1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains various simple utilities to analyze the CFG. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "cfghooks.h"
27 #include "timevar.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30
31 namespace {
32 /* Store the data structures necessary for depth-first search. */
33 class depth_first_search
34 {
35 public:
36 depth_first_search ();
37
38 basic_block execute (basic_block);
39 void add_bb (basic_block);
40
41 private:
42 /* stack for backtracking during the algorithm */
43 auto_vec<basic_block, 20> m_stack;
44
45 /* record of basic blocks already seen by depth-first search */
46 auto_sbitmap m_visited_blocks;
47 };
48 }
49
50 /* Mark the back edges in DFS traversal.
51 Return nonzero if a loop (natural or otherwise) is present.
52 Inspired by Depth_First_Search_PP described in:
53
54 Advanced Compiler Design and Implementation
55 Steven Muchnick
56 Morgan Kaufmann, 1997
57
58 and heavily borrowed from pre_and_rev_post_order_compute. */
59
60 bool
mark_dfs_back_edges(void)61 mark_dfs_back_edges (void)
62 {
63 int *pre;
64 int *post;
65 int prenum = 1;
66 int postnum = 1;
67 bool found = false;
68
69 /* Allocate the preorder and postorder number arrays. */
70 pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
71 post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
72
73 /* Allocate stack for back-tracking up CFG. */
74 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
75
76 /* Allocate bitmap to track nodes that have been visited. */
77 auto_sbitmap visited (last_basic_block_for_fn (cfun));
78
79 /* None of the nodes in the CFG have been visited yet. */
80 bitmap_clear (visited);
81
82 /* Push the first edge on to the stack. */
83 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
84
85 while (!stack.is_empty ())
86 {
87 basic_block src;
88 basic_block dest;
89
90 /* Look at the edge on the top of the stack. */
91 edge_iterator ei = stack.last ();
92 src = ei_edge (ei)->src;
93 dest = ei_edge (ei)->dest;
94 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
95
96 /* Check if the edge destination has been visited yet. */
97 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
98 dest->index))
99 {
100 /* Mark that we have visited the destination. */
101 bitmap_set_bit (visited, dest->index);
102
103 pre[dest->index] = prenum++;
104 if (EDGE_COUNT (dest->succs) > 0)
105 {
106 /* Since the DEST node has been visited for the first
107 time, check its successors. */
108 stack.quick_push (ei_start (dest->succs));
109 }
110 else
111 post[dest->index] = postnum++;
112 }
113 else
114 {
115 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
116 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
117 && pre[src->index] >= pre[dest->index]
118 && post[dest->index] == 0)
119 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
120
121 if (ei_one_before_end_p (ei)
122 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
123 post[src->index] = postnum++;
124
125 if (!ei_one_before_end_p (ei))
126 ei_next (&stack.last ());
127 else
128 stack.pop ();
129 }
130 }
131
132 free (pre);
133 free (post);
134
135 return found;
136 }
137
138 /* Find unreachable blocks. An unreachable block will have 0 in
139 the reachable bit in block->flags. A nonzero value indicates the
140 block is reachable. */
141
142 void
find_unreachable_blocks(void)143 find_unreachable_blocks (void)
144 {
145 edge e;
146 edge_iterator ei;
147 basic_block *tos, *worklist, bb;
148
149 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
150
151 /* Clear all the reachability flags. */
152
153 FOR_EACH_BB_FN (bb, cfun)
154 bb->flags &= ~BB_REACHABLE;
155
156 /* Add our starting points to the worklist. Almost always there will
157 be only one. It isn't inconceivable that we might one day directly
158 support Fortran alternate entry points. */
159
160 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
161 {
162 *tos++ = e->dest;
163
164 /* Mark the block reachable. */
165 e->dest->flags |= BB_REACHABLE;
166 }
167
168 /* Iterate: find everything reachable from what we've already seen. */
169
170 while (tos != worklist)
171 {
172 basic_block b = *--tos;
173
174 FOR_EACH_EDGE (e, ei, b->succs)
175 {
176 basic_block dest = e->dest;
177
178 if (!(dest->flags & BB_REACHABLE))
179 {
180 *tos++ = dest;
181 dest->flags |= BB_REACHABLE;
182 }
183 }
184 }
185
186 free (worklist);
187 }
188
189 /* Verify that there are no unreachable blocks in the current function. */
190
191 void
verify_no_unreachable_blocks(void)192 verify_no_unreachable_blocks (void)
193 {
194 find_unreachable_blocks ();
195
196 basic_block bb;
197 FOR_EACH_BB_FN (bb, cfun)
198 gcc_assert ((bb->flags & BB_REACHABLE) != 0);
199 }
200
201
202 /* Functions to access an edge list with a vector representation.
203 Enough data is kept such that given an index number, the
204 pred and succ that edge represents can be determined, or
205 given a pred and a succ, its index number can be returned.
206 This allows algorithms which consume a lot of memory to
207 represent the normally full matrix of edge (pred,succ) with a
208 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
209 wasted space in the client code due to sparse flow graphs. */
210
211 /* This functions initializes the edge list. Basically the entire
212 flowgraph is processed, and all edges are assigned a number,
213 and the data structure is filled in. */
214
215 struct edge_list *
create_edge_list(void)216 create_edge_list (void)
217 {
218 struct edge_list *elist;
219 edge e;
220 int num_edges;
221 basic_block bb;
222 edge_iterator ei;
223
224 /* Determine the number of edges in the flow graph by counting successor
225 edges on each basic block. */
226 num_edges = 0;
227 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
228 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
229 {
230 num_edges += EDGE_COUNT (bb->succs);
231 }
232
233 elist = XNEW (struct edge_list);
234 elist->num_edges = num_edges;
235 elist->index_to_edge = XNEWVEC (edge, num_edges);
236
237 num_edges = 0;
238
239 /* Follow successors of blocks, and register these edges. */
240 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
241 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
242 FOR_EACH_EDGE (e, ei, bb->succs)
243 elist->index_to_edge[num_edges++] = e;
244
245 return elist;
246 }
247
248 /* This function free's memory associated with an edge list. */
249
250 void
free_edge_list(struct edge_list * elist)251 free_edge_list (struct edge_list *elist)
252 {
253 if (elist)
254 {
255 free (elist->index_to_edge);
256 free (elist);
257 }
258 }
259
260 /* This function provides debug output showing an edge list. */
261
262 DEBUG_FUNCTION void
print_edge_list(FILE * f,struct edge_list * elist)263 print_edge_list (FILE *f, struct edge_list *elist)
264 {
265 int x;
266
267 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
268 n_basic_blocks_for_fn (cfun), elist->num_edges);
269
270 for (x = 0; x < elist->num_edges; x++)
271 {
272 fprintf (f, " %-4d - edge(", x);
273 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
274 fprintf (f, "entry,");
275 else
276 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
277
278 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
279 fprintf (f, "exit)\n");
280 else
281 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
282 }
283 }
284
285 /* This function provides an internal consistency check of an edge list,
286 verifying that all edges are present, and that there are no
287 extra edges. */
288
289 DEBUG_FUNCTION void
verify_edge_list(FILE * f,struct edge_list * elist)290 verify_edge_list (FILE *f, struct edge_list *elist)
291 {
292 int pred, succ, index;
293 edge e;
294 basic_block bb, p, s;
295 edge_iterator ei;
296
297 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
298 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
299 {
300 FOR_EACH_EDGE (e, ei, bb->succs)
301 {
302 pred = e->src->index;
303 succ = e->dest->index;
304 index = EDGE_INDEX (elist, e->src, e->dest);
305 if (index == EDGE_INDEX_NO_EDGE)
306 {
307 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
308 continue;
309 }
310
311 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
312 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
313 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
