xref: /netbsd/external/gpl3/gcc.old/dist/gcc/match.pd (revision 840b4d17)
1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2   This file is consumed by genmatch which produces gimple-match.c
3   and generic-match.c from it.
4
5   Copyright (C) 2014-2020 Free Software Foundation, Inc.
6   Contributed by Richard Biener <rguenther@suse.de>
7   and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3.  If not see
23<http://www.gnu.org/licenses/>.  */
24
25
26/* Generic tree predicates we inherit.  */
27(define_predicates
28   integer_onep integer_zerop integer_all_onesp integer_minus_onep
29   integer_each_onep integer_truep integer_nonzerop
30   real_zerop real_onep real_minus_onep
31   zerop
32   initializer_each_zero_or_onep
33   CONSTANT_CLASS_P
34   tree_expr_nonnegative_p
35   tree_expr_nonzero_p
36   integer_valued_real_p
37   integer_pow2p
38   uniform_integer_cst_p
39   HONOR_NANS
40   uniform_vector_p)
41
42/* Operator lists.  */
43(define_operator_list tcc_comparison
44  lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
45(define_operator_list inverted_tcc_comparison
46  ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
47(define_operator_list inverted_tcc_comparison_with_nans
48  unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)
49(define_operator_list swapped_tcc_comparison
50  gt   ge   eq ne le   lt   unordered ordered   ungt unge unlt unle uneq ltgt)
51(define_operator_list simple_comparison         lt   le   eq ne ge   gt)
52(define_operator_list swapped_simple_comparison gt   ge   eq ne le   lt)
53
54#include "cfn-operators.pd"
55
56/* Define operand lists for math rounding functions {,i,l,ll}FN,
57   where the versions prefixed with "i" return an int, those prefixed with
58   "l" return a long and those prefixed with "ll" return a long long.
59
60   Also define operand lists:
61
62     X<FN>F for all float functions, in the order i, l, ll
63     X<FN> for all double functions, in the same order
64     X<FN>L for all long double functions, in the same order.  */
65#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66  (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67				 BUILT_IN_L##FN##F \
68				 BUILT_IN_LL##FN##F) \
69  (define_operator_list X##FN BUILT_IN_I##FN \
70			      BUILT_IN_L##FN \
71			      BUILT_IN_LL##FN) \
72  (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73				 BUILT_IN_L##FN##L \
74				 BUILT_IN_LL##FN##L)
75
76DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81/* Binary operations and their associated IFN_COND_* function.  */
82(define_operator_list UNCOND_BINARY
83  plus minus
84  mult trunc_div trunc_mod rdiv
85  min max
86  bit_and bit_ior bit_xor
87  lshift rshift)
88(define_operator_list COND_BINARY
89  IFN_COND_ADD IFN_COND_SUB
90  IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91  IFN_COND_MIN IFN_COND_MAX
92  IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93  IFN_COND_SHL IFN_COND_SHR)
94
95/* Same for ternary operations.  */
96(define_operator_list UNCOND_TERNARY
97  IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98(define_operator_list COND_TERNARY
99  IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101/* With nop_convert? combine convert? and view_convert? in one pattern
102   plus conditionalize on tree_nop_conversion_p conversions.  */
103(match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106(match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109      && known_eq (TYPE_VECTOR_SUBPARTS (type),
110		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111      && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114   ABSU_EXPR returns unsigned absolute value of the operand and the operand
115   of the ABSU_EXPR will have the corresponding signed type.  */
116(simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118      && !TYPE_UNSIGNED (TREE_TYPE (@0))
119      && element_precision (type) > element_precision (TREE_TYPE (@0)))
120  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121   (convert (absu:utype @0)))))
122
123
124/* Simplifications of operations with one constant operand and
125   simplifications to constants or single values.  */
126
127(for op (plus pointer_plus minus bit_ior bit_xor)
128  (simplify
129    (op @0 integer_zerop)
130    (non_lvalue @0)))
131
132/* 0 +p index -> (type)index */
133(simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137/* ptr - 0 -> (type)ptr */
138(simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142/* See if ARG1 is zero and X + ARG1 reduces to X.
143   Likewise if the operands are reversed.  */
144(simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147  (non_lvalue @0)))
148
149/* See if ARG1 is zero and X - ARG1 reduces to X.  */
150(simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153  (non_lvalue @0)))
154
155/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156   into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157   or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158   if not -frounding-math.  For sNaNs the first operation would raise
159   exceptions but turn the result into qNan, so the second operation
160   would not raise it.   */
161(for inner_op (plus minus)
162 (for outer_op (plus minus)
163  (simplify
164   (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
165    (if (real_zerop (@1)
166	 && real_zerop (@2)
167	 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168     (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169				^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
170	     bool outer_plus
171	       = ((outer_op == PLUS_EXPR)
172		  ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173      (if (outer_plus && !inner_plus)
174       (outer_op @0 @2)
175       @3))))))
176
177/* Simplify x - x.
178   This is unsafe for certain floats even in non-IEEE formats.
179   In IEEE, it is unsafe because it does wrong for NaNs.
180   Also note that operand_equal_p is always false if an operand
181   is volatile.  */
182(simplify
183 (minus @0 @0)
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185  { build_zero_cst (type); }))
186(simplify
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
189
190(simplify
191 (mult @0 integer_zerop@1)
192 @1)
193
194/* Maybe fold x * 0 to 0.  The expressions aren't the same
195   when x is NaN, since x * 0 is also NaN.  Nor are they the
196   same in modes with signed zeros, since multiplying a
197   negative value by 0 gives -0, not +0.  */
198(simplify
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
201  @1))
202
203/* In IEEE floating point, x*1 is not equivalent to x for snans.
204   Likewise for complex arithmetic with signed zeros.  */
205(simplify
206 (mult @0 real_onep)
207 (if (!HONOR_SNANS (type)
208      && (!HONOR_SIGNED_ZEROS (type)
209          || !COMPLEX_FLOAT_TYPE_P (type)))
210  (non_lvalue @0)))
211
212/* Transform x * -1.0 into -x.  */
213(simplify
214 (mult @0 real_minus_onep)
215  (if (!HONOR_SNANS (type)
216       && (!HONOR_SIGNED_ZEROS (type)
217           || !COMPLEX_FLOAT_TYPE_P (type)))
218   (negate @0)))
219
220/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
221(simplify
222 (mult SSA_NAME@1 SSA_NAME@2)
223  (if (INTEGRAL_TYPE_P (type)
224       && get_nonzero_bits (@1) == 1
225       && get_nonzero_bits (@2) == 1)
226   (bit_and @1 @2)))
227
228/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
229   unless the target has native support for the former but not the latter.  */
230(simplify
231 (mult @0 VECTOR_CST@1)
232 (if (initializer_each_zero_or_onep (@1)
233      && !HONOR_SNANS (type)
234      && !HONOR_SIGNED_ZEROS (type))
235  (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
236   (if (itype
237	&& (!VECTOR_MODE_P (TYPE_MODE (type))
238	    || (VECTOR_MODE_P (TYPE_MODE (itype))
239		&& optab_handler (and_optab,
240				  TYPE_MODE (itype)) != CODE_FOR_nothing)))
241    (view_convert (bit_and:itype (view_convert @0)
242				 (ne @1 { build_zero_cst (type); })))))))
243
244(for cmp (gt ge lt le)
245     outp (convert convert negate negate)
246     outn (negate negate convert convert)
247 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
248 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
249 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
250 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
251 (simplify
252  (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
253  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
254   (outp (abs @0))))
255 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
256 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
257 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
258 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
259 (simplify
260  (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
261  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
262   (outn (abs @0)))))
263
264/* Transform X * copysign (1.0, X) into abs(X). */
265(simplify
266 (mult:c @0 (COPYSIGN_ALL real_onep @0))
267 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
268  (abs @0)))
269
270/* Transform X * copysign (1.0, -X) into -abs(X). */
271(simplify
272 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
273 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
274  (negate (abs @0))))
275
276/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
277(simplify
278 (COPYSIGN_ALL REAL_CST@0 @1)
279 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
280  (COPYSIGN_ALL (negate @0) @1)))
281
282/* X * 1, X / 1 -> X.  */
283(for op (mult trunc_div ceil_div floor_div round_div exact_div)
284  (simplify
285    (op @0 integer_onep)
286    (non_lvalue @0)))
287
288/* (A / (1 << B)) -> (A >> B).
289   Only for unsigned A.  For signed A, this would not preserve rounding
290   toward zero.
291   For example: (-1 / ( 1 << B)) !=  -1 >> B.
292   Also also widening conversions, like:
293   (A / (unsigned long long) (1U << B)) -> (A >> B)
294   or
295   (A / (unsigned long long) (1 << B)) -> (A >> B).
296   If the left shift is signed, it can be done only if the upper bits
297   of A starting from shift's type sign bit are zero, as
298   (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
299   so it is valid only if A >> 31 is zero.  */
300(simplify
301 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
302 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
303      && (!VECTOR_TYPE_P (type)
304	  || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
305	  || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
306      && (useless_type_conversion_p (type, TREE_TYPE (@1))
307	  || (element_precision (type) >= element_precision (TREE_TYPE (@1))
308	      && (TYPE_UNSIGNED (TREE_TYPE (@1))
309		  || (element_precision (type)
310		      == element_precision (TREE_TYPE (@1)))
311		  || (INTEGRAL_TYPE_P (type)
312		      && (tree_nonzero_bits (@0)
313			  & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
314				      true,
315				      element_precision (type))) == 0)))))
316  (rshift @0 @2)))
317
318/* Preserve explicit divisions by 0: the C++ front-end wants to detect
319   undefined behavior in constexpr evaluation, and assuming that the division
320   traps enables better optimizations than these anyway.  */
321(for div (trunc_div ceil_div floor_div round_div exact_div)
322 /* 0 / X is always zero.  */
323 (simplify
324  (div integer_zerop@0 @1)
325  /* But not for 0 / 0 so that we can get the proper warnings and errors.  */
326  (if (!integer_zerop (@1))
327   @0))
328  /* X / -1 is -X.  */
329 (simplify
330   (div @0 integer_minus_onep@1)
331   (if (!TYPE_UNSIGNED (type))
332    (negate @0)))
333 /* X / X is one.  */
334 (simplify
335  (div @0 @0)
336  /* But not for 0 / 0 so that we can get the proper warnings and errors.
