);
432 }
433
434 uint32_t
i32fmod(int32_t x,uint32_t d)435 i32fmod(
436 int32_t x,
437 uint32_t d
438 )
439 {
440 uint32_t ux = (uint32_t)x;
441 uint32_t sf = UINT32_C(0) - (x < 0);
442 ux = (sf ^ ux ) % d;
443 return (d & sf) + (sf ^ ux);
444 }
445
446 /*
447 *---------------------------------------------------------------------
448 * Do a periodic extension of 'value' around 'pivot' with a period of
449 * 'cycle'.
450 *
451 * The result 'res' is a number that holds to the following properties:
452 *
453 * 1) res MOD cycle == value MOD cycle
454 * 2) pivot <= res < pivot + cycle
455 * (replace </<= with >/>= for negative cycles)
456 *
457 * where 'MOD' denotes the modulo operator for FLOOR DIVISION, which
458 * is not the same as the '%' operator in C: C requires division to be
459 * a truncated division, where remainder and dividend have the same
460 * sign if the remainder is not zero, whereas floor division requires
461 * divider and modulus to have the same sign for a non-zero modulus.
462 *
463 * This function has some useful applications:
464 *
465 * + let Y be a calendar year and V a truncated 2-digit year: then
466 * periodic_extend(Y-50, V, 100)
467 * is the closest expansion of the truncated year with respect to
468 * the full year, that is a 4-digit year with a difference of less
469 * than 50 years to the year Y. ("century unfolding")
470 *
471 * + let T be a UN*X time stamp and V be seconds-of-day: then
472 * perodic_extend(T-43200, V, 86400)
473 * is a time stamp that has the same seconds-of-day as the input
474 * value, with an absolute difference to T of <= 12hrs. ("day
475 * unfolding")
476 *
477 * + Wherever you have a truncated periodic value and a non-truncated
478 * base value and you want to match them somehow...
479 *
480 * Basically, the function delivers 'pivot + (value - pivot) % cycle',
481 * but the implementation takes some pains to avoid internal signed
482 * integer overflows in the '(value - pivot) % cycle' part and adheres
483 * to the floor division convention.
484 *
485 * If 64bit scalars where available on all intended platforms, writing a
486 * version that uses 64 bit ops would be easy; writing a general
487 * division routine for 64bit ops on a platform that can only do
488 * 32/16bit divisions and is still performant is a bit more
489 * difficult. Since most usecases can be coded in a way that does only
490 * require the 32bit version a 64bit version is NOT provided here.
491 *---------------------------------------------------------------------
492 */
493 int32_t
ntpcal_periodic_extend(int32_t pivot,int32_t value,int32_t cycle)494 ntpcal_periodic_extend(
495 int32_t pivot,
496 int32_t value,
497 int32_t cycle
498 )
499 {
500 /* Implement a 4-quadrant modulus calculation by 2 2-quadrant
501 * branches, one for positive and one for negative dividers.
502 * Everything else can be handled by bit level logic and
503 * conditional one's complement arithmetic. By convention, we
504 * assume
505 *
506 * x % b == 0 if |b| < 2
507 *
508 * that is, we don't actually divide for cycles of -1,0,1 and
509 * return the pivot value in that case.
510 */
511 uint32_t uv = (uint32_t)value;
512 uint32_t up = (uint32_t)pivot;
513 uint32_t uc, sf;
514
515 if (cycle > 1)
516 {
517 uc = (uint32_t)cycle;
518 sf = UINT32_C(0) - (value < pivot);
519
520 uv = sf ^ (uv - up);
521 uv %= uc;
522 pivot += (uc & sf) + (sf ^ uv);
523 }
524 else if (cycle < -1)
525 {
526 uc = ~(uint32_t)cycle + 1;
527 sf = UINT32_C(0) - (value > pivot);
528
529 uv = sf ^ (up - uv);
530 uv %= uc;
531 pivot -= (uc & sf) + (sf ^ uv);
532 }
533 return pivot;
534 }
535
536 /*---------------------------------------------------------------------
537 * Note to the casual reader
538 *
539 * In the next two functions you will find (or would have found...)
540 * the expression
541 *
542 * res.Q_s -= 0x80000000;
543 *
544 * There was some ruckus about a possible programming error due to
545 * integer overflow and sign propagation.
546 *
547 * This assumption is based on a lack of understanding of the C
548 * standard. (Though this is admittedly not one of the most 'natural'
549 * aspects of the 'C' language and easily to get wrong.)
550 *
551 * see
552 * http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
553 * "ISO/IEC 9899:201x Committee Draft — April 12, 2011"
554 * 6.4.4.1 Integer constants, clause 5
555 *
556 * why there is no sign extension/overflow problem here.
557 *
558 * But to ease the minds of the doubtful, I added back the 'u' qualifiers
559 * that somehow got lost over the last years.
560 */
561
562
563 /*
564 *---------------------------------------------------------------------
565 * Convert a timestamp in NTP scale to a 64bit seconds value in the UN*X
566 * scale with proper epoch unfolding around a given pivot or the current
567 * system time. This function happily accepts negative pivot values as
568 * timestamps before 1970-01-01, so be aware of possible trouble on
569 * platforms with 32bit 'time_t'!
570 *
571 * This is also a periodic extension, but since the cycle is 2^32 and
572 * the shift is 2^31, we can do some *very* fast math without explicit
573 * divisions.
574 *---------------------------------------------------------------------
575 */
576 vint64
ntpcal_ntp_to_time(uint32_t ntp,const time_t * pivot)577 ntpcal_ntp_to_time(
578 uint32_t ntp,
579 const time_t * pivot
580 )
581 {
582 vint64 res;
583
584 # if defined(HAVE_INT64)
585
586 res.q_s = (pivot != NULL)
587 ? *pivot
588 : now();
589 res.Q_s -= 0x80000000u; /* unshift of half range */
590 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
591 ntp -= res.D_s.lo; /* cycle difference */
592 res.Q_s += (uint64_t)ntp; /* get expanded time */
593
594 # else /* no 64bit scalars */
595
596 time_t tmp;
597
598 tmp = (pivot != NULL)
599 ? *pivot
600 : now();
601 res = time_to_vint64(&tmp);
602 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
603 ntp -= (uint32_t)JAN_1970; /* warp into UN*X domain */
604 ntp -= res.D_s.lo; /* cycle difference */
605 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
606
607 # endif /* no 64bit scalars */
608
609 return res;
610 }
611
612 /*
613 *---------------------------------------------------------------------
614 * Convert a timestamp in NTP scale to a 64bit seconds value in the NTP
615 * scale with proper epoch unfolding around a given pivot or the current
616 * system time.
617 *
618 * Note: The pivot must be given in the UN*X time domain!
619 *
620 * This is also a periodic extension, but since the cycle is 2^32 and
621 * the shift is 2^31, we can do some *very* fast math without explicit
622 * divisions.
623 *---------------------------------------------------------------------
624 */
625 vint64
ntpcal_ntp_to_ntp(uint32_t ntp,const time_t * pivot)626 ntpcal_ntp_to_ntp(
627 uint32_t ntp,
628 const time_t *pivot
629 )
630 {
631 vint64 res;
632
633 # if defined(HAVE_INT64)
634
635 res.q_s = (pivot)
636 ? *pivot
637 : now();
638 res.Q_s -= 0x80000000u; /* unshift of half range */
639 res.Q_s += (uint32_t)JAN_1970; /* warp into NTP domain */
640 ntp -= res.D_s.lo; /* cycle difference */
641 res.Q_s += (uint64_t)ntp; /* get expanded time */
642
643 # else /* no 64bit scalars */
644
645 time_t tmp;
646
647 tmp = (pivot)
648 ? *pivot
649 : now();
650 res = time_to_vint64(&tmp);
651 M_SUB(res.D_s.hi, res.D_s.lo, 0, 0x80000000u);
652 M_ADD(res.D_s.hi, res.D_s.lo, 0, (uint32_t)JAN_1970);/*into NTP */
653 ntp -= res.D_s.lo; /* cycle difference */
654 M_ADD(res.D_s.hi, res.D_s.lo, 0, ntp);
655
656 # endif /* no 64bit scalars */
657
658 return res;
659 }
660
661
662 /*
663 * ====================================================================
664 *
665 * Splitting values to composite entities
666 *
667 * ====================================================================
668 */
669
670 /*
671 *---------------------------------------------------------------------
672 * Split a 64bit seconds value into elapsed days in 'res.hi' and
673 * elapsed seconds since midnight in 'res.lo' using explicit floor
674 * division. This function happily accepts negative time values as
675 * timestamps before the respective epoch start.