314 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
315 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
316 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
317 }
318 }
319
320 /* We've verified that all the edges are in the list, now lets make sure
321 there are no spurious edges in the list. This is an expensive check! */
322
323 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
324 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
325 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
326 {
327 int found_edge = 0;
328
329 FOR_EACH_EDGE (e, ei, p->succs)
330 if (e->dest == s)
331 {
332 found_edge = 1;
333 break;
334 }
335
336 FOR_EACH_EDGE (e, ei, s->preds)
337 if (e->src == p)
338 {
339 found_edge = 1;
340 break;
341 }
342
343 if (EDGE_INDEX (elist, p, s)
344 == EDGE_INDEX_NO_EDGE && found_edge != 0)
345 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
346 p->index, s->index);
347 if (EDGE_INDEX (elist, p, s)
348 != EDGE_INDEX_NO_EDGE && found_edge == 0)
349 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
350 p->index, s->index, EDGE_INDEX (elist, p, s));
351 }
352 }
353
354
355 /* Functions to compute control dependences. */
356
357 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
358 void
set_control_dependence_map_bit(basic_block bb,int edge_index)359 control_dependences::set_control_dependence_map_bit (basic_block bb,
360 int edge_index)
361 {
362 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
363 return;
364 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
365 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
366 }
367
368 /* Clear all control dependences for block BB. */
369 void
clear_control_dependence_bitmap(basic_block bb)370 control_dependences::clear_control_dependence_bitmap (basic_block bb)
371 {
372 bitmap_clear (control_dependence_map[bb->index]);
373 }
374
375 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
376 This function is necessary because some blocks have negative numbers. */
377
378 static inline basic_block
find_pdom(basic_block block)379 find_pdom (basic_block block)
380 {
381 gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
382
383 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
384 return EXIT_BLOCK_PTR_FOR_FN (cfun);
385 else
386 {
387 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
388 if (! bb)
389 return EXIT_BLOCK_PTR_FOR_FN (cfun);
390 return bb;
391 }
392 }
393
394 /* Determine all blocks' control dependences on the given edge with edge_list
395 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
396
397 void
find_control_dependence(int edge_index)398 control_dependences::find_control_dependence (int edge_index)
399 {
400 basic_block current_block;
401 basic_block ending_block;
402
403 gcc_assert (get_edge_src (edge_index) != EXIT_BLOCK_PTR_FOR_FN (cfun));
404
405 /* For abnormal edges, we don't make current_block control
406 dependent because instructions that throw are always necessary
407 anyway. */
408 edge e = find_edge (get_edge_src (edge_index), get_edge_dest (edge_index));
409 if (e->flags & EDGE_ABNORMAL)
410 return;
411
412 if (get_edge_src (edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
413 ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
414 else
415 ending_block = find_pdom (get_edge_src (edge_index));
416
417 for (current_block = get_edge_dest (edge_index);
418 current_block != ending_block
419 && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
420 current_block = find_pdom (current_block))
421 set_control_dependence_map_bit (current_block, edge_index);
422 }
423
424 /* Record all blocks' control dependences on all edges in the edge
425 list EL, ala Morgan, Section 3.6. */
426
control_dependences()427 control_dependences::control_dependences ()
428 {
429 timevar_push (TV_CONTROL_DEPENDENCES);
430
431 /* Initialize the edge list. */
432 int num_edges = 0;
433 basic_block bb;
434 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
435 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
436 num_edges += EDGE_COUNT (bb->succs);
437 m_el.create (num_edges);
438 edge e;
439 edge_iterator ei;
440 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
441 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 m_el.quick_push (std::make_pair (e->src->index, e->dest->index));
444
445 control_dependence_map.create (last_basic_block_for_fn (cfun));
446 for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
447 control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
448 for (int i = 0; i < num_edges; ++i)
449 find_control_dependence (i);
450
451 timevar_pop (TV_CONTROL_DEPENDENCES);
452 }
453
454 /* Free control dependences and the associated edge list. */
455
~control_dependences()456 control_dependences::~control_dependences ()
457 {
458 for (unsigned i = 0; i < control_dependence_map.length (); ++i)
459 BITMAP_FREE (control_dependence_map[i]);
460 control_dependence_map.release ();
461 m_el.release ();
462 }
463
464 /* Returns the bitmap of edges the basic-block I is dependent on. */
465
466 bitmap
get_edges_dependent_on(int i)467 control_dependences::get_edges_dependent_on (int i)
468 {
469 return control_dependence_map[i];
470 }
471
472 /* Returns the edge source with index I from the edge list. */
473
474 basic_block
get_edge_src(int i)475 control_dependences::get_edge_src (int i)
476 {
477 return BASIC_BLOCK_FOR_FN (cfun, m_el[i].first);
478 }
479
480 /* Returns the edge destination with index I from the edge list. */
481
482 basic_block
get_edge_dest(int i)483 control_dependences::get_edge_dest (int i)
484 {
485 return BASIC_BLOCK_FOR_FN (cfun, m_el[i].second);
486 }
487
488
489 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
490 If no such edge exists, return NULL. */
491
492 edge
find_edge(basic_block pred,basic_block succ)493 find_edge (basic_block pred, basic_block succ)
494 {
495 edge e;
496 edge_iterator ei;
497
498 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
499 {
500 FOR_EACH_EDGE (e, ei, pred->succs)
501 if (e->dest == succ)
502 return e;
503 }
504 else
505 {
506 FOR_EACH_EDGE (e, ei, succ->preds)
507 if (e->src == pred)
508 return e;
509 }
510
511 return NULL;
512 }
513
514 /* This routine will determine what, if any, edge there is between
515 a specified predecessor and successor. */
516
517 int
find_edge_index(struct edge_list * edge_list,basic_block pred,basic_block succ)518 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
519 {
520 int x;
521
522 for (x = 0; x < NUM_EDGES (edge_list); x++)
523 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
524 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
525 return x;
526
527 return (EDGE_INDEX_NO_EDGE);
528 }
529
530 /* This routine will remove any fake predecessor edges for a basic block.
531 When the edge is removed, it is also removed from whatever successor
532 list it is in. */
533
534 static void
remove_fake_predecessors(basic_block bb)535 remove_fake_predecessors (basic_block bb)
536 {
537 edge e;
538 edge_iterator ei;
539
540 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
541 {
542 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
543 remove_edge (e);
544 else
545 ei_next (&ei);
546 }
547 }
548
549 /* This routine will remove all fake edges from the flow graph. If
550 we remove all fake successors, it will automatically remove all
551 fake predecessors. */
552
553 void
remove_fake_edges(void)554 remove_fake_edges (void)
555 {
556 basic_block bb;
557
558 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
559 remove_fake_predecessors (bb);
560 }
561
562 /* This routine will remove all fake edges to the EXIT_BLOCK. */
563
564 void
remove_fake_exit_edges(void)565 remove_fake_exit_edges (void)
566 {
567 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
568 }
569
570
571 /* This function will add a fake edge between any block which has no
572 successors, and the exit block. Some data flow equations require these
573 edges to exist. */
574
575 void
add_noreturn_fake_exit_edges(void)576 add_noreturn_fake_exit_edges (void)
577 {
578 basic_block bb;
579
580 FOR_EACH_BB_FN (bb, cfun)
581 if (EDGE_COUNT (bb->succs) == 0)
582 make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
583 }
584
585 /* This function adds a fake edge between any infinite loops to the
586 exit block. Some optimizations require a path from each node to
587 the exit node.