337     And not for _Fract types where we can't build 1.  */
338  (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
339   { build_one_cst (type); }))
340 /* X / abs (X) is X < 0 ? -1 : 1.  */
341 (simplify
342   (div:C @0 (abs @0))
343   (if (INTEGRAL_TYPE_P (type)
344	&& TYPE_OVERFLOW_UNDEFINED (type))
345    (cond (lt @0 { build_zero_cst (type); })
346          { build_minus_one_cst (type); } { build_one_cst (type); })))
347 /* X / -X is -1.  */
348 (simplify
349   (div:C @0 (negate @0))
350   (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
351	&& TYPE_OVERFLOW_UNDEFINED (type))
352    { build_minus_one_cst (type); })))
353
354/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
355   TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  Similarly
356   for MOD instead of DIV.  */
357(for floor_divmod (floor_div floor_mod)
358     trunc_divmod (trunc_div trunc_mod)
359 (simplify
360  (floor_divmod @0 @1)
361  (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
362       && TYPE_UNSIGNED (type))
363   (trunc_divmod @0 @1))))
364
365/* Combine two successive divisions.  Note that combining ceil_div
366   and floor_div is trickier and combining round_div even more so.  */
367(for div (trunc_div exact_div)
368 (simplify
369  (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
370  (with {
371    wi::overflow_type overflow;
372    wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
373			    TYPE_SIGN (type), &overflow);
374   }
375   (if (div == EXACT_DIV_EXPR
376	|| optimize_successive_divisions_p (@2, @3))
377    (if (!overflow)
378     (div @0 { wide_int_to_tree (type, mul); })
379     (if (TYPE_UNSIGNED (type)
380	  || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
381      { build_zero_cst (type); }))))))
382
383/* Combine successive multiplications.  Similar to above, but handling
384   overflow is different.  */
385(simplify
386 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
387 (with {
388   wi::overflow_type overflow;
389   wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
390			   TYPE_SIGN (type), &overflow);
391  }
392  /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
393     otherwise undefined overflow implies that @0 must be zero.  */
394  (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
395   (mult @0 { wide_int_to_tree (type, mul); }))))
396
397/* Optimize A / A to 1.0 if we don't care about
398   NaNs or Infinities.  */
399(simplify
400 (rdiv @0 @0)
401 (if (FLOAT_TYPE_P (type)
402      && ! HONOR_NANS (type)
403      && ! HONOR_INFINITIES (type))
404  { build_one_cst (type); }))
405
406/* Optimize -A / A to -1.0 if we don't care about
407   NaNs or Infinities.  */
408(simplify
409 (rdiv:C @0 (negate @0))
410 (if (FLOAT_TYPE_P (type)
411      && ! HONOR_NANS (type)
412      && ! HONOR_INFINITIES (type))
413  { build_minus_one_cst (type); }))
414
415/* PR71078: x / abs(x) -> copysign (1.0, x) */
416(simplify
417 (rdiv:C (convert? @0) (convert? (abs @0)))
418  (if (SCALAR_FLOAT_TYPE_P (type)
419       && ! HONOR_NANS (type)
420       && ! HONOR_INFINITIES (type))
421   (switch
422    (if (types_match (type, float_type_node))
423     (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
424    (if (types_match (type, double_type_node))
425     (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
426    (if (types_match (type, long_double_type_node))
427     (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
428
429/* In IEEE floating point, x/1 is not equivalent to x for snans.  */
430(simplify
431 (rdiv @0 real_onep)
432 (if (!HONOR_SNANS (type))
433  (non_lvalue @0)))
434
435/* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
436(simplify
437 (rdiv @0 real_minus_onep)
438 (if (!HONOR_SNANS (type))
439  (negate @0)))
440
441(if (flag_reciprocal_math)
442 /* Convert (A/B)/C to A/(B*C). */
443 (simplify
444  (rdiv (rdiv:s @0 @1) @2)
445  (rdiv @0 (mult @1 @2)))
446
447 /* Canonicalize x / (C1 * y) to (x * C2) / y.  */
448 (simplify
449  (rdiv @0 (mult:s @1 REAL_CST@2))
450  (with
451   { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
452   (if (tem)
453    (rdiv (mult @0 { tem; } ) @1))))
454
455 /* Convert A/(B/C) to (A/B)*C  */
456 (simplify
457  (rdiv @0 (rdiv:s @1 @2))
458   (mult (rdiv @0 @1) @2)))
459
460/* Simplify x / (- y) to -x / y.  */
461(simplify
462 (rdiv @0 (negate @1))
463 (rdiv (negate @0) @1))
464
465(if (flag_unsafe_math_optimizations)
466 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
467    Since C / x may underflow to zero, do this only for unsafe math.  */
468 (for op (lt le gt ge)
469      neg_op (gt ge lt le)
470  (simplify
471   (op (rdiv REAL_CST@0 @1) real_zerop@2)
472   (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
473    (switch
474     (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
475      (op @1 @2))
476     /* For C < 0, use the inverted operator.  */
477     (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
478      (neg_op @1 @2)))))))
479
480/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
481(for div (trunc_div ceil_div floor_div round_div exact_div)
482 (simplify
483  (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
484  (if (integer_pow2p (@2)
485       && tree_int_cst_sgn (@2) > 0
486       && tree_nop_conversion_p (type, TREE_TYPE (@0))
487       && wi::to_wide (@2) + wi::to_wide (@1) == 0)
488   (rshift (convert @0)
489	   { build_int_cst (integer_type_node,
490			    wi::exact_log2 (wi::to_wide (@2))); }))))
491
492/* If ARG1 is a constant, we can convert this to a multiply by the
493   reciprocal.  This does not have the same rounding properties,
494   so only do this if -freciprocal-math.  We can actually
495   always safely do it if ARG1 is a power of two, but it's hard to
496   tell if it is or not in a portable manner.  */
497(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
498 (simplify
499  (rdiv @0 cst@1)
500  (if (optimize)
501   (if (flag_reciprocal_math
502	&& !real_zerop (@1))
503    (with
504     { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
505     (if (tem)
506      (mult @0 { tem; } )))
507    (if (cst != COMPLEX_CST)
508     (with { tree inverse = exact_inverse (type, @1); }
509      (if (inverse)
510       (mult @0 { inverse; } ))))))))
511
512(for mod (ceil_mod floor_mod round_mod trunc_mod)
513 /* 0 % X is always zero.  */
514 (simplify
515  (mod integer_zerop@0 @1)
516  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
517  (if (!integer_zerop (@1))
518   @0))
519 /* X % 1 is always zero.  */
520 (simplify
521  (mod @0 integer_onep)
522  { build_zero_cst (type); })
523 /* X % -1 is zero.  */
524 (simplify
525  (mod @0 integer_minus_onep@1)
526  (if (!TYPE_UNSIGNED (type))
527   { build_zero_cst (type); }))
528 /* X % X is zero.  */
529 (simplify
530  (mod @0 @0)
531  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
532  (if (!integer_zerop (@0))
533   { build_zero_cst (type); }))
534 /* (X % Y) % Y is just X % Y.  */
535 (simplify
536  (mod (mod@2 @0 @1) @1)
537  @2)
538 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2.  */
539 (simplify
540  (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
541  (if (ANY_INTEGRAL_TYPE_P (type)
542       && TYPE_OVERFLOW_UNDEFINED (type)
543       && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
544			     TYPE_SIGN (type)))
545   { build_zero_cst (type); }))
546 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
547    modulo and comparison, since it is simpler and equivalent.  */
548 (for cmp (eq ne)
549  (simplify
550   (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
551   (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
552    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
553     (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
554
555/* X % -C is the same as X % C.  */
556(simplify
557 (trunc_mod @0 INTEGER_CST@1)
558  (if (TYPE_SIGN (type) == SIGNED
559       && !TREE_OVERFLOW (@1)
560       && wi::neg_p (wi::to_wide (@1))
561       && !TYPE_OVERFLOW_TRAPS (type)
562       /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
563       && !sign_bit_p (@1, @1))
564   (trunc_mod @0 (negate @1))))
565
566/* X % -Y is the same as X % Y.  */
567(simplify
568 (trunc_mod @0 (convert? (negate @1)))
569 (if (INTEGRAL_TYPE_P (type)
570      && !TYPE_UNSIGNED (type)
571      && !TYPE_OVERFLOW_TRAPS (type)
572      && tree_nop_conversion_p (type, TREE_TYPE (@1))
573      /* Avoid this transformation if X might be INT_MIN or
574	 Y might be -1, because we would then change valid
575	 INT_MIN % -(-1) into invalid INT_MIN % -1.  */
576      && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
577	  || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
578							(TREE_TYPE (@1))))))
579  (trunc_mod @0 (convert @1))))
580
581/* X - (X / Y) * Y is the same as X % Y.  */
582(simplify
583 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
584 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
585  (convert (trunc_mod @0 @1))))
586
587/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
588   i.e. "X % C" into "X & (C - 1)", if X and C are positive.
589   Also optimize A % (C << N)  where C is a power of 2,
590   to A & ((C << N) - 1).  */
591(match (power_of_two_cand @1)
592 INTEGER_CST@1)
593(match (power_of_two_cand @1)
594 (lshift INTEGER_CST@1 @2))
595(for mod (trunc_mod floor_mod)
596 (simplify
597  (mod @0 (convert? (power_of_two_cand@1 @2)))
598  (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
599       /* Allow any integral conversions of the divisor, except
600	  conversion from narrower signed to wider unsigned type
601	  where if @1 would be negative power of two, the divisor
602	  would not be a power of two.  */
603       && INTEGRAL_TYPE_P (type)
604       && INTEGRAL_TYPE_P (TREE_TYPE (@1))
605       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
606	   || TYPE_UNSIGNED (TREE_TYPE (@1))
607	   || !TYPE_UNSIGNED (type))
608       && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
609   (with { tree utype = TREE_TYPE (@1);
610	   if (!TYPE_OVERFLOW_WRAPS (utype))
611	     utype = unsigned_type_for (utype); }
612    (bit_and @0 (convert (minus (convert:utype @1)
613				{ build_one_cst (utype); })))))))
614
615/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF.  */
616(simplify
617 (trunc_div (mult @0 integer_pow2p@1) @1)
618 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
619  (bit_and @0 { wide_int_to_tree
620		(type, wi::mask (TYPE_PRECISION (type)
621				 - wi::exact_log2 (wi::to_wide (@1)),
622				 false, TYPE_PRECISION (type))); })))
623
624/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1.  */
625(simplify
626 (mult (trunc_div @0 integer_pow2p@1) @1)
627 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
628  (bit_and @0 (negate @1))))
629
630/* Simplify (t * 2) / 2) -> t.  */
631(for div (trunc_div ceil_div floor_div round_div exact_div)
632 (simplify
633  (div (mult:c @0 @1) @1)
634  (if (ANY_INTEGRAL_TYPE_P (type)
635       && TYPE_OVERFLOW_UNDEFINED (type))
636   @0)))
637
638(for op (negate abs)
639 /* Simplify cos(-x) and cos(|x|) -> cos(x).  Similarly for cosh.  */
640 (for coss (COS COSH)
641  (simplify
642   (coss (op @0))
643    (coss @0)))
644 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer.  */
645 (for pows (POW)
646  (simplify
647   (pows (op @0) REAL_CST@1)
648   (with { HOST_WIDE_INT n; }
649    (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
650     (pows @0 @1)))))
651 /* Likewise for powi.  */
652 (for pows (POWI)
653  (simplify
654   (pows (op @0) INTEGER_CST@1)
655   (if ((wi::to_wide (@1) & 1) == 0)
656    (pows @0 @1))))
657 /* Strip negate and abs from both operands of hypot.  */
658 (for hypots (HYPOT)
659  (simplify
660   (hypots (op @0) @1)
661   (hypots @0 @1))
662  (simplify
663   (hypots @0 (op @1))
664   (hypots @0 @1)))
665 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y).  */
666 (for copysigns (COPYSIGN_ALL)
667  (simplify
668   (copysigns (op @0) @1)
669   (copysigns @0 @1))))
670
671/* abs(x)*abs(x) -> x*x.  Should be valid for all types.  */
672(simplify
673 (mult (abs@1 @0) @1)
674 (mult @0 @0))
675
676/* Convert absu(x)*absu(x) -> x*x.  */
677(simplify
678 (mult (absu@1 @0) @1)
679 (mult (convert@2 @0) @2))
680
681/* cos(copysign(x, y)) -> cos(x).  Similarly for cosh.  */
682(for coss (COS COSH)
683     copysigns (COPYSIGN)
684 (simplify
685  (coss (copysigns @0 @1))
686   (coss @0)))
687
688/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer.  */
689(for pows (POW)
690     copysigns (COPYSIGN)
691 (simplify
692  (pows (copysigns @0 @2) REAL_CST@1)
693  (with { HOST_WIDE_INT n; }
694   (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
695    (pows @0 @1)))))
696/* Likewise for powi.  */
697(for pows (POWI)
698     copysigns (COPYSIGN)
699 (simplify
700  (pows (copysigns @0 @2) INTEGER_CST@1)
701  (if ((wi::to_wide (@1) & 1) == 0)
702   (pows @0 @1))))
703
704(for hypots (HYPOT)
705     copysigns (COPYSIGN)
706 /* hypot(copysign(x, y), z) -> hypot(x, z).  */
707 (simplify
708  (hypots (copysigns @0 @1) @2)
709  (hypots @0 @2))
710 /* hypot(x, copysign(y, z)) -> hypot(x, y).  */
711 (simplify
712  (hypots @0 (copysigns @1 @2))
713  (hypots @0 @1)))
714
715/* copysign(x, CST) -> [-]abs (x).  */
716(for copysigns (COPYSIGN_ALL)
717 (simplify
718  (copysigns @0 REAL_CST@1)
719  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
720   (negate (abs @0))
721   (abs @0))))
722
723/* copysign(copysign(x, y), z) -> copysign(x, z).  */
724(for copysigns (COPYSIGN_ALL)
725 (simplify
726  (copysigns (copysigns @0 @1) @2)
727  (copysigns @0 @2)))
728
729/* copysign(x,y)*copysign(x,y) -> x*x.  */
730(for copysigns (COPYSIGN_ALL)
731 (simplify
732  (mult (copysigns@2 @0 @1) @2)
733  (mult @0 @0)))
734
735/* ccos(-x) -> ccos(x).  Similarly for ccosh.  */
736(for ccoss (CCOS CCOSH)
737 (simplify
738  (ccoss (negate @0))
739   (ccoss @0)))
740
741/* cabs(-x) and cos(conj(x)) -> cabs(x).  */
742(for ops (conj negate)
743 (for cabss (CABS)
744  (simplify
745   (cabss (ops @0))
746   (cabss @0))))
747
748/* Fold (a * (1 << b)) into (a << b)  */
749(simplify
750 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
751  (if (! FLOAT_TYPE_P (type)
752       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
753   (lshift @0 @2)))
754
755/* Fold (1 << (C - x)) where C = precision(type) - 1
756   into ((1 << C) >> x). */
757(simplify
758 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
759  (if (INTEGRAL_TYPE_P (type)
760       && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
761       && single_use (@1))
762   (if (TYPE_UNSIGNED (type))
763     (rshift (lshift @0 @2) @3)
764   (with
765    { tree utype = unsigned_type_for (type); }
766    (convert (rshift (lshift (convert:utype @0) @2) @3))))))
767
768/* Fold (C1/X)*C2 into (C1*C2)/X.  */
769(simplify
770 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
771  (if (flag_associative_math
772       && single_use (@3))
773   (with
774    { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
775    (if (tem)
776     (rdiv { tem; } @1)))))
777
778/* Simplify ~X & X as zero.  */
779(simplify
780 (bit_and:c (convert? @0) (convert? (bit_not @0)))
781  { build_zero_cst (type); })
782
783/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b);  */
784(simplify
785  (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
786  (if (TYPE_UNSIGNED (type))
787    (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
788
789(for bitop (bit_and bit_ior)
790     cmp (eq ne)
791 /* PR35691: Transform
792    (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
793    (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0.  */
794 (simplify
795  (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
796   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
798	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
799    (cmp (bit_ior @0 (convert @1)) @2)))
800 /* Transform:
801    (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
802    (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1.  */
803 (simplify
804  (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
805   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
807	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808    (cmp (bit_and @0 (convert @1)) @2))))
809
810/* Fold (A & ~B) - (A & B) into (A ^ B) - B.  */
811(simplify
812 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
813  (minus (bit_xor @0 @1) @1))
814(simplify
815 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
816 (if (~wi::to_wide (@2) == wi::to_wide (@1))
817  (minus (bit_xor @0 @1) @1)))
818
819/* Fold (A & B) - (A & ~B) into B - (A ^ B).  */
820(simplify
821 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
822  (minus @1 (bit_xor @0 @1)))
823
824/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y.  */
825(for op (bit_ior bit_xor plus)
826 (simplify
827  (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
828   (bit_xor @0 @1))
829 (simplify
830  (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
831  (if (~wi::to_wide (@2) == wi::to_wide (@1))
832   (bit_xor @0 @1))))
833
834/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
835(simplify
836  (bit_ior:c (bit_xor:c @0 @1) @0)
837  (bit_ior @0 @1))
838
839/* (a & ~b) | (a ^ b)  -->  a ^ b  */
840(simplify
841 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
842 @2)
843
844/* (a & ~b) ^ ~a  -->  ~(a & b)  */
845(simplify
846 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
847 (bit_not (bit_and @0 @1)))
848
849/* (~a & b) ^ a  -->   (a | b)   */
850(simplify
851 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
852 (bit_ior @0 @1))
853
854/* (a | b) & ~(a ^ b)  -->  a & b  */
855(simplify
856 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
857 (bit_and @0 @1))
858
859/* a | ~(a ^ b)  -->  a | ~b  */
860(simplify
861 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
862 (bit_ior @0 (bit_not @1)))
863
864/* (a | b) | (a &^ b)  -->  a | b  */
865(for op (bit_and bit_xor)
866 (simplify
867  (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
868  @2))
869
870/* (a & b) | ~(a ^ b)  -->  ~(a ^ b)  */
871(simplify
872 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
873 @2)
874
875/* ~(~a & b)  -->  a | ~b  */
876(simplify
877 (bit_not (bit_and:cs (bit_not @0) @1))
878 (bit_ior @0 (bit_not @1)))
879
880/* ~(~a | b) --> a & ~b */
881(simplify
882 (bit_not (bit_ior:cs (bit_not @0) @1))
883 (bit_and @0 (bit_not @1)))
884
885/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0.  */
886#if GIMPLE
887(simplify
888 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
889 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
890      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
891  (bit_xor @0 @1)))
892#endif
893
894/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
895   ((A & N) + B) & M -> (A + B) & M
896   Similarly if (N & M) == 0,
897   ((A | N) + B) & M -> (A + B) & M
898   and for - instead of + (or unary - instead of +)
899   and/or ^ instead of |.
