1 /* Dwarf2 Call Frame Information helper routines.
2    Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "target.h"
24 #include "function.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tree-pass.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "stor-layout.h"
32 #include "cfgbuild.h"
33 #include "dwarf2out.h"
34 #include "dwarf2asm.h"
35 #include "common/common-target.h"
36 
37 #include "except.h"		/* expand_builtin_dwarf_sp_column */
38 #include "profile-count.h"	/* For expr.h */
39 #include "expr.h"		/* init_return_column_size */
40 #include "output.h"		/* asm_out_file */
41 #include "debug.h"		/* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
42 
43 
44 /* ??? Poison these here until it can be done generically.  They've been
45    totally replaced in this file; make sure it stays that way.  */
46 #undef DWARF2_UNWIND_INFO
47 #undef DWARF2_FRAME_INFO
48 #if (GCC_VERSION >= 3000)
49  #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
50 #endif
51 
52 #ifndef INCOMING_RETURN_ADDR_RTX
53 #define INCOMING_RETURN_ADDR_RTX  (gcc_unreachable (), NULL_RTX)
54 #endif
55 
56 #ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET
57 #define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET
58 #endif
59 
60 /* A collected description of an entire row of the abstract CFI table.  */
61 struct GTY(()) dw_cfi_row
62 {
63   /* The expression that computes the CFA, expressed in two different ways.
64      The CFA member for the simple cases, and the full CFI expression for
65      the complex cases.  The later will be a DW_CFA_cfa_expression.  */
66   dw_cfa_location cfa;
67   dw_cfi_ref cfa_cfi;
68 
69   /* The expressions for any register column that is saved.  */
70   cfi_vec reg_save;
71 
72   /* True if the register window is saved.  */
73   bool window_save;
74 
75   /* True if the return address is in a mangled state.  */
76   bool ra_mangled;
77 };
78 
79 /* The caller's ORIG_REG is saved in SAVED_IN_REG.  */
80 struct GTY(()) reg_saved_in_data {
81   rtx orig_reg;
82   rtx saved_in_reg;
83 };
84 
85 
86 /* Since we no longer have a proper CFG, we're going to create a facsimile
87    of one on the fly while processing the frame-related insns.
88 
89    We create dw_trace_info structures for each extended basic block beginning
90    and ending at a "save point".  Save points are labels, barriers, certain
91    notes, and of course the beginning and end of the function.
92 
93    As we encounter control transfer insns, we propagate the "current"
94    row state across the edges to the starts of traces.  When checking is
95    enabled, we validate that we propagate the same data from all sources.
96 
97    All traces are members of the TRACE_INFO array, in the order in which
98    they appear in the instruction stream.
99 
100    All save points are present in the TRACE_INDEX hash, mapping the insn
101    starting a trace to the dw_trace_info describing the trace.  */
102 
103 struct dw_trace_info
104 {
105   /* The insn that begins the trace.  */
106   rtx_insn *head;
107 
108   /* The row state at the beginning and end of the trace.  */
109   dw_cfi_row *beg_row, *end_row;
110 
111   /* Tracking for DW_CFA_GNU_args_size.  The "true" sizes are those we find
112      while scanning insns.  However, the args_size value is irrelevant at
113      any point except can_throw_internal_p insns.  Therefore the "delay"
114      sizes the values that must actually be emitted for this trace.  */
115   poly_int64_pod beg_true_args_size, end_true_args_size;
116   poly_int64_pod beg_delay_args_size, end_delay_args_size;
117 
118   /* The first EH insn in the trace, where beg_delay_args_size must be set.  */
119   rtx_insn *eh_head;
120 
121   /* The following variables contain data used in interpreting frame related
122      expressions.  These are not part of the "real" row state as defined by
123      Dwarf, but it seems like they need to be propagated into a trace in case
124      frame related expressions have been sunk.  */
125   /* ??? This seems fragile.  These variables are fragments of a larger
126      expression.  If we do not keep the entire expression together, we risk
127      not being able to put it together properly.  Consider forcing targets
128      to generate self-contained expressions and dropping all of the magic
129      interpretation code in this file.  Or at least refusing to shrink wrap
130      any frame related insn that doesn't contain a complete expression.  */
131 
132   /* The register used for saving registers to the stack, and its offset
133      from the CFA.  */
134   dw_cfa_location cfa_store;
135 
136   /* A temporary register holding an integral value used in adjusting SP
137      or setting up the store_reg.  The "offset" field holds the integer
138      value, not an offset.  */
139   dw_cfa_location cfa_temp;
140 
141   /* A set of registers saved in other registers.  This is the inverse of
142      the row->reg_save info, if the entry is a DW_CFA_register.  This is
143      implemented as a flat array because it normally contains zero or 1
144      entry, depending on the target.  IA-64 is the big spender here, using
145      a maximum of 5 entries.  */
146   vec<reg_saved_in_data> regs_saved_in_regs;
147 
148   /* An identifier for this trace.  Used only for debugging dumps.  */
149   unsigned id;
150 
151   /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS.  */
152   bool switch_sections;
153 
154   /* True if we've seen different values incoming to beg_true_args_size.  */
155   bool args_size_undefined;
156 
157   /* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD.  */
158   bool args_size_defined_for_eh;
159 };
160 
161 
162 /* Hashtable helpers.  */
163 
164 struct trace_info_hasher : nofree_ptr_hash <dw_trace_info>
165 {
166   static inline hashval_t hash (const dw_trace_info *);
167   static inline bool equal (const dw_trace_info *, const dw_trace_info *);
168 };
169 
170 inline hashval_t
hash(const dw_trace_info * ti)171 trace_info_hasher::hash (const dw_trace_info *ti)
172 {
173   return INSN_UID (ti->head);
174 }
175 
176 inline bool
equal(const dw_trace_info * a,const dw_trace_info * b)177 trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b)
178 {
179   return a->head == b->head;
180 }
181 
182 
183 /* The variables making up the pseudo-cfg, as described above.  */
184 static vec<dw_trace_info> trace_info;
185 static vec<dw_trace_info *> trace_work_list;
186 static hash_table<trace_info_hasher> *trace_index;
187 
188 /* A vector of call frame insns for the CIE.  */
189 cfi_vec cie_cfi_vec;
190 
191 /* The state of the first row of the FDE table, which includes the
192    state provided by the CIE.  */
193 static GTY(()) dw_cfi_row *cie_cfi_row;
194 
195 static GTY(()) reg_saved_in_data *cie_return_save;
196 
197 static GTY(()) unsigned long dwarf2out_cfi_label_num;
198 
199 /* The insn after which a new CFI note should be emitted.  */
200 static rtx_insn *add_cfi_insn;
201 
202 /* When non-null, add_cfi will add the CFI to this vector.  */
203 static cfi_vec *add_cfi_vec;
204 
205 /* The current instruction trace.  */
206 static dw_trace_info *cur_trace;
207 
208 /* The current, i.e. most recently generated, row of the CFI table.  */
209 static dw_cfi_row *cur_row;
210 
211 /* A copy of the current CFA, for use during the processing of a
212    single insn.  */
213 static dw_cfa_location *cur_cfa;
214 
215 /* We delay emitting a register save until either (a) we reach the end
216    of the prologue or (b) the register is clobbered.  This clusters
217    register saves so that there are fewer pc advances.  */
218 
219 struct queued_reg_save {
220   rtx reg;
221   rtx saved_reg;
222   poly_int64_pod cfa_offset;
223 };
224 
225 
226 static vec<queued_reg_save> queued_reg_saves;
227 
228 /* True if any CFI directives were emitted at the current insn.  */
229 static bool any_cfis_emitted;
230 
231 /* Short-hand for commonly used register numbers.  */
232 static unsigned dw_stack_pointer_regnum;
233 static unsigned dw_frame_pointer_regnum;
234 
235 /* Hook used by __throw.  */
236 
237 rtx
expand_builtin_dwarf_sp_column(void)238 expand_builtin_dwarf_sp_column (void)
239 {
240   unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
241   return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
242 }
243 
244 /* MEM is a memory reference for the register size table, each element of
245    which has mode MODE.  Initialize column C as a return address column.  */
246 
247 static void
init_return_column_size(scalar_int_mode mode,rtx mem,unsigned int c)248 init_return_column_size (scalar_int_mode mode, rtx mem, unsigned int c)
249 {
250   HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
251   HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
252   emit_move_insn (adjust_address (mem, mode, offset),
253 		  gen_int_mode (size, mode));
254 }
255 
256 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
257    init_one_dwarf_reg_size to communicate on what has been done by the
258    latter.  */
259 
260 struct init_one_dwarf_reg_state
261 {
262   /* Whether the dwarf return column was initialized.  */
263   bool wrote_return_column;
264 
265   /* For each hard register REGNO, whether init_one_dwarf_reg_size
266      was given REGNO to process already.  */
267   bool processed_regno [FIRST_PSEUDO_REGISTER];
268 
269 };
270 
271 /* Helper for expand_builtin_init_dwarf_reg_sizes.  Generate code to
272    initialize the dwarf register size table entry corresponding to register
273    REGNO in REGMODE.  TABLE is the table base address, SLOTMODE is the mode to
274    use for the size entry to initialize, and INIT_STATE is the communication
275    datastructure conveying what we're doing to our caller.  */
276 
277 static
init_one_dwarf_reg_size(int regno,machine_mode regmode,rtx table,machine_mode slotmode,init_one_dwarf_reg_state * init_state)278 void init_one_dwarf_reg_size (int regno, machine_mode regmode,
279 			      rtx table, machine_mode slotmode,
280 			      init_one_dwarf_reg_state *init_state)
281 {
282   const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
283   const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
284   const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
285 
286   poly_int64 slotoffset = dcol * GET_MODE_SIZE (slotmode);
287   poly_int64 regsize = GET_MODE_SIZE (regmode);
288 
289   init_state->processed_regno[regno] = true;
290 
291   if (rnum >= DWARF_FRAME_REGISTERS)
292     return;
293 
294   if (dnum == DWARF_FRAME_RETURN_COLUMN)
295     {
296       if (regmode == VOIDmode)
297 	return;
298       init_state->wrote_return_column = true;
299     }
300 
301   /* ??? When is this true?  Should it be a test based on DCOL instead?  */
302   if (maybe_lt (slotoffset, 0))
303     return;
304 
305   emit_move_insn (adjust_address (table, slotmode, slotoffset),
306 		  gen_int_mode (regsize, slotmode));
307 }
308 
309 /* Generate code to initialize the dwarf register size table located
310    at the provided ADDRESS.  */
311 
312 void
expand_builtin_init_dwarf_reg_sizes(tree address)313 expand_builtin_init_dwarf_reg_sizes (tree address)
314 {
315   unsigned int i;
316   scalar_int_mode mode = SCALAR_INT_TYPE_MODE (char_type_node);
317   rtx addr = expand_normal (address);
318   rtx mem = gen_rtx_MEM (BLKmode, addr);
319 
320   init_one_dwarf_reg_state init_state;
321 
322   memset ((char *)&init_state, 0, sizeof (init_state));
323 
324   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
325     {
326       machine_mode save_mode;
327       rtx span;
328 
329       /* No point in processing a register multiple times.  This could happen
330 	 with register spans, e.g. when a reg is first processed as a piece of
331 	 a span, then as a register on its own later on.  */
332 
333       if (init_state.processed_regno[i])
334 	continue;
335 
336       save_mode = targetm.dwarf_frame_reg_mode (i);
337       span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
338 
339       if (!span)
340 	init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
341       else
342 	{
343 	  for (int si = 0; si < XVECLEN (span, 0); si++)
344 	    {
345 	      rtx reg = XVECEXP (span, 0, si);
346 
347 	      init_one_dwarf_reg_size
348 		(REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
349 	    }
350 	}
351     }
352 
353   if (!init_state.wrote_return_column)
354     init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
355 
356 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
357   init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
358 #endif
359 
360   targetm.init_dwarf_reg_sizes_extra (address);
361 }
362 
363 
364 static dw_trace_info *
get_trace_info(rtx_insn * insn)365 get_trace_info (rtx_insn *insn)
366 {
367   dw_trace_info dummy;
368   dummy.head = insn;
369   return trace_index->find_with_hash (&dummy, INSN_UID (insn));
370 }
371 
372 static bool
save_point_p(rtx_insn * insn)373 save_point_p (rtx_insn *insn)
374 {
375   /* Labels, except those that are really jump tables.  */
376   if (LABEL_P (insn))
377     return inside_basic_block_p (insn);
378 
379   /* We split traces at the prologue/epilogue notes because those
380      are points at which the unwind info is usually stable.  This
381      makes it easier to find spots with identical unwind info so
382      that we can use remember/restore_state opcodes.  */
383   if (NOTE_P (insn))
384     switch (NOTE_KIND (insn))
385       {
386       case NOTE_INSN_PROLOGUE_END:
387       case NOTE_INSN_EPILOGUE_BEG:
388 	return true;
389       }
390 
391   return false;
392 }
393 
394 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder.  */
395 
396 static inline HOST_WIDE_INT
div_data_align(HOST_WIDE_INT off)397 div_data_align (HOST_WIDE_INT off)
398 {
399   HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
400   gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
401   return r;
402 }
403 
404 /* Return true if we need a signed version of a given opcode
405    (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended).  */
406 
407 static inline bool
need_data_align_sf_opcode(HOST_WIDE_INT off)408 need_data_align_sf_opcode (HOST_WIDE_INT off)
409 {
410   return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
411 }
412 
413 /* Return a pointer to a newly allocated Call Frame Instruction.  */
414 
415 static inline dw_cfi_ref
new_cfi(void)416 new_cfi (void)
417 {
418   dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
419 
420   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
421   cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