588
589 See also Morgan, Figure 3.10, pp. 82-83.
590
591 The current implementation is ugly, not attempting to minimize the
592 number of inserted fake edges. To reduce the number of fake edges
593 to insert, add fake edges from _innermost_ loops containing only
594 nodes not reachable from the exit block. */
595
596 void
connect_infinite_loops_to_exit(void)597 connect_infinite_loops_to_exit (void)
598 {
599 /* Perform depth-first search in the reverse graph to find nodes
600 reachable from the exit block. */
601 depth_first_search dfs;
602 dfs.add_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
603
604 /* Repeatedly add fake edges, updating the unreachable nodes. */
605 basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
606 while (1)
607 {
608 unvisited_block = dfs.execute (unvisited_block);
609 if (!unvisited_block)
610 break;
611
612 basic_block deadend_block = dfs_find_deadend (unvisited_block);
613 edge e = make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun),
614 EDGE_FAKE);
615 e->probability = profile_probability::never ();
616 dfs.add_bb (deadend_block);
617 }
618 }
619
620 /* Compute reverse top sort order. This is computing a post order
621 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
622 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
623 true, unreachable blocks are deleted. */
624
625 int
post_order_compute(int * post_order,bool include_entry_exit,bool delete_unreachable)626 post_order_compute (int *post_order, bool include_entry_exit,
627 bool delete_unreachable)
628 {
629 int post_order_num = 0;
630 int count;
631
632 if (include_entry_exit)
633 post_order[post_order_num++] = EXIT_BLOCK;
634
635 /* Allocate stack for back-tracking up CFG. */
636 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
637
638 /* Allocate bitmap to track nodes that have been visited. */
639 auto_sbitmap visited (last_basic_block_for_fn (cfun));
640
641 /* None of the nodes in the CFG have been visited yet. */
642 bitmap_clear (visited);
643
644 /* Push the first edge on to the stack. */
645 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
646
647 while (!stack.is_empty ())
648 {
649 basic_block src;
650 basic_block dest;
651
652 /* Look at the edge on the top of the stack. */
653 edge_iterator ei = stack.last ();
654 src = ei_edge (ei)->src;
655 dest = ei_edge (ei)->dest;
656
657 /* Check if the edge destination has been visited yet. */
658 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && ! bitmap_bit_p (visited, dest->index))
660 {
661 /* Mark that we have visited the destination. */
662 bitmap_set_bit (visited, dest->index);
663
664 if (EDGE_COUNT (dest->succs) > 0)
665 /* Since the DEST node has been visited for the first
666 time, check its successors. */
667 stack.quick_push (ei_start (dest->succs));
668 else
669 post_order[post_order_num++] = dest->index;
670 }
671 else
672 {
673 if (ei_one_before_end_p (ei)
674 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
675 post_order[post_order_num++] = src->index;
676
677 if (!ei_one_before_end_p (ei))
678 ei_next (&stack.last ());
679 else
680 stack.pop ();
681 }
682 }
683
684 if (include_entry_exit)
685 {
686 post_order[post_order_num++] = ENTRY_BLOCK;
687 count = post_order_num;
688 }
689 else
690 count = post_order_num + 2;
691
692 /* Delete the unreachable blocks if some were found and we are
693 supposed to do it. */
694 if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
695 {
696 basic_block b;
697 basic_block next_bb;
698 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
699 != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
700 {
701 next_bb = b->next_bb;
702
703 if (!(bitmap_bit_p (visited, b->index)))
704 delete_basic_block (b);
705 }
706
707 tidy_fallthru_edges ();
708 }
709
710 return post_order_num;
711 }
712
713
714 /* Helper routine for inverted_post_order_compute
715 flow_dfs_compute_reverse_execute, and the reverse-CFG
716 deapth first search in dominance.c.
717 BB has to belong to a region of CFG
718 unreachable by inverted traversal from the exit.
719 i.e. there's no control flow path from ENTRY to EXIT
720 that contains this BB.
721 This can happen in two cases - if there's an infinite loop
722 or if there's a block that has no successor
723 (call to a function with no return).
724 Some RTL passes deal with this condition by
725 calling connect_infinite_loops_to_exit () and/or
726 add_noreturn_fake_exit_edges ().
727 However, those methods involve modifying the CFG itself
728 which may not be desirable.
729 Hence, we deal with the infinite loop/no return cases
730 by identifying a unique basic block that can reach all blocks
731 in such a region by inverted traversal.
732 This function returns a basic block that guarantees
733 that all blocks in the region are reachable
734 by starting an inverted traversal from the returned block. */
735
736 basic_block
dfs_find_deadend(basic_block bb)737 dfs_find_deadend (basic_block bb)
738 {
739 auto_bitmap visited;
740 basic_block next = bb;
741
742 for (;;)
743 {
744 if (EDGE_COUNT (next->succs) == 0)
745 return next;
746
747 if (! bitmap_set_bit (visited, next->index))
748 return bb;
749
750 bb = next;
751 /* If we are in an analyzed cycle make sure to try exiting it.
752 Note this is a heuristic only and expected to work when loop
753 fixup is needed as well. */
754 if (! bb->loop_father
755 || ! loop_outer (bb->loop_father))
756 next = EDGE_SUCC (bb, 0)->dest;
757 else
758 {
759 edge_iterator ei;
760 edge e;
761 FOR_EACH_EDGE (e, ei, bb->succs)
762 if (loop_exit_edge_p (bb->loop_father, e))
763 break;
764 next = e ? e->dest : EDGE_SUCC (bb, 0)->dest;
765 }
766 }
767
768 gcc_unreachable ();
769 }
770
771
772 /* Compute the reverse top sort order of the inverted CFG
773 i.e. starting from the exit block and following the edges backward
774 (from successors to predecessors).
775 This ordering can be used for forward dataflow problems among others.
776
777 Optionally if START_POINTS is specified, start from exit block and all
778 basic blocks in START_POINTS. This is used by CD-DCE.
779
780 This function assumes that all blocks in the CFG are reachable
781 from the ENTRY (but not necessarily from EXIT).
782
783 If there's an infinite loop,
784 a simple inverted traversal starting from the blocks
785 with no successors can't visit all blocks.
786 To solve this problem, we first do inverted traversal
787 starting from the blocks with no successor.
788 And if there's any block left that's not visited by the regular
789 inverted traversal from EXIT,
790 those blocks are in such problematic region.
791 Among those, we find one block that has
792 any visited predecessor (which is an entry into such a region),
793 and start looking for a "dead end" from that block
794 and do another inverted traversal from that block. */
795
796 void
inverted_post_order_compute(vec<int> * post_order,sbitmap * start_points)797 inverted_post_order_compute (vec<int> *post_order,
798 sbitmap *start_points)
799 {
800 basic_block bb;
801 post_order->reserve_exact (n_basic_blocks_for_fn (cfun));
802
803 if (flag_checking)
804 verify_no_unreachable_blocks ();
805
806 /* Allocate stack for back-tracking up CFG. */
807 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
808
809 /* Allocate bitmap to track nodes that have been visited. */
810 auto_sbitmap visited (last_basic_block_for_fn (cfun));
811
812 /* None of the nodes in the CFG have been visited yet. */
813 bitmap_clear (visited);
814
815 if (start_points)
816 {
817 FOR_ALL_BB_FN (bb, cfun)
818 if (bitmap_bit_p (*start_points, bb->index)
819 && EDGE_COUNT (bb->preds) > 0)
820 {
821 stack.quick_push (ei_start (bb->preds));
822 bitmap_set_bit (visited, bb->index);
823 }
824 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds))
825 {
826 stack.quick_push (ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds));
827 bitmap_set_bit (visited, EXIT_BLOCK_PTR_FOR_FN (cfun)->index);
828 }
829 }
830 else
831 /* Put all blocks that have no successor into the initial work list. */
832 FOR_ALL_BB_FN (bb, cfun)
833 if (EDGE_COUNT (bb->succs) == 0)
834 {
835 /* Push the initial edge on to the stack. */
836 if (EDGE_COUNT (bb->preds) > 0)
837 {
838 stack.quick_push (ei_start (bb->preds));
839 bitmap_set_bit (visited, bb->index);
840 }
841 }
842
843 do
844 {
845 bool has_unvisited_bb = false;
846
847 /* The inverted traversal loop. */
848 while (!stack.is_empty ())
849 {
850 edge_iterator ei;
851 basic_block pred;
852
853 /* Look at the edge on the top of the stack. */
854 ei = stack.last ();
855 bb = ei_edge (ei)->dest;
856 pred = ei_edge (ei)->src;
857
858 /* Check if the predecessor has been visited yet. */
859 if (! bitmap_bit_p (visited, pred->index))
860 {
861 /* Mark that we have visited the destination. */
862 bitmap_set_bit (visited, pred->index);
863
864 if (EDGE_COUNT (pred->preds) > 0)
865 /* Since the predecessor node has been visited for the first
866 time, check its predecessors. */
867 stack.quick_push (ei_start (pred->preds));
868 else
869 post_order->quick_push (pred->index);
870 }
871 else
872 {
873 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
874 && ei_one_before_end_p (ei))
875 post_order->quick_push (bb->index);
876
877 if (!ei_one_before_end_p (ei))
878 ei_next (&stack.last ());
879 else
880 stack.pop ();
881 }
882 }
883
884 /* Detect any infinite loop and activate the kludge.