900   If B is constant and (B & M) == 0, fold into A & M.  */
901(for op (plus minus)
902 (for bitop (bit_and bit_ior bit_xor)
903  (simplify
904   (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
905    (with
906     { tree pmop[2];
907       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
908				       @3, @4, @1, ERROR_MARK, NULL_TREE,
909				       NULL_TREE, pmop); }
910     (if (utype)
911      (convert (bit_and (op (convert:utype { pmop[0]; })
912			    (convert:utype { pmop[1]; }))
913			(convert:utype @2))))))
914  (simplify
915   (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
916    (with
917     { tree pmop[2];
918       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
919				       NULL_TREE, NULL_TREE, @1, bitop, @3,
920				       @4, pmop); }
921     (if (utype)
922      (convert (bit_and (op (convert:utype { pmop[0]; })
923			    (convert:utype { pmop[1]; }))
924			(convert:utype @2)))))))
925 (simplify
926  (bit_and (op:s @0 @1) INTEGER_CST@2)
927   (with
928    { tree pmop[2];
929      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
930				      NULL_TREE, NULL_TREE, @1, ERROR_MARK,
931				      NULL_TREE, NULL_TREE, pmop); }
932    (if (utype)
933     (convert (bit_and (op (convert:utype { pmop[0]; })
934			   (convert:utype { pmop[1]; }))
935		       (convert:utype @2)))))))
936(for bitop (bit_and bit_ior bit_xor)
937 (simplify
938  (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
939   (with
940    { tree pmop[2];
941      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
942				      bitop, @2, @3, NULL_TREE, ERROR_MARK,
943				      NULL_TREE, NULL_TREE, pmop); }
944    (if (utype)
945     (convert (bit_and (negate (convert:utype { pmop[0]; }))
946		       (convert:utype @1)))))))
947
948/* X % Y is smaller than Y.  */
949(for cmp (lt ge)
950 (simplify
951  (cmp (trunc_mod @0 @1) @1)
952  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
953   { constant_boolean_node (cmp == LT_EXPR, type); })))
954(for cmp (gt le)
955 (simplify
956  (cmp @1 (trunc_mod @0 @1))
957  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
958   { constant_boolean_node (cmp == GT_EXPR, type); })))
959
960/* x | ~0 -> ~0  */
961(simplify
962 (bit_ior @0 integer_all_onesp@1)
963 @1)
964
965/* x | 0 -> x  */
966(simplify
967 (bit_ior @0 integer_zerop)
968 @0)
969
970/* x & 0 -> 0  */
971(simplify
972 (bit_and @0 integer_zerop@1)
973 @1)
974
975/* ~x | x -> -1 */
976/* ~x ^ x -> -1 */
977/* ~x + x -> -1 */
978(for op (bit_ior bit_xor plus)
979 (simplify
980  (op:c (convert? @0) (convert? (bit_not @0)))
981  (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
982
983/* x ^ x -> 0 */
984(simplify
985  (bit_xor @0 @0)
986  { build_zero_cst (type); })
987
988/* Canonicalize X ^ ~0 to ~X.  */
989(simplify
990  (bit_xor @0 integer_all_onesp@1)
991  (bit_not @0))
992
993/* x & ~0 -> x  */
994(simplify
995 (bit_and @0 integer_all_onesp)
996  (non_lvalue @0))
997
998/* x & x -> x,  x | x -> x  */
999(for bitop (bit_and bit_ior)
1000 (simplify
1001  (bitop @0 @0)
1002  (non_lvalue @0)))
1003
1004/* x & C -> x if we know that x & ~C == 0.  */
1005#if GIMPLE
1006(simplify
1007 (bit_and SSA_NAME@0 INTEGER_CST@1)
1008 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1009      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1010  @0))
1011#endif
1012
1013/* x + (x & 1) -> (x + 1) & ~1 */
1014(simplify
1015 (plus:c @0 (bit_and:s @0 integer_onep@1))
1016 (bit_and (plus @0 @1) (bit_not @1)))
1017
1018/* x & ~(x & y) -> x & ~y */
1019/* x | ~(x | y) -> x | ~y  */
1020(for bitop (bit_and bit_ior)
1021 (simplify
1022  (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1023  (bitop @0 (bit_not @1))))
1024
1025/* (~x & y) | ~(x | y) -> ~x */
1026(simplify
1027 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1028 @2)
1029
1030/* (x | y) ^ (x | ~y) -> ~x */
1031(simplify
1032 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1033 (bit_not @0))
1034
1035/* (x & y) | ~(x | y) -> ~(x ^ y) */
1036(simplify
1037 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1038 (bit_not (bit_xor @0 @1)))
1039
1040/* (~x | y) ^ (x ^ y) -> x | ~y */
1041(simplify
1042 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1043 (bit_ior @0 (bit_not @1)))
1044
1045/* (x ^ y) | ~(x | y) -> ~(x & y) */
1046(simplify
1047 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1048 (bit_not (bit_and @0 @1)))
1049
1050/* (x | y) & ~x -> y & ~x */
1051/* (x & y) | ~x -> y | ~x */
1052(for bitop (bit_and bit_ior)
1053     rbitop (bit_ior bit_and)
1054 (simplify
1055  (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1056  (bitop @1 @2)))
1057
1058/* (x & y) ^ (x | y) -> x ^ y */
1059(simplify
1060 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1061 (bit_xor @0 @1))
1062
1063/* (x ^ y) ^ (x | y) -> x & y */
1064(simplify
1065 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1066 (bit_and @0 @1))
1067
1068/* (x & y) + (x ^ y) -> x | y */
1069/* (x & y) | (x ^ y) -> x | y */
1070/* (x & y) ^ (x ^ y) -> x | y */
1071(for op (plus bit_ior bit_xor)
1072 (simplify
1073  (op:c (bit_and @0 @1) (bit_xor @0 @1))
1074  (bit_ior @0 @1)))
1075
1076/* (x & y) + (x | y) -> x + y */
1077(simplify
1078 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1079 (plus @0 @1))
1080
1081/* (x + y) - (x | y) -> x & y */
1082(simplify
1083 (minus (plus @0 @1) (bit_ior @0 @1))
1084 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1085      && !TYPE_SATURATING (type))
1086  (bit_and @0 @1)))
1087
1088/* (x + y) - (x & y) -> x | y */
1089(simplify
1090 (minus (plus @0 @1) (bit_and @0 @1))
1091 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1092      && !TYPE_SATURATING (type))
1093  (bit_ior @0 @1)))
1094
1095/* (x | y) - (x ^ y) -> x & y */
1096(simplify
1097 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1098 (bit_and @0 @1))
1099
1100/* (x | y) - (x & y) -> x ^ y */
1101(simplify
1102 (minus (bit_ior @0 @1) (bit_and @0 @1))
1103 (bit_xor @0 @1))
1104
1105/* (x | y) & ~(x & y) -> x ^ y */
1106(simplify
1107 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1108 (bit_xor @0 @1))
1109
1110/* (x | y) & (~x ^ y) -> x & y */
1111(simplify
1112 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1113 (bit_and @0 @1))
1114
1115/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1116(simplify
1117 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1118 (bit_not (bit_xor @0 @1)))
1119
1120/* (~x | y) ^ (x | ~y) -> x ^ y */
1121(simplify
1122 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1123 (bit_xor @0 @1))
1124
1125/* ~x & ~y -> ~(x | y)
1126   ~x | ~y -> ~(x & y) */
1127(for op (bit_and bit_ior)
1128     rop (bit_ior bit_and)
1129 (simplify
1130  (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1131  (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1132       && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1133   (bit_not (rop (convert @0) (convert @1))))))
1134
1135/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1136   with a constant, and the two constants have no bits in common,
1137   we should treat this as a BIT_IOR_EXPR since this may produce more
1138   simplifications.  */
1139(for op (bit_xor plus)
1140 (simplify
1141  (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1142      (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1143  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1144       && tree_nop_conversion_p (type, TREE_TYPE (@2))
1145       && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1146   (bit_ior (convert @4) (convert @5)))))
1147
1148/* (X | Y) ^ X -> Y & ~ X*/
1149(simplify
1150 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1152  (convert (bit_and @1 (bit_not @0)))))
1153
1154/* Convert ~X ^ ~Y to X ^ Y.  */
1155(simplify
1156 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1157 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1158      && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1159  (bit_xor (convert @0) (convert @1))))
1160
1161/* Convert ~X ^ C to X ^ ~C.  */
1162(simplify
1163 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1165  (bit_xor (convert @0) (bit_not @1))))
1166
1167/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y.  */
1168(for opo (bit_and bit_xor)
1169     opi (bit_xor bit_and)
1170 (simplify
1171  (opo:c (opi:cs @0 @1) @1)
1172  (bit_and (bit_not @0) @1)))
1173
1174/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1175   operands are another bit-wise operation with a common input.  If so,
1176   distribute the bit operations to save an operation and possibly two if
1177   constants are involved.  For example, convert
1178     (A | B) & (A | C) into A | (B & C)
1179   Further simplification will occur if B and C are constants.  */
1180(for op (bit_and bit_ior bit_xor)
1181     rop (bit_ior bit_and bit_and)
1182 (simplify
1183  (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1184  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1185       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1186   (rop (convert @0) (op (convert @1) (convert @2))))))
1187
1188/* Some simple reassociation for bit operations, also handled in reassoc.  */
1189/* (X & Y) & Y -> X & Y
1190   (X | Y) | Y -> X | Y  */
1191(for op (bit_and bit_ior)
1192 (simplify
1193  (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1194  @2))
1195/* (X ^ Y) ^ Y -> X  */
1196(simplify
1197 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1198 (convert @0))
1199/* (X & Y) & (X & Z) -> (X & Y) & Z
1200   (X | Y) | (X | Z) -> (X | Y) | Z  */
1201(for op (bit_and bit_ior)
1202 (simplify
1203  (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1204  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1205       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1206   (if (single_use (@5) && single_use (@6))
1207    (op @3 (convert @2))
1208    (if (single_use (@3) && single_use (@4))
1209     (op (convert @1) @5))))))
1210/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z  */
1211(simplify
1212 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1214      && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1215  (bit_xor (convert @1) (convert @2))))
1216
1217/* Convert abs (abs (X)) into abs (X).
1218   also absu (absu (X)) into absu (X).  */
1219(simplify
1220 (abs (abs@1 @0))
1221 @1)
1222
1223(simplify
1224 (absu (convert@2 (absu@1 @0)))
1225 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1226  @1))
1227
1228/* Convert abs[u] (-X) -> abs[u] (X).  */
1229(simplify
1230 (abs (negate @0))
1231 (abs @0))
1232
1233(simplify
1234 (absu (negate @0))
1235 (absu @0))
1236
1237/* Convert abs[u] (X)  where X is nonnegative -> (X).  */
1238(simplify
1239 (abs tree_expr_nonnegative_p@0)
1240 @0)
1241
1242(simplify
1243 (absu tree_expr_nonnegative_p@0)
1244 (convert @0))
1245
1246/* A few cases of fold-const.c negate_expr_p predicate.  */
1247(match negate_expr_p
1248 INTEGER_CST
1249 (if ((INTEGRAL_TYPE_P (type)
1250       && TYPE_UNSIGNED (type))
1251      || (!TYPE_OVERFLOW_SANITIZED (type)
1252	  && may_negate_without_overflow_p (t)))))
1253(match negate_expr_p
1254 FIXED_CST)
1255(match negate_expr_p
1256 (negate @0)
1257 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1258(match negate_expr_p
1259 REAL_CST
1260 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1261/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1262   ways.  */
1263(match negate_expr_p
1264 VECTOR_CST
1265 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1266(match negate_expr_p
1267 (minus @0 @1)
1268 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1269      || (FLOAT_TYPE_P (type)
1270	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1271	  && !HONOR_SIGNED_ZEROS (type)))))
1272
1273/* (-A) * (-B) -> A * B  */
1274(simplify
1275 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1276  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1277       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1278   (mult (convert @0) (convert (negate @1)))))
1279
1280/* -(A + B) -> (-B) - A.  */
1281(simplify
1282 (negate (plus:c @0 negate_expr_p@1))
1283 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1284      && !HONOR_SIGNED_ZEROS (element_mode (type)))
1285  (minus (negate @1) @0)))
1286
1287/* -(A - B) -> B - A.  */
1288(simplify
1289 (negate (minus @0 @1))
1290 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1291      || (FLOAT_TYPE_P (type)
1292	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1293	  && !HONOR_SIGNED_ZEROS (type)))
1294  (minus @1 @0)))
1295(simplify
1296 (negate (pointer_diff @0 @1))
1297 (if (TYPE_OVERFLOW_UNDEFINED (type))
1298  (pointer_diff @1 @0)))
1299
1300/* A - B -> A + (-B) if B is easily negatable.  */
1301(simplify
1302 (minus @0 negate_expr_p@1)
1303 (if (!FIXED_POINT_TYPE_P (type))
1304 (plus @0 (negate @1))))
1305
1306/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1307   when profitable.