676 *---------------------------------------------------------------------
677 */
678 ntpcal_split
ntpcal_daysplit(const vint64 * ts)679 ntpcal_daysplit(
680 const vint64 *ts
681 )
682 {
683 ntpcal_split res;
684 uint32_t Q, R;
685
686 # if defined(HAVE_64BITREGS)
687
688 /* Assume we have 64bit registers an can do a divison by
689 * constant reasonably fast using the one's complement trick..
690 */
691 uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
692 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERDAY));
693 R = (uint32_t)(ts->Q_s - Q * SECSPERDAY);
694
695 # elif defined(UINT64_MAX) && !defined(__arm__)
696
697 /* We rely on the compiler to do efficient 64bit divisions as
698 * good as possible. Which might or might not be true. At least
699 * for ARM CPUs, the sum-by-digit code in the next section is
700 * faster for many compilers. (This might change over time, but
701 * the 64bit-by-32bit division will never outperform the exact
702 * division by a substantial factor....)
703 */
704 if (ts->q_s < 0)
705 Q = ~(uint32_t)(~ts->Q_s / SECSPERDAY);
706 else
707 Q = (uint32_t)( ts->Q_s / SECSPERDAY);
708 R = ts->D_s.lo - Q * SECSPERDAY;
709
710 # else
711
712 /* We don't have 64bit regs. That hurts a bit.
713 *
714 * Here we use a mean trick to get away with just one explicit
715 * modulo operation and pure 32bit ops.
716 *
717 * Remember: 86400 <--> 128 * 675
718 *
719 * So we discard the lowest 7 bit and do an exact division by
720 * 675, modulo 2**32.
721 *
722 * First we shift out the lower 7 bits.
723 *
724 * Then we use a digit-wise pseudo-reduction, where a 'digit' is
725 * actually a 16-bit group. This is followed by a full reduction
726 * with a 'true' division step. This yields the modulus of the
727 * full 64bit value. The sign bit gets some extra treatment.
728 *
729 * Then we decrement the lower limb by that modulus, so it is
730 * exactly divisible by 675. [*]
731 *
732 * Then we multiply with the modular inverse of 675 (mod 2**32)
733 * and voila, we have the result.
734 *
735 * Special Thanks to Henry S. Warren and his "Hacker's delight"
736 * for giving that idea.
737 *
738 * (Note[*]: that's not the full truth. We would have to
739 * subtract the modulus from the full 64 bit number to get a
740 * number that is divisible by 675. But since we use the
741 * multiplicative inverse (mod 2**32) there's no reason to carry
742 * the subtraction into the upper bits!)
743 */
744 uint32_t al = ts->D_s.lo;
745 uint32_t ah = ts->D_s.hi;
746
747 /* shift out the lower 7 bits, smash sign bit */
748 al = (al >> 7) | (ah << 25);
749 ah = (ah >> 7) & 0x00FFFFFFu;
750
751 R = (ts->d_s.hi < 0) ? 239 : 0;/* sign bit value */
752 R += (al & 0xFFFF);
753 R += (al >> 16 ) * 61u; /* 2**16 % 675 */
754 R += (ah & 0xFFFF) * 346u; /* 2**32 % 675 */
755 R += (ah >> 16 ) * 181u; /* 2**48 % 675 */
756 R %= 675u; /* final reduction */
757 Q = (al - R) * 0x2D21C10Bu; /* modinv(675, 2**32) */
758 R = (R << 7) | (ts->d_s.lo & 0x07F);
759
760 # endif
761
762 res.hi = uint32_2cpl_to_int32(Q);
763 res.lo = R;
764
765 return res;
766 }
767
768 /*
769 *---------------------------------------------------------------------
770 * Split a 64bit seconds value into elapsed weeks in 'res.hi' and
771 * elapsed seconds since week start in 'res.lo' using explicit floor
772 * division. This function happily accepts negative time values as
773 * timestamps before the respective epoch start.
774 *---------------------------------------------------------------------
775 */
776 ntpcal_split
ntpcal_weeksplit(const vint64 * ts)777 ntpcal_weeksplit(
778 const vint64 *ts
779 )
780 {
781 ntpcal_split res;
782 uint32_t Q, R;
783
784 /* This is a very close relative to the day split function; for
785 * details, see there!
786 */
787
788 # if defined(HAVE_64BITREGS)
789
790 uint64_t sf64 = (uint64_t)-(ts->q_s < 0);
791 Q = (uint32_t)(sf64 ^ ((sf64 ^ ts->Q_s) / SECSPERWEEK));
792 R = (uint32_t)(ts->Q_s - Q * SECSPERWEEK);
793
794 # elif defined(UINT64_MAX) && !defined(__arm__)
795
796 if (ts->q_s < 0)
797 Q = ~(uint32_t)(~ts->Q_s / SECSPERWEEK);
798 else
799 Q = (uint32_t)( ts->Q_s / SECSPERWEEK);
800 R = ts->D_s.lo - Q * SECSPERWEEK;
801
802 # else
803
804 /* Remember: 7*86400 <--> 604800 <--> 128 * 4725 */
805 uint32_t al = ts->D_s.lo;
806 uint32_t ah = ts->D_s.hi;
807
808 al = (al >> 7) | (ah << 25);
809 ah = (ah >> 7) & 0x00FFFFFF;
810
811 R = (ts->d_s.hi < 0) ? 2264 : 0;/* sign bit value */
812 R += (al & 0xFFFF);
813 R += (al >> 16 ) * 4111u; /* 2**16 % 4725 */
814 R += (ah & 0xFFFF) * 3721u; /* 2**32 % 4725 */
815 R += (ah >> 16 ) * 2206u; /* 2**48 % 4725 */
816 R %= 4725u; /* final reduction */
817 Q = (al - R) * 0x98BBADDDu; /* modinv(4725, 2**32) */
818 R = (R << 7) | (ts->d_s.lo & 0x07F);
819
820 # endif
821
822 res.hi = uint32_2cpl_to_int32(Q);
823 res.lo = R;
824
825 return res;
826 }
827
828 /*
829 *---------------------------------------------------------------------
830 * Split a 32bit seconds value into h/m/s and excessive days. This
831 * function happily accepts negative time values as timestamps before
832 * midnight.
833 *---------------------------------------------------------------------
834 */
835 static int32_t
priv_timesplit(int32_t split[3],int32_t ts)836 priv_timesplit(
837 int32_t split[3],
838 int32_t ts
839 )
840 {
841 /* Do 3 chained floor divisions by positive constants, using the
842 * one's complement trick and factoring out the intermediate XOR
843 * ops to reduce the number of operations.
844 */
845 uint32_t us, um, uh, ud, sf32;
846
847 sf32 = int32_sflag(ts);
848
849 us = (uint32_t)ts;
850 um = (sf32 ^ us) / SECSPERMIN;
851 uh = um / MINSPERHR;
852 ud = uh / HRSPERDAY;
853
854 um ^= sf32;
855 uh ^= sf32;
856 ud ^= sf32;
857
858 split[0] = (int32_t)(uh - ud * HRSPERDAY );
859 split[1] = (int32_t)(um - uh * MINSPERHR );
860 split[2] = (int32_t)(us - um * SECSPERMIN);
861
862 return uint32_2cpl_to_int32(ud);
863 }
864
865 /*
866 *---------------------------------------------------------------------
867 * Given the number of elapsed days in the calendar era, split this
868 * number into the number of elapsed years in 'res.hi' and the number
869 * of elapsed days of that year in 'res.lo'.
870 *
871 * if 'isleapyear' is not NULL, it will receive an integer that is 0 for
872 * regular years and a non-zero value for leap years.
873 *---------------------------------------------------------------------
874 */
875 ntpcal_split
ntpcal_split_eradays(int32_t days,int * isleapyear)876 ntpcal_split_eradays(
877 int32_t days,
878 int *isleapyear
879 )
880 {
881 /* Use the fast cycle split algorithm here, to calculate the
882 * centuries and years in a century with one division each. This
883 * reduces the number of division operations to two, but is
884 * susceptible to internal range overflow. We take some extra
885 * steps to avoid the gap.