885 Note that this doesn't check EXIT_BLOCK itself
886 since EXIT_BLOCK is always added after the outer do-while loop. */
887 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
888 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
889 if (!bitmap_bit_p (visited, bb->index))
890 {
891 has_unvisited_bb = true;
892
893 if (EDGE_COUNT (bb->preds) > 0)
894 {
895 edge_iterator ei;
896 edge e;
897 basic_block visited_pred = NULL;
898
899 /* Find an already visited predecessor. */
900 FOR_EACH_EDGE (e, ei, bb->preds)
901 {
902 if (bitmap_bit_p (visited, e->src->index))
903 visited_pred = e->src;
904 }
905
906 if (visited_pred)
907 {
908 basic_block be = dfs_find_deadend (bb);
909 gcc_assert (be != NULL);
910 bitmap_set_bit (visited, be->index);
911 stack.quick_push (ei_start (be->preds));
912 break;
913 }
914 }
915 }
916
917 if (has_unvisited_bb && stack.is_empty ())
918 {
919 /* No blocks are reachable from EXIT at all.
920 Find a dead-end from the ENTRY, and restart the iteration. */
921 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
922 gcc_assert (be != NULL);
923 bitmap_set_bit (visited, be->index);
924 stack.quick_push (ei_start (be->preds));
925 }
926
927 /* The only case the below while fires is
928 when there's an infinite loop. */
929 }
930 while (!stack.is_empty ());
931
932 /* EXIT_BLOCK is always included. */
933 post_order->quick_push (EXIT_BLOCK);
934 }
935
936 /* Compute the depth first search order of FN and store in the array
937 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
938 reverse completion number for each node. Returns the number of nodes
939 visited. A depth first search tries to get as far away from the starting
940 point as quickly as possible.
941
942 In case the function has unreachable blocks the number of nodes
943 visited does not include them.
944
945 pre_order is a really a preorder numbering of the graph.
946 rev_post_order is really a reverse postorder numbering of the graph. */
947
948 int
pre_and_rev_post_order_compute_fn(struct function * fn,int * pre_order,int * rev_post_order,bool include_entry_exit)949 pre_and_rev_post_order_compute_fn (struct function *fn,
950 int *pre_order, int *rev_post_order,
951 bool include_entry_exit)
952 {
953 int pre_order_num = 0;
954 int rev_post_order_num = n_basic_blocks_for_fn (fn) - 1;
955
956 /* Allocate stack for back-tracking up CFG. */
957 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (fn) + 1);
958
959 if (include_entry_exit)
960 {
961 if (pre_order)
962 pre_order[pre_order_num] = ENTRY_BLOCK;
963 pre_order_num++;
964 if (rev_post_order)
965 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
966 }
967 else
968 rev_post_order_num -= NUM_FIXED_BLOCKS;
969
970 /* BB flag to track nodes that have been visited. */
971 auto_bb_flag visited (fn);
972
973 /* Push the first edge on to the stack. */
974 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs));
975
976 while (!stack.is_empty ())
977 {
978 basic_block src;
979 basic_block dest;
980
981 /* Look at the edge on the top of the stack. */
982 edge_iterator ei = stack.last ();
983 src = ei_edge (ei)->src;
984 dest = ei_edge (ei)->dest;
985
986 /* Check if the edge destination has been visited yet. */
987 if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
988 && ! (dest->flags & visited))
989 {
990 /* Mark that we have visited the destination. */
991 dest->flags |= visited;
992
993 if (pre_order)
994 pre_order[pre_order_num] = dest->index;
995
996 pre_order_num++;
997
998 if (EDGE_COUNT (dest->succs) > 0)
999 /* Since the DEST node has been visited for the first
1000 time, check its successors. */
1001 stack.quick_push (ei_start (dest->succs));
1002 else if (rev_post_order)
1003 /* There are no successors for the DEST node so assign
1004 its reverse completion number. */
1005 rev_post_order[rev_post_order_num--] = dest->index;
1006 }
1007 else
1008 {
1009 if (ei_one_before_end_p (ei)
1010 && src != ENTRY_BLOCK_PTR_FOR_FN (fn)
1011 && rev_post_order)
1012 /* There are no more successors for the SRC node
1013 so assign its reverse completion number. */
1014 rev_post_order[rev_post_order_num--] = src->index;
1015
1016 if (!ei_one_before_end_p (ei))
1017 ei_next (&stack.last ());
1018 else
1019 stack.pop ();
1020 }
1021 }
1022
1023 if (include_entry_exit)
1024 {
1025 if (pre_order)
1026 pre_order[pre_order_num] = EXIT_BLOCK;
1027 pre_order_num++;
1028 if (rev_post_order)
1029 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
1030 }
1031
1032 /* Clear the temporarily allocated flag. */
1033 if (!rev_post_order)
1034 rev_post_order = pre_order;
1035 for (int i = 0; i < pre_order_num; ++i)
1036 BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags &= ~visited;
1037
1038 return pre_order_num;
1039 }
1040
1041 /* Like pre_and_rev_post_order_compute_fn but operating on the
1042 current function and asserting that all nodes were visited. */
1043
1044 int
pre_and_rev_post_order_compute(int * pre_order,int * rev_post_order,bool include_entry_exit)1045 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
1046 bool include_entry_exit)
1047 {
1048 int pre_order_num
1049 = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
1050 include_entry_exit);
1051 if (include_entry_exit)
1052 /* The number of nodes visited should be the number of blocks. */
1053 gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
1054 else
1055 /* The number of nodes visited should be the number of blocks minus
1056 the entry and exit blocks which are not visited here. */
1057 gcc_assert (pre_order_num
1058 == (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
1059
1060 return pre_order_num;
1061 }
1062
1063
1064 /* Per basic-block data for rev_post_order_and_mark_dfs_back_seme,
1065 element of a sparsely populated array indexed by basic-block number. */
1066 typedef auto_vec<int, 2> scc_exit_vec_t;
1067 struct rpoamdbs_bb_data {
1068 int depth;
1069 int bb_to_pre;
1070 /* The basic-block index of the SCC entry of the block visited first
1071 (the SCC leader). */
1072 int scc;
1073 /* The index into the RPO array where the blocks SCC entries end
1074 (only valid for the SCC leader). */
1075 int scc_end;
1076 /* The indexes of the exits destinations of this SCC (only valid
1077 for the SCC leader). Initialized upon discovery of SCC leaders. */
1078 scc_exit_vec_t scc_exits;
1079 };
1080
1081 /* Tag H as a header of B, weaving H and its loop header list into the
1082 current loop header list of B. */
1083
1084 static void
tag_header(int b,int h,rpoamdbs_bb_data * bb_data)1085 tag_header (int b, int h, rpoamdbs_bb_data *bb_data)
1086 {
1087 if (h == -1 || b == h)
1088 return;
1089 int cur1 = b;
1090 int cur2 = h;
1091 while (bb_data[cur1].scc != -1)
1092 {
1093 int ih = bb_data[cur1].scc;
1094 if (ih == cur2)
1095 return;
1096 if (bb_data[ih].depth < bb_data[cur2].depth)
1097 {
1098 bb_data[cur1].scc = cur2;
1099 cur1 = cur2;
1100 cur2 = ih;
1101 }
1102 else
1103 cur1 = ih;
1104 }
1105 bb_data[cur1].scc = cur2;
1106 }
1107
1108 /* Comparator for a sort of two edges destinations E1 and E2 after their index
1109 in the PRE array as specified by BB_TO_PRE. */
1110
1111 static int
cmp_edge_dest_pre(const void * e1_,const void * e2_,void * data_)1112 cmp_edge_dest_pre (const void *e1_, const void *e2_, void *data_)
1113 {
1114 const int *e1 = (const int *)e1_;
1115 const int *e2 = (const int *)e2_;
1116 rpoamdbs_bb_data *bb_data = (rpoamdbs_bb_data *)data_;
1117 return (bb_data[*e1].bb_to_pre - bb_data[*e2].bb_to_pre);
1118 }
1119
1120 /* Compute the reverse completion number of a depth first search
1121 on the SEME region denoted by the ENTRY edge and the EXIT_BBS set of
1122 exit block indexes and store it in the array REV_POST_ORDER.