1308   For bitwise binary operations apply operand conversions to the
1309   binary operation result instead of to the operands.  This allows
1310   to combine successive conversions and bitwise binary operations.
1311   We combine the above two cases by using a conditional convert.  */
1312(for bitop (bit_and bit_ior bit_xor)
1313 (simplify
1314  (bitop (convert @0) (convert? @1))
1315  (if (((TREE_CODE (@1) == INTEGER_CST
1316	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1317	 && int_fits_type_p (@1, TREE_TYPE (@0)))
1318	|| types_match (@0, @1))
1319       /* ???  This transform conflicts with fold-const.c doing
1320	  Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1321	  constants (if x has signed type, the sign bit cannot be set
1322	  in c).  This folds extension into the BIT_AND_EXPR.
1323	  Restrict it to GIMPLE to avoid endless recursions.  */
1324       && (bitop != BIT_AND_EXPR || GIMPLE)
1325       && (/* That's a good idea if the conversion widens the operand, thus
1326	      after hoisting the conversion the operation will be narrower.  */
1327	   TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1328	   /* It's also a good idea if the conversion is to a non-integer
1329	      mode.  */
1330	   || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1331	   /* Or if the precision of TO is not the same as the precision
1332	      of its mode.  */
1333	   || !type_has_mode_precision_p (type)))
1334   (convert (bitop @0 (convert @1))))))
1335
1336(for bitop (bit_and bit_ior)
1337     rbitop (bit_ior bit_and)
1338  /* (x | y) & x -> x */
1339  /* (x & y) | x -> x */
1340 (simplify
1341  (bitop:c (rbitop:c @0 @1) @0)
1342  @0)
1343 /* (~x | y) & x -> x & y */
1344 /* (~x & y) | x -> x | y */
1345 (simplify
1346  (bitop:c (rbitop:c (bit_not @0) @1) @0)
1347  (bitop @0 @1)))
1348
1349/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1350(simplify
1351  (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1352  (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1353
1354/* Combine successive equal operations with constants.  */
1355(for bitop (bit_and bit_ior bit_xor)
1356 (simplify
1357  (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1358  (if (!CONSTANT_CLASS_P (@0))
1359   /* This is the canonical form regardless of whether (bitop @1 @2) can be
1360      folded to a constant.  */
1361   (bitop @0 (bitop @1 @2))
1362   /* In this case we have three constants and (bitop @0 @1) doesn't fold
1363      to a constant.  This can happen if @0 or @1 is a POLY_INT_CST and if
1364      the values involved are such that the operation can't be decided at
1365      compile time.  Try folding one of @0 or @1 with @2 to see whether
1366      that combination can be decided at compile time.
1367
1368      Keep the existing form if both folds fail, to avoid endless
1369      oscillation.  */
1370   (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1371    (if (cst1)
1372     (bitop @1 { cst1; })
1373     (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1374      (if (cst2)
1375       (bitop @0 { cst2; }))))))))
1376
1377/* Try simple folding for X op !X, and X op X with the help
1378   of the truth_valued_p and logical_inverted_value predicates.  */
1379(match truth_valued_p
1380 @0
1381 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1382(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1383 (match truth_valued_p
1384  (op @0 @1)))
1385(match truth_valued_p
1386  (truth_not @0))
1387
1388(match (logical_inverted_value @0)
1389 (truth_not @0))
1390(match (logical_inverted_value @0)
1391 (bit_not truth_valued_p@0))
1392(match (logical_inverted_value @0)
1393 (eq @0 integer_zerop))
1394(match (logical_inverted_value @0)
1395 (ne truth_valued_p@0 integer_truep))
1396(match (logical_inverted_value @0)
1397 (bit_xor truth_valued_p@0 integer_truep))
1398
1399/* X & !X -> 0.  */
1400(simplify
1401 (bit_and:c @0 (logical_inverted_value @0))
1402 { build_zero_cst (type); })
1403/* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
1404(for op (bit_ior bit_xor)
1405 (simplify
1406  (op:c truth_valued_p@0 (logical_inverted_value @0))
1407  { constant_boolean_node (true, type); }))
1408/* X ==/!= !X is false/true.  */
1409(for op (eq ne)
1410 (simplify
1411  (op:c truth_valued_p@0 (logical_inverted_value @0))
1412  { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1413
1414/* ~~x -> x */
1415(simplify
1416  (bit_not (bit_not @0))
1417  @0)
1418
1419/* Convert ~ (-A) to A - 1.  */
1420(simplify
1421 (bit_not (convert? (negate @0)))
1422 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1423      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1424  (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1425
1426/* Convert - (~A) to A + 1.  */
1427(simplify
1428 (negate (nop_convert? (bit_not @0)))
1429 (plus (view_convert @0) { build_each_one_cst (type); }))
1430
1431/* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
1432(simplify
1433 (bit_not (convert? (minus @0 integer_each_onep)))
1434 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1435      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1436  (convert (negate @0))))
1437(simplify
1438 (bit_not (convert? (plus @0 integer_all_onesp)))
1439 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1440      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1441  (convert (negate @0))))
1442
1443/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
1444(simplify
1445 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1446 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1447  (convert (bit_xor @0 (bit_not @1)))))
1448(simplify
1449 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1450 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1451  (convert (bit_xor @0 @1))))
1452
1453/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical.  */
1454(simplify
1455 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1456 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1457  (bit_not (bit_xor (view_convert @0) @1))))
1458
1459/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1460(simplify
1461 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1462 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1463
1464/* Fold A - (A & B) into ~B & A.  */
1465(simplify
1466 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1467 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1468      && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1469  (convert (bit_and (bit_not @1) @0))))
1470
1471/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0  */
1472(for cmp (gt lt ge le)
1473(simplify
1474 (mult (convert (cmp @0 @1)) @2)
1475  (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1476   (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1477
1478/* For integral types with undefined overflow and C != 0 fold
1479   x * C EQ/NE y * C into x EQ/NE y.  */
1480(for cmp (eq ne)
1481 (simplify
1482  (cmp (mult:c @0 @1) (mult:c @2 @1))
1483  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1484       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1485       && tree_expr_nonzero_p (@1))
1486   (cmp @0 @2))))
1487
1488/* For integral types with wrapping overflow and C odd fold
1489   x * C EQ/NE y * C into x EQ/NE y.  */
1490(for cmp (eq ne)
1491 (simplify
1492  (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1493  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1494       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1495       && (TREE_INT_CST_LOW (@1) & 1) != 0)
1496   (cmp @0 @2))))
1497
1498/* For integral types with undefined overflow and C != 0 fold
1499   x * C RELOP y * C into:
1500
1501   x RELOP y for nonnegative C
1502   y RELOP x for negative C  */
1503(for cmp (lt gt le ge)
1504 (simplify
1505  (cmp (mult:c @0 @1) (mult:c @2 @1))
1506  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1507       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1508   (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1509    (cmp @0 @2)
1510   (if (TREE_CODE (@1) == INTEGER_CST
1511	&& wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1512    (cmp @2 @0))))))
1513
1514/* (X - 1U) <= INT_MAX-1U into (int) X > 0.  */
1515(for cmp (le gt)
1516     icmp (gt le)
1517 (simplify
1518  (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1519   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1520	&& TYPE_UNSIGNED (TREE_TYPE (@0))
1521	&& TYPE_PRECISION (TREE_TYPE (@0)) > 1
1522	&& (wi::to_wide (@2)
1523	    == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1524    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1525     (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1526
1527/* X / 4 < Y / 4 iff X < Y when the division is known to be exact.  */
1528(for cmp (simple_comparison)
1529 (simplify
1530  (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1531  (if (element_precision (@3) >= element_precision (@0)
1532       && types_match (@0, @1))
1533   (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1534    (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1535     (cmp @1 @0)
1536     (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1537      (with
1538       {
1539	tree utype = unsigned_type_for (TREE_TYPE (@0));
1540       }
1541       (cmp (convert:utype @1) (convert:utype @0)))))
1542    (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1543     (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1544      (cmp @0 @1)
1545      (with
1546       {
1547	tree utype = unsigned_type_for (TREE_TYPE (@0));
1548       }
1549       (cmp (convert:utype @0) (convert:utype @1)))))))))
1550
1551/* X / C1 op C2 into a simple range test.  */
1552(for cmp (simple_comparison)
1553 (simplify
1554  (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1555  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1556       && integer_nonzerop (@1)
1557       && !TREE_OVERFLOW (@1)
1558       && !TREE_OVERFLOW (@2))
1559   (with { tree lo, hi; bool neg_overflow;
1560	   enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1561						   &neg_overflow); }
1562    (switch
1563     (if (code == LT_EXPR || code == GE_EXPR)
1564       (if (TREE_OVERFLOW (lo))
1565	{ build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1566	(if (code == LT_EXPR)
1567	 (lt @0 { lo; })
1568	 (ge @0 { lo; }))))
1569     (if (code == LE_EXPR || code == GT_EXPR)
1570       (if (TREE_OVERFLOW (hi))
1571	{ build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1572	(if (code == LE_EXPR)
1573	 (le @0 { hi; })
1574	 (gt @0 { hi; }))))
1575     (if (!lo && !hi)
1576      { build_int_cst (type, code == NE_EXPR); })
1577     (if (code == EQ_EXPR && !hi)
1578      (ge @0 { lo; }))
1579     (if (code == EQ_EXPR && !lo)
1580      (le @0 { hi; }))
1581     (if (code == NE_EXPR && !hi)
1582      (lt @0 { lo; }))
1583     (if (code == NE_EXPR && !lo)
1584      (gt @0 { hi; }))
1585     (if (GENERIC)
1586      { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1587			   lo, hi); })
1588     (with
1589      {
1590	tree etype = range_check_type (TREE_TYPE (@0));
1591	if (etype)
1592	  {
1593	    hi = fold_convert (etype, hi);
1594	    lo = fold_convert (etype, lo);
1595	    hi = const_binop (MINUS_EXPR, etype, hi, lo);
1596	  }
1597      }
1598      (if (etype && hi && !TREE_OVERFLOW (hi))
1599       (if (code == EQ_EXPR)
1600	(le (minus (convert:etype @0) { lo; }) { hi; })
1601	(gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1602
1603/* X + Z < Y + Z is the same as X < Y when there is no overflow.  */
1604(for op (lt le ge gt)
1605 (simplify
1606  (op (plus:c @0 @2) (plus:c @1 @2))
1607  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1608       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1609   (op @0 @1))))
1610/* For equality and subtraction, this is also true with wrapping overflow.  */
1611(for op (eq ne minus)
1612 (simplify
1613  (op (plus:c @0 @2) (plus:c @1 @2))
1614  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1615       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1616	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1617   (op @0 @1))))
1618
1619/* X - Z < Y - Z is the same as X < Y when there is no overflow.  */
1620(for op (lt le ge gt)
1621 (simplify
1622  (op (minus @0 @2) (minus @1 @2))
1623  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1624       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1625   (op @0 @1))))
1626/* For equality and subtraction, this is also true with wrapping overflow.  */
1627(for op (eq ne minus)
1628 (simplify
1629  (op (minus @0 @2) (minus @1 @2))
1630  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1631       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1632	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1633   (op @0 @1))))
1634/* And for pointers...  */
1635(for op (simple_comparison)
1636 (simplify
1637  (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1638  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1639   (op @0 @1))))
1640(simplify
1641 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1642 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1643      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1644  (pointer_diff @0 @1)))
1645
1646/* Z - X < Z - Y is the same as Y < X when there is no overflow.  */
1647(for op (lt le ge gt)
1648 (simplify
1649  (op (minus @2 @0) (minus @2 @1))
1650  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1651       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1652   (op @1 @0))))
1653/* For equality and subtraction, this is also true with wrapping overflow.  */
1654(for op (eq ne minus)
1655 (simplify
1656  (op (minus @2 @0) (minus @2 @1))
1657  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1658       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1659	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1660   (op @1 @0))))
1661/* And for pointers...  */
1662(for op (simple_comparison)
1663 (simplify
1664  (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1665  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1666   (op @1 @0))))
1667(simplify
1668 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1669 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1670      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1671  (pointer_diff @1 @0)))
1672
1673/* X + Y < Y is the same as X < 0 when there is no overflow.  */
1674(for op (lt le gt ge)
1675 (simplify
1676  (op:c (plus:c@2 @0 @1) @1)
1677  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1678       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1679       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1680       && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1681   (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1682/* For equality, this is also true with wrapping overflow.  */
1683(for op (eq ne)
1684 (simplify
1685  (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1686  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1687       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1688	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1689       && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1690       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1691       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1692   (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1693 (simplify
1694  (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1695  (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1696       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1697       && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1698   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1699
1700/* X - Y < X is the same as Y > 0 when there is no overflow.