886 */
887 ntpcal_split res;
888 int32_t n100, n001; /* calendar year cycles */
889 uint32_t uday, Q;
890
891 /* split off centuries first
892 *
893 * We want to execute '(days * 4 + 3) /% 146097' under floor
894 * division rules in the first step. Well, actually we want to
895 * calculate 'floor((days + 0.75) / 36524.25)', but we want to
896 * do it in scaled integer calculation.
897 */
898 # if defined(HAVE_64BITREGS)
899
900 /* not too complicated with an intermediate 64bit value */
901 uint64_t ud64, sf64;
902 ud64 = ((uint64_t)days << 2) | 3u;
903 sf64 = (uint64_t)-(days < 0);
904 Q = (uint32_t)(sf64 ^ ((sf64 ^ ud64) / GREGORIAN_CYCLE_DAYS));
905 uday = (uint32_t)(ud64 - Q * GREGORIAN_CYCLE_DAYS);
906 n100 = uint32_2cpl_to_int32(Q);
907
908 # else
909
910 /* '4*days+3' suffers from range overflow when going to the
911 * limits. We solve this by doing an exact division (mod 2^32)
912 * after caclulating the remainder first.
913 *
914 * We start with a partial reduction by digit sums, extracting
915 * the upper bits from the original value before they get lost
916 * by scaling, and do one full division step to get the true
917 * remainder. Then a final multiplication with the
918 * multiplicative inverse of 146097 (mod 2^32) gives us the full
919 * quotient.
920 *
921 * (-2^33) % 146097 --> 130717 : the sign bit value
922 * ( 2^20) % 146097 --> 25897 : the upper digit value
923 * modinv(146097, 2^32) --> 660721233 : the inverse
924 */
925 uint32_t ux = ((uint32_t)days << 2) | 3;
926 uday = (days < 0) ? 130717u : 0u; /* sign dgt */
927 uday += ((days >> 18) & 0x01FFFu) * 25897u; /* hi dgt (src!) */
928 uday += (ux & 0xFFFFFu); /* lo dgt */
929 uday %= GREGORIAN_CYCLE_DAYS; /* full reduction */
930 Q = (ux - uday) * 660721233u; /* exact div */
931 n100 = uint32_2cpl_to_int32(Q);
932
933 # endif
934
935 /* Split off years in century -- days >= 0 here, and we're far
936 * away from integer overflow trouble now. */
937 uday |= 3;
938 n001 = uday / GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
939 uday -= n001 * GREGORIAN_NORMAL_LEAP_CYCLE_DAYS;
940
941 /* Assemble the year and day in year */
942 res.hi = n100 * 100 + n001;
943 res.lo = uday / 4u;
944
945 /* Possibly set the leap year flag */
946 if (isleapyear) {
947 uint32_t tc = (uint32_t)n100 + 1;
948 uint32_t ty = (uint32_t)n001 + 1;
949 *isleapyear = !(ty & 3)
950 && ((ty != 100) || !(tc & 3));
951 }
952 return res;
953 }
954
955 /*
956 *---------------------------------------------------------------------
957 * Given a number of elapsed days in a year and a leap year indicator,
958 * split the number of elapsed days into the number of elapsed months in
959 * 'res.hi' and the number of elapsed days of that month in 'res.lo'.
960 *
961 * This function will fail and return {-1,-1} if the number of elapsed
962 * days is not in the valid range!
963 *---------------------------------------------------------------------
964 */
965 ntpcal_split
ntpcal_split_yeardays(int32_t eyd,int isleap)966 ntpcal_split_yeardays(
967 int32_t eyd,
968 int isleap
969 )
970 {
971 /* Use the unshifted-year, February-with-30-days approach here.
972 * Fractional interpolations are used in both directions, with
973 * the smallest power-of-two divider to avoid any true division.
974 */
975 ntpcal_split res = {-1, -1};
976
977 /* convert 'isleap' to number of defective days */
978 isleap = 1 + !isleap;
979 /* adjust for February of 30 nominal days */
980 if (eyd >= 61 - isleap)
981 eyd += isleap;
982 /* if in range, convert to months and days in month */
983 if (eyd >= 0 && eyd < 367) {
984 res.hi = (eyd * 67 + 32) >> 11;
985 res.lo = eyd - ((489 * res.hi + 8) >> 4);
986 }
987
988 return res;
989 }
990
991 /*
992 *---------------------------------------------------------------------
993 * Convert a RD into the date part of a 'struct calendar'.
994 *---------------------------------------------------------------------
995 */
996 int
ntpcal_rd_to_date(struct calendar * jd,int32_t rd)997 ntpcal_rd_to_date(
998 struct calendar *jd,
999 int32_t rd
1000 )
1001 {
1002 ntpcal_split split;
1003 int leapy;
1004 u_int ymask;
1005
1006 /* Get day-of-week first. It's simply the RD (mod 7)... */
1007 jd->weekday = i32mod7(rd);
1008
1009 split = ntpcal_split_eradays(rd - 1, &leapy);
1010 /* Get year and day-of-year, with overflow check. If any of the
1011 * upper 16 bits is set after shifting to unity-based years, we
1012 * will have an overflow when converting to an unsigned 16bit
1013 * year. Shifting to the right is OK here, since it does not
1014 * matter if the shift is logic or arithmetic.
1015 */
1016 split.hi += 1;
1017 ymask = 0u - ((split.hi >> 16) == 0);
1018 jd->year = (uint16_t)(split.hi & ymask);
1019 jd->yearday = (uint16_t)split.lo + 1;
1020
1021 /* convert to month and mday */
1022 split = ntpcal_split_yeardays(split.lo, leapy);
1023 jd->month = (uint8_t)split.hi + 1;
1024 jd->monthday = (uint8_t)split.lo + 1;
1025
1026 return ymask ? leapy : -1;
1027 }
1028
1029 /*
1030 *---------------------------------------------------------------------
1031 * Convert a RD into the date part of a 'struct tm'.
1032 *---------------------------------------------------------------------
1033 */
1034 int
ntpcal_rd_to_tm(struct tm * utm,int32_t rd)1035 ntpcal_rd_to_tm(
1036 struct tm *utm,
1037 int32_t rd
1038 )
1039 {
1040 ntpcal_split split;
1041 int leapy;
1042
1043 /* get day-of-week first */
1044 utm->tm_wday = i32mod7(rd);
1045
1046 /* get year and day-of-year */
1047 split = ntpcal_split_eradays(rd - 1, &leapy);
1048 utm->tm_year = split.hi - 1899;
1049 utm->tm_yday = split.lo; /* 0-based */
1050
1051 /* convert to month and mday */
1052 split = ntpcal_split_yeardays(split.lo, leapy);
1053 utm->tm_mon = split.hi; /* 0-based */
1054 utm->tm_mday = split.lo + 1; /* 1-based */
1055
1056 return leapy;
1057 }
1058
1059 /*
1060 *---------------------------------------------------------------------
1061 * Take a value of seconds since midnight and split it into hhmmss in a
1062 * 'struct calendar'.
1063 *---------------------------------------------------------------------
1064 */
1065 int32_t
ntpcal_daysec_to_date(struct calendar * jd,int32_t sec)1066 ntpcal_daysec_to_date(
1067 struct calendar *jd,
1068 int32_t sec
1069 )
1070 {
1071 int32_t days;
1072 int ts[3];
1073
1074 days = priv_timesplit(ts, sec);
1075 jd->hour = (uint8_t)ts[0];
1076 jd->minute = (uint8_t)ts[1];
1077 jd->second = (uint8_t)ts[2];
1078
1079 return days;
1080 }
1081
1082 /*
1083 *---------------------------------------------------------------------
1084 * Take a value of seconds since midnight and split it into hhmmss in a
1085 * 'struct tm'.
1086 *---------------------------------------------------------------------
1087 */
1088 int32_t
ntpcal_daysec_to_tm(struct tm * utm,int32_t sec)1089 ntpcal_daysec_to_tm(
1090 struct tm *utm,
1091 int32_t sec
1092 )
1093 {
1094 int32_t days;
1095 int32_t ts[3];
1096
1097 days = priv_timesplit(ts, sec);
1098 utm->tm_hour = ts[0];
1099 utm->tm_min = ts[1];
1100 utm->tm_sec = ts[2];
1101
1102 return days;
1103 }
1104
1105 /*
1106 *---------------------------------------------------------------------
1107 * take a split representation for day/second-of-day and day offset
1108 * and convert it to a 'struct calendar'. The seconds will be normalised
1109 * into the range of a day, and the day will be adjusted accordingly.