1123 Also sets the EDGE_DFS_BACK edge flags according to this visitation
1124 order.
1125 Returns the number of nodes visited.
1126
1127 In case the function has unreachable blocks the number of nodes
1128 visited does not include them.
1129
1130 If FOR_ITERATION is true then compute an RPO where SCCs form a
1131 contiguous region in the RPO array.
1132 *TOPLEVEL_SCC_EXTENTS if not NULL is filled with pairs of
1133 *REV_POST_ORDER indexes denoting extents of the toplevel SCCs in
1134 this region. */
1135
1136 int
rev_post_order_and_mark_dfs_back_seme(struct function * fn,edge entry,bitmap exit_bbs,bool for_iteration,int * rev_post_order,vec<std::pair<int,int>> * toplevel_scc_extents)1137 rev_post_order_and_mark_dfs_back_seme (struct function *fn, edge entry,
1138 bitmap exit_bbs, bool for_iteration,
1139 int *rev_post_order,
1140 vec<std::pair<int, int> >
1141 *toplevel_scc_extents)
1142 {
1143 int rev_post_order_num = 0;
1144
1145 /* BB flag to track nodes that have been visited. */
1146 auto_bb_flag visited (fn);
1147
1148 /* Lazily initialized per-BB data for the two DFS walks below. */
1149 rpoamdbs_bb_data *bb_data
1150 = XNEWVEC (rpoamdbs_bb_data, last_basic_block_for_fn (fn));
1151
1152 /* First DFS walk, loop discovery according to
1153 A New Algorithm for Identifying Loops in Decompilation
1154 by Tao Wei, Jian Mao, Wei Zou and You Chen of the Institute of
1155 Computer Science and Technology of the Peking University. */
1156 auto_vec<edge_iterator, 20> ei_stack (n_basic_blocks_for_fn (fn) + 1);
1157 auto_bb_flag is_header (fn);
1158 int depth = 1;
1159 unsigned n_sccs = 0;
1160
1161 basic_block dest = entry->dest;
1162 edge_iterator ei;
1163 int pre_num = 0;
1164
1165 /* DFS process DEST. */
1166 find_loops:
1167 bb_data[dest->index].bb_to_pre = pre_num++;
1168 bb_data[dest->index].depth = depth;
1169 bb_data[dest->index].scc = -1;
1170 depth++;
1171 gcc_assert ((dest->flags & (is_header|visited)) == 0);
1172 dest->flags |= visited;
1173 ei = ei_start (dest->succs);
1174 while (!ei_end_p (ei))
1175 {
1176 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
1177 if (bitmap_bit_p (exit_bbs, ei_edge (ei)->dest->index))
1178 ;
1179 else if (!(ei_edge (ei)->dest->flags & visited))
1180 {
1181 ei_stack.quick_push (ei);
1182 dest = ei_edge (ei)->dest;
1183 /* DFS recurse on DEST. */
1184 goto find_loops;
1185
1186 ret_from_find_loops:
1187 /* Return point of DFS recursion. */
1188 ei = ei_stack.pop ();
1189 dest = ei_edge (ei)->src;
1190 int header = bb_data[ei_edge (ei)->dest->index].scc;
1191 tag_header (dest->index, header, bb_data);
1192 depth = bb_data[dest->index].depth + 1;
1193 }
1194 else
1195 {
1196 if (bb_data[ei_edge (ei)->dest->index].depth > 0) /* on the stack */
1197 {
1198 ei_edge (ei)->flags |= EDGE_DFS_BACK;
1199 n_sccs++;
1200 ei_edge (ei)->dest->flags |= is_header;
1201 ::new (&bb_data[ei_edge (ei)->dest->index].scc_exits)
1202 auto_vec<int, 2> ();
1203 tag_header (dest->index, ei_edge (ei)->dest->index, bb_data);
1204 }
1205 else if (bb_data[ei_edge (ei)->dest->index].scc == -1)
1206 ;
1207 else
1208 {
1209 int header = bb_data[ei_edge (ei)->dest->index].scc;
1210 if (bb_data[header].depth > 0)
1211 tag_header (dest->index, header, bb_data);
1212 else
1213 {
1214 /* A re-entry into an existing loop. */
1215 /* ??? Need to mark is_header? */
1216 while (bb_data[header].scc != -1)
1217 {
1218 header = bb_data[header].scc;
1219 if (bb_data[header].depth > 0)
1220 {
1221 tag_header (dest->index, header, bb_data);
1222 break;
1223 }
1224 }
1225 }
1226 }
1227 }
1228 ei_next (&ei);
1229 }
1230 rev_post_order[rev_post_order_num++] = dest->index;
1231 /* not on the stack anymore */
1232 bb_data[dest->index].depth = -bb_data[dest->index].depth;
1233 if (!ei_stack.is_empty ())
1234 /* Return from DFS recursion. */
1235 goto ret_from_find_loops;
1236
1237 /* Optimize for no SCCs found or !for_iteration. */
1238 if (n_sccs == 0 || !for_iteration)
1239 {
1240 /* Clear the temporarily allocated flags. */
1241 for (int i = 0; i < rev_post_order_num; ++i)
1242 BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags
1243 &= ~(is_header|visited);
1244 /* And swap elements. */
1245 for (int i = 0; i < rev_post_order_num/2; ++i)
1246 std::swap (rev_post_order[i], rev_post_order[rev_post_order_num-i-1]);
1247 XDELETEVEC (bb_data);
1248
1249 return rev_post_order_num;
1250 }
1251
1252 /* Next find SCC exits, clear the visited flag and compute an upper bound
1253 for the edge stack below. */
1254 unsigned edge_count = 0;
1255 for (int i = 0; i < rev_post_order_num; ++i)
1256 {
1257 int bb = rev_post_order[i];
1258 BASIC_BLOCK_FOR_FN (fn, bb)->flags &= ~visited;
1259 edge e;
1260 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (fn, bb)->succs)
1261 {
1262 if (bitmap_bit_p (exit_bbs, e->dest->index))
1263 continue;
1264 edge_count++;
1265 /* if e is an exit from e->src, record it for
1266 bb_data[e->src].scc. */
1267 int src_scc = e->src->index;
1268 if (!(e->src->flags & is_header))
1269 src_scc = bb_data[src_scc].scc;
1270 if (src_scc == -1)
1271 continue;
1272 int dest_scc = e->dest->index;
1273 if (!(e->dest->flags & is_header))
1274 dest_scc = bb_data[dest_scc].scc;
1275 if (src_scc == dest_scc)
1276 continue;
1277 /* When dest_scc is nested insde src_scc it's not an
1278 exit. */
1279 int tem_dest_scc = dest_scc;
1280 unsigned dest_scc_depth = 0;
1281 while (tem_dest_scc != -1)
1282 {
1283 dest_scc_depth++;
1284 if ((tem_dest_scc = bb_data[tem_dest_scc].scc) == src_scc)
1285 break;
1286 }
1287 if (tem_dest_scc != -1)
1288 continue;
1289 /* When src_scc is nested inside dest_scc record an
1290 exit from the outermost SCC this edge exits. */
1291 int tem_src_scc = src_scc;
1292 unsigned src_scc_depth = 0;
1293 while (tem_src_scc != -1)
1294 {
1295 if (bb_data[tem_src_scc].scc == dest_scc)
1296 {
1297 edge_count++;
1298 bb_data[tem_src_scc].scc_exits.safe_push (e->dest->index);
1299 break;
1300 }
1301 tem_src_scc = bb_data[tem_src_scc].scc;
1302 src_scc_depth++;
1303 }
1304 /* Else find the outermost SCC this edge exits (exits
1305 from the inner SCCs are not important for the DFS
1306 walk adjustment). Do so by computing the common
1307 ancestor SCC where the immediate child it to the source
1308 SCC is the exited SCC. */
1309 if (tem_src_scc == -1)
1310 {
1311 edge_count++;
1312 while (src_scc_depth > dest_scc_depth)
1313 {
1314 src_scc = bb_data[src_scc].scc;
1315 src_scc_depth--;
1316 }
1317 while (dest_scc_depth > src_scc_depth)
1318 {
1319 dest_scc = bb_data[dest_scc].scc;
1320 dest_scc_depth--;
1321 }
1322 while (bb_data[src_scc].scc != bb_data[dest_scc].scc)
1323 {
1324 src_scc = bb_data[src_scc].scc;
1325 dest_scc = bb_data[dest_scc].scc;
1326 }
1327 bb_data[src_scc].scc_exits.safe_push (e->dest->index);
1328 }
1329 }
1330 }
1331
1332 /* Now the second DFS walk to compute a RPO where the extent of SCCs
1333 is minimized thus SCC members are adjacent in the RPO array.