1701   For equality, this is also true with wrapping overflow.  */
1702(for op (simple_comparison)
1703 (simplify
1704  (op:c @0 (minus@2 @0 @1))
1705  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1706       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1707	   || ((op == EQ_EXPR || op == NE_EXPR)
1708	       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1709       && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1710   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1711
1712/* Transform:
1713   (X / Y) == 0 -> X < Y if X, Y are unsigned.
1714   (X / Y) != 0 -> X >= Y, if X, Y are unsigned.  */
1715(for cmp (eq ne)
1716     ocmp (lt ge)
1717 (simplify
1718  (cmp (trunc_div @0 @1) integer_zerop)
1719  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1720       /* Complex ==/!= is allowed, but not </>=.  */
1721       && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1722       && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1723   (ocmp @0 @1))))
1724
1725/* X == C - X can never be true if C is odd.  */
1726(for cmp (eq ne)
1727 (simplify
1728  (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1729  (if (TREE_INT_CST_LOW (@1) & 1)
1730   { constant_boolean_node (cmp == NE_EXPR, type); })))
1731
1732/* Arguments on which one can call get_nonzero_bits to get the bits
1733   possibly set.  */
1734(match with_possible_nonzero_bits
1735 INTEGER_CST@0)
1736(match with_possible_nonzero_bits
1737 SSA_NAME@0
1738 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1739/* Slightly extended version, do not make it recursive to keep it cheap.  */
1740(match (with_possible_nonzero_bits2 @0)
1741 with_possible_nonzero_bits@0)
1742(match (with_possible_nonzero_bits2 @0)
1743 (bit_and:c with_possible_nonzero_bits@0 @2))
1744
1745/* Same for bits that are known to be set, but we do not have
1746   an equivalent to get_nonzero_bits yet.  */
1747(match (with_certain_nonzero_bits2 @0)
1748 INTEGER_CST@0)
1749(match (with_certain_nonzero_bits2 @0)
1750 (bit_ior @1 INTEGER_CST@0))
1751
1752/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0.  */
1753(for cmp (eq ne)
1754 (simplify
1755  (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1756  (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1757   { constant_boolean_node (cmp == NE_EXPR, type); })))
1758
1759/* ((X inner_op C0) outer_op C1)
1760   With X being a tree where value_range has reasoned certain bits to always be
1761   zero throughout its computed value range,
1762   inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1763   where zero_mask has 1's for all bits that are sure to be 0 in
1764   and 0's otherwise.
1765   if (inner_op == '^') C0 &= ~C1;
1766   if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1767   if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1768*/
1769(for inner_op (bit_ior bit_xor)
1770     outer_op (bit_xor bit_ior)
1771(simplify
1772 (outer_op
1773  (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1774 (with
1775  {
1776    bool fail = false;
1777    wide_int zero_mask_not;
1778    wide_int C0;
1779    wide_int cst_emit;
1780
1781    if (TREE_CODE (@2) == SSA_NAME)
1782      zero_mask_not = get_nonzero_bits (@2);
1783    else
1784      fail = true;
1785
1786    if (inner_op == BIT_XOR_EXPR)
1787      {
1788	C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1789	cst_emit = C0 | wi::to_wide (@1);
1790      }
1791    else
1792      {
1793	C0 = wi::to_wide (@0);
1794	cst_emit = C0 ^ wi::to_wide (@1);
1795      }
1796  }
1797  (if (!fail && (C0 & zero_mask_not) == 0)
1798   (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1799   (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1800    (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1801
1802/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
1803(simplify
1804  (pointer_plus (pointer_plus:s @0 @1) @3)
1805  (pointer_plus @0 (plus @1 @3)))
1806
1807/* Pattern match
1808     tem1 = (long) ptr1;
1809     tem2 = (long) ptr2;
1810     tem3 = tem2 - tem1;
1811     tem4 = (unsigned long) tem3;
1812     tem5 = ptr1 + tem4;
1813   and produce
1814     tem5 = ptr2;  */
1815(simplify
1816  (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1817  /* Conditionally look through a sign-changing conversion.  */
1818  (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1819       && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1820	    || (GENERIC && type == TREE_TYPE (@1))))
1821   @1))
1822(simplify
1823  (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1824  (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1825   (convert @1)))
1826
1827/* Pattern match
1828     tem = (sizetype) ptr;
1829     tem = tem & algn;
1830     tem = -tem;
1831     ... = ptr p+ tem;
1832   and produce the simpler and easier to analyze with respect to alignment
1833     ... = ptr & ~algn;  */
1834(simplify
1835  (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1836  (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1837   (bit_and @0 { algn; })))
1838
1839/* Try folding difference of addresses.  */
1840(simplify
1841 (minus (convert ADDR_EXPR@0) (convert @1))
1842 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1843  (with { poly_int64 diff; }
1844   (if (ptr_difference_const (@0, @1, &diff))
1845    { build_int_cst_type (type, diff); }))))
1846(simplify
1847 (minus (convert @0) (convert ADDR_EXPR@1))
1848 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1849  (with { poly_int64 diff; }
1850   (if (ptr_difference_const (@0, @1, &diff))
1851    { build_int_cst_type (type, diff); }))))
1852(simplify
1853 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1854 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1855      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1856  (with { poly_int64 diff; }
1857   (if (ptr_difference_const (@0, @1, &diff))
1858    { build_int_cst_type (type, diff); }))))
1859(simplify
1860 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1861 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1862      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1863  (with { poly_int64 diff; }
1864   (if (ptr_difference_const (@0, @1, &diff))
1865    { build_int_cst_type (type, diff); }))))
1866
1867/* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst].  */
1868(simplify
1869 (convert (pointer_diff @0 INTEGER_CST@1))
1870 (if (POINTER_TYPE_P (type))
1871  { build_fold_addr_expr_with_type
1872      (build2 (MEM_REF, char_type_node, @0,
1873	       wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
1874	       type); }))
1875
1876/* If arg0 is derived from the address of an object or function, we may
1877   be able to fold this expression using the object or function's
1878   alignment.  */
1879(simplify
1880 (bit_and (convert? @0) INTEGER_CST@1)
1881 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1882      && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1883  (with
1884   {
1885     unsigned int align;
1886     unsigned HOST_WIDE_INT bitpos;
1887     get_pointer_alignment_1 (@0, &align, &bitpos);
1888   }
1889   (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1890    { wide_int_to_tree (type, (wi::to_wide (@1)
1891			       & (bitpos / BITS_PER_UNIT))); }))))
1892
1893(match min_value
1894 INTEGER_CST
1895 (if (INTEGRAL_TYPE_P (type)
1896      && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1897
1898(match max_value
1899 INTEGER_CST
1900 (if (INTEGRAL_TYPE_P (type)
1901      && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1902
1903/* x >  y  &&  x != XXX_MIN  -->  x > y
1904   x >  y  &&  x == XXX_MIN  -->  false . */
1905(for eqne (eq ne)
1906 (simplify
1907  (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1908   (switch
1909    (if (eqne == EQ_EXPR)
1910     { constant_boolean_node (false, type); })
1911    (if (eqne == NE_EXPR)
1912     @2)
1913    )))
1914
1915/* x <  y  &&  x != XXX_MAX  -->  x < y
1916   x <  y  &&  x == XXX_MAX  -->  false.  */
1917(for eqne (eq ne)
1918 (simplify
1919  (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1920   (switch
1921    (if (eqne == EQ_EXPR)
1922     { constant_boolean_node (false, type); })
1923    (if (eqne == NE_EXPR)
1924     @2)
1925    )))
1926
1927/* x <=  y  &&  x == XXX_MIN  -->  x == XXX_MIN.  */
1928(simplify
1929 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1930  @2)
1931
1932/* x >=  y  &&  x == XXX_MAX  -->  x == XXX_MAX.  */
1933(simplify
1934 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1935  @2)
1936
1937/* x >  y  ||  x != XXX_MIN   -->  x != XXX_MIN.  */
1938(simplify
1939 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1940  @2)
1941
1942/* x <=  y  ||  x != XXX_MIN   -->  true.  */
1943(simplify
1944 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1945  { constant_boolean_node (true, type); })
1946
1947/* x <=  y  ||  x == XXX_MIN   -->  x <= y.  */
1948(simplify
1949 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1950  @2)
1951
1952/* x <  y  ||  x != XXX_MAX   -->  x != XXX_MAX.  */
1953(simplify
1954 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1955  @2)
1956
1957/* x >=  y  ||  x != XXX_MAX   -->  true
1958   x >=  y  ||  x == XXX_MAX   -->  x >= y.  */
1959(for eqne (eq ne)
1960 (simplify
1961  (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1962   (switch
1963    (if (eqne == EQ_EXPR)
1964     @2)
1965    (if (eqne == NE_EXPR)
1966     { constant_boolean_node (true, type); }))))
1967
1968/* Convert (X == CST1) && (X OP2 CST2) to a known value
1969   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
1970
1971(for code1 (eq ne)
1972 (for code2 (eq ne lt gt le ge)
1973  (simplify
1974   (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1975    (with
1976     {
1977      int cmp = tree_int_cst_compare (@1, @2);
1978      bool val;
1979      switch (code2)
1980	 {
1981	case EQ_EXPR: val = (cmp == 0); break;
1982	case NE_EXPR: val = (cmp != 0); break;
1983	case LT_EXPR: val = (cmp < 0); break;
1984	case GT_EXPR: val = (cmp > 0); break;
1985	case LE_EXPR: val = (cmp <= 0); break;
1986	case GE_EXPR: val = (cmp >= 0); break;
1987	default: gcc_unreachable ();
1988	}
1989     }
1990     (switch
1991      (if (code1 == EQ_EXPR && val) @3)
1992      (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1993      (if (code1 == NE_EXPR && !val) @4))))))
1994
1995/* Convert (X OP1 CST1) && (X OP2 CST2).  */
1996
1997(for code1 (lt le gt ge)
1998 (for code2 (lt le gt ge)
1999  (simplify
2000  (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2001   (with
2002    {
2003     int cmp = tree_int_cst_compare (@1, @2);
2004    }
2005    (switch
2006     /* Choose the more restrictive of two < or <= comparisons.  */
2007     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2008	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2009      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2010       @3
2011       @4))
2012     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2013     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2014	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2015      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2016       @3
2017       @4))
2018     /* Check for singleton ranges.  */
2019     (if (cmp == 0
2020	  && ((code1 == LE_EXPR && code2 == GE_EXPR)
2021	    || (code1 == GE_EXPR && code2 == LE_EXPR)))
2022      (eq @0 @1))
2023     /* Check for disjoint ranges.  */
2024     (if (cmp <= 0
2025	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2026	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2027      { constant_boolean_node (false, type); })
2028     (if (cmp >= 0
2029	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2030	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2031      { constant_boolean_node (false, type); })
2032     )))))
2033
2034/* Convert (X == CST1) || (X OP2 CST2) to a known value
2035   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
2036
2037(for code1 (eq ne)
2038 (for code2 (eq ne lt gt le ge)
2039  (simplify
2040   (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2041    (with
2042     {
2043      int cmp = tree_int_cst_compare (@1, @2);
2044      bool val;
2045      switch (code2)
2046	{
2047	case EQ_EXPR: val = (cmp == 0); break;
2048	case NE_EXPR: val = (cmp != 0); break;
2049	case LT_EXPR: val = (cmp < 0); break;
2050	case GT_EXPR: val = (cmp > 0); break;
2051	case LE_EXPR: val = (cmp <= 0); break;
2052	case GE_EXPR: val = (cmp >= 0); break;
2053	default: gcc_unreachable ();
2054	}
2055     }
2056     (switch
2057      (if (code1 == EQ_EXPR && val) @4)
2058      (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2059      (if (code1 == NE_EXPR && !val) @3))))))
2060
2061/* Convert (X OP1 CST1) || (X OP2 CST2).  */
2062
2063(for code1 (lt le gt ge)
2064 (for code2 (lt le gt ge)
2065  (simplify
2066  (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2067   (with
2068    {
2069     int cmp = tree_int_cst_compare (@1, @2);
2070    }
2071    (switch
2072     /* Choose the more restrictive of two < or <= comparisons.  */
2073     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2074	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2075      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2076       @4
2077       @3))
2078     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2079     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2080	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2081      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2082       @4
2083       @3))
2084     /* Check for singleton ranges.  */
2085     (if (cmp == 0
2086	  && ((code1 == LT_EXPR && code2 == GT_EXPR)
2087	      || (code1 == GT_EXPR && code2 == LT_EXPR)))
2088      (ne @0 @2))
2089     /* Check for disjoint ranges.  */
2090     (if (cmp >= 0
2091	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2092	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2093      { constant_boolean_node (true, type); })
2094     (if (cmp <= 0
2095	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2096	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2097      { constant_boolean_node (true, type); })
2098     )))))
2099
2100/* We can't reassociate at all for saturating types.  */
2101(if (!TYPE_SATURATING (type))
2102
2103 /* Contract negates.  */
2104 /* A + (-B) -> A - B */
2105 (simplify
2106  (plus:c @0 (convert? (negate @1)))
2107  /* Apply STRIP_NOPS on the negate.  */
2108  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2109       && !TYPE_OVERFLOW_SANITIZED (type))
2110   (with
2111    {
2112     tree t1 = type;
2113     if (INTEGRAL_TYPE_P (type)
2114	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2115       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2116    }
2117    (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2118 /* A - (-B) -> A + B */
2119 (simplify
2120  (minus @0 (convert? (negate @1)))
2121  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2122       && !TYPE_OVERFLOW_SANITIZED (type))
2123   (with
2124    {
2125     tree t1 = type;
2126     if (INTEGRAL_TYPE_P (type)
2127	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2128       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2129    }
2130    (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2131 /* -(T)(-A) -> (T)A
2132    Sign-extension is ok except for INT_MIN, which thankfully cannot
2133    happen without overflow.  */
2134 (simplify
2135  (negate (convert (negate @1)))
2136  (if (INTEGRAL_TYPE_P (type)
2137       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2138	   || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2139	       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2140       && !TYPE_OVERFLOW_SANITIZED (type)
2141       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2142   (convert @1)))
2143 (simplify
2144  (negate (convert negate_expr_p@1))
2145  (if (SCALAR_FLOAT_TYPE_P (type)
2146       && ((DECIMAL_FLOAT_TYPE_P (type)
2147	    == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2148	    && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2149	   || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2150   (convert (negate @1))))