1110 *
1111 * returns >0 if the result is in a leap year, 0 if in a regular
1112 * year and <0 if the result did not fit into the calendar struct.
1113 *---------------------------------------------------------------------
1114 */
1115 int
ntpcal_daysplit_to_date(struct calendar * jd,const ntpcal_split * ds,int32_t dof)1116 ntpcal_daysplit_to_date(
1117 struct calendar *jd,
1118 const ntpcal_split *ds,
1119 int32_t dof
1120 )
1121 {
1122 dof += ntpcal_daysec_to_date(jd, ds->lo);
1123 return ntpcal_rd_to_date(jd, ds->hi + dof);
1124 }
1125
1126 /*
1127 *---------------------------------------------------------------------
1128 * take a split representation for day/second-of-day and day offset
1129 * and convert it to a 'struct tm'. The seconds will be normalised
1130 * into the range of a day, and the day will be adjusted accordingly.
1131 *
1132 * returns 1 if the result is in a leap year and zero if in a regular
1133 * year.
1134 *---------------------------------------------------------------------
1135 */
1136 int
ntpcal_daysplit_to_tm(struct tm * utm,const ntpcal_split * ds,int32_t dof)1137 ntpcal_daysplit_to_tm(
1138 struct tm *utm,
1139 const ntpcal_split *ds ,
1140 int32_t dof
1141 )
1142 {
1143 dof += ntpcal_daysec_to_tm(utm, ds->lo);
1144
1145 return ntpcal_rd_to_tm(utm, ds->hi + dof);
1146 }
1147
1148 /*
1149 *---------------------------------------------------------------------
1150 * Take a UN*X time and convert to a calendar structure.
1151 *---------------------------------------------------------------------
1152 */
1153 int
ntpcal_time_to_date(struct calendar * jd,const vint64 * ts)1154 ntpcal_time_to_date(
1155 struct calendar *jd,
1156 const vint64 *ts
1157 )
1158 {
1159 ntpcal_split ds;
1160
1161 ds = ntpcal_daysplit(ts);
1162 ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
1163 ds.hi += DAY_UNIX_STARTS;
1164
1165 return ntpcal_rd_to_date(jd, ds.hi);
1166 }
1167
1168
1169 /*
1170 * ====================================================================
1171 *
1172 * merging composite entities
1173 *
1174 * ====================================================================
1175 */
1176
1177 #if !defined(HAVE_INT64)
1178 /* multiplication helper. Seconds in days and weeks are multiples of 128,
1179 * and without that factor fit well into 16 bit. So a multiplication
1180 * of 32bit by 16bit and some shifting can be used on pure 32bit machines
1181 * with compilers that do not support 64bit integers.
1182 *
1183 * Calculate ( hi * mul * 128 ) + lo
1184 */
1185 static vint64
_dwjoin(uint16_t mul,int32_t hi,int32_t lo)1186 _dwjoin(
1187 uint16_t mul,
1188 int32_t hi,
1189 int32_t lo
1190 )
1191 {
1192 vint64 res;
1193 uint32_t p1, p2, sf;
1194
1195 /* get sign flag and absolute value of 'hi' in p1 */
1196 sf = (uint32_t)-(hi < 0);
1197 p1 = ((uint32_t)hi + sf) ^ sf;
1198
1199 /* assemble major units: res <- |hi| * mul */
1200 res.D_s.lo = (p1 & 0xFFFF) * mul;
1201 res.D_s.hi = 0;
1202 p1 = (p1 >> 16) * mul;
1203 p2 = p1 >> 16;
1204 p1 = p1 << 16;
1205 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1206
1207 /* mul by 128, using shift: res <-- res << 7 */
1208 res.D_s.hi = (res.D_s.hi << 7) | (res.D_s.lo >> 25);
1209 res.D_s.lo = (res.D_s.lo << 7);
1210
1211 /* fix up sign: res <-- (res + [sf|sf]) ^ [sf|sf] */
1212 M_ADD(res.D_s.hi, res.D_s.lo, sf, sf);
1213 res.D_s.lo ^= sf;
1214 res.D_s.hi ^= sf;
1215
1216 /* properly add seconds: res <-- res + [sx(lo)|lo] */
1217 p2 = (uint32_t)-(lo < 0);
1218 p1 = (uint32_t)lo;
1219 M_ADD(res.D_s.hi, res.D_s.lo, p2, p1);
1220 return res;
1221 }
1222 #endif
1223
1224 /*
1225 *---------------------------------------------------------------------
1226 * Merge a number of days and a number of seconds into seconds,
1227 * expressed in 64 bits to avoid overflow.
1228 *---------------------------------------------------------------------
1229 */
1230 vint64
ntpcal_dayjoin(int32_t days,int32_t secs)1231 ntpcal_dayjoin(
1232 int32_t days,
1233 int32_t secs
1234 )
1235 {
1236 vint64 res;
1237
1238 # if defined(HAVE_INT64)
1239
1240 res.q_s = days;
1241 res.q_s *= SECSPERDAY;
1242 res.q_s += secs;
1243
1244 # else
1245
1246 res = _dwjoin(675, days, secs);
1247
1248 # endif
1249
1250 return res;
1251 }
1252
1253 /*
1254 *---------------------------------------------------------------------
1255 * Merge a number of weeks and a number of seconds into seconds,
1256 * expressed in 64 bits to avoid overflow.
1257 *---------------------------------------------------------------------
1258 */
1259 vint64
ntpcal_weekjoin(int32_t week,int32_t secs)1260 ntpcal_weekjoin(
1261 int32_t week,
1262 int32_t secs
1263 )
1264 {
1265 vint64 res;
1266
1267 # if defined(HAVE_INT64)
1268
1269 res.q_s = week;
1270 res.q_s *= SECSPERWEEK;
1271 res.q_s += secs;
1272
1273 # else
1274
1275 res = _dwjoin(4725, week, secs);
1276
1277 # endif
1278
1279 return res;
1280 }
1281
1282 /*
1283 *---------------------------------------------------------------------
1284 * get leap years since epoch in elapsed years
1285 *---------------------------------------------------------------------
1286 */
1287 int32_t
ntpcal_leapyears_in_years(int32_t years)1288 ntpcal_leapyears_in_years(
1289 int32_t years
1290 )
1291 {
1292 /* We use the in-out-in algorithm here, using the one's
1293 * complement division trick for negative numbers. The chained
1294 * division sequence by 4/25/4 gives the compiler the chance to
1295 * get away with only one true division and doing shifts otherwise.
1296 */
1297
1298 uint32_t sf32, sum, uyear;
1299
1300 sf32 = int32_sflag(years);
1301 uyear = (uint32_t)years;
1302 uyear ^= sf32;
1303
1304 sum = (uyear /= 4u); /* 4yr rule --> IN */
1305 sum -= (uyear /= 25u); /* 100yr rule --> OUT */
1306 sum += (uyear /= 4u); /* 400yr rule --> IN */
1307
1308 /* Thanks to the alternation of IN/OUT/IN we can do the sum
1309 * directly and have a single one's complement operation
1310 * here. (Only if the years are negative, of course.) Otherwise
1311 * the one's complement would have to be done when
1312 * adding/subtracting the terms.
1313 */
1314 return uint32_2cpl_to_int32(sf32 ^ sum);
1315 }
1316
1317 /*
1318 *---------------------------------------------------------------------
1319 * Convert elapsed years in Era into elapsed days in Era.
1320 *---------------------------------------------------------------------
1321 */
1322 int32_t
ntpcal_days_in_years(int32_t years)1323 ntpcal_days_in_years(
1324 int32_t years
1325 )
1326 {
1327 return years * DAYSPERYEAR + ntpcal_leapyears_in_years(years);
1328 }
1329
1330 /*
1331 *---------------------------------------------------------------------
1332 * Convert a number of elapsed month in a year into elapsed days in year.
1333 *
1334 * The month will be normalized, and 'res.hi' will contain the
1335 * excessive years that must be considered when converting the years,
1336 * while 'res.lo' will contain the number of elapsed days since start
1337 * of the year.