1334 This is done by performing a DFS walk computing RPO with first visiting
1335 extra direct edges from SCC entry to its exits.
1336 That simulates a DFS walk over the graph with SCCs collapsed and
1337 walking the SCCs themselves only when all outgoing edges from the
1338 SCCs have been visited.
1339 SCC_END[scc-header-index] is the position in the RPO array of the
1340 last member of the SCC. */
1341 auto_vec<std::pair<basic_block, basic_block>, 20> estack (edge_count + 1);
1342 int idx = rev_post_order_num;
1343 basic_block edest;
1344 dest = entry->dest;
1345
1346 /* DFS process DEST. */
1347 dfs_rpo:
1348 gcc_checking_assert ((dest->flags & visited) == 0);
1349 /* Verify we enter SCCs through the same header and SCC nesting appears
1350 the same. */
1351 gcc_assert (bb_data[dest->index].scc == -1
1352 || (BASIC_BLOCK_FOR_FN (fn, bb_data[dest->index].scc)->flags
1353 & visited));
1354 dest->flags |= visited;
1355 bb_data[dest->index].scc_end = -1;
1356 if ((dest->flags & is_header)
1357 && !bb_data[dest->index].scc_exits.is_empty ())
1358 {
1359 /* Push the all SCC exits as outgoing edges from its header to
1360 be visited first.
1361 To process exits in the same relative order as in the first
1362 DFS walk sort them after their destination PRE order index. */
1363 gcc_sort_r (&bb_data[dest->index].scc_exits[0],
1364 bb_data[dest->index].scc_exits.length (),
1365 sizeof (int), cmp_edge_dest_pre, bb_data);
1366 /* Process edges in reverse to match previous DFS walk order. */
1367 for (int i = bb_data[dest->index].scc_exits.length () - 1; i >= 0; --i)
1368 estack.quick_push (std::make_pair
1369 (dest, BASIC_BLOCK_FOR_FN (fn, bb_data[dest->index].scc_exits[i])));
1370 }
1371 else
1372 {
1373 if (dest->flags & is_header)
1374 bb_data[dest->index].scc_end = idx - 1;
1375 /* Push the edge vector in reverse to match the iteration order
1376 from the DFS walk above. */
1377 for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
1378 if (!bitmap_bit_p (exit_bbs, EDGE_SUCC (dest, i)->dest->index))
1379 estack.quick_push (std::make_pair (dest,
1380 EDGE_SUCC (dest, i)->dest));
1381 }
1382 while (!estack.is_empty ()
1383 && estack.last ().first == dest)
1384 {
1385 edest = estack.last ().second;
1386 if (!(edest->flags & visited))
1387 {
1388 dest = edest;
1389 /* DFS recurse on DEST. */
1390 goto dfs_rpo;
1391
1392 ret_from_dfs_rpo:
1393 /* Return point of DFS recursion. */
1394 dest = estack.last ().first;
1395 }
1396 estack.pop ();
1397 /* If we processed all SCC exits from DEST mark the SCC end
1398 since all RPO entries up to DEST itself will now belong
1399 to its SCC. The special-case of no SCC exits is already
1400 dealt with above. */
1401 if (dest->flags & is_header
1402 /* When the last exit edge was processed mark the SCC end
1403 and push the regular edges. */
1404 && bb_data[dest->index].scc_end == -1
1405 && (estack.is_empty ()
1406 || estack.last ().first != dest))
1407 {
1408 bb_data[dest->index].scc_end = idx - 1;
1409 /* Push the edge vector in reverse to match the iteration order
1410 from the DFS walk above. */
1411 for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
1412 if (!bitmap_bit_p (exit_bbs, EDGE_SUCC (dest, i)->dest->index))
1413 estack.quick_push (std::make_pair (dest,
1414 EDGE_SUCC (dest, i)->dest));
1415 }
1416 }
1417 rev_post_order[--idx] = dest->index;
1418 if (!estack.is_empty ())
1419 /* Return from DFS recursion. */
1420 goto ret_from_dfs_rpo;
1421
1422 /* Each SCC extends are from the position of the header inside
1423 the RPO array up to RPO array index scc_end[header-index]. */
1424 if (toplevel_scc_extents)
1425 for (int i = 0; i < rev_post_order_num; i++)
1426 {
1427 basic_block bb = BASIC_BLOCK_FOR_FN (fn, rev_post_order[i]);
1428 if (bb->flags & is_header)
1429 {
1430 toplevel_scc_extents->safe_push
1431 (std::make_pair (i, bb_data[bb->index].scc_end));
1432 i = bb_data[bb->index].scc_end;
1433 }
1434 }
1435
1436 /* Clear the temporarily allocated flags and free memory. */
1437 for (int i = 0; i < rev_post_order_num; ++i)
1438 {
1439 basic_block bb = BASIC_BLOCK_FOR_FN (fn, rev_post_order[i]);
1440 if (bb->flags & is_header)
1441 bb_data[bb->index].scc_exits.~scc_exit_vec_t ();
1442 bb->flags &= ~(visited|is_header);
1443 }
1444
1445 XDELETEVEC (bb_data);
1446
1447 return rev_post_order_num;
1448 }
1449
1450
1451
1452 /* Compute the depth first search order on the _reverse_ graph and
1453 store it in the array DFS_ORDER, marking the nodes visited in VISITED.
1454 Returns the number of nodes visited.
1455
1456 The computation is split into three pieces:
1457
1458 flow_dfs_compute_reverse_init () creates the necessary data
1459 structures.
1460
1461 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1462 structures. The block will start the search.
1463
1464 flow_dfs_compute_reverse_execute () continues (or starts) the
1465 search using the block on the top of the stack, stopping when the
1466 stack is empty.