2151 (simplify
2152  (negate (nop_convert? (negate @1)))
2153  (if (!TYPE_OVERFLOW_SANITIZED (type)
2154       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2155   (view_convert @1)))
2156
2157 /* We can't reassociate floating-point unless -fassociative-math
2158    or fixed-point plus or minus because of saturation to +-Inf.  */
2159 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2160      && !FIXED_POINT_TYPE_P (type))
2161
2162  /* Match patterns that allow contracting a plus-minus pair
2163     irrespective of overflow issues.  */
2164  /* (A +- B) - A       ->  +- B */
2165  /* (A +- B) -+ B      ->  A */
2166  /* A - (A +- B)       -> -+ B */
2167  /* A +- (B -+ A)      ->  +- B */
2168  (simplify
2169   (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2170   (view_convert @1))
2171  (simplify
2172   (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2173   (if (!ANY_INTEGRAL_TYPE_P (type)
2174	|| TYPE_OVERFLOW_WRAPS (type))
2175   (negate (view_convert @1))
2176   (view_convert (negate @1))))
2177  (simplify
2178   (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2179   (view_convert @0))
2180  (simplify
2181   (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2182    (if (!ANY_INTEGRAL_TYPE_P (type)
2183	 || TYPE_OVERFLOW_WRAPS (type))
2184     (negate (view_convert @1))
2185     (view_convert (negate @1))))
2186  (simplify
2187   (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2188   (view_convert @1))
2189  /* (A +- B) + (C - A)   -> C +- B */
2190  /* (A +  B) - (A - C)   -> B + C */
2191  /* More cases are handled with comparisons.  */
2192  (simplify
2193   (plus:c (plus:c @0 @1) (minus @2 @0))
2194   (plus @2 @1))
2195  (simplify
2196   (plus:c (minus @0 @1) (minus @2 @0))
2197   (minus @2 @1))
2198  (simplify
2199   (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2200   (if (TYPE_OVERFLOW_UNDEFINED (type)
2201	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2202    (pointer_diff @2 @1)))
2203  (simplify
2204   (minus (plus:c @0 @1) (minus @0 @2))
2205   (plus @1 @2))
2206
2207  /* (A +- CST1) +- CST2 -> A + CST3
2208     Use view_convert because it is safe for vectors and equivalent for
2209     scalars.  */
2210  (for outer_op (plus minus)
2211   (for inner_op (plus minus)
2212	neg_inner_op (minus plus)
2213    (simplify
2214     (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2215	       CONSTANT_CLASS_P@2)
2216     /* If one of the types wraps, use that one.  */
2217     (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2218      /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2219	 forever if something doesn't simplify into a constant.  */
2220      (if (!CONSTANT_CLASS_P (@0))
2221       (if (outer_op == PLUS_EXPR)
2222	(plus (view_convert @0) (inner_op @2 (view_convert @1)))
2223	(minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2224      (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2225	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2226       (if (outer_op == PLUS_EXPR)
2227	(view_convert (plus @0 (inner_op (view_convert @2) @1)))
2228	(view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2229       /* If the constant operation overflows we cannot do the transform
2230	  directly as we would introduce undefined overflow, for example
2231	  with (a - 1) + INT_MIN.  */
2232       (if (types_match (type, @0))
2233	(with { tree cst = const_binop (outer_op == inner_op
2234					? PLUS_EXPR : MINUS_EXPR,
2235					type, @1, @2); }
2236	 (if (cst && !TREE_OVERFLOW (cst))
2237	  (inner_op @0 { cst; } )
2238	  /* X+INT_MAX+1 is X-INT_MIN.  */
2239	  (if (INTEGRAL_TYPE_P (type) && cst
2240	       && wi::to_wide (cst) == wi::min_value (type))
2241	   (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2242	   /* Last resort, use some unsigned type.  */
2243	   (with { tree utype = unsigned_type_for (type); }
2244	    (if (utype)
2245	     (view_convert (inner_op
2246			    (view_convert:utype @0)
2247			    (view_convert:utype
2248			     { drop_tree_overflow (cst); }))))))))))))))
2249
2250  /* (CST1 - A) +- CST2 -> CST3 - A  */
2251  (for outer_op (plus minus)
2252   (simplify
2253    (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2254    /* If one of the types wraps, use that one.  */
2255    (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2256     /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2257	forever if something doesn't simplify into a constant.  */
2258     (if (!CONSTANT_CLASS_P (@0))
2259      (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2260     (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2261	  || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2262      (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2263      (if (types_match (type, @0))
2264       (with { tree cst = const_binop (outer_op, type, @1, @2); }
2265	(if (cst && !TREE_OVERFLOW (cst))
2266	 (minus { cst; } @0))))))))
2267
2268  /* CST1 - (CST2 - A) -> CST3 + A
2269     Use view_convert because it is safe for vectors and equivalent for
2270     scalars.  */
2271  (simplify
2272   (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2273   /* If one of the types wraps, use that one.  */
2274   (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2275    /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2276      forever if something doesn't simplify into a constant.  */
2277    (if (!CONSTANT_CLASS_P (@0))
2278     (plus (view_convert @0) (minus @1 (view_convert @2))))
2279    (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2280	 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2281     (view_convert (plus @0 (minus (view_convert @1) @2)))
2282     (if (types_match (type, @0))
2283      (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2284       (if (cst && !TREE_OVERFLOW (cst))
2285	(plus { cst; } @0)))))))
2286
2287/* ((T)(A)) + CST -> (T)(A + CST)  */
2288#if GIMPLE
2289  (simplify
2290   (plus (convert SSA_NAME@0) INTEGER_CST@1)
2291    (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2292         && TREE_CODE (type) == INTEGER_TYPE
2293         && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2294         && int_fits_type_p (@1, TREE_TYPE (@0)))
2295     /* Perform binary operation inside the cast if the constant fits
2296        and (A + CST)'s range does not overflow.  */
2297     (with
2298      {
2299	wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2300			  max_ovf = wi::OVF_OVERFLOW;
2301        tree inner_type = TREE_TYPE (@0);
2302
2303	wide_int w1
2304	  = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2305			    TYPE_SIGN (inner_type));
2306
2307        wide_int wmin0, wmax0;
2308        if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2309          {
2310            wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2311            wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2312          }
2313      }
2314     (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2315      (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2316     )))
2317#endif
2318
2319/* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2  */
2320#if GIMPLE
2321  (for op (plus minus)
2322   (simplify
2323    (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2324     (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2325	  && TREE_CODE (type) == INTEGER_TYPE
2326	  && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2327	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2328	  && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2329	  && TYPE_OVERFLOW_WRAPS (type))
2330       (plus (convert @0) (op @2 (convert @1))))))
2331#endif
2332
2333  /* ~A + A -> -1 */
2334  (simplify
2335   (plus:c (bit_not @0) @0)
2336   (if (!TYPE_OVERFLOW_TRAPS (type))
2337    { build_all_ones_cst (type); }))
2338
2339  /* ~A + 1 -> -A */
2340  (simplify
2341   (plus (convert? (bit_not @0)) integer_each_onep)
2342   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2343    (negate (convert @0))))
2344
2345  /* -A - 1 -> ~A */
2346  (simplify
2347   (minus (convert? (negate @0)) integer_each_onep)
2348   (if (!TYPE_OVERFLOW_TRAPS (type)
2349	&& TREE_CODE (type) != COMPLEX_TYPE
2350	&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
2351    (bit_not (convert @0))))
2352
2353  /* -1 - A -> ~A */
2354  (simplify
2355   (minus integer_all_onesp @0)
2356   (if (TREE_CODE (type) != COMPLEX_TYPE)
2357    (bit_not @0)))
2358
2359  /* (T)(P + A) - (T)P -> (T) A */
2360  (simplify
2361   (minus (convert (plus:c @@0 @1))
2362    (convert? @0))
2363   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2364	/* For integer types, if A has a smaller type
2365	   than T the result depends on the possible
2366	   overflow in P + A.
2367	   E.g. T=size_t, A=(unsigned)429497295, P>0.
2368	   However, if an overflow in P + A would cause
2369	   undefined behavior, we can assume that there
2370	   is no overflow.  */
2371	|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2372	    && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2373    (convert @1)))
2374  (simplify
2375   (minus (convert (pointer_plus @@0 @1))
2376    (convert @0))
2377   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2378	/* For pointer types, if the conversion of A to the
2379	   final type requires a sign- or zero-extension,
2380	   then we have to punt - it is not defined which
2381	   one is correct.  */
2382	|| (POINTER_TYPE_P (TREE_TYPE (@0))
2383	    && TREE_CODE (@1) == INTEGER_CST
2384	    && tree_int_cst_sign_bit (@1) == 0))
2385    (convert @1)))
2386   (simplify
2387    (pointer_diff (pointer_plus @@0 @1) @0)
2388    /* The second argument of pointer_plus must be interpreted as signed, and
2389       thus sign-extended if necessary.  */
2390    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2391     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2392	second arg is unsigned even when we need to consider it as signed,
2393	we don't want to diagnose overflow here.  */
2394     (convert (view_convert:stype @1))))
2395
2396  /* (T)P - (T)(P + A) -> -(T) A */
2397  (simplify
2398   (minus (convert? @0)
2399    (convert (plus:c @@0 @1)))
2400   (if (INTEGRAL_TYPE_P (type)
2401	&& TYPE_OVERFLOW_UNDEFINED (type)
2402	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2403    (with { tree utype = unsigned_type_for (type); }
2404     (convert (negate (convert:utype @1))))
2405    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2406	 /* For integer types, if A has a smaller type
2407	    than T the result depends on the possible
2408	    overflow in P + A.
2409	    E.g. T=size_t, A=(unsigned)429497295, P>0.
2410	    However, if an overflow in P + A would cause
2411	    undefined behavior, we can assume that there
2412	    is no overflow.  */
2413	 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2414	     && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2415     (negate (convert @1)))))
2416  (simplify
2417   (minus (convert @0)
2418    (convert (pointer_plus @@0 @1)))
2419   (if (INTEGRAL_TYPE_P (type)
2420	&& TYPE_OVERFLOW_UNDEFINED (type)
2421	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2422    (with { tree utype = unsigned_type_for (type); }
2423     (convert (negate (convert:utype @1))))
2424    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2425	 /* For pointer types, if the conversion of A to the
2426	    final type requires a sign- or zero-extension,
2427	    then we have to punt - it is not defined which
2428	    one is correct.  */
2429	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2430	     && TREE_CODE (@1) == INTEGER_CST
2431	     && tree_int_cst_sign_bit (@1) == 0))
2432     (negate (convert @1)))))
2433   (simplify
2434    (pointer_diff @0 (pointer_plus @@0 @1))
2435    /* The second argument of pointer_plus must be interpreted as signed, and
2436       thus sign-extended if necessary.  */
2437    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2438     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2439	second arg is unsigned even when we need to consider it as signed,
2440	we don't want to diagnose overflow here.  */
2441     (negate (convert (view_convert:stype @1)))))
2442
2443  /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2444  (simplify
2445   (minus (convert (plus:c @@0 @1))
2446    (convert (plus:c @0 @2)))
2447   (if (INTEGRAL_TYPE_P (type)
2448	&& TYPE_OVERFLOW_UNDEFINED (type)
2449	&& element_precision (type) <= element_precision (TREE_TYPE (@1))
2450	&& element_precision (type) <= element_precision (TREE_TYPE (@2)))
2451    (with { tree utype = unsigned_type_for (type); }
2452     (convert (minus (convert:utype @1) (convert:utype @2))))
2453    (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2454	  == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2455	 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2456	     /* For integer types, if A has a smaller type
2457		than T the result depends on the possible
2458		overflow in P + A.
2459		E.g. T=size_t, A=(unsigned)429497295, P>0.
2460		However, if an overflow in P + A would cause
2461		undefined behavior, we can assume that there
2462		is no overflow.  */
2463	     || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2464		 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2465		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2466		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2467     (minus (convert @1) (convert @2)))))
2468  (simplify
2469   (minus (convert (pointer_plus @@0 @1))
2470    (convert (pointer_plus @0 @2)))
2471   (if (INTEGRAL_TYPE_P (type)
2472	&& TYPE_OVERFLOW_UNDEFINED (type)
2473	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2474    (with { tree utype = unsigned_type_for (type); }
2475     (convert (minus (convert:utype @1) (convert:utype @2))))
2476    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2477	 /* For pointer types, if the conversion of A to the
2478	    final type requires a sign- or zero-extension,
2479	    then we have to punt - it is not defined which
2480	    one is correct.  */
2481	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2482	     && TREE_CODE (@1) == INTEGER_CST
2483	     && tree_int_cst_sign_bit (@1) == 0
2484	     && TREE_CODE (@2) == INTEGER_CST
2485	     && tree_int_cst_sign_bit (@2) == 0))
2486     (minus (convert @1) (convert @2)))))
2487   (simplify
2488    (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2489    /* The second argument of pointer_plus must be interpreted as signed, and
2490       thus sign-extended if necessary.  */
2491    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2492     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2493	second arg is unsigned even when we need to consider it as signed,
2494	we don't want to diagnose overflow here.  */
2495     (minus (convert (view_convert:stype @1))
2496	    (convert (view_convert:stype @2)))))))
2497
2498/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2499    Modeled after fold_plusminus_mult_expr.  */
2500(if (!TYPE_SATURATING (type)
2501     && (!FLOAT_TYPE_P (type) || flag_associative_math))
2502 (for plusminus (plus minus)
2503  (simplify
2504   (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2505   (if ((!ANY_INTEGRAL_TYPE_P (type)
2506	 || TYPE_OVERFLOW_WRAPS (type)
2507	 || (INTEGRAL_TYPE_P (type)
2508	     && tree_expr_nonzero_p (@0)
2509	     && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2510	/* If @1 +- @2 is constant require a hard single-use on either
2511	   original operand (but not on both).  */
2512	&& (single_use (@3) || single_use (@4)))
2513    (mult (plusminus @1 @2) @0)))
2514  /* We cannot generate constant 1 for fract.  */
2515  (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2516   (simplify
2517    (plusminus @0 (mult:c@3 @0 @2))
2518    (if ((!ANY_INTEGRAL_TYPE_P (type)
2519	  || TYPE_OVERFLOW_WRAPS (type)
2520	  /* For @0 + @0*@2 this transformation would introduce UB
2521	     (where there was none before) for @0 in [-1,0] and @2 max.