422 
423   return cfi;
424 }
425 
426 /* Return a newly allocated CFI row, with no defined data.  */
427 
428 static dw_cfi_row *
new_cfi_row(void)429 new_cfi_row (void)
430 {
431   dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
432 
433   row->cfa.reg = INVALID_REGNUM;
434 
435   return row;
436 }
437 
438 /* Return a copy of an existing CFI row.  */
439 
440 static dw_cfi_row *
copy_cfi_row(dw_cfi_row * src)441 copy_cfi_row (dw_cfi_row *src)
442 {
443   dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
444 
445   *dst = *src;
446   dst->reg_save = vec_safe_copy (src->reg_save);
447 
448   return dst;
449 }
450 
451 /* Return a copy of an existing CFA location.  */
452 
453 static dw_cfa_location *
copy_cfa(dw_cfa_location * src)454 copy_cfa (dw_cfa_location *src)
455 {
456   dw_cfa_location *dst = ggc_alloc<dw_cfa_location> ();
457   *dst = *src;
458   return dst;
459 }
460 
461 /* Generate a new label for the CFI info to refer to.  */
462 
463 static char *
dwarf2out_cfi_label(void)464 dwarf2out_cfi_label (void)
465 {
466   int num = dwarf2out_cfi_label_num++;
467   char label[20];
468 
469   ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
470 
471   return xstrdup (label);
472 }
473 
474 /* Add CFI either to the current insn stream or to a vector, or both.  */
475 
476 static void
add_cfi(dw_cfi_ref cfi)477 add_cfi (dw_cfi_ref cfi)
478 {
479   any_cfis_emitted = true;
480 
481   if (add_cfi_insn != NULL)
482     {
483       add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
484       NOTE_CFI (add_cfi_insn) = cfi;
485     }
486 
487   if (add_cfi_vec != NULL)
488     vec_safe_push (*add_cfi_vec, cfi);
489 }
490 
491 static void
add_cfi_args_size(poly_int64 size)492 add_cfi_args_size (poly_int64 size)
493 {
494   /* We don't yet have a representation for polynomial sizes.  */
495   HOST_WIDE_INT const_size = size.to_constant ();
496 
497   dw_cfi_ref cfi = new_cfi ();
498 
499   /* While we can occasionally have args_size < 0 internally, this state
500      should not persist at a point we actually need an opcode.  */
501   gcc_assert (const_size >= 0);
502 
503   cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
504   cfi->dw_cfi_oprnd1.dw_cfi_offset = const_size;
505 
506   add_cfi (cfi);
507 }
508 
509 static void
add_cfi_restore(unsigned reg)510 add_cfi_restore (unsigned reg)
511 {
512   dw_cfi_ref cfi = new_cfi ();
513 
514   cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
515   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
516 
517   add_cfi (cfi);
518 }
519 
520 /* Perform ROW->REG_SAVE[COLUMN] = CFI.  CFI may be null, indicating
521    that the register column is no longer saved.  */
522 
523 static void
update_row_reg_save(dw_cfi_row * row,unsigned column,dw_cfi_ref cfi)524 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
525 {
526   if (vec_safe_length (row->reg_save) <= column)
527     vec_safe_grow_cleared (row->reg_save, column + 1);
528   (*row->reg_save)[column] = cfi;
529 }
530 
531 /* This function fills in aa dw_cfa_location structure from a dwarf location
532    descriptor sequence.  */
533 
534 static void
get_cfa_from_loc_descr(dw_cfa_location * cfa,struct dw_loc_descr_node * loc)535 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
536 {
537   struct dw_loc_descr_node *ptr;
538   cfa->offset = 0;
539   cfa->base_offset = 0;
540   cfa->indirect = 0;
541   cfa->reg = -1;
542 
543   for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
544     {
545       enum dwarf_location_atom op = ptr->dw_loc_opc;
546 
547       switch (op)
548 	{
549 	case DW_OP_reg0:
550 	case DW_OP_reg1:
551 	case DW_OP_reg2:
552 	case DW_OP_reg3:
553 	case DW_OP_reg4:
554 	case DW_OP_reg5:
555 	case DW_OP_reg6:
556 	case DW_OP_reg7:
557 	case DW_OP_reg8:
558 	case DW_OP_reg9:
559 	case DW_OP_reg10:
560 	case DW_OP_reg11:
561 	case DW_OP_reg12:
562 	case DW_OP_reg13:
563 	case DW_OP_reg14:
564 	case DW_OP_reg15:
565 	case DW_OP_reg16:
566 	case DW_OP_reg17:
567 	case DW_OP_reg18:
568 	case DW_OP_reg19:
569 	case DW_OP_reg20:
570 	case DW_OP_reg21:
571 	case DW_OP_reg22:
572 	case DW_OP_reg23:
573 	case DW_OP_reg24:
574 	case DW_OP_reg25:
575 	case DW_OP_reg26:
576 	case DW_OP_reg27:
577 	case DW_OP_reg28:
578 	case DW_OP_reg29:
579 	case DW_OP_reg30:
580 	case DW_OP_reg31:
581 	  cfa->reg = op - DW_OP_reg0;
582 	  break;
583 	case DW_OP_regx:
584 	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
585 	  break;
586 	case DW_OP_breg0:
587 	case DW_OP_breg1:
588 	case DW_OP_breg2:
589 	case DW_OP_breg3:
590 	case DW_OP_breg4:
591 	case DW_OP_breg5:
592 	case DW_OP_breg6:
593 	case DW_OP_breg7:
594 	case DW_OP_breg8:
595 	case DW_OP_breg9:
596 	case DW_OP_breg10:
597 	case DW_OP_breg11:
598 	case DW_OP_breg12:
599 	case DW_OP_breg13:
600 	case DW_OP_breg14:
601 	case DW_OP_breg15:
602 	case DW_OP_breg16:
603 	case DW_OP_breg17:
604 	case DW_OP_breg18:
605 	case DW_OP_breg19:
606 	case DW_OP_breg20:
607 	case DW_OP_breg21:
608 	case DW_OP_breg22:
609 	case DW_OP_breg23:
610 	case DW_OP_breg24:
611 	case DW_OP_breg25:
612 	case DW_OP_breg26:
613 	case DW_OP_breg27:
614 	case DW_OP_breg28:
615 	case DW_OP_breg29:
616 	case DW_OP_breg30:
617 	case DW_OP_breg31:
618 	  cfa->reg = op - DW_OP_breg0;
619 	  cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
620 	  break;
621 	case DW_OP_bregx:
622 	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
623 	  cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
624 	  break;
625 	case DW_OP_deref:
626 	  cfa->indirect = 1;
627 	  break;
628 	case DW_OP_plus_uconst:
629 	  cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
630 	  break;
631 	default:
632 	  gcc_unreachable ();
633 	}
634     }
635 }
636 
637 /* Find the previous value for the CFA, iteratively.  CFI is the opcode
638    to interpret, *LOC will be updated as necessary, *REMEMBER is used for
639    one level of remember/restore state processing.  */
640 
641 void
lookup_cfa_1(dw_cfi_ref cfi,dw_cfa_location * loc,dw_cfa_location * remember)642 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
643 {
644   switch (cfi->dw_cfi_opc)
645     {
646     case DW_CFA_def_cfa_offset:
647     case DW_CFA_def_cfa_offset_sf:
648       loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
649       break;
650     case DW_CFA_def_cfa_register:
651       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
652       break;
653     case DW_CFA_def_cfa:
654     case DW_CFA_def_cfa_sf:
655       loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
656       loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
657       break;
658     case DW_CFA_def_cfa_expression:
659       if (cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc)
660 	*loc = *cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc;
661       else
662 	get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
663       break;
664 
665     case DW_CFA_remember_state:
666       gcc_assert (!remember->in_use);
667       *remember = *loc;
668       remember->in_use = 1;
669       break;
670     case DW_CFA_restore_state:
671       gcc_assert (remember->in_use);
672       *loc = *remember;
673       remember->in_use = 0;
674       break;
675 
676     default:
677       break;
678     }
679 }
680 
681 /* Determine if two dw_cfa_location structures define the same data.  */
682 
683 bool
cfa_equal_p(const dw_cfa_location * loc1,const dw_cfa_location * loc2)684 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
685 {
686   return (loc1->reg == loc2->reg
687 	  && known_eq (loc1->offset, loc2->offset)
688 	  && loc1->indirect == loc2->indirect
689 	  && (loc1->indirect == 0
690 	      || known_eq (loc1->base_offset, loc2->base_offset)));
691 }
692 
693 /* Determine if two CFI operands are identical.  */
694 
695 static bool
cfi_oprnd_equal_p(enum dw_cfi_oprnd_type t,dw_cfi_oprnd * a,dw_cfi_oprnd * b)696 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
697 {
698   switch (t)
699     {
700     case dw_cfi_oprnd_unused:
701       return true;
702     case dw_cfi_oprnd_reg_num:
703       return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
704     case dw_cfi_oprnd_offset:
705       return a->dw_cfi_offset == b->dw_cfi_offset;
706     case dw_cfi_oprnd_addr:
707       return (a->dw_cfi_addr == b->dw_cfi_addr
708 	      || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
709     case dw_cfi_oprnd_loc:
710       return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
711     case dw_cfi_oprnd_cfa_loc:
712       return cfa_equal_p (a->dw_cfi_cfa_loc, b->dw_cfi_cfa_loc);
713     }
714   gcc_unreachable ();
715 }
716 
717 /* Determine if two CFI entries are identical.  */
718 
719 static bool
cfi_equal_p(dw_cfi_ref a,dw_cfi_ref b)720 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
721 {
722   enum dwarf_call_frame_info opc;
723 
724   /* Make things easier for our callers, including missing operands.  */
725   if (a == b)
726     return true;
727   if (a == NULL || b == NULL)
728     return false;
729 
730   /* Obviously, the opcodes must match.  */
731   opc = a->dw_cfi_opc;
732   if (opc != b->dw_cfi_opc)
733     return false;
734 
735   /* Compare the two operands, re-using the type of the operands as
736      already exposed elsewhere.  */
737   return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
738 			     &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
739 	  && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
740 				&a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
741 }
742 
743 /* Determine if two CFI_ROW structures are identical.  */
744 
745 static bool
cfi_row_equal_p(dw_cfi_row * a,dw_cfi_row * b)746 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
747 {
748   size_t i, n_a, n_b, n_max;
749 
750   if (a->cfa_cfi)
751     {
752       if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
753 	return false;
754     }
755   else if (!cfa_equal_p (&a->cfa, &b->cfa))
756     return false;
757 
758   n_a = vec_safe_length (a->reg_save);
759   n_b = vec_safe_length (b->reg_save);
760   n_max = MAX (n_a, n_b);
761 
762   for (i = 0; i < n_max; ++i)
763     {
764       dw_cfi_ref r_a = NULL, r_b = NULL;
765 
766       if (i < n_a)
767 	r_a = (*a->reg_save)[i];
768       if (i < n_b)
769 	r_b = (*b->reg_save)[i];
770 
771       if (!cfi_equal_p (r_a, r_b))
772         return false;
773     }
774 
775   if (a->window_save != b->window_save)
776     return false;
777 
778   if (a->ra_mangled != b->ra_mangled)
779     return false;
780 
781   return true;
782 }
783 
784 /* The CFA is now calculated from NEW_CFA.  Consider OLD_CFA in determining
785    what opcode to emit.  Returns the CFI opcode to effect the change, or
786    NULL if NEW_CFA == OLD_CFA.  */
787 
788 static dw_cfi_ref
def_cfa_0(dw_cfa_location * old_cfa,dw_cfa_location * new_cfa)789 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
790 {
791   dw_cfi_ref cfi;
792 
793   /* If nothing changed, no need to issue any call frame instructions.  */
794   if (cfa_equal_p (old_cfa, new_cfa))
795     return NULL;
796 
797   cfi = new_cfi ();
798 
799   HOST_WIDE_INT const_offset;
800   if (new_cfa->reg == old_cfa->reg
801       && !new_cfa->indirect
802       && !old_cfa->indirect
803       && new_cfa->offset.is_constant (&const_offset))
804     {
805       /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
806 	 the CFA register did not change but the offset did.  The data
807 	 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
808 	 in the assembler via the .cfi_def_cfa_offset directive.  */
809       if (const_offset < 0)
810 	cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
811       else
812 	cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
813       cfi->dw_cfi_oprnd1.dw_cfi_offset = const_offset;
814     }
815   else if (new_cfa->offset.is_constant ()
816 	   && known_eq (new_cfa->offset, old_cfa->offset)
817 	   && old_cfa->reg != INVALID_REGNUM
818 	   && !new_cfa->indirect
819 	   && !old_cfa->indirect)
820     {
821       /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
822 	 indicating the CFA register has changed to <register> but the
823 	 offset has not changed.  This requires the old CFA to have
824 	 been set as a register plus offset rather than a general
825 	 DW_CFA_def_cfa_expression.  */
826       cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
827       cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
828     }
829   else if (new_cfa->indirect == 0
830 	   && new_cfa->offset.is_constant (&const_offset))
831     {
832       /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
833 	 indicating the CFA register has changed to <register> with
834 	 the specified offset.  The data factoring for DW_CFA_def_cfa_sf
835 	 happens in output_cfi, or in the assembler via the .cfi_def_cfa
836 	 directive.  */
837       if (const_offset < 0)
838 	cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
839       else
840 	cfi->dw_cfi_opc = DW_CFA_def_cfa;
841       cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
842       cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
843     }
844   else
845     {
846       /* Construct a DW_CFA_def_cfa_expression instruction to
847 	 calculate the CFA using a full location expression since no
848 	 register-offset pair is available.  */
849       struct dw_loc_descr_node *loc_list;
850 
851       cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
852       loc_list = build_cfa_loc (new_cfa, 0);
853       cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
854       if (!new_cfa->offset.is_constant ()
855 	  || !new_cfa->base_offset.is_constant ())
856 	/* It's hard to reconstruct the CFA location for a polynomial
857 	   expression, so just cache it instead.  */
858 	cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = copy_cfa (new_cfa);
859       else
860 	cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = NULL;
861     }
862 
863   return cfi;
864 }
865 
866 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact.  */
867 
868 static void
def_cfa_1(dw_cfa_location * new_cfa)869 def_cfa_1 (dw_cfa_location *new_cfa)
870 {
871   dw_cfi_ref cfi;
872 
873   if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
874     cur_trace->cfa_store.offset = new_cfa->offset;
875 
876   cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
877   if (cfi)
878     {
879       cur_row->cfa = *new_cfa;
880       cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
881 			  ? cfi : NULL);
882 
883       add_cfi (cfi);
884     }
885 }
886 
887 /* Add the CFI for saving a register.  REG is the CFA column number.