1338 *
1339 * This code uses the shifted-month-approach to convert month to days,
1340 * because then there is no need to have explicit leap year
1341 * information. The slight disadvantage is that for most month values
1342 * the result is a negative value, and the year excess is one; the
1343 * conversion is then simply based on the start of the following year.
1344 *---------------------------------------------------------------------
1345 */
1346 ntpcal_split
ntpcal_days_in_months(int32_t m)1347 ntpcal_days_in_months(
1348 int32_t m
1349 )
1350 {
1351 ntpcal_split res;
1352
1353 /* Add ten months with proper year adjustment. */
1354 if (m < 2) {
1355 res.lo = m + 10;
1356 res.hi = 0;
1357 } else {
1358 res.lo = m - 2;
1359 res.hi = 1;
1360 }
1361
1362 /* Possibly normalise by floor division. This does not hapen for
1363 * input in normal range. */
1364 if (res.lo < 0 || res.lo >= 12) {
1365 uint32_t mu, Q, sf32;
1366 sf32 = int32_sflag(res.lo);
1367 mu = (uint32_t)res.lo;
1368 Q = sf32 ^ ((sf32 ^ mu) / 12u);
1369
1370 res.hi += uint32_2cpl_to_int32(Q);
1371 res.lo = mu - Q * 12u;
1372 }
1373
1374 /* Get cummulated days in year with unshift. Use the fractional
1375 * interpolation with smallest possible power of two in the
1376 * divider.
1377 */
1378 res.lo = ((res.lo * 979 + 16) >> 5) - 306;
1379
1380 return res;
1381 }
1382
1383 /*
1384 *---------------------------------------------------------------------
1385 * Convert ELAPSED years/months/days of gregorian calendar to elapsed
1386 * days in Gregorian epoch.
1387 *
1388 * If you want to convert years and days-of-year, just give a month of
1389 * zero.
1390 *---------------------------------------------------------------------
1391 */
1392 int32_t
ntpcal_edate_to_eradays(int32_t years,int32_t mons,int32_t mdays)1393 ntpcal_edate_to_eradays(
1394 int32_t years,
1395 int32_t mons,
1396 int32_t mdays
1397 )
1398 {
1399 ntpcal_split tmp;
1400 int32_t res;
1401
1402 if (mons) {
1403 tmp = ntpcal_days_in_months(mons);
1404 res = ntpcal_days_in_years(years + tmp.hi) + tmp.lo;
1405 } else
1406 res = ntpcal_days_in_years(years);
1407 res += mdays;
1408
1409 return res;
1410 }
1411
1412 /*
1413 *---------------------------------------------------------------------
1414 * Convert ELAPSED years/months/days of gregorian calendar to elapsed
1415 * days in year.
1416 *
1417 * Note: This will give the true difference to the start of the given
1418 * year, even if months & days are off-scale.
1419 *---------------------------------------------------------------------
1420 */
1421 int32_t
ntpcal_edate_to_yeardays(int32_t years,int32_t mons,int32_t mdays)1422 ntpcal_edate_to_yeardays(
1423 int32_t years,
1424 int32_t mons,
1425 int32_t mdays
1426 )
1427 {
1428 ntpcal_split tmp;
1429
1430 if (0 <= mons && mons < 12) {
1431 if (mons >= 2)
1432 mdays -= 2 - is_leapyear(years+1);
1433 mdays += (489 * mons + 8) >> 4;
1434 } else {
1435 tmp = ntpcal_days_in_months(mons);
1436 mdays += tmp.lo
1437 + ntpcal_days_in_years(years + tmp.hi)
1438 - ntpcal_days_in_years(years);
1439 }
1440
1441 return mdays;
1442 }
1443
1444 /*
1445 *---------------------------------------------------------------------
1446 * Convert elapsed days and the hour/minute/second information into
1447 * total seconds.
1448 *
1449 * If 'isvalid' is not NULL, do a range check on the time specification
1450 * and tell if the time input is in the normal range, permitting for a
1451 * single leapsecond.
1452 *---------------------------------------------------------------------
1453 */
1454 int32_t
ntpcal_etime_to_seconds(int32_t hours,int32_t minutes,int32_t seconds)1455 ntpcal_etime_to_seconds(
1456 int32_t hours,
1457 int32_t minutes,
1458 int32_t seconds
1459 )
1460 {
1461 int32_t res;
1462
1463 res = (hours * MINSPERHR + minutes) * SECSPERMIN + seconds;
1464
1465 return res;
1466 }
1467
1468 /*
1469 *---------------------------------------------------------------------
1470 * Convert the date part of a 'struct tm' (that is, year, month,
1471 * day-of-month) into the RD of that day.
1472 *---------------------------------------------------------------------
1473 */
1474 int32_t
ntpcal_tm_to_rd(const struct tm * utm)1475 ntpcal_tm_to_rd(
1476 const struct tm *utm
1477 )
1478 {
1479 return ntpcal_edate_to_eradays(utm->tm_year + 1899,
1480 utm->tm_mon,
1481 utm->tm_mday - 1) + 1;
1482 }
1483
1484 /*
1485 *---------------------------------------------------------------------
1486 * Convert the date part of a 'struct calendar' (that is, year, month,
1487 * day-of-month) into the RD of that day.
1488 *---------------------------------------------------------------------
1489 */
1490 int32_t
ntpcal_date_to_rd(const struct calendar * jd)1491 ntpcal_date_to_rd(
1492 const struct calendar *jd
1493 )
1494 {
1495 return ntpcal_edate_to_eradays((int32_t)jd->year - 1,
1496 (int32_t)jd->month - 1,
1497 (int32_t)jd->monthday - 1) + 1;
1498 }
1499
1500 /*
1501 *---------------------------------------------------------------------
1502 * convert a year number to rata die of year start
1503 *---------------------------------------------------------------------
1504 */
1505 int32_t
ntpcal_year_to_ystart(int32_t year)1506 ntpcal_year_to_ystart(
1507 int32_t year
1508 )
1509 {
1510 return ntpcal_days_in_years(year - 1) + 1;
1511 }
1512
1513 /*
1514 *---------------------------------------------------------------------
1515 * For a given RD, get the RD of the associated year start,
1516 * that is, the RD of the last January,1st on or before that day.
1517 *---------------------------------------------------------------------
1518 */
1519 int32_t
ntpcal_rd_to_ystart(int32_t rd)1520 ntpcal_rd_to_ystart(
1521 int32_t rd
1522 )
1523 {
1524 /*
1525 * Rather simple exercise: split the day number into elapsed
1526 * years and elapsed days, then remove the elapsed days from the
1527 * input value. Nice'n sweet...
1528 */
1529 return rd - ntpcal_split_eradays(rd - 1, NULL).lo;
1530 }
1531
1532 /*
1533 *---------------------------------------------------------------------
1534 * For a given RD, get the RD of the associated month start.
1535 *---------------------------------------------------------------------
1536 */
1537 int32_t
ntpcal_rd_to_mstart(int32_t rd)1538 ntpcal_rd_to_mstart(
1539 int32_t rd
1540 )
1541 {
1542 ntpcal_split split;
1543 int leaps;
1544
1545 split = ntpcal_split_eradays(rd - 1, &leaps);
1546 split = ntpcal_split_yeardays(split.lo, leaps);
1547
1548 return rd - split.lo;
1549 }
1550
1551 /*
1552 *---------------------------------------------------------------------
1553 * take a 'struct calendar' and get the seconds-of-day from it.
1554 *---------------------------------------------------------------------
1555 */
1556 int32_t
ntpcal_date_to_daysec(const struct calendar * jd)1557 ntpcal_date_to_daysec(
1558 const struct calendar *jd
1559 )
1560 {
1561 return ntpcal_etime_to_seconds(jd->hour, jd->minute,
1562 jd->second);
1563 }
1564
1565 /*
1566 *---------------------------------------------------------------------
1567 * take a 'struct tm' and get the seconds-of-day from it.