1467
1468 flow_dfs_compute_reverse_finish () destroys the necessary data
1469 structures.
1470
1471 Thus, the user will probably call ..._init(), call ..._add_bb() to
1472 add a beginning basic block to the stack, call ..._execute(),
1473 possibly add another bb to the stack and again call ..._execute(),
1474 ..., and finally call _finish(). */
1475
1476 /* Initialize the data structures used for depth-first search on the
1477 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1478 added to the basic block stack. DATA is the current depth-first
1479 search context. If INITIALIZE_STACK is nonzero, there is an
1480 element on the stack. */
1481
depth_first_search()1482 depth_first_search::depth_first_search () :
1483 m_stack (n_basic_blocks_for_fn (cfun)),
1484 m_visited_blocks (last_basic_block_for_fn (cfun))
1485 {
1486 bitmap_clear (m_visited_blocks);
1487 }
1488
1489 /* Add the specified basic block to the top of the dfs data
1490 structures. When the search continues, it will start at the
1491 block. */
1492
1493 void
add_bb(basic_block bb)1494 depth_first_search::add_bb (basic_block bb)
1495 {
1496 m_stack.quick_push (bb);
1497 bitmap_set_bit (m_visited_blocks, bb->index);
1498 }
1499
1500 /* Continue the depth-first search through the reverse graph starting with the
1501 block at the stack's top and ending when the stack is empty. Visited nodes
1502 are marked. Returns an unvisited basic block, or NULL if there is none
1503 available. */
1504
1505 basic_block
execute(basic_block last_unvisited)1506 depth_first_search::execute (basic_block last_unvisited)
1507 {
1508 basic_block bb;
1509 edge e;
1510 edge_iterator ei;
1511
1512 while (!m_stack.is_empty ())
1513 {
1514 bb = m_stack.pop ();
1515
1516 /* Perform depth-first search on adjacent vertices. */
1517 FOR_EACH_EDGE (e, ei, bb->preds)
1518 if (!bitmap_bit_p (m_visited_blocks, e->src->index))
1519 add_bb (e->src);
1520 }
1521
1522 /* Determine if there are unvisited basic blocks. */
1523 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1524 if (!bitmap_bit_p (m_visited_blocks, bb->index))
1525 return bb;
1526
1527 return NULL;
1528 }
1529
1530 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1531 if REVERSE, go against direction of edges. Returns number of blocks
1532 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1533 int
dfs_enumerate_from(basic_block bb,int reverse,bool (* predicate)(const_basic_block,const void *),basic_block * rslt,int rslt_max,const void * data)1534 dfs_enumerate_from (basic_block bb, int reverse,
1535 bool (*predicate) (const_basic_block, const void *),
1536 basic_block *rslt, int rslt_max, const void *data)
1537 {
1538 basic_block *st, lbb;
1539 int sp = 0, tv = 0;
1540
1541 auto_bb_flag visited (cfun);
1542
1543 #define MARK_VISITED(BB) ((BB)->flags |= visited)
1544 #define UNMARK_VISITED(BB) ((BB)->flags &= ~visited)
1545 #define VISITED_P(BB) (((BB)->flags & visited) != 0)
1546
1547 st = XNEWVEC (basic_block, rslt_max);
1548 rslt[tv++] = st[sp++] = bb;
1549 MARK_VISITED (bb);
1550 while (sp)
1551 {
1552 edge e;
1553 edge_iterator ei;
1554 lbb = st[--sp];
1555 if (reverse)
1556 {
1557 FOR_EACH_EDGE (e, ei, lbb->preds)
1558 if (!VISITED_P (e->src) && predicate (e->src, data))
1559 {
1560 gcc_assert (tv != rslt_max);
1561 rslt[tv++] = st[sp++] = e->src;
1562 MARK_VISITED (e->src);
1563 }
1564 }
1565 else
1566 {
1567 FOR_EACH_EDGE (e, ei, lbb->succs)
1568 if (!VISITED_P (e->dest) && predicate (e->dest, data))
1569 {
1570 gcc_assert (tv != rslt_max);
1571 rslt[tv++] = st[sp++] = e->dest;
1572 MARK_VISITED (e->dest);
1573 }
1574 }
1575 }
1576 free (st);
1577 for (sp = 0; sp < tv; sp++)
1578 UNMARK_VISITED (rslt[sp]);
1579 return tv;
1580 #undef MARK_VISITED
1581 #undef UNMARK_VISITED
1582 #undef VISITED_P
1583 }
1584
1585
1586 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1587
1588 This algorithm can be found in Timothy Harvey's PhD thesis, at
1589 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1590 dominance algorithms.
1591
1592 First, we identify each join point, j (any node with more than one
1593 incoming edge is a join point).
1594
1595 We then examine each predecessor, p, of j and walk up the dominator tree
1596 starting at p.
1597
1598 We stop the walk when we reach j's immediate dominator - j is in the
1599 dominance frontier of each of the nodes in the walk, except for j's
1600 immediate dominator. Intuitively, all of the rest of j's dominators are
1601 shared by j's predecessors as well.
1602 Since they dominate j, they will not have j in their dominance frontiers.
1603
1604 The number of nodes touched by this algorithm is equal to the size
1605 of the dominance frontiers, no more, no less.
1606 */
1607
1608 void
compute_dominance_frontiers(bitmap_head * frontiers)1609 compute_dominance_frontiers (bitmap_head *frontiers)
1610 {
1611 timevar_push (TV_DOM_FRONTIERS);
1612
1613 edge p;
1614 edge_iterator ei;
1615 basic_block b;
1616 FOR_EACH_BB_FN (b, cfun)
1617 {
1618 if (EDGE_COUNT (b->preds) >= 2)
1619 {
1620 basic_block domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1621 FOR_EACH_EDGE (p, ei, b->preds)
1622 {
1623 basic_block runner = p->src;
1624 if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1625 continue;
1626
1627 while (runner != domsb)
1628 {
1629 if (!bitmap_set_bit (&frontiers[runner->index], b->index))
1630 break;
1631 runner = get_immediate_dominator (CDI_DOMINATORS, runner);
1632 }
1633 }
1634 }
1635 }
1636
1637 timevar_pop (TV_DOM_FRONTIERS);
1638 }
1639
1640 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1641 return a bitmap with all the blocks in the iterated dominance
1642 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1643 frontier information as returned by compute_dominance_frontiers.
1644
1645 The resulting set of blocks are the potential sites where PHI nodes
1646 are needed. The caller is responsible for freeing the memory
1647 allocated for the return value. */
1648
1649 bitmap
compute_idf(bitmap def_blocks,bitmap_head * dfs)1650 compute_idf (bitmap def_blocks, bitmap_head *dfs)
1651 {
1652 bitmap_iterator bi;
1653 unsigned bb_index, i;
1654 bitmap phi_insertion_points;
1655
1656 phi_insertion_points = BITMAP_ALLOC (NULL);
1657
1658 /* Seed the work set with all the blocks in DEF_BLOCKS. */
1659 auto_bitmap work_set;
1660 bitmap_copy (work_set, def_blocks);
1661 bitmap_tree_view (work_set);
1662
1663 /* Pop a block off the workset, add every block that appears in
1664 the original block's DF that we have not already processed to
1665 the workset. Iterate until the workset is empty. Blocks
1666 which are added to the workset are potential sites for
1667 PHI nodes. */
1668 while (!bitmap_empty_p (work_set))
1669 {
1670 /* The dominance frontier of a block is blocks after it so iterating
1671 on earlier blocks first is better.