888    If SREG is -1, the register is saved at OFFSET from the CFA;
889    otherwise it is saved in SREG.  */
890 
891 static void
reg_save(unsigned int reg,unsigned int sreg,poly_int64 offset)892 reg_save (unsigned int reg, unsigned int sreg, poly_int64 offset)
893 {
894   dw_fde_ref fde = cfun ? cfun->fde : NULL;
895   dw_cfi_ref cfi = new_cfi ();
896 
897   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
898 
899   if (sreg == INVALID_REGNUM)
900     {
901       HOST_WIDE_INT const_offset;
902       /* When stack is aligned, store REG using DW_CFA_expression with FP.  */
903       if (fde && fde->stack_realign)
904 	{
905 	  cfi->dw_cfi_opc = DW_CFA_expression;
906 	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
907 	  cfi->dw_cfi_oprnd2.dw_cfi_loc
908 	    = build_cfa_aligned_loc (&cur_row->cfa, offset,
909 				     fde->stack_realignment);
910 	}
911       else if (offset.is_constant (&const_offset))
912 	{
913 	  if (need_data_align_sf_opcode (const_offset))
914 	    cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
915 	  else if (reg & ~0x3f)
916 	    cfi->dw_cfi_opc = DW_CFA_offset_extended;
917 	  else
918 	    cfi->dw_cfi_opc = DW_CFA_offset;
919 	  cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
920 	}
921       else
922 	{
923 	  cfi->dw_cfi_opc = DW_CFA_expression;
924 	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
925 	  cfi->dw_cfi_oprnd2.dw_cfi_loc
926 	    = build_cfa_loc (&cur_row->cfa, offset);
927 	}
928     }
929   else if (sreg == reg)
930     {
931       /* While we could emit something like DW_CFA_same_value or
932 	 DW_CFA_restore, we never expect to see something like that
933 	 in a prologue.  This is more likely to be a bug.  A backend
934 	 can always bypass this by using REG_CFA_RESTORE directly.  */
935       gcc_unreachable ();
936     }
937   else
938     {
939       cfi->dw_cfi_opc = DW_CFA_register;
940       cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
941     }
942 
943   add_cfi (cfi);
944   update_row_reg_save (cur_row, reg, cfi);
945 }
946 
947 /* A subroutine of scan_trace.  Check INSN for a REG_ARGS_SIZE note
948    and adjust data structures to match.  */
949 
950 static void
notice_args_size(rtx_insn * insn)951 notice_args_size (rtx_insn *insn)
952 {
953   poly_int64 args_size, delta;
954   rtx note;
955 
956   note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
957   if (note == NULL)
958     return;
959 
960   if (!cur_trace->eh_head)
961     cur_trace->args_size_defined_for_eh = true;
962 
963   args_size = get_args_size (note);
964   delta = args_size - cur_trace->end_true_args_size;
965   if (known_eq (delta, 0))
966     return;
967 
968   cur_trace->end_true_args_size = args_size;
969 
970   /* If the CFA is computed off the stack pointer, then we must adjust
971      the computation of the CFA as well.  */
972   if (cur_cfa->reg == dw_stack_pointer_regnum)
973     {
974       gcc_assert (!cur_cfa->indirect);
975 
976       /* Convert a change in args_size (always a positive in the
977 	 direction of stack growth) to a change in stack pointer.  */
978       if (!STACK_GROWS_DOWNWARD)
979 	delta = -delta;
980 
981       cur_cfa->offset += delta;
982     }
983 }
984 
985 /* A subroutine of scan_trace.  INSN is can_throw_internal.  Update the
986    data within the trace related to EH insns and args_size.  */
987 
988 static void
notice_eh_throw(rtx_insn * insn)989 notice_eh_throw (rtx_insn *insn)
990 {
991   poly_int64 args_size = cur_trace->end_true_args_size;
992   if (cur_trace->eh_head == NULL)
993     {
994       cur_trace->eh_head = insn;
995       cur_trace->beg_delay_args_size = args_size;
996       cur_trace->end_delay_args_size = args_size;
997     }
998   else if (maybe_ne (cur_trace->end_delay_args_size, args_size))
999     {
1000       cur_trace->end_delay_args_size = args_size;
1001 
1002       /* ??? If the CFA is the stack pointer, search backward for the last
1003 	 CFI note and insert there.  Given that the stack changed for the
1004 	 args_size change, there *must* be such a note in between here and
1005 	 the last eh insn.  */
1006       add_cfi_args_size (args_size);
1007     }
1008 }
1009 
1010 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation.  */
1011 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
1012    used in places where rtl is prohibited.  */
1013 
1014 static inline unsigned
dwf_regno(const_rtx reg)1015 dwf_regno (const_rtx reg)
1016 {
1017   gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
1018   return DWARF_FRAME_REGNUM (REGNO (reg));
1019 }
1020 
1021 /* Compare X and Y for equivalence.  The inputs may be REGs or PC_RTX.  */
1022 
1023 static bool
compare_reg_or_pc(rtx x,rtx y)1024 compare_reg_or_pc (rtx x, rtx y)
1025 {
1026   if (REG_P (x) && REG_P (y))
1027     return REGNO (x) == REGNO (y);
1028   return x == y;
1029 }
1030 
1031 /* Record SRC as being saved in DEST.  DEST may be null to delete an
1032    existing entry.  SRC may be a register or PC_RTX.  */
1033 
1034 static void
record_reg_saved_in_reg(rtx dest,rtx src)1035 record_reg_saved_in_reg (rtx dest, rtx src)
1036 {
1037   reg_saved_in_data *elt;
1038   size_t i;
1039 
1040   FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
1041     if (compare_reg_or_pc (elt->orig_reg, src))
1042       {
1043 	if (dest == NULL)
1044 	  cur_trace->regs_saved_in_regs.unordered_remove (i);
1045 	else
1046 	  elt->saved_in_reg = dest;
1047 	return;
1048       }
1049 
1050   if (dest == NULL)
1051     return;
1052 
1053   reg_saved_in_data e = {src, dest};
1054   cur_trace->regs_saved_in_regs.safe_push (e);
1055 }
1056 
1057 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1058    SREG, or if SREG is NULL then it is saved at OFFSET to the CFA.  */
1059 
1060 static void
queue_reg_save(rtx reg,rtx sreg,poly_int64 offset)1061 queue_reg_save (rtx reg, rtx sreg, poly_int64 offset)
1062 {
1063   queued_reg_save *q;
1064   queued_reg_save e = {reg, sreg, offset};
1065   size_t i;
1066 
1067   /* Duplicates waste space, but it's also necessary to remove them
1068      for correctness, since the queue gets output in reverse order.  */
1069   FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1070     if (compare_reg_or_pc (q->reg, reg))
1071       {
1072 	*q = e;
1073 	return;
1074       }
1075 
1076   queued_reg_saves.safe_push (e);
1077 }
1078 
1079 /* Output all the entries in QUEUED_REG_SAVES.  */
1080 
1081 static void
dwarf2out_flush_queued_reg_saves(void)1082 dwarf2out_flush_queued_reg_saves (void)
1083 {
1084   queued_reg_save *q;
1085   size_t i;
1086 
1087   FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1088     {
1089       unsigned int reg, sreg;
1090 
1091       record_reg_saved_in_reg (q->saved_reg, q->reg);
1092 
1093       if (q->reg == pc_rtx)
1094 	reg = DWARF_FRAME_RETURN_COLUMN;
1095       else
1096         reg = dwf_regno (q->reg);
1097       if (q->saved_reg)
1098 	sreg = dwf_regno (q->saved_reg);
1099       else
1100 	sreg = INVALID_REGNUM;
1101       reg_save (reg, sreg, q->cfa_offset);
1102     }
1103 
1104   queued_reg_saves.truncate (0);
1105 }
1106 
1107 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1108    location for?  Or, does it clobber a register which we've previously
1109    said that some other register is saved in, and for which we now
1110    have a new location for?  */
1111 
1112 static bool
clobbers_queued_reg_save(const_rtx insn)1113 clobbers_queued_reg_save (const_rtx insn)
1114 {
1115   queued_reg_save *q;
1116   size_t iq;
1117 
1118   FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1119     {
1120       size_t ir;
1121       reg_saved_in_data *rir;
1122 
1123       if (modified_in_p (q->reg, insn))
1124 	return true;
1125 
1126       FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1127 	if (compare_reg_or_pc (q->reg, rir->orig_reg)
1128 	    && modified_in_p (rir->saved_in_reg, insn))
1129 	  return true;
1130     }
1131 
1132   return false;
1133 }
1134 
1135 /* What register, if any, is currently saved in REG?  */
1136 
1137 static rtx
reg_saved_in(rtx reg)1138 reg_saved_in (rtx reg)
1139 {
1140   unsigned int regn = REGNO (reg);
1141   queued_reg_save *q;
1142   reg_saved_in_data *rir;
1143   size_t i;
1144 
1145   FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1146     if (q->saved_reg && regn == REGNO (q->saved_reg))
1147       return q->reg;
1148 
1149   FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1150     if (regn == REGNO (rir->saved_in_reg))
1151       return rir->orig_reg;
1152 
1153   return NULL_RTX;
1154 }
1155 
1156 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note.  */
1157 
1158 static void
dwarf2out_frame_debug_def_cfa(rtx pat)1159 dwarf2out_frame_debug_def_cfa (rtx pat)
1160 {
1161   memset (cur_cfa, 0, sizeof (*cur_cfa));
1162 
1163   pat = strip_offset (pat, &cur_cfa->offset);
1164   if (MEM_P (pat))
1165     {
1166       cur_cfa->indirect = 1;
1167       pat = strip_offset (XEXP (pat, 0), &cur_cfa->base_offset);
1168     }
1169   /* ??? If this fails, we could be calling into the _loc functions to
1170      define a full expression.  So far no port does that.  */
1171   gcc_assert (REG_P (pat));
1172   cur_cfa->reg = dwf_regno (pat);
1173 }
1174 
1175 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note.  */
1176 
1177 static void
dwarf2out_frame_debug_adjust_cfa(rtx pat)1178 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1179 {
1180   rtx src, dest;
1181 
1182   gcc_assert (GET_CODE (pat) == SET);
1183   dest = XEXP (pat, 0);
1184   src = XEXP (pat, 1);
1185 
1186   switch (GET_CODE (src))
1187     {
1188     case PLUS:
1189       gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1190       cur_cfa->offset -= rtx_to_poly_int64 (XEXP (src, 1));
1191       break;
1192 
1193     case REG:
1194       break;
1195 
1196     default:
1197       gcc_unreachable ();
1198     }
1199 
1200   cur_cfa->reg = dwf_regno (dest);
1201   gcc_assert (cur_cfa->indirect == 0);
1202 }
1203 
1204 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note.  */
1205 
1206 static void
dwarf2out_frame_debug_cfa_offset(rtx set)1207 dwarf2out_frame_debug_cfa_offset (rtx set)
1208 {
1209   poly_int64 offset;
1210   rtx src, addr, span;
1211   unsigned int sregno;
1212 
1213   src = XEXP (set, 1);
1214   addr = XEXP (set, 0);
1215   gcc_assert (MEM_P (addr));
1216   addr = XEXP (addr, 0);
1217 
1218   /* As documented, only consider extremely simple addresses.  */
1219   switch (GET_CODE (addr))
1220     {
1221     case REG:
1222       gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1223       offset = -cur_cfa->offset;
1224       break;
1225     case PLUS:
1226       gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1227       offset = rtx_to_poly_int64 (XEXP (addr, 1)) - cur_cfa->offset;
1228       break;
1229     default:
1230       gcc_unreachable ();
1231     }
1232 
1233   if (src == pc_rtx)
1234     {
1235       span = NULL;
1236       sregno = DWARF_FRAME_RETURN_COLUMN;
1237     }
1238   else
1239     {
1240       span = targetm.dwarf_register_span (src);
1241       sregno = dwf_regno (src);
1242     }
1243 
1244   /* ??? We'd like to use queue_reg_save, but we need to come up with
1245      a different flushing heuristic for epilogues.  */
1246   if (!span)
1247     reg_save (sregno, INVALID_REGNUM, offset);
1248   else
1249     {
1250       /* We have a PARALLEL describing where the contents of SRC live.
1251    	 Adjust the offset for each piece of the PARALLEL.  */
1252       poly_int64 span_offset = offset;
1253 
1254       gcc_assert (GET_CODE (span) == PARALLEL);
1255 
1256       const int par_len = XVECLEN (span, 0);
1257       for (int par_index = 0; par_index < par_len; par_index++)
1258 	{
1259 	  rtx elem = XVECEXP (span, 0, par_index);
1260 	  sregno = dwf_regno (src);
1261 	  reg_save (sregno, INVALID_REGNUM, span_offset);
1262 	  span_offset += GET_MODE_SIZE (GET_MODE (elem));
1263 	}
1264     }
1265 }
1266 
1267 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note.  */
1268 
1269 static void
dwarf2out_frame_debug_cfa_register(rtx set)1270 dwarf2out_frame_debug_cfa_register (rtx set)
1271 {
1272   rtx src, dest;
1273   unsigned sregno, dregno;
1274 
1275   src = XEXP (set, 1);
1276   dest = XEXP (set, 0);
1277 
1278   record_reg_saved_in_reg (dest, src);
1279   if (src == pc_rtx)
1280     sregno = DWARF_FRAME_RETURN_COLUMN;
1281   else
1282     sregno = dwf_regno (src);
1283 
1284   dregno = dwf_regno (dest);
1285 
1286   /* ??? We'd like to use queue_reg_save, but we need to come up with
1287      a different flushing heuristic for epilogues.  */
1288   reg_save (sregno, dregno, 0);
1289 }
1290 
1291 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note.  */
1292 
1293 static void
dwarf2out_frame_debug_cfa_expression(rtx set)1294 dwarf2out_frame_debug_cfa_expression (rtx set)
1295 {
1296   rtx src, dest, span;
1297   dw_cfi_ref cfi = new_cfi ();
1298   unsigned regno;
1299 
1300   dest = SET_DEST (set);
1301   src = SET_SRC (set);
1302 
1303   gcc_assert (REG_P (src));
1304   gcc_assert (MEM_P (dest));
1305 
1306   span = targetm.dwarf_register_span (src);
1307   gcc_assert (!span);
1308 
1309   regno = dwf_regno (src);
1310 
1311   cfi->dw_cfi_opc = DW_CFA_expression;
1312   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1313   cfi->dw_cfi_oprnd2.dw_cfi_loc
1314     = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1315 			  GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1316 
1317   /* ??? We'd like to use queue_reg_save, were the interface different,
1318      and, as above, we could manage flushing for epilogues.  */
1319   add_cfi (cfi);
1320   update_row_reg_save (cur_row, regno, cfi);
1321 }
1322 
1323 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
1324    note.  */
1325 
1326 static void
dwarf2out_frame_debug_cfa_val_expression(rtx set)1327 dwarf2out_frame_debug_cfa_val_expression (rtx set)
1328 {
1329   rtx dest = SET_DEST (set);
1330   gcc_assert (REG_P (dest));
1331 
1332   rtx span = targetm.dwarf_register_span (dest);
1333   gcc_assert (!span);
1334 
1335   rtx src = SET_SRC (set);
1336   dw_cfi_ref cfi = new_cfi ();
1337   cfi->dw_cfi_opc = DW_CFA_val_expression;
1338   cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (dest);
1339   cfi->dw_cfi_oprnd2.dw_cfi_loc
1340     = mem_loc_descriptor (src, GET_MODE (src),
1341 			  GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1342   add_cfi (cfi);
1343   update_row_reg_save (cur_row, dwf_regno (dest), cfi);
1344 }
1345 
1346 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note.  */
1347 
1348 static void
dwarf2out_frame_debug_cfa_restore(rtx reg)1349 dwarf2out_frame_debug_cfa_restore (rtx reg)
1350 {
1351   gcc_assert (REG_P (reg));
1352 
1353   rtx span = targetm.dwarf_register_span (reg);
1354   if (!span)
1355     {
1356       unsigned int regno = dwf_regno (reg);
1357       add_cfi_restore (regno);
1358       update_row_reg_save (cur_row, regno, NULL);
1359     }
1360   else
1361     {
1362       /* We have a PARALLEL describing where the contents of REG live.
1363 	 Restore the register for each piece of the PARALLEL.  */
1364       gcc_assert (GET_CODE (span) == PARALLEL);
1365 
1366       const int par_len = XVECLEN (span, 0);
1367       for (int par_index = 0; par_index < par_len; par_index++)
1368 	{
1369 	  reg = XVECEXP (span, 0, par_index);
1370 	  gcc_assert (REG_P (reg));
1371 	  unsigned int regno = dwf_regno (reg);
1372 	  add_cfi_restore (regno);
1373 	  update_row_reg_save (cur_row, regno, NULL);
1374 	}
1375     }
1376 }
1377 
1378 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1379 
1380    ??? Perhaps we should note in the CIE where windows are saved (instead
1381    of assuming 0(cfa)) and what registers are in the window.  */
1382 
1383 static void
dwarf2out_frame_debug_cfa_window_save(void)1384 dwarf2out_frame_debug_cfa_window_save (void)
1385 {
1386   dw_cfi_ref cfi = new_cfi ();
1387 
1388   cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1389   add_cfi (cfi);
1390   cur_row->window_save = true;
1391 }
1392 
1393 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_TOGGLE_RA_MANGLE.
1394    Note: DW_CFA_GNU_window_save dwarf opcode is reused for toggling RA mangle
1395    state, this is a target specific operation on AArch64 and can only be used
1396    on other targets if they don't use the window save operation otherwise.  */
1397 
1398 static void
dwarf2out_frame_debug_cfa_toggle_ra_mangle(void)1399 dwarf2out_frame_debug_cfa_toggle_ra_mangle (void)
1400 {
1401   dw_cfi_ref cfi = new_cfi ();
1402 
1403   cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1404   add_cfi (cfi);
1405   cur_row->ra_mangled = !cur_row->ra_mangled;
1406 }
1407 
1408 /* Record call frame debugging information for an expression EXPR,
1409    which either sets SP or FP (adjusting how we calculate the frame
1410    address) or saves a register to the stack or another register.
1411    LABEL indicates the address of EXPR.
1412 
1413    This function encodes a state machine mapping rtxes to actions on
1414    cfa, cfa_store, and cfa_temp.reg.  We describe these rules so
1415    users need not read the source code.
1416 
1417   The High-Level Picture
1418 
1419   Changes in the register we use to calculate the CFA: Currently we
1420   assume that if you copy the CFA register into another register, we
1421   should take the other one as the new CFA register; this seems to
1422   work pretty well.  If it's wrong for some target, it's simple
1423   enough not to set RTX_FRAME_RELATED_P on the insn in question.
1424 
1425   Changes in the register we use for saving registers to the stack:
1426   This is usually SP, but not always.  Again, we deduce that if you
1427   copy SP into another register (and SP is not the CFA register),
1428   then the new register is the one we will be using for register
1429   saves.  This also seems to work.