1568 *---------------------------------------------------------------------
1569 */
1570 int32_t
ntpcal_tm_to_daysec(const struct tm * utm)1571 ntpcal_tm_to_daysec(
1572 const struct tm *utm
1573 )
1574 {
1575 return ntpcal_etime_to_seconds(utm->tm_hour, utm->tm_min,
1576 utm->tm_sec);
1577 }
1578
1579 /*
1580 *---------------------------------------------------------------------
1581 * take a 'struct calendar' and convert it to a 'time_t'
1582 *---------------------------------------------------------------------
1583 */
1584 time_t
ntpcal_date_to_time(const struct calendar * jd)1585 ntpcal_date_to_time(
1586 const struct calendar *jd
1587 )
1588 {
1589 vint64 join;
1590 int32_t days, secs;
1591
1592 days = ntpcal_date_to_rd(jd) - DAY_UNIX_STARTS;
1593 secs = ntpcal_date_to_daysec(jd);
1594 join = ntpcal_dayjoin(days, secs);
1595
1596 return vint64_to_time(&join);
1597 }
1598
1599
1600 /*
1601 * ====================================================================
1602 *
1603 * extended and unchecked variants of caljulian/caltontp
1604 *
1605 * ====================================================================
1606 */
1607 int
ntpcal_ntp64_to_date(struct calendar * jd,const vint64 * ntp)1608 ntpcal_ntp64_to_date(
1609 struct calendar *jd,
1610 const vint64 *ntp
1611 )
1612 {
1613 ntpcal_split ds;
1614
1615 ds = ntpcal_daysplit(ntp);
1616 ds.hi += ntpcal_daysec_to_date(jd, ds.lo);
1617
1618 return ntpcal_rd_to_date(jd, ds.hi + DAY_NTP_STARTS);
1619 }
1620
1621 int
ntpcal_ntp_to_date(struct calendar * jd,uint32_t ntp,const time_t * piv)1622 ntpcal_ntp_to_date(
1623 struct calendar *jd,
1624 uint32_t ntp,
1625 const time_t *piv
1626 )
1627 {
1628 vint64 ntp64;
1629
1630 /*
1631 * Unfold ntp time around current time into NTP domain. Split
1632 * into days and seconds, shift days into CE domain and
1633 * process the parts.
1634 */
1635 ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
1636 return ntpcal_ntp64_to_date(jd, &ntp64);
1637 }
1638
1639
1640 vint64
ntpcal_date_to_ntp64(const struct calendar * jd)1641 ntpcal_date_to_ntp64(
1642 const struct calendar *jd
1643 )
1644 {
1645 /*
1646 * Convert date to NTP. Ignore yearday, use d/m/y only.
1647 */
1648 return ntpcal_dayjoin(ntpcal_date_to_rd(jd) - DAY_NTP_STARTS,
1649 ntpcal_date_to_daysec(jd));
1650 }
1651
1652
1653 uint32_t
ntpcal_date_to_ntp(const struct calendar * jd)1654 ntpcal_date_to_ntp(
1655 const struct calendar *jd
1656 )
1657 {
1658 /*
1659 * Get lower half of 64bit NTP timestamp from date/time.
1660 */
1661 return ntpcal_date_to_ntp64(jd).d_s.lo;
1662 }
1663
1664
1665
1666 /*
1667 * ====================================================================
1668 *
1669 * day-of-week calculations
1670 *
1671 * ====================================================================
1672 */
1673 /*
1674 * Given a RataDie and a day-of-week, calculate a RDN that is reater-than,
1675 * greater-or equal, closest, less-or-equal or less-than the given RDN
1676 * and denotes the given day-of-week
1677 */
1678 int32_t
ntpcal_weekday_gt(int32_t rdn,int32_t dow)1679 ntpcal_weekday_gt(
1680 int32_t rdn,
1681 int32_t dow
1682 )
1683 {
1684 return ntpcal_periodic_extend(rdn+1, dow, 7);
1685 }
1686
1687 int32_t
ntpcal_weekday_ge(int32_t rdn,int32_t dow)1688 ntpcal_weekday_ge(
1689 int32_t rdn,
1690 int32_t dow
1691 )
1692 {
1693 return ntpcal_periodic_extend(rdn, dow, 7);
1694 }
1695
1696 int32_t
ntpcal_weekday_close(int32_t rdn,int32_t dow)1697 ntpcal_weekday_close(
1698 int32_t rdn,
1699 int32_t dow
1700 )
1701 {
1702 return ntpcal_periodic_extend(rdn-3, dow, 7);
1703 }
1704
1705 int32_t
ntpcal_weekday_le(int32_t rdn,int32_t dow)1706 ntpcal_weekday_le(
1707 int32_t rdn,
1708 int32_t dow
1709 )
1710 {
1711 return ntpcal_periodic_extend(rdn, dow, -7);
1712 }
1713
1714 int32_t
ntpcal_weekday_lt(int32_t rdn,int32_t dow)1715 ntpcal_weekday_lt(
1716 int32_t rdn,
1717 int32_t dow
1718 )
1719 {
1720 return ntpcal_periodic_extend(rdn-1, dow, -7);
1721 }
1722
1723 /*
1724 * ====================================================================
1725 *
1726 * ISO week-calendar conversions
1727 *
1728 * The ISO8601 calendar defines a calendar of years, weeks and weekdays.
1729 * It is related to the Gregorian calendar, and a ISO year starts at the
1730 * Monday closest to Jan,1st of the corresponding Gregorian year. A ISO
1731 * calendar year has always 52 or 53 weeks, and like the Grogrian
1732 * calendar the ISO8601 calendar repeats itself every 400 years, or
1733 * 146097 days, or 20871 weeks.
1734 *
1735 * While it is possible to write ISO calendar functions based on the
1736 * Gregorian calendar functions, the following implementation takes a
1737 * different approach, based directly on years and weeks.
1738 *
1739 * Analysis of the tabulated data shows that it is not possible to
1740 * interpolate from years to weeks over a full 400 year range; cyclic
1741 * shifts over 400 years do not provide a solution here. But it *is*
1742 * possible to interpolate over every single century of the 400-year
1743 * cycle. (The centennial leap year rule seems to be the culprit here.)
1744 *
1745 * It can be shown that a conversion from years to weeks can be done
1746 * using a linear transformation of the form
1747 *
1748 * w = floor( y * a + b )
1749 *
1750 * where the slope a must hold to
1751 *
1752 * 52.1780821918 <= a < 52.1791044776
1753 *
1754 * and b must be chosen according to the selected slope and the number
1755 * of the century in a 400-year period.
1756 *
1757 * The inverse calculation can also be done in this way. Careful scaling
1758 * provides an unlimited set of integer coefficients a,k,b that enable
1759 * us to write the calulation in the form
1760 *
1761 * w = (y * a + b ) / k
1762 * y = (w * a' + b') / k'
1763 *
1764 * In this implementation the values of k and k' are chosen to be the
1765 * smallest possible powers of two, so the division can be implemented
1766 * as shifts if the optimiser chooses to do so.
1767 *
1768 * ====================================================================
1769 */
1770
1771 /*
1772 * Given a number of elapsed (ISO-)years since the begin of the
1773 * christian era, return the number of elapsed weeks corresponding to
1774 * the number of years.
1775 */
1776 int32_t
isocal_weeks_in_years(int32_t years)1777 isocal_weeks_in_years(
1778 int32_t years
1779 )
1780 {
1781 /*
1782 * use: w = (y * 53431 + b[c]) / 1024 as interpolation
1783 */
1784 static const uint16_t bctab[4] = { 157, 449, 597, 889 };
1785
1786 int32_t cs, cw;
1787 uint32_t cc, ci, yu, sf32;
1788
1789 sf32 = int32_sflag(years);
1790 yu = (uint32_t)years;
1791
1792 /* split off centuries, using floor division */
1793 cc = sf32 ^ ((sf32 ^ yu) / 100u);
1794 yu -= cc * 100u;
1795
1796 /* calculate century cycles shift and cycle index:
1797 * Assuming a century is 5217 weeks, we have to add a cycle
1798 * shift that is 3 for every 4 centuries, because 3 of the four
1799 * centuries have 5218 weeks. So '(cc*3 + 1) / 4' is the actual
1800 * correction, and the second century is the defective one.
1801 *
1802 * Needs floor division by 4, which is done with masking and
1803 * shifting.
1804 */
1805 ci = cc * 3u + 1;
1806 cs = uint32_2cpl_to_int32(sf32 ^ ((sf32 ^ ci) >> 2));
1807 ci = ci & 3u;
1808
1809 /* Get weeks in century. Can use plain division here as all ops
1810 * are >= 0, and let the compiler sort out the possible
1811 * optimisations.