1672 ??? Basic blocks are by no means guaranteed to be ordered in
1673 optimal order for this iteration. */
1674 bb_index = bitmap_first_set_bit (work_set);
1675 bitmap_clear_bit (work_set, bb_index);
1676
1677 /* Since the registration of NEW -> OLD name mappings is done
1678 separately from the call to update_ssa, when updating the SSA
1679 form, the basic blocks where new and/or old names are defined
1680 may have disappeared by CFG cleanup calls. In this case,
1681 we may pull a non-existing block from the work stack. */
1682 gcc_checking_assert (bb_index
1683 < (unsigned) last_basic_block_for_fn (cfun));
1684
1685 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
1686 0, i, bi)
1687 {
1688 bitmap_set_bit (work_set, i);
1689 bitmap_set_bit (phi_insertion_points, i);
1690 }
1691 }
1692
1693 return phi_insertion_points;
1694 }
1695
1696 /* Intersection and union of preds/succs for sbitmap based data flow
1697 solvers. All four functions defined below take the same arguments:
1698 B is the basic block to perform the operation for. DST is the
1699 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1700 last_basic_block so that it can be indexed with basic block indices.
1701 DST may be (but does not have to be) SRC[B->index]. */
1702
1703 /* Set the bitmap DST to the intersection of SRC of successors of
1704 basic block B. */
1705
1706 void
bitmap_intersection_of_succs(sbitmap dst,sbitmap * src,basic_block b)1707 bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1708 {
1709 unsigned int set_size = dst->size;
1710 edge e;
1711 unsigned ix;
1712
1713 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1714 {
1715 e = EDGE_SUCC (b, ix);
1716 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1717 continue;
1718
1719 bitmap_copy (dst, src[e->dest->index]);
1720 break;
1721 }
1722
1723 if (e == 0)
1724 bitmap_ones (dst);
1725 else
1726 for (++ix; ix < EDGE_COUNT (b->succs); ix++)
1727 {
1728 unsigned int i;
1729 SBITMAP_ELT_TYPE *p, *r;
1730
1731 e = EDGE_SUCC (b, ix);
1732 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1733 continue;
1734
1735 p = src[e->dest->index]->elms;
1736 r = dst->elms;
1737 for (i = 0; i < set_size; i++)
1738 *r++ &= *p++;
1739 }
1740 }
1741
1742 /* Set the bitmap DST to the intersection of SRC of predecessors of
1743 basic block B. */
1744
1745 void
bitmap_intersection_of_preds(sbitmap dst,sbitmap * src,basic_block b)1746 bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1747 {
1748 unsigned int set_size = dst->size;
1749 edge e;
1750 unsigned ix;
1751
1752 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1753 {
1754 e = EDGE_PRED (b, ix);
1755 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1756 continue;
1757
1758 bitmap_copy (dst, src[e->src->index]);
1759 break;
1760 }
1761
1762 if (e == 0)
1763 bitmap_ones (dst);
1764 else
1765 for (++ix; ix < EDGE_COUNT (b->preds); ix++)
1766 {
1767 unsigned int i;
1768 SBITMAP_ELT_TYPE *p, *r;
1769
1770 e = EDGE_PRED (b, ix);
1771 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1772 continue;
1773
1774 p = src[e->src->index]->elms;
1775 r = dst->elms;
1776 for (i = 0; i < set_size; i++)
1777 *r++ &= *p++;
1778 }
1779 }
1780
1781 /* Set the bitmap DST to the union of SRC of successors of
1782 basic block B. */
1783
1784 void
bitmap_union_of_succs(sbitmap dst,sbitmap * src,basic_block b)1785 bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1786 {
1787 unsigned int set_size = dst->size;
1788 edge e;
1789 unsigned ix;
1790
1791 for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1792 {
1793 e = EDGE_SUCC (b, ix);
1794 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1795 continue;
1796
1797 bitmap_copy (dst, src[e->dest->index]);
1798 break;
1799 }
1800
1801 if (ix == EDGE_COUNT (b->succs))
1802 bitmap_clear (dst);
1803 else
1804 for (ix++; ix < EDGE_COUNT (b->succs); ix++)
1805 {
1806 unsigned int i;
1807 SBITMAP_ELT_TYPE *p, *r;
1808
1809 e = EDGE_SUCC (b, ix);
1810 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1811 continue;
1812
1813 p = src[e->dest->index]->elms;
1814 r = dst->elms;
1815 for (i = 0; i < set_size; i++)
1816 *r++ |= *p++;
1817 }
1818 }
1819
1820 /* Set the bitmap DST to the union of SRC of predecessors of
1821 basic block B. */
1822
1823 void
bitmap_union_of_preds(sbitmap dst,sbitmap * src,basic_block b)1824 bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1825 {
1826 unsigned int set_size = dst->size;
1827 edge e;
1828 unsigned ix;
1829
1830 for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1831 {
1832 e = EDGE_PRED (b, ix);
1833 if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
1834 continue;
1835
1836 bitmap_copy (dst, src[e->src->index]);
1837 break;
1838 }
1839
1840 if (ix == EDGE_COUNT (b->preds))
1841 bitmap_clear (dst);
1842 else
1843 for (ix++; ix < EDGE_COUNT (b->preds); ix++)
1844 {
1845 unsigned int i;
1846 SBITMAP_ELT_TYPE *p, *r;
1847
1848 e = EDGE_PRED (b, ix);
1849 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1850 continue;
1851
1852 p = src[e->src->index]->elms;
1853 r = dst->elms;
1854 for (i = 0; i < set_size; i++)
1855 *r++ |= *p++;
1856 }
1857 }
1858
1859 /* Returns the list of basic blocks in the function in an order that guarantees
1860 that if a block X has just a single predecessor Y, then Y is after X in the
1861 ordering. */
1862
1863 basic_block *
single_pred_before_succ_order(void)1864 single_pred_before_succ_order (void)
1865 {
1866 basic_block x, y;
1867 basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1868 unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1869 unsigned np, i;
1870 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1871
1872 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1873 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1874
1875 bitmap_clear (visited);
1876
1877 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1878 FOR_EACH_BB_FN (x, cfun)
1879 {
1880 if (VISITED_P (x))
1881 continue;
1882
1883 /* Walk the predecessors of x as long as they have precisely one
1884 predecessor and add them to the list, so that they get stored
1885 after x. */
1886 for (y = x, np = 1;
1887 single_pred_p (y) && !VISITED_P (single_pred (y));
1888 y = single_pred (y))
1889 np++;
1890 for (y = x, i = n - np;
1891 single_pred_p (y) && !VISITED_P (single_pred (y));
1892 y = single_pred (y), i++)
1893 {
1894 order[i] = y;
1895 MARK_VISITED (y);
1896 }
1897 order[i] = y;
1898 MARK_VISITED (y);
1899
1900 gcc_assert (i == n - 1);
1901 n -= np;
1902 }
1903
1904 gcc_assert (n == 0);
1905 return order;
1906
1907 #undef MARK_VISITED
1908 #undef VISITED_P
1909 }
1910
1911 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1912 return that edge. Otherwise return NULL.
1913
1914 When IGNORE_NOT_EXECUTABLE is true, also ignore edges that are not marked
1915 as executable. */
1916
1917 edge
single_pred_edge_ignoring_loop_edges(basic_block bb,bool ignore_not_executable)1918 single_pred_edge_ignoring_loop_edges (basic_block bb,
1919 bool ignore_not_executable)
1920 {
1921 edge retval = NULL;
1922 edge e;
1923 edge_iterator ei;
1924
1925 FOR_EACH_EDGE (e, ei, bb->preds)
1926 {
1927 /* A loop back edge can be identified by the destination of
1928 the edge dominating the source of the edge. */
1929 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1930 continue;
1931
1932 /* We can safely ignore edges that are not executable. */
1933 if (ignore_not_executable
1934 && (e->flags & EDGE_EXECUTABLE) == 0)
1935 continue;
1936
1937 /* If we have already seen a non-loop edge, then we must have
1938 multiple incoming non-loop edges and thus we return NULL. */
1939 if (retval)
1940 return NULL;
1941
1942 /* This is the first non-loop incoming edge we have found. Record
1943 it. */
1944 retval = e;
1945 }
1946
1947 return retval;
1948 }
1949