1430 
1431   Register saves: There's not much guesswork about this one; if
1432   RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1433   register save, and the register used to calculate the destination
1434   had better be the one we think we're using for this purpose.
1435   It's also assumed that a copy from a call-saved register to another
1436   register is saving that register if RTX_FRAME_RELATED_P is set on
1437   that instruction.  If the copy is from a call-saved register to
1438   the *same* register, that means that the register is now the same
1439   value as in the caller.
1440 
1441   Except: If the register being saved is the CFA register, and the
1442   offset is nonzero, we are saving the CFA, so we assume we have to
1443   use DW_CFA_def_cfa_expression.  If the offset is 0, we assume that
1444   the intent is to save the value of SP from the previous frame.
1445 
1446   In addition, if a register has previously been saved to a different
1447   register,
1448 
1449   Invariants / Summaries of Rules
1450 
1451   cfa	       current rule for calculating the CFA.  It usually
1452 	       consists of a register and an offset.  This is
1453 	       actually stored in *cur_cfa, but abbreviated
1454 	       for the purposes of this documentation.
1455   cfa_store    register used by prologue code to save things to the stack
1456 	       cfa_store.offset is the offset from the value of
1457 	       cfa_store.reg to the actual CFA
1458   cfa_temp     register holding an integral value.  cfa_temp.offset
1459 	       stores the value, which will be used to adjust the
1460 	       stack pointer.  cfa_temp is also used like cfa_store,
1461 	       to track stores to the stack via fp or a temp reg.
1462 
1463   Rules  1- 4: Setting a register's value to cfa.reg or an expression
1464 	       with cfa.reg as the first operand changes the cfa.reg and its
1465 	       cfa.offset.  Rule 1 and 4 also set cfa_temp.reg and
1466 	       cfa_temp.offset.
1467 
1468   Rules  6- 9: Set a non-cfa.reg register value to a constant or an
1469 	       expression yielding a constant.  This sets cfa_temp.reg
1470 	       and cfa_temp.offset.
1471 
1472   Rule 5:      Create a new register cfa_store used to save items to the
1473 	       stack.
1474 
1475   Rules 10-14: Save a register to the stack.  Define offset as the
1476 	       difference of the original location and cfa_store's
1477 	       location (or cfa_temp's location if cfa_temp is used).
1478 
1479   Rules 16-20: If AND operation happens on sp in prologue, we assume
1480 	       stack is realigned.  We will use a group of DW_OP_XXX
1481 	       expressions to represent the location of the stored
1482 	       register instead of CFA+offset.
1483 
1484   The Rules
1485 
1486   "{a,b}" indicates a choice of a xor b.
1487   "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1488 
1489   Rule 1:
1490   (set <reg1> <reg2>:cfa.reg)
1491   effects: cfa.reg = <reg1>
1492 	   cfa.offset unchanged
1493 	   cfa_temp.reg = <reg1>
1494 	   cfa_temp.offset = cfa.offset
1495 
1496   Rule 2:
1497   (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1498 			      {<const_int>,<reg>:cfa_temp.reg}))
1499   effects: cfa.reg = sp if fp used
1500 	   cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1501 	   cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1502 	     if cfa_store.reg==sp
1503 
1504   Rule 3:
1505   (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1506   effects: cfa.reg = fp
1507 	   cfa_offset += +/- <const_int>
1508 
1509   Rule 4:
1510   (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1511   constraints: <reg1> != fp
1512 	       <reg1> != sp
1513   effects: cfa.reg = <reg1>
1514 	   cfa_temp.reg = <reg1>
1515 	   cfa_temp.offset = cfa.offset
1516 
1517   Rule 5:
1518   (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1519   constraints: <reg1> != fp
1520 	       <reg1> != sp
1521   effects: cfa_store.reg = <reg1>
1522 	   cfa_store.offset = cfa.offset - cfa_temp.offset
1523 
1524   Rule 6:
1525   (set <reg> <const_int>)
1526   effects: cfa_temp.reg = <reg>
1527 	   cfa_temp.offset = <const_int>
1528 
1529   Rule 7:
1530   (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1531   effects: cfa_temp.reg = <reg1>
1532 	   cfa_temp.offset |= <const_int>
1533 
1534   Rule 8:
1535   (set <reg> (high <exp>))
1536   effects: none
1537 
1538   Rule 9:
1539   (set <reg> (lo_sum <exp> <const_int>))
1540   effects: cfa_temp.reg = <reg>
1541 	   cfa_temp.offset = <const_int>
1542 
1543   Rule 10:
1544   (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1545   effects: cfa_store.offset -= <const_int>
1546 	   cfa.offset = cfa_store.offset if cfa.reg == sp
1547 	   cfa.reg = sp
1548 	   cfa.base_offset = -cfa_store.offset
1549 
1550   Rule 11:
1551   (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1552   effects: cfa_store.offset += -/+ mode_size(mem)
1553 	   cfa.offset = cfa_store.offset if cfa.reg == sp
1554 	   cfa.reg = sp
1555 	   cfa.base_offset = -cfa_store.offset
1556 
1557   Rule 12:
1558   (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1559 
1560        <reg2>)
1561   effects: cfa.reg = <reg1>
1562 	   cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1563 
1564   Rule 13:
1565   (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1566   effects: cfa.reg = <reg1>
1567 	   cfa.base_offset = -{cfa_store,cfa_temp}.offset
1568 
1569   Rule 14:
1570   (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1571   effects: cfa.reg = <reg1>
1572 	   cfa.base_offset = -cfa_temp.offset
1573 	   cfa_temp.offset -= mode_size(mem)
1574 
1575   Rule 15:
1576   (set <reg> {unspec, unspec_volatile})
1577   effects: target-dependent
1578 
1579   Rule 16:
1580   (set sp (and: sp <const_int>))
1581   constraints: cfa_store.reg == sp
1582   effects: cfun->fde.stack_realign = 1
1583            cfa_store.offset = 0
1584 	   fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1585 
1586   Rule 17:
1587   (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1588   effects: cfa_store.offset += -/+ mode_size(mem)
1589 
1590   Rule 18:
1591   (set (mem ({pre_inc, pre_dec} sp)) fp)
1592   constraints: fde->stack_realign == 1
1593   effects: cfa_store.offset = 0
1594 	   cfa.reg != HARD_FRAME_POINTER_REGNUM
1595 
1596   Rule 19:
1597   (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1598   constraints: fde->stack_realign == 1
1599                && cfa.offset == 0
1600                && cfa.indirect == 0
1601                && cfa.reg != HARD_FRAME_POINTER_REGNUM
1602   effects: Use DW_CFA_def_cfa_expression to define cfa
1603   	   cfa.reg == fde->drap_reg  */
1604 
1605 static void
dwarf2out_frame_debug_expr(rtx expr)1606 dwarf2out_frame_debug_expr (rtx expr)
1607 {
1608   rtx src, dest, span;
1609   poly_int64 offset;
1610   dw_fde_ref fde;
1611 
1612   /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1613      the PARALLEL independently. The first element is always processed if
1614      it is a SET. This is for backward compatibility.   Other elements
1615      are processed only if they are SETs and the RTX_FRAME_RELATED_P
1616      flag is set in them.  */
1617   if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1618     {
1619       int par_index;
1620       int limit = XVECLEN (expr, 0);
1621       rtx elem;
1622 
1623       /* PARALLELs have strict read-modify-write semantics, so we
1624 	 ought to evaluate every rvalue before changing any lvalue.
1625 	 It's cumbersome to do that in general, but there's an
1626 	 easy approximation that is enough for all current users:
1627 	 handle register saves before register assignments.  */
1628       if (GET_CODE (expr) == PARALLEL)
1629 	for (par_index = 0; par_index < limit; par_index++)
1630 	  {
1631 	    elem = XVECEXP (expr, 0, par_index);
1632 	    if (GET_CODE (elem) == SET
1633 		&& MEM_P (SET_DEST (elem))
1634 		&& (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1635 	      dwarf2out_frame_debug_expr (elem);
1636 	  }
1637 
1638       for (par_index = 0; par_index < limit; par_index++)
1639 	{
1640 	  elem = XVECEXP (expr, 0, par_index);
1641 	  if (GET_CODE (elem) == SET
1642 	      && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1643 	      && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1644 	    dwarf2out_frame_debug_expr (elem);
1645 	}
1646       return;
1647     }
1648 
1649   gcc_assert (GET_CODE (expr) == SET);
1650 
1651   src = SET_SRC (expr);
1652   dest = SET_DEST (expr);
1653 
1654   if (REG_P (src))
1655     {
1656       rtx rsi = reg_saved_in (src);
1657       if (rsi)
1658 	src = rsi;
1659     }
1660 
1661   fde = cfun->fde;
1662 
1663   switch (GET_CODE (dest))
1664     {
1665     case REG:
1666       switch (GET_CODE (src))
1667 	{
1668 	  /* Setting FP from SP.  */
1669 	case REG:
1670 	  if (cur_cfa->reg == dwf_regno (src))
1671 	    {
1672 	      /* Rule 1 */
1673 	      /* Update the CFA rule wrt SP or FP.  Make sure src is
1674 		 relative to the current CFA register.
1675 
1676 		 We used to require that dest be either SP or FP, but the
1677 		 ARM copies SP to a temporary register, and from there to
1678 		 FP.  So we just rely on the backends to only set
1679 		 RTX_FRAME_RELATED_P on appropriate insns.  */
1680 	      cur_cfa->reg = dwf_regno (dest);
1681 	      cur_trace->cfa_temp.reg = cur_cfa->reg;
1682 	      cur_trace->cfa_temp.offset = cur_cfa->offset;
1683 	    }
1684 	  else
1685 	    {
1686 	      /* Saving a register in a register.  */
1687 	      gcc_assert (!fixed_regs [REGNO (dest)]
1688 			  /* For the SPARC and its register window.  */
1689 			  || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1690 
1691               /* After stack is aligned, we can only save SP in FP
1692 		 if drap register is used.  In this case, we have
1693 		 to restore stack pointer with the CFA value and we
1694 		 don't generate this DWARF information.  */
1695 	      if (fde
1696 		  && fde->stack_realign
1697 		  && REGNO (src) == STACK_POINTER_REGNUM)
1698 		{
1699 		  gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1700 			      && fde->drap_reg != INVALID_REGNUM
1701 			      && cur_cfa->reg != dwf_regno (src)
1702 			      && fde->rule18);
1703 		  fde->rule18 = 0;
1704 		  /* The save of hard frame pointer has been deferred
1705 		     until this point when Rule 18 applied.  Emit it now.  */
1706 		  queue_reg_save (dest, NULL_RTX, 0);
1707 		  /* And as the instruction modifies the hard frame pointer,
1708 		     flush the queue as well.  */
1709 		  dwarf2out_flush_queued_reg_saves ();
1710 		}
1711 	      else
1712 		queue_reg_save (src, dest, 0);
1713 	    }
1714 	  break;
1715 
1716 	case PLUS:
1717 	case MINUS:
1718 	case LO_SUM:
1719 	  if (dest == stack_pointer_rtx)
1720 	    {
1721 	      /* Rule 2 */
1722 	      /* Adjusting SP.  */
1723 	      if (REG_P (XEXP (src, 1)))
1724 		{
1725 		  gcc_assert (dwf_regno (XEXP (src, 1))
1726 			      == cur_trace->cfa_temp.reg);
1727 		  offset = cur_trace->cfa_temp.offset;
1728 		}
1729 	      else if (!poly_int_rtx_p (XEXP (src, 1), &offset))
1730 		gcc_unreachable ();
1731 
1732 	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
1733 		{
1734 		  /* Restoring SP from FP in the epilogue.  */
1735 		  gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1736 		  cur_cfa->reg = dw_stack_pointer_regnum;
1737 		}
1738 	      else if (GET_CODE (src) == LO_SUM)
1739 		/* Assume we've set the source reg of the LO_SUM from sp.  */
1740 		;
1741 	      else
1742 		gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1743 
1744 	      if (GET_CODE (src) != MINUS)
1745 		offset = -offset;
1746 	      if (cur_cfa->reg == dw_stack_pointer_regnum)
1747 		cur_cfa->offset += offset;
1748 	      if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1749 		cur_trace->cfa_store.offset += offset;
1750 	    }
1751 	  else if (dest == hard_frame_pointer_rtx)
1752 	    {
1753 	      /* Rule 3 */
1754 	      /* Either setting the FP from an offset of the SP,
1755 		 or adjusting the FP */
1756 	      gcc_assert (frame_pointer_needed);
1757 
1758 	      gcc_assert (REG_P (XEXP (src, 0))
1759 			  && dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1760 	      offset = rtx_to_poly_int64 (XEXP (src, 1));
1761 	      if (GET_CODE (src) != MINUS)
1762 		offset = -offset;
1763 	      cur_cfa->offset += offset;
1764 	      cur_cfa->reg = dw_frame_pointer_regnum;
1765 	    }
1766 	  else
1767 	    {
1768 	      gcc_assert (GET_CODE (src) != MINUS);
1769 
1770 	      /* Rule 4 */
1771 	      if (REG_P (XEXP (src, 0))
1772 		  && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1773 		  && poly_int_rtx_p (XEXP (src, 1), &offset))
1774 		{
1775 		  /* Setting a temporary CFA register that will be copied
1776 		     into the FP later on.  */
1777 		  offset = -offset;
1778 		  cur_cfa->offset += offset;
1779 		  cur_cfa->reg = dwf_regno (dest);
1780 		  /* Or used to save regs to the stack.  */
1781 		  cur_trace->cfa_temp.reg = cur_cfa->reg;
1782 		  cur_trace->cfa_temp.offset = cur_cfa->offset;
1783 		}
1784 
1785 	      /* Rule 5 */
1786 	      else if (REG_P (XEXP (src, 0))
1787 		       && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1788 		       && XEXP (src, 1) == stack_pointer_rtx)
1789 		{
1790 		  /* Setting a scratch register that we will use instead
1791 		     of SP for saving registers to the stack.  */
1792 		  gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1793 		  cur_trace->cfa_store.reg = dwf_regno (dest);
1794 		  cur_trace->cfa_store.offset
1795 		    = cur_cfa->offset - cur_trace->cfa_temp.offset;
1796 		}
1797 
1798 	      /* Rule 9 */
1799 	      else if (GET_CODE (src) == LO_SUM
1800 		       && poly_int_rtx_p (XEXP (src, 1),
1801 					  &cur_trace->cfa_temp.offset))
1802 		cur_trace->cfa_temp.reg = dwf_regno (dest);
1803 	      else
1804 		gcc_unreachable ();
1805 	    }
1806 	  break;
1807 
1808 	  /* Rule 6 */
1809 	case CONST_INT:
1810 	case CONST_POLY_INT:
1811 	  cur_trace->cfa_temp.reg = dwf_regno (dest);
1812 	  cur_trace->cfa_temp.offset = rtx_to_poly_int64 (src);
1813 	  break;
1814 
1815 	  /* Rule 7 */
1816 	case IOR:
1817 	  gcc_assert (REG_P (XEXP (src, 0))
1818 		      && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1819 		      && CONST_INT_P (XEXP (src, 1)));
1820 
1821 	  cur_trace->cfa_temp.reg = dwf_regno (dest);
1822 	  if (!can_ior_p (cur_trace->cfa_temp.offset, INTVAL (XEXP (src, 1)),
1823 			  &cur_trace->cfa_temp.offset))
1824 	    /* The target shouldn't generate this kind of CFI note if we
1825 	       can't represent it.  */
1826 	    gcc_unreachable ();
1827 	  break;
1828 
1829 	  /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1830 	     which will fill in all of the bits.  */
1831 	  /* Rule 8 */
1832 	case HIGH:
1833 	  break;
1834 
1835 	  /* Rule 15 */
1836 	case UNSPEC:
1837 	case UNSPEC_VOLATILE:
1838 	  /* All unspecs should be represented by REG_CFA_* notes.  */
1839 	  gcc_unreachable ();
1840 	  return;
1841 
1842 	  /* Rule 16 */
1843 	case AND:
1844           /* If this AND operation happens on stack pointer in prologue,
1845 	     we assume the stack is realigned and we extract the
1846 	     alignment.  */
1847           if (fde && XEXP (src, 0) == stack_pointer_rtx)
1848             {
1849 	      /* We interpret reg_save differently with stack_realign set.