1812 */
1813 cw = (yu * 53431u + bctab[ci]) / 1024u;
1814
1815 return uint32_2cpl_to_int32(cc) * 5217 + cs + cw;
1816 }
1817
1818 /*
1819 * Given a number of elapsed weeks since the begin of the christian
1820 * era, split this number into the number of elapsed years in res.hi
1821 * and the excessive number of weeks in res.lo. (That is, res.lo is
1822 * the number of elapsed weeks in the remaining partial year.)
1823 */
1824 ntpcal_split
isocal_split_eraweeks(int32_t weeks)1825 isocal_split_eraweeks(
1826 int32_t weeks
1827 )
1828 {
1829 /*
1830 * use: y = (w * 157 + b[c]) / 8192 as interpolation
1831 */
1832
1833 static const uint16_t bctab[4] = { 85, 130, 17, 62 };
1834
1835 ntpcal_split res;
1836 int32_t cc, ci;
1837 uint32_t sw, cy, Q;
1838
1839 /* Use two fast cycle-split divisions again. Herew e want to
1840 * execute '(weeks * 4 + 2) /% 20871' under floor division rules
1841 * in the first step.
1842 *
1843 * This is of course (again) susceptible to internal overflow if
1844 * coded directly in 32bit. And again we use 64bit division on
1845 * a 64bit target and exact division after calculating the
1846 * remainder first on a 32bit target. With the smaller divider,
1847 * that's even a bit neater.
1848 */
1849 # if defined(HAVE_64BITREGS)
1850
1851 /* Full floor division with 64bit values. */
1852 uint64_t sf64, sw64;
1853 sf64 = (uint64_t)-(weeks < 0);
1854 sw64 = ((uint64_t)weeks << 2) | 2u;
1855 Q = (uint32_t)(sf64 ^ ((sf64 ^ sw64) / GREGORIAN_CYCLE_WEEKS));
1856 sw = (uint32_t)(sw64 - Q * GREGORIAN_CYCLE_WEEKS);
1857
1858 # else
1859
1860 /* Exact division after calculating the remainder via partial
1861 * reduction by digit sum.
1862 * (-2^33) % 20871 --> 5491 : the sign bit value
1863 * ( 2^20) % 20871 --> 5026 : the upper digit value
1864 * modinv(20871, 2^32) --> 330081335 : the inverse
1865 */
1866 uint32_t ux = ((uint32_t)weeks << 2) | 2;
1867 sw = (weeks < 0) ? 5491u : 0u; /* sign dgt */
1868 sw += ((weeks >> 18) & 0x01FFFu) * 5026u; /* hi dgt (src!) */
1869 sw += (ux & 0xFFFFFu); /* lo dgt */
1870 sw %= GREGORIAN_CYCLE_WEEKS; /* full reduction */
1871 Q = (ux - sw) * 330081335u; /* exact div */
1872
1873 # endif
1874
1875 ci = Q & 3u;
1876 cc = uint32_2cpl_to_int32(Q);
1877
1878 /* Split off years; sw >= 0 here! The scaled weeks in the years
1879 * are scaled up by 157 afterwards.
1880 */
1881 sw = (sw / 4u) * 157u + bctab[ci];
1882 cy = sw / 8192u; /* sw >> 13 , let the compiler sort it out */
1883 sw = sw % 8192u; /* sw & 8191, let the compiler sort it out */
1884
1885 /* assemble elapsed years and downscale the elapsed weeks in
1886 * the year.
1887 */
1888 res.hi = 100*cc + cy;
1889 res.lo = sw / 157u;
1890
1891 return res;
1892 }
1893
1894 /*
1895 * Given a second in the NTP time scale and a pivot, expand the NTP
1896 * time stamp around the pivot and convert into an ISO calendar time
1897 * stamp.
1898 */
1899 int
isocal_ntp64_to_date(struct isodate * id,const vint64 * ntp)1900 isocal_ntp64_to_date(
1901 struct isodate *id,
1902 const vint64 *ntp
1903 )
1904 {
1905 ntpcal_split ds;
1906 int32_t ts[3];
1907 uint32_t uw, ud, sf32;
1908
1909 /*
1910 * Split NTP time into days and seconds, shift days into CE
1911 * domain and process the parts.
1912 */
1913 ds = ntpcal_daysplit(ntp);
1914
1915 /* split time part */
1916 ds.hi += priv_timesplit(ts, ds.lo);
1917 id->hour = (uint8_t)ts[0];
1918 id->minute = (uint8_t)ts[1];
1919 id->second = (uint8_t)ts[2];
1920
1921 /* split days into days and weeks, using floor division in unsigned */
1922 ds.hi += DAY_NTP_STARTS - 1; /* shift from NTP to RDN */
1923 sf32 = int32_sflag(ds.hi);
1924 ud = (uint32_t)ds.hi;
1925 uw = sf32 ^ ((sf32 ^ ud) / DAYSPERWEEK);
1926 ud -= uw * DAYSPERWEEK;
1927
1928 ds.hi = uint32_2cpl_to_int32(uw);
1929 ds.lo = ud;
1930
1931 id->weekday = (uint8_t)ds.lo + 1; /* weekday result */
1932
1933 /* get year and week in year */
1934 ds = isocal_split_eraweeks(ds.hi); /* elapsed years&week*/
1935 id->year = (uint16_t)ds.hi + 1; /* shift to current */
1936 id->week = (uint8_t )ds.lo + 1;
1937
1938 return (ds.hi >= 0 && ds.hi < 0x0000FFFF);
1939 }
1940
1941 int
isocal_ntp_to_date(struct isodate * id,uint32_t ntp,const time_t * piv)1942 isocal_ntp_to_date(
1943 struct isodate *id,
1944 uint32_t ntp,
1945 const time_t *piv
1946 )
1947 {
1948 vint64 ntp64;
1949
1950 /*
1951 * Unfold ntp time around current time into NTP domain, then
1952 * convert the full time stamp.
1953 */
1954 ntp64 = ntpcal_ntp_to_ntp(ntp, piv);
1955 return isocal_ntp64_to_date(id, &ntp64);
1956 }
1957
1958 /*
1959 * Convert a ISO date spec into a second in the NTP time scale,
1960 * properly truncated to 32 bit.
1961 */
1962 vint64
isocal_date_to_ntp64(const struct isodate * id)1963 isocal_date_to_ntp64(
1964 const struct isodate *id
1965 )
1966 {
1967 int32_t weeks, days, secs;
1968
1969 weeks = isocal_weeks_in_years((int32_t)id->year - 1)
1970 + (int32_t)id->week - 1;
1971 days = weeks * 7 + (int32_t)id->weekday;
1972 /* days is RDN of ISO date now */
1973 secs = ntpcal_etime_to_seconds(id->hour, id->minute, id->second);
1974
1975 return ntpcal_dayjoin(days - DAY_NTP_STARTS, secs);
1976 }
1977
1978 uint32_t
isocal_date_to_ntp(const struct isodate * id)1979 isocal_date_to_ntp(
1980 const struct isodate *id
1981 )
1982 {
1983 /*
1984 * Get lower half of 64bit NTP timestamp from date/time.
1985 */
1986 return isocal_date_to_ntp64(id).d_s.lo;
1987 }
1988
1989 /*
1990 * ====================================================================
1991 * 'basedate' support functions
1992 * ====================================================================
1993 */
1994
1995 static int32_t s_baseday = NTP_TO_UNIX_DAYS;
1996 static int32_t s_gpsweek = 0;
1997
1998 int32_t
basedate_eval_buildstamp(void)1999 basedate_eval_buildstamp(void)
2000 {
2001 struct calendar jd;
2002 int32_t ed;
2003
2004 if (!ntpcal_get_build_date(&jd))
2005 return NTP_TO_UNIX_DAYS;
2006
2007 /* The time zone of the build stamp is unspecified; we remove
2008 * one day to provide a certain slack. And in case somebody
2009 * fiddled with the system clock, we make sure we do not go
2010 * before the UNIX epoch (1970-01-01). It's probably not possible
2011 * to do this to the clock on most systems, but there are other
2012 * ways to tweak the build stamp.