2522	     For @0 - @0*@2 this transformation would introduce UB
2523	     for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1.  */
2524	  || (INTEGRAL_TYPE_P (type)
2525	      && ((tree_expr_nonzero_p (@0)
2526		   && expr_not_equal_to (@0,
2527				wi::minus_one (TYPE_PRECISION (type))))
2528		  || (plusminus == PLUS_EXPR
2529		      ? expr_not_equal_to (@2,
2530			    wi::max_value (TYPE_PRECISION (type), SIGNED))
2531		      /* Let's ignore the @0 -1 and @2 min case.  */
2532		      : (expr_not_equal_to (@2,
2533			    wi::min_value (TYPE_PRECISION (type), SIGNED))
2534			 && expr_not_equal_to (@2,
2535				wi::min_value (TYPE_PRECISION (type), SIGNED)
2536				+ 1))))))
2537	 && single_use (@3))
2538     (mult (plusminus { build_one_cst (type); } @2) @0)))
2539   (simplify
2540    (plusminus (mult:c@3 @0 @2) @0)
2541    (if ((!ANY_INTEGRAL_TYPE_P (type)
2542	  || TYPE_OVERFLOW_WRAPS (type)
2543	  /* For @0*@2 + @0 this transformation would introduce UB
2544	     (where there was none before) for @0 in [-1,0] and @2 max.
2545	     For @0*@2 - @0 this transformation would introduce UB
2546	     for @0 0 and @2 min.  */
2547	  || (INTEGRAL_TYPE_P (type)
2548	      && ((tree_expr_nonzero_p (@0)
2549		   && (plusminus == MINUS_EXPR
2550		       || expr_not_equal_to (@0,
2551				wi::minus_one (TYPE_PRECISION (type)))))
2552		  || expr_not_equal_to (@2,
2553			(plusminus == PLUS_EXPR
2554			 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2555			 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2556	 && single_use (@3))
2557     (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2558
2559/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax().  */
2560
2561(for minmax (min max FMIN_ALL FMAX_ALL)
2562 (simplify
2563  (minmax @0 @0)
2564  @0))
2565/* min(max(x,y),y) -> y.  */
2566(simplify
2567 (min:c (max:c @0 @1) @1)
2568 @1)
2569/* max(min(x,y),y) -> y.  */
2570(simplify
2571 (max:c (min:c @0 @1) @1)
2572 @1)
2573/* max(a,-a) -> abs(a).  */
2574(simplify
2575 (max:c @0 (negate @0))
2576 (if (TREE_CODE (type) != COMPLEX_TYPE
2577      && (! ANY_INTEGRAL_TYPE_P (type)
2578	  || TYPE_OVERFLOW_UNDEFINED (type)))
2579  (abs @0)))
2580/* min(a,-a) -> -abs(a).  */
2581(simplify
2582 (min:c @0 (negate @0))
2583 (if (TREE_CODE (type) != COMPLEX_TYPE
2584      && (! ANY_INTEGRAL_TYPE_P (type)
2585	  || TYPE_OVERFLOW_UNDEFINED (type)))
2586  (negate (abs @0))))
2587(simplify
2588 (min @0 @1)
2589 (switch
2590  (if (INTEGRAL_TYPE_P (type)
2591       && TYPE_MIN_VALUE (type)
2592       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2593   @1)
2594  (if (INTEGRAL_TYPE_P (type)
2595       && TYPE_MAX_VALUE (type)
2596       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2597   @0)))
2598(simplify
2599 (max @0 @1)
2600 (switch
2601  (if (INTEGRAL_TYPE_P (type)
2602       && TYPE_MAX_VALUE (type)
2603       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2604   @1)
2605  (if (INTEGRAL_TYPE_P (type)
2606       && TYPE_MIN_VALUE (type)
2607       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2608   @0)))
2609
2610/* max (a, a + CST) -> a + CST where CST is positive.  */
2611/* max (a, a + CST) -> a where CST is negative.  */
2612(simplify
2613 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2614  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2615   (if (tree_int_cst_sgn (@1) > 0)
2616    @2
2617    @0)))
2618
2619/* min (a, a + CST) -> a where CST is positive.  */
2620/* min (a, a + CST) -> a + CST where CST is negative. */
2621(simplify
2622 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2623  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2624   (if (tree_int_cst_sgn (@1) > 0)
2625    @0
2626    @2)))
2627
2628/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2629   and the outer convert demotes the expression back to x's type.  */
2630(for minmax (min max)
2631 (simplify
2632  (convert (minmax@0 (convert @1) INTEGER_CST@2))
2633  (if (INTEGRAL_TYPE_P (type)
2634       && types_match (@1, type) && int_fits_type_p (@2, type)
2635       && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2636       && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2637   (minmax @1 (convert @2)))))
2638
2639(for minmax (FMIN_ALL FMAX_ALL)
2640 /* If either argument is NaN, return the other one.  Avoid the
2641    transformation if we get (and honor) a signalling NaN.  */
2642 (simplify
2643  (minmax:c @0 REAL_CST@1)
2644  (if (real_isnan (TREE_REAL_CST_PTR (@1))
2645       && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2646   @0)))
2647/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
2648   functions to return the numeric arg if the other one is NaN.
2649   MIN and MAX don't honor that, so only transform if -ffinite-math-only
2650   is set.  C99 doesn't require -0.0 to be handled, so we don't have to
2651   worry about it either.  */
2652(if (flag_finite_math_only)
2653 (simplify
2654  (FMIN_ALL @0 @1)
2655  (min @0 @1))
2656 (simplify
2657  (FMAX_ALL @0 @1)
2658  (max @0 @1)))
2659/* min (-A, -B) -> -max (A, B)  */
2660(for minmax (min max FMIN_ALL FMAX_ALL)
2661     maxmin (max min FMAX_ALL FMIN_ALL)
2662 (simplify
2663  (minmax (negate:s@2 @0) (negate:s@3 @1))
2664  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2665       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2666           && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2667   (negate (maxmin @0 @1)))))
2668/* MIN (~X, ~Y) -> ~MAX (X, Y)
2669   MAX (~X, ~Y) -> ~MIN (X, Y)  */
2670(for minmax (min max)
2671 maxmin (max min)
2672 (simplify
2673  (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2674  (bit_not (maxmin @0 @1))))
2675
2676/* MIN (X, Y) == X -> X <= Y  */
2677(for minmax (min min max max)
2678     cmp    (eq  ne  eq  ne )
2679     out    (le  gt  ge  lt )
2680 (simplify
2681  (cmp:c (minmax:c @0 @1) @0)
2682  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2683   (out @0 @1))))
2684/* MIN (X, 5) == 0 -> X == 0
2685   MIN (X, 5) == 7 -> false  */
2686(for cmp (eq ne)
2687 (simplify
2688  (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2689  (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2690		 TYPE_SIGN (TREE_TYPE (@0))))
2691   { constant_boolean_node (cmp == NE_EXPR, type); }
2692   (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2693		  TYPE_SIGN (TREE_TYPE (@0))))
2694    (cmp @0 @2)))))
2695(for cmp (eq ne)
2696 (simplify
2697  (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2698  (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2699		 TYPE_SIGN (TREE_TYPE (@0))))
2700   { constant_boolean_node (cmp == NE_EXPR, type); }
2701   (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2702		  TYPE_SIGN (TREE_TYPE (@0))))
2703    (cmp @0 @2)))))
2704/* MIN (X, C1) < C2 -> X < C2 || C1 < C2  */
2705(for minmax (min     min     max     max     min     min     max     max    )
2706     cmp    (lt      le      gt      ge      gt      ge      lt      le     )
2707     comb   (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2708 (simplify
2709  (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2710  (comb (cmp @0 @2) (cmp @1 @2))))
2711
2712/* Undo fancy way of writing max/min or other ?: expressions,
2713   like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2714   People normally use ?: and that is what we actually try to optimize.  */
2715(for cmp (simple_comparison)
2716 (simplify
2717  (minus @0 (bit_and:c (minus @0 @1)
2718		       (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2719  (if (INTEGRAL_TYPE_P (type)
2720       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2721       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2722       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2723       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2724	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2725       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2726   (cond (cmp @2 @3) @1 @0)))
2727 (simplify
2728  (plus:c @0 (bit_and:c (minus @1 @0)
2729			(convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2730  (if (INTEGRAL_TYPE_P (type)
2731       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2732       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2733       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2734       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2735	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2736       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2737   (cond (cmp @2 @3) @1 @0))))
2738
2739/* Simplifications of shift and rotates.  */
2740
2741(for rotate (lrotate rrotate)
2742 (simplify
2743  (rotate integer_all_onesp@0 @1)
2744  @0))
2745
2746/* Optimize -1 >> x for arithmetic right shifts.  */
2747(simplify
2748 (rshift integer_all_onesp@0 @1)
2749 (if (!TYPE_UNSIGNED (type)
2750      && tree_expr_nonnegative_p (@1))
2751  @0))
2752
2753/* Optimize (x >> c) << c into x & (-1<<c).  */
2754(simplify
2755 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2756 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2757  /* It doesn't matter if the right shift is arithmetic or logical.  */
2758  (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2759
2760(simplify
2761 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2762 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2763      /* Allow intermediate conversion to integral type with whatever sign, as
2764	 long as the low TYPE_PRECISION (type)
2765	 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved.  */
2766      && INTEGRAL_TYPE_P (type)
2767      && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2768      && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2769      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2770      && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2771	  || wi::geu_p (wi::to_wide (@1),
2772			TYPE_PRECISION (type)
2773			- TYPE_PRECISION (TREE_TYPE (@2)))))
2774  (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2775
2776/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2777   types.  */
2778(simplify
2779 (rshift (lshift @0 INTEGER_CST@1) @1)
2780 (if (TYPE_UNSIGNED (type)
2781      && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2782  (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2783
2784(for shiftrotate (lrotate rrotate lshift rshift)
2785 (simplify
2786  (shiftrotate @0 integer_zerop)
2787  (non_lvalue @0))
2788 (simplify
2789  (shiftrotate integer_zerop@0 @1)
2790  @0)
2791 /* Prefer vector1 << scalar to vector1 << vector2
2792    if vector2 is uniform.  */
2793 (for vec (VECTOR_CST CONSTRUCTOR)
2794  (simplify
2795   (shiftrotate @0 vec@1)
2796   (with { tree tem = uniform_vector_p (@1); }
2797    (if (tem)
2798     (shiftrotate @0 { tem; }))))))
2799
2800/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2801   Y is 0.  Similarly for X >> Y.  */
2802#if GIMPLE
2803(for shift (lshift rshift)
2804 (simplify
2805  (shift @0 SSA_NAME@1)
2806   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2807    (with {
2808      int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2809      int prec = TYPE_PRECISION (TREE_TYPE (@1));
2810     }
2811     (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2812      @0)))))
2813#endif
2814
2815/* Rewrite an LROTATE_EXPR by a constant into an
2816   RROTATE_EXPR by a new constant.  */
2817(simplify
2818 (lrotate @0 INTEGER_CST@1)
2819 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2820			    build_int_cst (TREE_TYPE (@1),
2821					   element_precision (type)), @1); }))
2822
2823/* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
2824(for op (lrotate rrotate rshift lshift)
2825 (simplify
2826  (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2827  (with { unsigned int prec = element_precision (type); }
2828   (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2829        && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2830        && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2831	&& wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2832    (with { unsigned int low = (tree_to_uhwi (@1)
2833				+ tree_to_uhwi (@2)); }
2834     /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2835        being well defined.  */
2836     (if (low >= prec)
2837      (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2838       (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2839       (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2840        { build_zero_cst (type); }
2841        (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2842      (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2843
2844
2845/* ((1 << A) & 1) != 0 -> A == 0
2846   ((1 << A) & 1) == 0 -> A != 0 */
2847(for cmp (ne eq)
2848     icmp (eq ne)
2849 (simplify
2850  (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2851  (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2852
2853/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2854   (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2855   if CST2 != 0.  */
2856(for cmp (ne eq)
2857 (simplify
2858  (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2859  (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2860   (if (cand < 0
2861	|| (!integer_zerop (@2)
2862	    && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2863    { constant_boolean_node (cmp == NE_EXPR, type); }
2864    (if (!integer_zerop (@2)
2865	 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2866     (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2867
2868/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2869        (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2870   if the new mask might be further optimized.  */
2871(for shift (lshift rshift)
2872 (simplify
2873  (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2874           INTEGER_CST@2)
2875   (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2876	&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2877	&& tree_fits_uhwi_p (@1)
2878	&& tree_to_uhwi (@1) > 0
2879	&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
2880    (with
2881     {
2882       unsigned int shiftc = tree_to_uhwi (@1);
2883       unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2884       unsigned HOST_WIDE_INT newmask, zerobits = 0;
2885       tree shift_type = TREE_TYPE (@3);