1850 		 Thus we must flush whatever we have queued first.  */
1851 	      dwarf2out_flush_queued_reg_saves ();
1852 
1853               gcc_assert (cur_trace->cfa_store.reg
1854 			  == dwf_regno (XEXP (src, 0)));
1855               fde->stack_realign = 1;
1856               fde->stack_realignment = INTVAL (XEXP (src, 1));
1857               cur_trace->cfa_store.offset = 0;
1858 
1859 	      if (cur_cfa->reg != dw_stack_pointer_regnum
1860 		  && cur_cfa->reg != dw_frame_pointer_regnum)
1861 		fde->drap_reg = cur_cfa->reg;
1862             }
1863           return;
1864 
1865 	default:
1866 	  gcc_unreachable ();
1867 	}
1868       break;
1869 
1870     case MEM:
1871 
1872       /* Saving a register to the stack.  Make sure dest is relative to the
1873 	 CFA register.  */
1874       switch (GET_CODE (XEXP (dest, 0)))
1875 	{
1876 	  /* Rule 10 */
1877 	  /* With a push.  */
1878 	case PRE_MODIFY:
1879 	case POST_MODIFY:
1880 	  /* We can't handle variable size modifications.  */
1881 	  offset = -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1882 
1883 	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1884 		      && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1885 
1886 	  cur_trace->cfa_store.offset += offset;
1887 	  if (cur_cfa->reg == dw_stack_pointer_regnum)
1888 	    cur_cfa->offset = cur_trace->cfa_store.offset;
1889 
1890 	  if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1891 	    offset -= cur_trace->cfa_store.offset;
1892 	  else
1893 	    offset = -cur_trace->cfa_store.offset;
1894 	  break;
1895 
1896 	  /* Rule 11 */
1897 	case PRE_INC:
1898 	case PRE_DEC:
1899 	case POST_DEC:
1900 	  offset = GET_MODE_SIZE (GET_MODE (dest));
1901 	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1902 	    offset = -offset;
1903 
1904 	  gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1905 		       == STACK_POINTER_REGNUM)
1906 		      && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1907 
1908 	  cur_trace->cfa_store.offset += offset;
1909 
1910           /* Rule 18: If stack is aligned, we will use FP as a
1911 	     reference to represent the address of the stored
1912 	     regiser.  */
1913           if (fde
1914               && fde->stack_realign
1915 	      && REG_P (src)
1916 	      && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1917 	    {
1918 	      gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1919 	      cur_trace->cfa_store.offset = 0;
1920 	      fde->rule18 = 1;
1921 	    }
1922 
1923 	  if (cur_cfa->reg == dw_stack_pointer_regnum)
1924 	    cur_cfa->offset = cur_trace->cfa_store.offset;
1925 
1926 	  if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1927 	    offset += -cur_trace->cfa_store.offset;
1928 	  else
1929 	    offset = -cur_trace->cfa_store.offset;
1930 	  break;
1931 
1932 	  /* Rule 12 */
1933 	  /* With an offset.  */
1934 	case PLUS:
1935 	case MINUS:
1936 	case LO_SUM:
1937 	  {
1938 	    unsigned int regno;
1939 
1940 	    gcc_assert (REG_P (XEXP (XEXP (dest, 0), 0)));
1941 	    offset = rtx_to_poly_int64 (XEXP (XEXP (dest, 0), 1));
1942 	    if (GET_CODE (XEXP (dest, 0)) == MINUS)
1943 	      offset = -offset;
1944 
1945 	    regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1946 
1947 	    if (cur_cfa->reg == regno)
1948 	      offset -= cur_cfa->offset;
1949 	    else if (cur_trace->cfa_store.reg == regno)
1950 	      offset -= cur_trace->cfa_store.offset;
1951 	    else
1952 	      {
1953 		gcc_assert (cur_trace->cfa_temp.reg == regno);
1954 		offset -= cur_trace->cfa_temp.offset;
1955 	      }
1956 	  }
1957 	  break;
1958 
1959 	  /* Rule 13 */
1960 	  /* Without an offset.  */
1961 	case REG:
1962 	  {
1963 	    unsigned int regno = dwf_regno (XEXP (dest, 0));
1964 
1965 	    if (cur_cfa->reg == regno)
1966 	      offset = -cur_cfa->offset;
1967 	    else if (cur_trace->cfa_store.reg == regno)
1968 	      offset = -cur_trace->cfa_store.offset;
1969 	    else
1970 	      {
1971 		gcc_assert (cur_trace->cfa_temp.reg == regno);
1972 		offset = -cur_trace->cfa_temp.offset;
1973 	      }
1974 	  }
1975 	  break;
1976 
1977 	  /* Rule 14 */
1978 	case POST_INC:
1979 	  gcc_assert (cur_trace->cfa_temp.reg
1980 		      == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1981 	  offset = -cur_trace->cfa_temp.offset;
1982 	  cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1983 	  break;
1984 
1985 	default:
1986 	  gcc_unreachable ();
1987 	}
1988 
1989       /* Rule 17 */
1990       /* If the source operand of this MEM operation is a memory,
1991 	 we only care how much stack grew.  */
1992       if (MEM_P (src))
1993         break;
1994 
1995       if (REG_P (src)
1996 	  && REGNO (src) != STACK_POINTER_REGNUM
1997 	  && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1998 	  && dwf_regno (src) == cur_cfa->reg)
1999 	{
2000 	  /* We're storing the current CFA reg into the stack.  */
2001 
2002 	  if (known_eq (cur_cfa->offset, 0))
2003 	    {
2004               /* Rule 19 */
2005               /* If stack is aligned, putting CFA reg into stack means
2006 		 we can no longer use reg + offset to represent CFA.
2007 		 Here we use DW_CFA_def_cfa_expression instead.  The
2008 		 result of this expression equals to the original CFA
2009 		 value.  */
2010               if (fde
2011                   && fde->stack_realign
2012                   && cur_cfa->indirect == 0
2013                   && cur_cfa->reg != dw_frame_pointer_regnum)
2014                 {
2015 		  gcc_assert (fde->drap_reg == cur_cfa->reg);
2016 
2017 		  cur_cfa->indirect = 1;
2018 		  cur_cfa->reg = dw_frame_pointer_regnum;
2019 		  cur_cfa->base_offset = offset;
2020 		  cur_cfa->offset = 0;
2021 
2022 		  fde->drap_reg_saved = 1;
2023 		  break;
2024                 }
2025 
2026 	      /* If the source register is exactly the CFA, assume
2027 		 we're saving SP like any other register; this happens
2028 		 on the ARM.  */
2029 	      queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
2030 	      break;
2031 	    }
2032 	  else
2033 	    {
2034 	      /* Otherwise, we'll need to look in the stack to
2035 		 calculate the CFA.  */
2036 	      rtx x = XEXP (dest, 0);
2037 
2038 	      if (!REG_P (x))
2039 		x = XEXP (x, 0);
2040 	      gcc_assert (REG_P (x));
2041 
2042 	      cur_cfa->reg = dwf_regno (x);
2043 	      cur_cfa->base_offset = offset;
2044 	      cur_cfa->indirect = 1;
2045 	      break;
2046 	    }
2047 	}
2048 
2049       if (REG_P (src))
2050 	span = targetm.dwarf_register_span (src);
2051       else
2052 	span = NULL;
2053 
2054       if (!span)
2055 	{
2056 	  if (fde->rule18)
2057 	    /* Just verify the hard frame pointer save when doing dynamic
2058 	       realignment uses expected offset.  The actual queue_reg_save
2059 	       needs to be deferred until the instruction that sets
2060 	       hard frame pointer to stack pointer, see PR99334 for
2061 	       details.  */
2062 	    gcc_assert (known_eq (offset, 0));
2063 	  else
2064 	    queue_reg_save (src, NULL_RTX, offset);
2065 	}
2066       else
2067 	{
2068 	  /* We have a PARALLEL describing where the contents of SRC live.
2069 	     Queue register saves for each piece of the PARALLEL.  */
2070 	  poly_int64 span_offset = offset;
2071 
2072 	  gcc_assert (GET_CODE (span) == PARALLEL);
2073 
2074 	  const int par_len = XVECLEN (span, 0);
2075 	  for (int par_index = 0; par_index < par_len; par_index++)
2076 	    {
2077 	      rtx elem = XVECEXP (span, 0, par_index);
2078 	      queue_reg_save (elem, NULL_RTX, span_offset);
2079 	      span_offset += GET_MODE_SIZE (GET_MODE (elem));
2080 	    }
2081 	}
2082       break;
2083 
2084     default:
2085       gcc_unreachable ();
2086     }
2087 }
2088 
2089 /* Record call frame debugging information for INSN, which either sets
2090    SP or FP (adjusting how we calculate the frame address) or saves a
2091    register to the stack.  */
2092 
2093 static void
dwarf2out_frame_debug(rtx_insn * insn)2094 dwarf2out_frame_debug (rtx_insn *insn)
2095 {
2096   rtx note, n, pat;
2097   bool handled_one = false;
2098 
2099   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2100     switch (REG_NOTE_KIND (note))
2101       {
2102       case REG_FRAME_RELATED_EXPR:
2103 	pat = XEXP (note, 0);
2104 	goto do_frame_expr;
2105 
2106       case REG_CFA_DEF_CFA:
2107 	dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
2108 	handled_one = true;
2109 	break;
2110 
2111       case REG_CFA_ADJUST_CFA:
2112 	n = XEXP (note, 0);
2113 	if (n == NULL)
2114 	  {
2115 	    n = PATTERN (insn);
2116 	    if (GET_CODE (n) == PARALLEL)
2117 	      n = XVECEXP (n, 0, 0);
2118 	  }
2119 	dwarf2out_frame_debug_adjust_cfa (n);
2120 	handled_one = true;
2121 	break;
2122 
2123       case REG_CFA_OFFSET:
2124 	n = XEXP (note, 0);
2125 	if (n == NULL)
2126 	  n = single_set (insn);
2127 	dwarf2out_frame_debug_cfa_offset (n);
2128 	handled_one = true;
2129 	break;
2130 
2131       case REG_CFA_REGISTER:
2132 	n = XEXP (note, 0);
2133 	if (n == NULL)
2134 	  {
2135 	    n = PATTERN (insn);
2136 	    if (GET_CODE (n) == PARALLEL)
2137 	      n = XVECEXP (n, 0, 0);
2138 	  }
2139 	dwarf2out_frame_debug_cfa_register (n);
2140 	handled_one = true;
2141 	break;
2142 
2143       case REG_CFA_EXPRESSION:
2144       case REG_CFA_VAL_EXPRESSION:
2145 	n = XEXP (note, 0);
2146 	if (n == NULL)
2147 	  n = single_set (insn);
2148 
2149 	if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION)
2150 	  dwarf2out_frame_debug_cfa_expression (n);
2151 	else
2152 	  dwarf2out_frame_debug_cfa_val_expression (n);
2153 
2154 	handled_one = true;
2155 	break;
2156 
2157       case REG_CFA_RESTORE:
2158 	n = XEXP (note, 0);
2159 	if (n == NULL)
2160 	  {
2161 	    n = PATTERN (insn);
2162 	    if (GET_CODE (n) == PARALLEL)
2163 	      n = XVECEXP (n, 0, 0);
2164 	    n = XEXP (n, 0);
2165 	  }
2166 	dwarf2out_frame_debug_cfa_restore (n);
2167 	handled_one = true;
2168 	break;
2169 
2170       case REG_CFA_SET_VDRAP:
2171 	n = XEXP (note, 0);
2172 	if (REG_P (n))
2173 	  {
2174 	    dw_fde_ref fde = cfun->fde;
2175 	    if (fde)
2176 	      {
2177 		gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2178 		if (REG_P (n))
2179 		  fde->vdrap_reg = dwf_regno (n);
2180 	      }
2181 	  }
2182 	handled_one = true;
2183 	break;
2184 
2185       case REG_CFA_TOGGLE_RA_MANGLE:
2186 	dwarf2out_frame_debug_cfa_toggle_ra_mangle ();
2187 	handled_one = true;
2188 	break;
2189 
2190       case REG_CFA_WINDOW_SAVE:
2191 	dwarf2out_frame_debug_cfa_window_save ();
2192 	handled_one = true;
2193 	break;
2194 
2195       case REG_CFA_FLUSH_QUEUE:
2196 	/* The actual flush happens elsewhere.  */
2197 	handled_one = true;
2198 	break;
2199 
2200       default:
2201 	break;
2202       }
2203 
2204   if (!handled_one)
2205     {
2206       pat = PATTERN (insn);
2207     do_frame_expr:
2208       dwarf2out_frame_debug_expr (pat);
2209 
2210       /* Check again.  A parallel can save and update the same register.