2013 */
2014 jd.monthday -= 1;
2015 ed = ntpcal_date_to_rd(&jd) - DAY_NTP_STARTS;
2016 return (ed < NTP_TO_UNIX_DAYS) ? NTP_TO_UNIX_DAYS : ed;
2017 }
2018
2019 int32_t
basedate_eval_string(const char * str)2020 basedate_eval_string(
2021 const char * str
2022 )
2023 {
2024 u_short y,m,d;
2025 u_long ned;
2026 int rc, nc;
2027 size_t sl;
2028
2029 sl = strlen(str);
2030 rc = sscanf(str, "%4hu-%2hu-%2hu%n", &y, &m, &d, &nc);
2031 if (rc == 3 && (size_t)nc == sl) {
2032 if (m >= 1 && m <= 12 && d >= 1 && d <= 31)
2033 return ntpcal_edate_to_eradays(y-1, m-1, d)
2034 - DAY_NTP_STARTS;
2035 goto buildstamp;
2036 }
2037
2038 rc = sscanf(str, "%lu%n", &ned, &nc);
2039 if (rc == 1 && (size_t)nc == sl) {
2040 if (ned <= INT32_MAX)
2041 return (int32_t)ned;
2042 goto buildstamp;
2043 }
2044
2045 buildstamp:
2046 msyslog(LOG_WARNING,
2047 "basedate string \"%s\" invalid, build date substituted!",
2048 str);
2049 return basedate_eval_buildstamp();
2050 }
2051
2052 uint32_t
basedate_get_day(void)2053 basedate_get_day(void)
2054 {
2055 return s_baseday;
2056 }
2057
2058 int32_t
basedate_set_day(int32_t day)2059 basedate_set_day(
2060 int32_t day
2061 )
2062 {
2063 struct calendar jd;
2064 int32_t retv;
2065
2066 /* set NTP base date for NTP era unfolding */
2067 if (day < NTP_TO_UNIX_DAYS) {
2068 msyslog(LOG_WARNING,
2069 "baseday_set_day: invalid day (%lu), UNIX epoch substituted",
2070 (unsigned long)day);
2071 day = NTP_TO_UNIX_DAYS;
2072 }
2073 retv = s_baseday;
2074 s_baseday = day;
2075 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
2076 msyslog(LOG_INFO, "basedate set to %04hu-%02hu-%02hu",
2077 jd.year, (u_short)jd.month, (u_short)jd.monthday);
2078
2079 /* set GPS base week for GPS week unfolding */
2080 day = ntpcal_weekday_ge(day + DAY_NTP_STARTS, CAL_SUNDAY)
2081 - DAY_NTP_STARTS;
2082 if (day < NTP_TO_GPS_DAYS)
2083 day = NTP_TO_GPS_DAYS;
2084 s_gpsweek = (day - NTP_TO_GPS_DAYS) / DAYSPERWEEK;
2085 ntpcal_rd_to_date(&jd, day + DAY_NTP_STARTS);
2086 msyslog(LOG_INFO, "gps base set to %04hu-%02hu-%02hu (week %d)",
2087 jd.year, (u_short)jd.month, (u_short)jd.monthday, s_gpsweek);
2088
2089 return retv;
2090 }
2091
2092 time_t
basedate_get_eracenter(void)2093 basedate_get_eracenter(void)
2094 {
2095 time_t retv;
2096 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
2097 retv *= SECSPERDAY;
2098 retv += (UINT32_C(1) << 31);
2099 return retv;
2100 }
2101
2102 time_t
basedate_get_erabase(void)2103 basedate_get_erabase(void)
2104 {
2105 time_t retv;
2106 retv = (time_t)(s_baseday - NTP_TO_UNIX_DAYS);
2107 retv *= SECSPERDAY;
2108 return retv;
2109 }
2110
2111 uint32_t
basedate_get_gpsweek(void)2112 basedate_get_gpsweek(void)
2113 {
2114 return s_gpsweek;
2115 }
2116
2117 uint32_t
basedate_expand_gpsweek(unsigned short weekno)2118 basedate_expand_gpsweek(
2119 unsigned short weekno
2120 )
2121 {
2122 /* We do a fast modulus expansion here. Since all quantities are
2123 * unsigned and we cannot go before the start of the GPS epoch
2124 * anyway, and since the truncated GPS week number is 10 bit, the
2125 * expansion becomes a simple sub/and/add sequence.
2126 */
2127 #if GPSWEEKS != 1024
2128 # error GPSWEEKS defined wrong -- should be 1024!
2129 #endif
2130
2131 uint32_t diff;
2132 diff = ((uint32_t)weekno - s_gpsweek) & (GPSWEEKS - 1);
2133 return s_gpsweek + diff;
2134 }
2135
2136 /*
2137 * ====================================================================
2138 * misc. helpers
2139 * ====================================================================
2140 */
2141
2142 /* --------------------------------------------------------------------
2143 * reconstruct the centrury from a truncated date and a day-of-week
2144 *
2145 * Given a date with truncated year (2-digit, 0..99) and a day-of-week
2146 * from 1(Mon) to 7(Sun), recover the full year between 1900AD and 2300AD.
2147 */
2148 int32_t
ntpcal_expand_century(uint32_t y,uint32_t m,uint32_t d,uint32_t wd)2149 ntpcal_expand_century(
2150 uint32_t y,
2151 uint32_t m,
2152 uint32_t d,
2153 uint32_t wd)
2154 {
2155 /* This algorithm is short but tricky... It's related to
2156 * Zeller's congruence, partially done backwards.
2157 *
2158 * A few facts to remember:
2159 * 1) The Gregorian calendar has a cycle of 400 years.
2160 * 2) The weekday of the 1st day of a century shifts by 5 days
2161 * during a great cycle.
2162 * 3) For calendar math, a century starts with the 1st year,
2163 * which is year 1, !not! zero.
2164 *
2165 * So we start with taking the weekday difference (mod 7)
2166 * between the truncated date (which is taken as an absolute
2167 * date in the 1st century in the proleptic calendar) and the
2168 * weekday given.
2169 *
2170 * When dividing this residual by 5, we obtain the number of
2171 * centuries to add to the base. But since the residual is (mod
2172 * 7), we have to make this an exact division by multiplication
2173 * with the modular inverse of 5 (mod 7), which is 3:
2174 * 3*5 === 1 (mod 7).
2175 *
2176 * If this yields a result of 4/5/6, the given date/day-of-week
2177 * combination is impossible, and we return zero as resulting
2178 * year to indicate failure.
2179 *
2180 * Then we remap the century to the range starting with year
2181 * 1900.
2182 */
2183
2184 uint32_t c;
2185
2186 /* check basic constraints */
2187 if ((y >= 100u) || (--m >= 12u) || (--d >= 31u))
2188 return 0;
2189
2190 if ((m += 10u) >= 12u) /* shift base to prev. March,1st */
2191 m -= 12u;
2192 else if (--y >= 100u)
2193 y += 100u;
2194 d += y + (y >> 2) + 2u; /* year share */
2195 d += (m * 83u + 16u) >> 5; /* month share */
2196
2197 /* get (wd - d), shifted to positive value, and multiply with
2198 * 3(mod 7). (Exact division, see to comment)
2199 * Note: 1) d <= 184 at this point.
2200 * 2) 252 % 7 == 0, but 'wd' is off by one since we did
2201 * '--d' above, so we add just 251 here!
2202 */
2203 c = u32mod7(3 * (251u + wd - d));
2204 if (c > 3u)
2205 return 0;
2206
2207 if ((m > 9u) && (++y >= 100u)) {/* undo base shift */
2208 y -= 100u;
2209 c = (c + 1) & 3u;
2210 }
2211 y += (c * 100u); /* combine into 1st cycle */
2212 y += (y < 300u) ? 2000 : 1600; /* map to destination era */
2213 return (int)y;
2214 }
2215
2216 char *
ntpcal_iso8601std(char * buf,size_t len,TcCivilDate * cdp)2217 ntpcal_iso8601std(
2218 char * buf,
2219 size_t len,
2220 TcCivilDate * cdp
2221 )
2222 {
2223 if (!buf) {
2224 LIB_GETBUF(buf);
2225 len = LIB_BUFLENGTH;
2226 }
2227 if (len) {
2228 int slen = snprintf(buf, len, "%04u-%02u-%02uT%02u:%02u:%02u",
2229 cdp->year, cdp->month, cdp->monthday,
2230 cdp->hour, cdp->minute, cdp->second);
2231 if (slen < 0)
2232 *buf = '\0';
2233 }
2234 return buf;
2235 }
2236
2237 /* -*-EOF-*- */
2238