2211          We could probably check just once, here, but this is safer than
2212          removing the check at the start of the function.  */
2213       if (clobbers_queued_reg_save (pat))
2214 	dwarf2out_flush_queued_reg_saves ();
2215     }
2216 }
2217 
2218 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW.  */
2219 
2220 static void
change_cfi_row(dw_cfi_row * old_row,dw_cfi_row * new_row)2221 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2222 {
2223   size_t i, n_old, n_new, n_max;
2224   dw_cfi_ref cfi;
2225 
2226   if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2227     add_cfi (new_row->cfa_cfi);
2228   else
2229     {
2230       cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2231       if (cfi)
2232 	add_cfi (cfi);
2233     }
2234 
2235   n_old = vec_safe_length (old_row->reg_save);
2236   n_new = vec_safe_length (new_row->reg_save);
2237   n_max = MAX (n_old, n_new);
2238 
2239   for (i = 0; i < n_max; ++i)
2240     {
2241       dw_cfi_ref r_old = NULL, r_new = NULL;
2242 
2243       if (i < n_old)
2244 	r_old = (*old_row->reg_save)[i];
2245       if (i < n_new)
2246 	r_new = (*new_row->reg_save)[i];
2247 
2248       if (r_old == r_new)
2249 	;
2250       else if (r_new == NULL)
2251 	add_cfi_restore (i);
2252       else if (!cfi_equal_p (r_old, r_new))
2253         add_cfi (r_new);
2254     }
2255 
2256   if (!old_row->window_save && new_row->window_save)
2257     {
2258       dw_cfi_ref cfi = new_cfi ();
2259 
2260       gcc_assert (!old_row->ra_mangled && !new_row->ra_mangled);
2261       cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
2262       add_cfi (cfi);
2263     }
2264 
2265   if (old_row->ra_mangled != new_row->ra_mangled)
2266     {
2267       dw_cfi_ref cfi = new_cfi ();
2268 
2269       gcc_assert (!old_row->window_save && !new_row->window_save);
2270       /* DW_CFA_GNU_window_save is reused for toggling RA mangle state.  */
2271       cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
2272       add_cfi (cfi);
2273     }
2274 }
2275 
2276 /* Examine CFI and return true if a cfi label and set_loc is needed
2277    beforehand.  Even when generating CFI assembler instructions, we
2278    still have to add the cfi to the list so that lookup_cfa_1 works
2279    later on.  When -g2 and above we even need to force emitting of
2280    CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2281    purposes.  If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2282    and so don't use convert_cfa_to_fb_loc_list.  */
2283 
2284 static bool
cfi_label_required_p(dw_cfi_ref cfi)2285 cfi_label_required_p (dw_cfi_ref cfi)
2286 {
2287   if (!dwarf2out_do_cfi_asm ())
2288     return true;
2289 
2290   if (dwarf_version == 2
2291       && debug_info_level > DINFO_LEVEL_TERSE
2292       && (write_symbols == DWARF2_DEBUG
2293 	  || write_symbols == VMS_AND_DWARF2_DEBUG))
2294     {
2295       switch (cfi->dw_cfi_opc)
2296 	{
2297 	case DW_CFA_def_cfa_offset:
2298 	case DW_CFA_def_cfa_offset_sf:
2299 	case DW_CFA_def_cfa_register:
2300 	case DW_CFA_def_cfa:
2301 	case DW_CFA_def_cfa_sf:
2302 	case DW_CFA_def_cfa_expression:
2303 	case DW_CFA_restore_state:
2304 	  return true;
2305 	default:
2306 	  return false;
2307 	}
2308     }
2309   return false;
2310 }
2311 
2312 /* Walk the function, looking for NOTE_INSN_CFI notes.  Add the CFIs to the
2313    function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2314    necessary.  */
2315 static void
add_cfis_to_fde(void)2316 add_cfis_to_fde (void)
2317 {
2318   dw_fde_ref fde = cfun->fde;
2319   rtx_insn *insn, *next;
2320 
2321   for (insn = get_insns (); insn; insn = next)
2322     {
2323       next = NEXT_INSN (insn);
2324 
2325       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2326 	fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2327 
2328       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2329 	{
2330 	  bool required = cfi_label_required_p (NOTE_CFI (insn));
2331 	  while (next)
2332 	    if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2333 	      {
2334 		required |= cfi_label_required_p (NOTE_CFI (next));
2335 		next = NEXT_INSN (next);
2336 	      }
2337 	    else if (active_insn_p (next)
2338 		     || (NOTE_P (next) && (NOTE_KIND (next)
2339 					   == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2340 	      break;
2341 	    else
2342 	      next = NEXT_INSN (next);
2343 	  if (required)
2344 	    {
2345 	      int num = dwarf2out_cfi_label_num;
2346 	      const char *label = dwarf2out_cfi_label ();
2347 	      dw_cfi_ref xcfi;
2348 
2349 	      /* Set the location counter to the new label.  */
2350 	      xcfi = new_cfi ();
2351 	      xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
2352 	      xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2353 	      vec_safe_push (fde->dw_fde_cfi, xcfi);
2354 
2355 	      rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2356 	      NOTE_LABEL_NUMBER (tmp) = num;
2357 	    }
2358 
2359 	  do
2360 	    {
2361 	      if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2362 		vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2363 	      insn = NEXT_INSN (insn);
2364 	    }
2365 	  while (insn != next);
2366 	}
2367     }
2368 }
2369 
2370 static void dump_cfi_row (FILE *f, dw_cfi_row *row);
2371 
2372 /* If LABEL is the start of a trace, then initialize the state of that
2373    trace from CUR_TRACE and CUR_ROW.  */
2374 
2375 static void
maybe_record_trace_start(rtx_insn * start,rtx_insn * origin)2376 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2377 {
2378   dw_trace_info *ti;
2379 
2380   ti = get_trace_info (start);
2381   gcc_assert (ti != NULL);
2382 
2383   if (dump_file)
2384     {
2385       fprintf (dump_file, "   saw edge from trace %u to %u (via %s %d)\n",
2386 	       cur_trace->id, ti->id,
2387 	       (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2388 	       (origin ? INSN_UID (origin) : 0));
2389     }
2390 
2391   poly_int64 args_size = cur_trace->end_true_args_size;
2392   if (ti->beg_row == NULL)
2393     {
2394       /* This is the first time we've encountered this trace.  Propagate
2395 	 state across the edge and push the trace onto the work list.  */
2396       ti->beg_row = copy_cfi_row (cur_row);
2397       ti->beg_true_args_size = args_size;
2398 
2399       ti->cfa_store = cur_trace->cfa_store;
2400       ti->cfa_temp = cur_trace->cfa_temp;
2401       ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2402 
2403       trace_work_list.safe_push (ti);
2404 
2405       if (dump_file)
2406 	fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2407     }
2408   else
2409     {
2410 
2411       /* We ought to have the same state incoming to a given trace no
2412 	 matter how we arrive at the trace.  Anything else means we've
2413 	 got some kind of optimization error.  */
2414 #if CHECKING_P
2415       if (!cfi_row_equal_p (cur_row, ti->beg_row))
2416 	{
2417 	  if (dump_file)
2418 	    {
2419 	      fprintf (dump_file, "Inconsistent CFI state!\n");
2420 	      fprintf (dump_file, "SHOULD have:\n");
2421 	      dump_cfi_row (dump_file, ti->beg_row);
2422 	      fprintf (dump_file, "DO have:\n");
2423 	      dump_cfi_row (dump_file, cur_row);
2424 	    }
2425 
2426 	  gcc_unreachable ();
2427 	}
2428 #endif
2429 
2430       /* The args_size is allowed to conflict if it isn't actually used.  */
2431       if (maybe_ne (ti->beg_true_args_size, args_size))
2432 	ti->args_size_undefined = true;
2433     }
2434 }
2435 
2436 /* Similarly, but handle the args_size and CFA reset across EH
2437    and non-local goto edges.  */
2438 
2439 static void
maybe_record_trace_start_abnormal(rtx_insn * start,rtx_insn * origin)2440 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2441 {
2442   poly_int64 save_args_size, delta;
2443   dw_cfa_location save_cfa;
2444 
2445   save_args_size = cur_trace->end_true_args_size;
2446   if (known_eq (save_args_size, 0))
2447     {
2448       maybe_record_trace_start (start, origin);
2449       return;
2450     }
2451 
2452   delta = -save_args_size;
2453   cur_trace->end_true_args_size = 0;
2454 
2455   save_cfa = cur_row->cfa;
2456   if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2457     {
2458       /* Convert a change in args_size (always a positive in the
2459 	 direction of stack growth) to a change in stack pointer.  */
2460       if (!STACK_GROWS_DOWNWARD)
2461 	delta = -delta;
2462 
2463       cur_row->cfa.offset += delta;
2464     }
2465 
2466   maybe_record_trace_start (start, origin);
2467 
2468   cur_trace->end_true_args_size = save_args_size;
2469   cur_row->cfa = save_cfa;
2470 }
2471 
2472 /* Propagate CUR_TRACE state to the destinations implied by INSN.  */
2473 /* ??? Sadly, this is in large part a duplicate of make_edges.  */
2474 
2475 static void
create_trace_edges(rtx_insn * insn)2476 create_trace_edges (rtx_insn *insn)
2477 {
2478   rtx tmp;
2479   int i, n;
2480 
2481   if (JUMP_P (insn))
2482     {
2483       rtx_jump_table_data *table;
2484 
2485       if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2486 	return;
2487 
2488       if (tablejump_p (insn, NULL, &table))
2489 	{
2490 	  rtvec vec = table->get_labels ();
2491 
2492 	  n = GET_NUM_ELEM (vec);
2493 	  for (i = 0; i < n; ++i)
2494 	    {
2495 	      rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2496 	      maybe_record_trace_start (lab, insn);
2497 	    }
2498 
2499 	  /* Handle casesi dispatch insns.  */
2500 	  if ((tmp = tablejump_casesi_pattern (insn)) != NULL_RTX)
2501 	    {
2502 	      rtx_insn * lab = label_ref_label (XEXP (SET_SRC (tmp), 2));
2503 	      maybe_record_trace_start (lab, insn);
2504 	    }
2505 	}
2506       else if (computed_jump_p (insn))
2507 	{
2508 	  rtx_insn *temp;
2509 	  unsigned int i;
2510 	  FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp)
2511 	    maybe_record_trace_start (temp, insn);
2512 	}
2513       else if (returnjump_p (insn))
2514 	;
2515       else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2516 	{
2517 	  n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2518 	  for (i = 0; i < n; ++i)
2519 	    {
2520 	      rtx_insn *lab =
2521 		as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2522 	      maybe_record_trace_start (lab, insn);
2523 	    }
2524 	}
2525       else
2526 	{
2527 	  rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2528 	  gcc_assert (lab != NULL);
2529 	  maybe_record_trace_start (lab, insn);
2530 	}
2531     }
2532   else if (CALL_P (insn))
2533     {
2534       /* Sibling calls don't have edges inside this function.  */
2535       if (SIBLING_CALL_P (insn))
2536 	return;
2537 
2538       /* Process non-local goto edges.  */
2539       if (can_nonlocal_goto (insn))
2540 	for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2541 	     lab;
2542 	     lab = lab->next ())
2543 	  maybe_record_trace_start_abnormal (lab->insn (), insn);
2544     }
2545   else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2546     {
2547       int i, n = seq->len ();
2548       for (i = 0; i < n; ++i)
2549 	create_trace_edges (seq->insn (i));
2550       return;
2551     }
2552 
2553   /* Process EH edges.  */
2554   if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2555     {
2556       eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2557       if (lp)
2558 	maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2559     }
2560 }
2561 
2562 /* A subroutine of scan_trace.  Do what needs to be done "after" INSN.  */
2563 
2564 static void
scan_insn_after(rtx_insn * insn)2565 scan_insn_after (rtx_insn *insn)
2566 {
2567   if (RTX_FRAME_RELATED_P (insn))
2568     dwarf2out_frame_debug (insn);
2569   notice_args_size (insn);
2570 }
2571 
2572 /* Scan the trace beginning at INSN and create the CFI notes for the
2573    instructions therein.  */
2574 
2575 static void
scan_trace(dw_trace_info * trace,bool entry)2576 scan_trace (dw_trace_info *trace, bool entry)
2577 {
2578   rtx_insn *prev, *insn = trace->head;
2579   dw_cfa_location this_cfa;
2580 
2581   if (dump_file)
2582     fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2583 	     trace->id, rtx_name[(int) GET_CODE (insn)],
2584 	     INSN_UID (insn));
2585 
2586   trace->end_row = copy_cfi_row (trace->beg_row);
2587   trace->end_true_args_size = trace->beg_true_args_size;
2588 
2589   cur_trace = trace;
2590   cur_row = trace->end_row;
2591 
2592   this_cfa = cur_row->cfa;
2593   cur_cfa = &this_cfa;
2594 
2595   /* If the current function starts with a non-standard incoming frame
2596      sp offset, emit a note before the first instruction.  */
2597   if (entry
2598       && DEFAULT_INCOMING_FRAME_SP_OFFSET != INCOMING_FRAME_SP_OFFSET)
2599     {
2600       add_cfi_insn = insn;
2601       gcc_assert (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED);
2602       this_cfa.offset = INCOMING_FRAME_SP_OFFSET;
2603       def_cfa_1 (&this_cfa);
2604     }
2605 
2606   for (prev = insn, insn = NEXT_INSN (insn);
2607        insn;
2608        prev = insn, insn = NEXT_INSN (insn))
2609     {
2610       rtx_insn *control;
2611 
2612       /* Do everything that happens "before" the insn.  */
2613       add_cfi_insn = prev;
2614 
2615       /* Notice the end of a trace.  */
2616       if (BARRIER_P (insn))
2617 	{
2618 	  /* Don't bother saving the unneeded queued registers at all.  */
2619 	  queued_reg_saves.truncate (0);
2620 	  break;
2621 	}
2622       if (save_point_p (insn))
2623 	{
2624 	  /* Propagate across fallthru edges.  */
2625 	  dwarf2out_flush_queued_reg_saves ();
2626 	  maybe_record_trace_start (insn, NULL);
2627 	  break;
2628 	}
2629 
2630       if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2631 	continue;
2632 
2633       /* Handle all changes to the row state.  Sequences require special
2634 	 handling for the positioning of the notes.  */
2635       if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2636 	{
2637 	  rtx_insn *elt;
2638 	  int i, n = pat->len ();
2639 
2640 	  control = pat->insn (0);
2641 	  if (can_throw_internal (control))
2642 	    notice_eh_throw (control);
2643 	  dwarf2out_flush_queued_reg_saves ();
2644 
2645 	  if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2646 	    {
2647 	      /* ??? Hopefully multiple delay slots are not annulled.  */
2648 	      gcc_assert (n == 2);
2649 	      gcc_assert (!RTX_FRAME_RELATED_P (control));
2650 	      gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2651 
2652 	      elt = pat->insn (1);
2653 
2654 	      if (INSN_FROM_TARGET_P (elt))
2655 		{
2656 		  cfi_vec save_row_reg_save;
2657 
2658 		  /* If ELT is an instruction from target of an annulled
2659 		     branch, the effects are for the target only and so
2660 		     the args_size and CFA along the current path
2661 		     shouldn't change.  */
2662 		  add_cfi_insn = NULL;
2663 		  poly_int64 restore_args_size = cur_trace->end_true_args_size;
2664 		  cur_cfa = &cur_row->cfa;
2665 		  save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2666 
2667 		  scan_insn_after (elt);
2668 
2669 		  /* ??? Should we instead save the entire row state?  */
2670 		  gcc_assert (!queued_reg_saves.length ());
2671 
2672 		  create_trace_edges (control);
2673 
2674 		  cur_trace->end_true_args_size = restore_args_size;
2675 		  cur_row->cfa = this_cfa;
2676 		  cur_row->reg_save = save_row_reg_save;
2677 		  cur_cfa = &this_cfa;
2678 		}
2679 	      else
2680 		{
2681 		  /* If ELT is a annulled branch-taken instruction (i.e.
2682 		     executed only when branch is not taken), the args_size
2683 		     and CFA should not change through the jump.  */
2684 		  create_trace_edges (control);
2685 
2686 		  /* Update and continue with the trace.  */
2687 		  add_cfi_insn = insn;
2688 		  scan_insn_after (elt);
2689 		  def_cfa_1 (&this_cfa);
2690 		}
2691 	      continue;
2692 	    }
2693 
2694 	  /* The insns in the delay slot should all be considered to happen
2695 	     "before" a call insn.  Consider a call with a stack pointer
2696 	     adjustment in the delay slot.  The backtrace from the callee
2697 	     should include the sp adjustment.  Unfortunately, that leaves
2698 	     us with an unavoidable unwinding error exactly at the call insn
2699 	     itself.  For jump insns we'd prefer to avoid this error by
2700 	     placing the notes after the sequence.  */
2701 	  if (JUMP_P (control))
2702 	    add_cfi_insn = insn;
2703 
2704 	  for (i = 1; i < n; ++i)
2705 	    {
2706 	      elt = pat->insn (i);
2707 	      scan_insn_after (elt);
2708 	    }
2709 
2710 	  /* Make sure any register saves are visible at the jump target.  */
2711 	  dwarf2out_flush_queued_reg_saves ();
2712 	  any_cfis_emitted = false;
2713 
2714           /* However, if there is some adjustment on the call itself, e.g.
2715 	     a call_pop, that action should be considered to happen after
2716 	     the call returns.  */
2717 	  add_cfi_insn = insn;
2718 	  scan_insn_after (control);
2719 	}
2720       else
2721 	{
2722 	  /* Flush data before calls and jumps, and of course if necessary.  */
2723 	  if (can_throw_internal (insn))
2724 	    {
2725 	      notice_eh_throw (insn);
2726 	      dwarf2out_flush_queued_reg_saves ();
2727 	    }
2728 	  else if (!NONJUMP_INSN_P (insn)
2729 		   || clobbers_queued_reg_save (insn)
2730 		   || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2731 	    dwarf2out_flush_queued_reg_saves ();
2732 	  any_cfis_emitted = false;
2733 
2734 	  add_cfi_insn = insn;
2735 	  scan_insn_after (insn);
2736 	  control = insn;
2737 	}
2738 
2739       /* Between frame-related-p and args_size we might have otherwise
2740 	 emitted two cfa adjustments.  Do it now.  */
2741       def_cfa_1 (&this_cfa);
2742 
2743       /* Minimize the number of advances by emitting the entire queue
2744 	 once anything is emitted.  */
2745       if (any_cfis_emitted
2746 	  || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2747 	dwarf2out_flush_queued_reg_saves ();
2748 
2749       /* Note that a test for control_flow_insn_p does exactly the
2750 	 same tests as are done to actually create the edges.  So
2751 	 always call the routine and let it not create edges for
2752 	 non-control-flow insns.  */
2753       create_trace_edges (control);
2754     }
2755 
2756   gcc_assert (!cfun->fde || !cfun->fde->rule18);
2757   add_cfi_insn = NULL;
2758   cur_row = NULL;
2759   cur_trace = NULL;
2760   cur_cfa = NULL;
2761 }
2762 
2763 /* Scan the function and create the initial set of CFI notes.  */
2764 
2765 static void
create_cfi_notes(void)2766 create_cfi_notes (void)
2767 {
2768   dw_trace_info *ti;
2769 
2770   gcc_checking_assert (!queued_reg_saves.exists ());
2771   gcc_checking_assert (!trace_work_list.exists ());
2772 
2773   /* Always begin at the entry trace.  */
2774   ti = &trace_info[0];
2775   scan_trace (ti, true);
2776 
2777   while (!trace_work_list.is_empty ())
2778     {
2779       ti = trace_work_list.pop ();
2780       scan_trace (ti, false);
2781     }
2782 
2783   queued_reg_saves.release ();
2784   trace_work_list.release ();
2785 }
2786 
2787 /* Return the insn before the first NOTE_INSN_CFI after START.  */
2788 
2789 static rtx_insn *
before_next_cfi_note(rtx_insn * start)2790 before_next_cfi_note (rtx_insn *start)
2791 {
2792   rtx_insn *prev = start;
2793   while (start)
2794     {
2795       if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2796 	return prev;
2797       prev = start;
2798       start = NEXT_INSN (start);
2799     }
2800   gcc_unreachable ();
2801 }
2802 
2803 /* Insert CFI notes between traces to properly change state between them.  */
2804 
2805 static void
connect_traces(void)2806 connect_traces (void)
2807 {
2808   unsigned i, n;
2809   dw_trace_info *prev_ti, *ti;
2810 
2811   /* ??? Ideally, we should have both queued and processed every trace.
2812      However the current representation of constant pools on various targets
2813      is indistinguishable from unreachable code.  Assume for the moment that
2814      we can simply skip over such traces.  */
2815   /* ??? Consider creating a DATA_INSN rtx code to indicate that
2816      these are not "real" instructions, and should not be considered.
2817      This could be generically useful for tablejump data as well.  */
2818   /* Remove all unprocessed traces from the list.  */
2819   unsigned ix, ix2;
2820   VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info, ix, ix2, ti, 1,
2821 				 trace_info.length (), ti->beg_row == NULL);
2822   FOR_EACH_VEC_ELT (trace_info, ix, ti)
2823     gcc_assert (ti->end_row != NULL);
2824 
2825   /* Work from the end back to the beginning.  This lets us easily insert
2826      remember/restore_state notes in the correct order wrt other notes.  */
2827   n = trace_info.length ();
2828   prev_ti = &trace_info[n - 1];
2829   for (i = n - 1; i > 0; --i)
2830     {
2831       dw_cfi_row *old_row;
2832 
2833       ti = prev_ti;
2834       prev_ti = &trace_info[i - 1];
2835 
2836       add_cfi_insn = ti->head;
2837 
2838       /* In dwarf2out_switch_text_section, we'll begin a new FDE
2839 	 for the portion of the function in the alternate text
2840 	 section.  The row state at the very beginning of that
2841 	 new FDE will be exactly the row state from the CIE.  */
2842       if (ti->switch_sections)
2843 	old_row = cie_cfi_row;
2844       else
2845 	{
2846 	  old_row = prev_ti->end_row;
2847 	  /* If there's no change from the previous end state, fine.  */
2848 	  if (cfi_row_equal_p (old_row, ti->beg_row))
2849 	    ;
2850 	  /* Otherwise check for the common case of sharing state with
2851 	     the beginning of an epilogue, but not the end.  Insert
2852 	     remember/restore opcodes in that case.  */
2853 	  else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2854 	    {
2855 	      dw_cfi_ref cfi;
2856 
2857 	      /* Note that if we blindly insert the remember at the
2858 		 start of the trace, we can wind up increasing the
2859 		 size of the unwind info due to extra advance opcodes.
2860 		 Instead, put the remember immediately before the next
2861 		 state change.  We know there must be one, because the
2862 		 state at the beginning and head of the trace differ.  */
2863 	      add_cfi_insn = before_next_cfi_note (prev_ti->head);
2864 	      cfi = new_cfi ();
2865 	      cfi->dw_cfi_opc = DW_CFA_remember_state;
2866 	      add_cfi (cfi);
2867 
2868 	      add_cfi_insn = ti->head;
2869 	      cfi = new_cfi ();
2870 	      cfi->dw_cfi_opc = DW_CFA_restore_state;
2871 	      add_cfi (cfi);
2872 
2873 	      /* If the target unwinder does not save the CFA as part of the
2874 		 register state, we need to restore it separately.  */
2875 	      if (targetm.asm_out.should_restore_cfa_state ()
2876 		  && (cfi = def_cfa_0 (&old_row->cfa, &ti->beg_row->cfa)))
2877 		add_cfi (cfi);
2878 
2879 	      old_row = prev_ti->beg_row;
2880 	    }
2881 	  /* Otherwise, we'll simply change state from the previous end.  */
2882 	}
2883 
2884       change_cfi_row (old_row, ti->beg_row);
2885 
2886       if (dump_file && add_cfi_insn != ti->head)
2887 	{
2888 	  rtx_insn *note;
2889 
2890 	  fprintf (dump_file, "Fixup between trace %u and %u:\n",
2891 		   prev_ti->id, ti->id);
2892 
2893 	  note = ti->head;
2894 	  do
2895 	    {
2896 	      note = NEXT_INSN (note);
2897 	      gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2898 	      output_cfi_directive (dump_file, NOTE_CFI (note));
2899 	    }
2900 	  while (note != add_cfi_insn);
2901 	}
2902     }
2903 
2904   /* Connect args_size between traces that have can_throw_internal insns.  */
2905   if (cfun->eh->lp_array)
2906     {
2907       poly_int64 prev_args_size = 0;
2908 
2909       for (i = 0; i < n; ++i)
2910 	{
2911 	  ti = &trace_info[i];
2912 
2913 	  if (ti->switch_sections)
2914 	    prev_args_size = 0;
2915 
2916 	  if (ti->eh_head == NULL)
2917 	    continue;
2918 
2919 	  /* We require either the incoming args_size values to match or the
2920 	     presence of an insn setting it before the first EH insn.  */
2921 	  gcc_assert (!ti->args_size_undefined || ti->args_size_defined_for_eh);
2922 
2923 	  /* In the latter case, we force the creation of a CFI note.  */
2924 	  if (ti->args_size_undefined
2925 	      || maybe_ne (ti->beg_delay_args_size, prev_args_size))
2926 	    {
2927 	      /* ??? Search back to previous CFI note.  */
2928 	      add_cfi_insn = PREV_INSN (ti->eh_head);
2929 	      add_cfi_args_size (ti->beg_delay_args_size);
2930 	    }
2931 
2932 	  prev_args_size = ti->end_delay_args_size;
2933 	}
2934     }
2935 }
2936 
2937 /* Set up the pseudo-cfg of instruction traces, as described at the
2938    block comment at the top of the file.  */
2939 
2940 static void
create_pseudo_cfg(void)2941 create_pseudo_cfg (void)
2942 {
2943   bool saw_barrier, switch_sections;
2944   dw_trace_info ti;
2945   rtx_insn *insn;
2946   unsigned i;
2947 
2948   /* The first trace begins at the start of the function,
2949      and begins with the CIE row state.  */
2950   trace_info.create (16);
2951   memset (&ti, 0, sizeof (ti));
2952   ti.head = get_insns ();
2953   ti.beg_row = cie_cfi_row;
2954   ti.cfa_store = cie_cfi_row->cfa;
2955   ti.cfa_temp.reg = INVALID_REGNUM;
2956   trace_info.quick_push (ti);
2957 
2958   if (cie_return_save)
2959     ti.regs_saved_in_regs.safe_push (*cie_return_save);
2960 
2961   /* Walk all the insns, collecting start of trace locations.  */
2962   saw_barrier = false;
2963   switch_sections = false;
2964   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2965     {
2966       if (BARRIER_P (insn))
2967 	saw_barrier = true;
2968       else if (NOTE_P (insn)
2969 	       && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2970 	{
2971 	  /* We should have just seen a barrier.  */
2972 	  gcc_assert (saw_barrier);
2973 	  switch_sections = true;
2974 	}
2975       /* Watch out for save_point notes between basic blocks.
2976 	 In particular, a note after a barrier.  Do not record these,
2977 	 delaying trace creation until the label.  */
2978       else if (save_point_p (insn)
2979 	       && (LABEL_P (insn) || !saw_barrier))
2980 	{
2981 	  memset (&ti, 0, sizeof (ti));
2982 	  ti.head = insn;
2983 	  ti.switch_sections = switch_sections;
2984 	  ti.id = trace_info.length ();
2985 	  trace_info.safe_push (ti);
2986 
2987 	  saw_barrier = false;
2988 	  switch_sections = false;
2989 	}
2990     }
2991 
2992   /* Create the trace index after we've finished building trace_info,
2993      avoiding stale pointer problems due to reallocation.  */
2994   trace_index
2995     = new hash_table<trace_info_hasher> (trace_info.length ());
2996   dw_trace_info *tp;
2997   FOR_EACH_VEC_ELT (trace_info, i, tp)
2998     {
2999       dw_trace_info **slot;
3000 
3001       if (dump_file)
3002 	fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
3003 		 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
3004 		 tp->switch_sections ? " (section switch)" : "");
3005 
3006       slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
3007       gcc_assert (*slot == NULL);
3008       *slot = tp;
3009     }
3010 }
3011 
3012 /* Record the initial position of the return address.  RTL is
3013    INCOMING_RETURN_ADDR_RTX.  */
3014 
3015 static void
initial_return_save(rtx rtl)3016 initial_return_save (rtx rtl)
3017 {
3018   unsigned int reg = INVALID_REGNUM;
3019   poly_int64 offset = 0;
3020 
3021   switch (GET_CODE (rtl))
3022     {
3023     case REG:
3024       /* RA is in a register.  */
3025       reg = dwf_regno (rtl);
3026       break;
3027 
3028     case MEM:
3029       /* RA is on the stack.  */
3030       rtl = XEXP (rtl, 0);
3031       switch (GET_CODE (rtl))
3032 	{
3033 	case REG:
3034 	  gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
3035 	  offset = 0;
3036 	  break;
3037 
3038 	case PLUS:
3039 	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
3040 	  offset = rtx_to_poly_int64 (XEXP (rtl, 1));
3041 	  break;
3042 
3043 	case MINUS:
3044 	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
3045 	  offset = -rtx_to_poly_int64 (XEXP (rtl, 1));
3046 	  break;
3047 
3048 	default:
3049 	  gcc_unreachable ();
3050 	}
3051 
3052       break;
3053 
3054     case PLUS:
3055       /* The return address is at some offset from any value we can
3056 	 actually load.  For instance, on the SPARC it is in %i7+8. Just
3057 	 ignore the offset for now; it doesn't matter for unwinding frames.  */
3058       gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
3059       initial_return_save (XEXP (rtl, 0));
3060       return;
3061 
3062     default:
3063       gcc_unreachable ();
3064     }
3065 
3066   if (reg != DWARF_FRAME_RETURN_COLUMN)
3067     {
3068       if (reg != INVALID_REGNUM)
3069         record_reg_saved_in_reg (rtl, pc_rtx);
3070       reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
3071     }
3072 }
3073 
3074 static void
create_cie_data(void)3075 create_cie_data (void)
3076 {
3077   dw_cfa_location loc;
3078   dw_trace_info cie_trace;
3079 
3080   dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
3081 
3082   memset (&cie_trace, 0, sizeof (cie_trace));
3083   cur_trace = &cie_trace;
3084 
3085   add_cfi_vec = &cie_cfi_vec;
3086   cie_cfi_row = cur_row = new_cfi_row ();
3087 
3088   /* On entry, the Canonical Frame Address is at SP.  */
3089   memset (&loc, 0, sizeof (loc));
3090   loc.reg = dw_stack_pointer_regnum;
3091   /* create_cie_data is called just once per TU, and when using .cfi_startproc
3092      is even done by the assembler rather than the compiler.  If the target
3093      has different incoming frame sp offsets depending on what kind of
3094      function it is, use a single constant offset for the target and
3095      if needed, adjust before the first instruction in insn stream.  */
3096   loc.offset = DEFAULT_INCOMING_FRAME_SP_OFFSET;
3097   def_cfa_1 (&loc);
3098 
3099   if (targetm.debug_unwind_info () == UI_DWARF2
3100       || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3101     {
3102       initial_return_save (INCOMING_RETURN_ADDR_RTX);
3103 
3104       /* For a few targets, we have the return address incoming into a
3105 	 register, but choose a different return column.  This will result
3106 	 in a DW_CFA_register for the return, and an entry in
3107 	 regs_saved_in_regs to match.  If the target later stores that
3108 	 return address register to the stack, we want to be able to emit
3109 	 the DW_CFA_offset against the return column, not the intermediate
3110 	 save register.  Save the contents of regs_saved_in_regs so that
3111 	 we can re-initialize it at the start of each function.  */
3112       switch (cie_trace.regs_saved_in_regs.length ())
3113 	{
3114 	case 0:
3115 	  break;
3116 	case 1:
3117 	  cie_return_save = ggc_alloc<reg_saved_in_data> ();
3118 	  *cie_return_save = cie_trace.regs_saved_in_regs[0];
3119 	  cie_trace.regs_saved_in_regs.release ();
3120 	  break;
3121 	default:
3122 	  gcc_unreachable ();
3123 	}
3124     }
3125 
3126   add_cfi_vec = NULL;
3127   cur_row = NULL;
3128   cur_trace = NULL;
3129 }
3130 
3131 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
3132    state at each location within the function.  These notes will be
3133    emitted during pass_final.  */
3134 
3135 static unsigned int
execute_dwarf2_frame(void)3136 execute_dwarf2_frame (void)
3137 {
3138   /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file.  */
3139   dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
3140 
3141   /* The first time we're called, compute the incoming frame state.  */
3142   if (cie_cfi_vec == NULL)
3143     create_cie_data ();
3144 
3145   dwarf2out_alloc_current_fde ();
3146 
3147   create_pseudo_cfg ();
3148 
3149   /* Do the work.  */
3150   create_cfi_notes ();
3151   connect_traces ();
3152   add_cfis_to_fde ();
3153 
3154   /* Free all the data we allocated.  */
3155   {
3156     size_t i;
3157     dw_trace_info *ti;
3158 
3159     FOR_EACH_VEC_ELT (trace_info, i, ti)
3160       ti->regs_saved_in_regs.release ();
3161   }
3162   trace_info.release ();
3163 
3164   delete trace_index;
3165   trace_index = NULL;
3166 
3167   return 0;
3168 }
3169 
3170 /* Convert a DWARF call frame info. operation to its string name */
3171 
3172 static const char *
dwarf_cfi_name(unsigned int cfi_opc)3173 dwarf_cfi_name (unsigned int cfi_opc)
3174 {
3175   const char *name = get_DW_CFA_name (cfi_opc);
3176 
3177   if (name != NULL)
3178     return name;
3179 
3180   return "DW_CFA_<unknown>";
3181 }
3182 
3183 /* This routine will generate the correct assembly data for a location
3184    description based on a cfi entry with a complex address.  */
3185 
3186 static void
output_cfa_loc(dw_cfi_ref cfi,int for_eh)3187 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3188 {
3189   dw_loc_descr_ref loc;
3190   unsigned long size;
3191 
3192   if (cfi->dw_cfi_opc == DW_CFA_expression
3193       || cfi->dw_cfi_opc == DW_CFA_val_expression)
3194     {
3195       unsigned r =
3196 	DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3197       dw2_asm_output_data (1, r, NULL);
3198       loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3199     }
3200   else
3201     loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3202 
3203   /* Output the size of the block.  */
3204   size = size_of_locs (loc);
3205   dw2_asm_output_data_uleb128 (size, NULL);
3206 
3207   /* Now output the operations themselves.  */
3208   output_loc_sequence (loc, for_eh);
3209 }
3210 
3211 /* Similar, but used for .cfi_escape.  */
3212 
3213 static void
output_cfa_loc_raw(dw_cfi_ref cfi)3214 output_cfa_loc_raw (dw_cfi_ref cfi)
3215 {
3216   dw_loc_descr_ref loc;
3217   unsigned long size;
3218 
3219   if (cfi->dw_cfi_opc == DW_CFA_expression
3220       || cfi->dw_cfi_opc == DW_CFA_val_expression)
3221     {
3222       unsigned r =
3223 	DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3224       fprintf (asm_out_file, "%#x,", r);
3225       loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3226     }
3227   else
3228     loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3229 
3230   /* Output the size of the block.  */
3231   size = size_of_locs (loc);
3232   dw2_asm_output_data_uleb128_raw (size);
3233   fputc (',', asm_out_file);
3234 
3235   /* Now output the operations themselves.  */
3236   output_loc_sequence_raw (loc);
3237 }
3238 
3239 /* Output a Call Frame Information opcode and its operand(s).  */
3240 
3241 void
output_cfi(dw_cfi_ref cfi,dw_fde_ref fde,int for_eh)3242 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3243 {
3244   unsigned long r;
3245   HOST_WIDE_INT off;
3246 
3247   if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3248     dw2_asm_output_data (1, (cfi->dw_cfi_opc
3249 			     | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3250 			 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3251 			 ((unsigned HOST_WIDE_INT)
3252 			  cfi->dw_cfi_oprnd1.dw_cfi_offset));
3253   else if (cfi->dw_cfi_opc == DW_CFA_offset)
3254     {
3255       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3256       dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3257 			   "DW_CFA_offset, column %#lx", r);
3258       off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3259       dw2_asm_output_data_uleb128 (off, NULL);
3260     }
3261   else if (cfi->dw_cfi_opc == DW_CFA_restore)
3262     {
3263       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3264       dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3265 			   "DW_CFA_restore, column %#lx", r);
3266     }
3267   else
3268     {
3269       dw2_asm_output_data (1, cfi->dw_cfi_opc,
3270 			   "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3271 
3272       switch (cfi->dw_cfi_opc)
3273 	{
3274 	case DW_CFA_set_loc:
3275 	  if (for_eh)
3276 	    dw2_asm_output_encoded_addr_rtx (
3277 		ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3278 		gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3279 		false, NULL);
3280 	  else
3281 	    dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3282 				 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3283 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3284 	  break;
3285 
3286 	case DW_CFA_advance_loc1:
3287 	  dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3288 				fde->dw_fde_current_label, NULL);
3289 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3290 	  break;
3291 
3292 	case DW_CFA_advance_loc2:
3293 	  dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3294 				fde->dw_fde_current_label, NULL);
3295 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3296 	  break;
3297 
3298 	case DW_CFA_advance_loc4:
3299 	  dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3300 				fde->dw_fde_current_label, NULL);
3301 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3302 	  break;
3303 
3304 	case DW_CFA_MIPS_advance_loc8:
3305 	  dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3306 				fde->dw_fde_current_label, NULL);
3307 	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3308 	  break;
3309 
3310 	case DW_CFA_offset_extended:
3311 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3312 	  dw2_asm_output_data_uleb128 (r, NULL);
3313 	  off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3314 	  dw2_asm_output_data_uleb128 (off, NULL);
3315 	  break;
3316 
3317 	case DW_CFA_def_cfa:
3318 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3319 	  dw2_asm_output_data_uleb128 (r, NULL);
3320 	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3321 	  break;
3322 
3323 	case DW_CFA_offset_extended_sf:
3324 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3325 	  dw2_asm_output_data_uleb128 (r, NULL);
3326 	  off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3327 	  dw2_asm_output_data_sleb128 (off, NULL);
3328 	  break;
3329 
3330 	case DW_CFA_def_cfa_sf:
3331 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3332 	  dw2_asm_output_data_uleb128 (r, NULL);
3333 	  off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3334 	  dw2_asm_output_data_sleb128 (off, NULL);
3335 	  break;
3336 
3337 	case DW_CFA_restore_extended:
3338 	case DW_CFA_undefined:
3339 	case DW_CFA_same_value:
3340 	case DW_CFA_def_cfa_register:
3341 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3342 	  dw2_asm_output_data_uleb128 (r, NULL);
3343 	  break;
3344 
3345 	case DW_CFA_register:
3346 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3347 	  dw2_asm_output_data_uleb128 (r, NULL);
3348 	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3349 	  dw2_asm_output_data_uleb128 (r, NULL);
3350 	  break;
3351 
3352 	case DW_CFA_def_cfa_offset:
3353 	case DW_CFA_GNU_args_size:
3354 	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3355 	  break;
3356 
3357 	case DW_CFA_def_cfa_offset_sf:
3358 	  off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3359 	  dw2_asm_output_data_sleb128 (off, NULL);
3360 	  break;
3361 
3362 	case DW_CFA_GNU_window_save:
3363 	  break;
3364 
3365 	case DW_CFA_def_cfa_expression:
3366 	case DW_CFA_expression:
3367 	case DW_CFA_val_expression:
3368 	  output_cfa_loc (cfi, for_eh);
3369 	  break;
3370 
3371 	case DW_CFA_GNU_negative_offset_extended:
3372 	  /* Obsoleted by DW_CFA_offset_extended_sf.  */
3373 	  gcc_unreachable ();
3374 
3375 	default:
3376 	  break;
3377 	}
3378     }
3379 }
3380 
3381 /* Similar, but do it via assembler directives instead.  */
3382 
3383 void
output_cfi_directive(FILE * f,dw_cfi_ref cfi)3384 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3385 {
3386   unsigned long r, r2;
3387 
3388   switch (cfi->dw_cfi_opc)
3389     {
3390     case DW_CFA_advance_loc:
3391     case DW_CFA_advance_loc1:
3392     case DW_CFA_advance_loc2:
3393     case DW_CFA_advance_loc4:
3394     case DW_CFA_MIPS_advance_loc8:
3395     case DW_CFA_set_loc:
3396       /* Should only be created in a code path not followed when emitting
3397 	 via directives.  The assembler is going to take care of this for
3398 	 us.  But this routines is also used for debugging dumps, so
3399 	 print something.  */
3400       gcc_assert (f != asm_out_file);
3401       fprintf (f, "\t.cfi_advance_loc\n");
3402       break;
3403 
3404     case DW_CFA_offset:
3405     case DW_CFA_offset_extended:
3406     case DW_CFA_offset_extended_sf:
3407       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3408       fprintf (f, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3409 	       r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3410       break;
3411 
3412     case DW_CFA_restore:
3413     case DW_CFA_restore_extended:
3414       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3415       fprintf (f, "\t.cfi_restore %lu\n", r);
3416       break;
3417 
3418     case DW_CFA_undefined:
3419       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3420       fprintf (f, "\t.cfi_undefined %lu\n", r);
3421       break;
3422 
3423     case DW_CFA_same_value:
3424       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3425       fprintf (f, "\t.cfi_same_value %lu\n", r);
3426       break;
3427 
3428     case DW_CFA_def_cfa:
3429     case DW_CFA_def_cfa_sf:
3430       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3431       fprintf (f, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3432 	       r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3433       break;
3434 
3435     case DW_CFA_def_cfa_register:
3436       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3437       fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3438       break;
3439 
3440     case DW_CFA_register:
3441       r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3442       r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3443       fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3444       break;
3445 
3446     case DW_CFA_def_cfa_offset:
3447     case DW_CFA_def_cfa_offset_sf:
3448       fprintf (f, "\t.cfi_def_cfa_offset "
3449 	       HOST_WIDE_INT_PRINT_DEC"\n",
3450 	       cfi->dw_cfi_oprnd1.dw_cfi_offset);
3451       break;
3452 
3453     case DW_CFA_remember_state:
3454       fprintf (f, "\t.cfi_remember_state\n");
3455       break;
3456     case DW_CFA_restore_state:
3457       fprintf (f, "\t.cfi_restore_state\n");
3458       break;
3459 
3460     case DW_CFA_GNU_args_size:
3461       if (f == asm_out_file)
3462 	{
3463 	  fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3464 	  dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3465 	  if (flag_debug_asm)
3466 	    fprintf (f, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC,
3467 		     ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3468 	  fputc ('\n', f);
3469 	}
3470       else
3471 	{
3472 	  fprintf (f, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n",
3473 		   cfi->dw_cfi_oprnd1.dw_cfi_offset);
3474 	}
3475       break;
3476 
3477     case DW_CFA_GNU_window_save:
3478       fprintf (f, "\t.cfi_window_save\n");
3479       break;
3480 
3481     case DW_CFA_def_cfa_expression:
3482     case DW_CFA_expression:
3483     case DW_CFA_val_expression:
3484       if (f != asm_out_file)
3485 	{
3486 	  fprintf (f, "\t.cfi_%scfa_%sexpression ...\n",
3487 		   cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "",
3488 		   cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : "");
3489 	  break;
3490 	}
3491       fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3492       output_cfa_loc_raw (cfi);
3493       fputc ('\n', f);
3494       break;
3495 
3496     default:
3497       gcc_unreachable ();
3498     }
3499 }
3500 
3501 void
dwarf2out_emit_cfi(dw_cfi_ref cfi)3502 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3503 {
3504   if (dwarf2out_do_cfi_asm ())
3505     output_cfi_directive (asm_out_file, cfi);
3506 }
3507 
3508 static void
dump_cfi_row(FILE * f,dw_cfi_row * row)3509 dump_cfi_row (FILE *f, dw_cfi_row *row)
3510 {
3511   dw_cfi_ref cfi;
3512   unsigned i;
3513 
3514   cfi = row->cfa_cfi;
3515   if (!cfi)
3516     {
3517       dw_cfa_location dummy;
3518       memset (&dummy, 0, sizeof (dummy));
3519       dummy.reg = INVALID_REGNUM;
3520       cfi = def_cfa_0 (&dummy, &row->cfa);
3521     }
3522   output_cfi_directive (f, cfi);
3523 
3524   FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3525     if (cfi)
3526       output_cfi_directive (f, cfi);
3527 }
3528 
3529 void debug_cfi_row (dw_cfi_row *row);
3530 
3531 void
debug_cfi_row(dw_cfi_row * row)3532 debug_cfi_row (dw_cfi_row *row)
3533 {
3534   dump_cfi_row (stderr, row);
3535 }
3536 
3537 
3538 /* Save the result of dwarf2out_do_frame across PCH.
3539    This variable is tri-state, with 0 unset, >0 true, <0 false.  */
3540 static GTY(()) signed char saved_do_cfi_asm = 0;
3541 
3542 /* Decide whether to emit EH frame unwind information for the current
3543    translation unit.  */
3544 
3545 bool
dwarf2out_do_eh_frame(void)3546 dwarf2out_do_eh_frame (void)
3547 {
3548   return
3549     (flag_unwind_tables || flag_exceptions)
3550     && targetm_common.except_unwind_info (&global_options) == UI_DWARF2;
3551 }
3552 
3553 /* Decide whether we want to emit frame unwind information for the current
3554    translation unit.  */
3555 
3556 bool
dwarf2out_do_frame(void)3557 dwarf2out_do_frame (void)
3558 {
3559   /* We want to emit correct CFA location expressions or lists, so we
3560      have to return true if we're going to output debug info, even if
3561      we're not going to output frame or unwind info.  */
3562   if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3563     return true;
3564 
3565   if (saved_do_cfi_asm > 0)
3566     return true;
3567 
3568   if (targetm.debug_unwind_info () == UI_DWARF2)
3569     return true;
3570 
3571   if (dwarf2out_do_eh_frame ())
3572     return true;
3573 
3574   return false;
3575 }
3576 
3577 /* Decide whether to emit frame unwind via assembler directives.  */
3578 
3579 bool
dwarf2out_do_cfi_asm(void)3580 dwarf2out_do_cfi_asm (void)
3581 {
3582   int enc;
3583 
3584   if (saved_do_cfi_asm != 0)
3585     return saved_do_cfi_asm > 0;
3586 
3587   /* Assume failure for a moment.  */
3588   saved_do_cfi_asm = -1;
3589 
3590   if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3591     return false;
3592   if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3593     return false;
3594 
3595   /* Make sure the personality encoding is one the assembler can support.
3596      In particular, aligned addresses can't be handled.  */
3597   enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3598   if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3599     return false;
3600   enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3601   if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3602     return false;
3603 
3604   /* If we can't get the assembler to emit only .debug_frame, and we don't need
3605      dwarf2 unwind info for exceptions, then emit .debug_frame by hand.  */
3606   if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !dwarf2out_do_eh_frame ())
3607     return false;
3608 
3609   /* Success!  */
3610   saved_do_cfi_asm = 1;
3611   return true;
3612 }
3613 
3614 namespace {
3615 
3616 const pass_data pass_data_dwarf2_frame =
3617 {
3618   RTL_PASS, /* type */
3619   "dwarf2", /* name */
3620   OPTGROUP_NONE, /* optinfo_flags */
3621   TV_FINAL, /* tv_id */
3622   0, /* properties_required */
3623   0, /* properties_provided */
3624   0, /* properties_destroyed */
3625   0, /* todo_flags_start */
3626   0, /* todo_flags_finish */
3627 };
3628 
3629 class pass_dwarf2_frame : public rtl_opt_pass
3630 {
3631 public:
pass_dwarf2_frame(gcc::context * ctxt)3632   pass_dwarf2_frame (gcc::context *ctxt)
3633     : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3634   {}
3635 
3636   /* opt_pass methods: */
3637   virtual bool gate (function *);
execute(function *)3638   virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3639 
3640 }; // class pass_dwarf2_frame
3641 
3642 bool
gate(function *)3643 pass_dwarf2_frame::gate (function *)
3644 {
3645   /* Targets which still implement the prologue in assembler text
3646      cannot use the generic dwarf2 unwinding.  */
3647   if (!targetm.have_prologue ())
3648     return false;
3649 
3650   /* ??? What to do for UI_TARGET unwinding?  They might be able to benefit
3651      from the optimized shrink-wrapping annotations that we will compute.
3652      For now, only produce the CFI notes for dwarf2.  */
3653   return dwarf2out_do_frame ();
3654 }
3655 
3656 } // anon namespace
3657 
3658 rtl_opt_pass *
make_pass_dwarf2_frame(gcc::context * ctxt)3659 make_pass_dwarf2_frame (gcc::context *ctxt)
3660 {
3661   return new pass_dwarf2_frame (ctxt);
3662 }
3663 
3664 #include "gt-dwarf2cfi.h"
3665