2886       unsigned int prec;
2887
2888       if (shift == LSHIFT_EXPR)
2889	 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2890       else if (shift == RSHIFT_EXPR
2891		&& type_has_mode_precision_p (shift_type))
2892	 {
2893	   prec = TYPE_PRECISION (TREE_TYPE (@3));
2894	   tree arg00 = @0;
2895	   /* See if more bits can be proven as zero because of
2896	      zero extension.  */
2897	   if (@3 != @0
2898	       && TYPE_UNSIGNED (TREE_TYPE (@0)))
2899	     {
2900	       tree inner_type = TREE_TYPE (@0);
2901	       if (type_has_mode_precision_p (inner_type)
2902		   && TYPE_PRECISION (inner_type) < prec)
2903		 {
2904		   prec = TYPE_PRECISION (inner_type);
2905		   /* See if we can shorten the right shift.  */
2906		   if (shiftc < prec)
2907		     shift_type = inner_type;
2908		   /* Otherwise X >> C1 is all zeros, so we'll optimize
2909		      it into (X, 0) later on by making sure zerobits
2910		      is all ones.  */
2911		 }
2912	     }
2913	   zerobits = HOST_WIDE_INT_M1U;
2914	   if (shiftc < prec)
2915	     {
2916	       zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2917	       zerobits <<= prec - shiftc;
2918	     }
2919	   /* For arithmetic shift if sign bit could be set, zerobits
2920	      can contain actually sign bits, so no transformation is
2921	      possible, unless MASK masks them all away.  In that
2922	      case the shift needs to be converted into logical shift.  */
2923	   if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2924	       && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2925	     {
2926	       if ((mask & zerobits) == 0)
2927		 shift_type = unsigned_type_for (TREE_TYPE (@3));
2928	       else
2929		 zerobits = 0;
2930	     }
2931	 }
2932     }
2933     /* ((X << 16) & 0xff00) is (X, 0).  */
2934     (if ((mask & zerobits) == mask)
2935      { build_int_cst (type, 0); }
2936      (with { newmask = mask | zerobits; }
2937       (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2938        (with
2939	 {
2940	   /* Only do the transformation if NEWMASK is some integer
2941	      mode's mask.  */
2942	   for (prec = BITS_PER_UNIT;
2943	        prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2944	     if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2945	       break;
2946	 }
2947	 (if (prec < HOST_BITS_PER_WIDE_INT
2948	      || newmask == HOST_WIDE_INT_M1U)
2949	  (with
2950	   { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2951	   (if (!tree_int_cst_equal (newmaskt, @2))
2952	    (if (shift_type != TREE_TYPE (@3))
2953	     (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2954	     (bit_and @4 { newmaskt; })))))))))))))
2955
2956/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2957   (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1).  */
2958(for shift (lshift rshift)
2959 (for bit_op (bit_and bit_xor bit_ior)
2960  (simplify
2961   (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2962   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2963    (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2964     (bit_op (shift (convert @0) @1) { mask; }))))))
2965
2966/* ~(~X >> Y) -> X >> Y (for arithmetic shift).  */
2967(simplify
2968 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2969  (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2970       && (element_precision (TREE_TYPE (@0))
2971	   <= element_precision (TREE_TYPE (@1))
2972	   || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2973   (with
2974    { tree shift_type = TREE_TYPE (@0); }
2975     (convert (rshift (convert:shift_type @1) @2)))))
2976
2977/* ~(~X >>r Y) -> X >>r Y
2978   ~(~X <<r Y) -> X <<r Y */
2979(for rotate (lrotate rrotate)
2980 (simplify
2981  (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2982   (if ((element_precision (TREE_TYPE (@0))
2983	 <= element_precision (TREE_TYPE (@1))
2984	 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2985        && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2986	    || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2987    (with
2988     { tree rotate_type = TREE_TYPE (@0); }
2989      (convert (rotate (convert:rotate_type @1) @2))))))
2990
2991/* Simplifications of conversions.  */
2992
2993/* Basic strip-useless-type-conversions / strip_nops.  */
2994(for cvt (convert view_convert float fix_trunc)
2995 (simplify
2996  (cvt @0)
2997  (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2998       || (GENERIC && type == TREE_TYPE (@0)))
2999   @0)))
3000
3001/* Contract view-conversions.  */
3002(simplify
3003  (view_convert (view_convert @0))
3004  (view_convert @0))
3005
3006/* For integral conversions with the same precision or pointer
3007   conversions use a NOP_EXPR instead.  */
3008(simplify
3009  (view_convert @0)
3010  (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3011       && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3012       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3013   (convert @0)))
3014
3015/* Strip inner integral conversions that do not change precision or size, or
3016   zero-extend while keeping the same size (for bool-to-char).  */
3017(simplify
3018  (view_convert (convert@0 @1))
3019  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3020       && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3021       && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3022       && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3023	   || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3024	       && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3025   (view_convert @1)))
3026
3027/* Simplify a view-converted empty constructor.  */
3028(simplify
3029  (view_convert CONSTRUCTOR@0)
3030  (if (TREE_CODE (@0) != SSA_NAME
3031       && CONSTRUCTOR_NELTS (@0) == 0)
3032   { build_zero_cst (type); }))
3033
3034/* Re-association barriers around constants and other re-association
3035   barriers can be removed.  */
3036(simplify
3037 (paren CONSTANT_CLASS_P@0)
3038 @0)
3039(simplify
3040 (paren (paren@1 @0))
3041 @1)
3042
3043/* Handle cases of two conversions in a row.  */
3044(for ocvt (convert float fix_trunc)
3045 (for icvt (convert float)
3046  (simplify
3047   (ocvt (icvt@1 @0))
3048   (with
3049    {
3050      tree inside_type = TREE_TYPE (@0);
3051      tree inter_type = TREE_TYPE (@1);
3052      int inside_int = INTEGRAL_TYPE_P (inside_type);
3053      int inside_ptr = POINTER_TYPE_P (inside_type);
3054      int inside_float = FLOAT_TYPE_P (inside_type);
3055      int inside_vec = VECTOR_TYPE_P (inside_type);
3056      unsigned int inside_prec = TYPE_PRECISION (inside_type);
3057      int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3058      int inter_int = INTEGRAL_TYPE_P (inter_type);
3059      int inter_ptr = POINTER_TYPE_P (inter_type);
3060      int inter_float = FLOAT_TYPE_P (inter_type);
3061      int inter_vec = VECTOR_TYPE_P (inter_type);
3062      unsigned int inter_prec = TYPE_PRECISION (inter_type);
3063      int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3064      int final_int = INTEGRAL_TYPE_P (type);
3065      int final_ptr = POINTER_TYPE_P (type);
3066      int final_float = FLOAT_TYPE_P (type);
3067      int final_vec = VECTOR_TYPE_P (type);
3068      unsigned int final_prec = TYPE_PRECISION (type);
3069      int final_unsignedp = TYPE_UNSIGNED (type);
3070    }
3071   (switch
3072    /* In addition to the cases of two conversions in a row
3073       handled below, if we are converting something to its own
3074       type via an object of identical or wider precision, neither
3075       conversion is needed.  */
3076    (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3077	  || (GENERIC
3078	      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3079	 && (((inter_int || inter_ptr) && final_int)
3080	     || (inter_float && final_float))
3081	 && inter_prec >= final_prec)
3082     (ocvt @0))
3083
3084    /* Likewise, if the intermediate and initial types are either both
3085       float or both integer, we don't need the middle conversion if the
3086       former is wider than the latter and doesn't change the signedness
3087       (for integers).  Avoid this if the final type is a pointer since
3088       then we sometimes need the middle conversion.  */
3089    (if (((inter_int && inside_int) || (inter_float && inside_float))
3090	 && (final_int || final_float)
3091	 && inter_prec >= inside_prec
3092	 && (inter_float || inter_unsignedp == inside_unsignedp))
3093     (ocvt @0))
3094
3095    /* If we have a sign-extension of a zero-extended value, we can
3096       replace that by a single zero-extension.  Likewise if the
3097       final conversion does not change precision we can drop the
3098       intermediate conversion.  */
3099    (if (inside_int && inter_int && final_int
3100	 && ((inside_prec < inter_prec && inter_prec < final_prec
3101	      && inside_unsignedp && !inter_unsignedp)
3102	     || final_prec == inter_prec))
3103     (ocvt @0))
3104
3105    /* Two conversions in a row are not needed unless:
3106	- some conversion is floating-point (overstrict for now), or
3107	- some conversion is a vector (overstrict for now), or
3108	- the intermediate type is narrower than both initial and
3109	  final, or
3110	- the intermediate type and innermost type differ in signedness,
3111	  and the outermost type is wider than the intermediate, or
3112	- the initial type is a pointer type and the precisions of the
3113	  intermediate and final types differ, or
3114	- the final type is a pointer type and the precisions of the
3115	  initial and intermediate types differ.  */
3116    (if (! inside_float && ! inter_float && ! final_float
3117	 && ! inside_vec && ! inter_vec && ! final_vec
3118	 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3119	 && ! (inside_int && inter_int
3120	       && inter_unsignedp != inside_unsignedp
3121	       && inter_prec < final_prec)
3122	 && ((inter_unsignedp && inter_prec > inside_prec)
3123	     == (final_unsignedp && final_prec > inter_prec))
3124	 && ! (inside_ptr && inter_prec != final_prec)
3125	 && ! (final_ptr && inside_prec != inter_prec))
3126     (ocvt @0))
3127
3128    /* A truncation to an unsigned type (a zero-extension) should be
3129       canonicalized as bitwise and of a mask.  */
3130    (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion.  */
3131	 && final_int && inter_int && inside_int
3132	 && final_prec == inside_prec
3133	 && final_prec > inter_prec
3134	 && inter_unsignedp)
3135     (convert (bit_and @0 { wide_int_to_tree
3136	                      (inside_type,
3137			       wi::mask (inter_prec, false,
3138					 TYPE_PRECISION (inside_type))); })))
3139
3140    /* If we are converting an integer to a floating-point that can
3141       represent it exactly and back to an integer, we can skip the
3142       floating-point conversion.  */
3143    (if (GIMPLE /* PR66211 */
3144	 && inside_int && inter_float && final_int &&
3145	 (unsigned) significand_size (TYPE_MODE (inter_type))
3146	 >= inside_prec - !inside_unsignedp)
3147     (convert @0)))))))
3148
3149/* If we have a narrowing conversion to an integral type that is fed by a
3150   BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3151   masks off bits outside the final type (and nothing else).  */
3152(simplify
3153  (convert (bit_and @0 INTEGER_CST@1))
3154  (if (INTEGRAL_TYPE_P (type)
3155       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3156       && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3157       && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3158						    TYPE_PRECISION (type)), 0))
3159   (convert @0)))
3160
3161
3162/* (X /[ex] A) * A -> X.  */
3163(simplify
3164  (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3165  (convert @0))
3166
3167/* Simplify (A / B) * B + (A % B) -> A.  */
3168(for div (trunc_div ceil_div floor_div round_div)
3169     mod (trunc_mod ceil_mod floor_mod round_mod)
3170  (simplify
3171   (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3172   @0))
3173
3174/* ((X /[ex] A) +- B) * A  -->  X +- A * B.  */
3175(for op (plus minus)
3176 (simplify
3177  (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3178  (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3179       && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3180   (with
3181     {
3182       wi::overflow_type overflow;
3183       wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3184			       TYPE_SIGN (type), &overflow);
3185     }
3186     (if (types_match (type, TREE_TYPE (@2))
3187 	 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3188      (op @0 { wide_int_to_tree (type, mul); })
3189      (with { tree utype = unsigned_type_for (type); }
3190       (convert (op (convert:utype @0)
3191		    (mult (convert:utype @1) (convert:utype @2))))))))))
3192
3193/* Canonicalization of binary operations.  */
3194
3195/* Convert X + -C into X - C.  */
3196(simplify
3197 (plus @0 REAL_CST@1)
3198 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3199  (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3200   (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3201    (minus @0 { tem; })))))
3202
3203/* Convert x+x into x*2.  */
3204(simplify
3205 (plus @0 @0)
3206 (if (SCALAR_FLOAT_TYPE_P (type))
3207  (mult @0 { build_real (type, dconst2); })
3208  (if (INTEGRAL_TYPE_P (type))
3209   (mult @0 { build_int_cst (type, 2); }))))
3210
3211/* 0 - X  ->  -X.  */
3212(simplify
3213 (minus integer_zerop @1)
3214 (negate @1))
3215(simplify
3216 (pointer_diff integer_zerop @1)
3217 (negate (convert @1)))
3218
3219/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
3220   ARG0 is zero and X + ARG0 reduces to X, since that would mean
3221   (-ARG1 + ARG0) reduces to -ARG1.  */
3222(simplify
3223 (minus real_zerop@0 @1)
3224 (if (fold_real_zero_addition_p (type, @0, 0))
3225  (negate @1)))
3226
3227/* Transform x * -1 into -x.  */
3228(simplify
3229 (mult @0 integer_minus_onep)
3230 (negate @0))
3231
3232/* Reassociate (X * CST) * Y to (X * Y) * CST.  This does not introduce
3233   signed overflow for CST != 0 && CST != -1.  */
3234(simplify
3235 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3236 (if (TREE_CODE (@2) != INTEGER_CST
3237      && single_use (@3)
3238      && !integer_zerop (@1) && !integer_minus_onep (@1))
3239  (mult (mult @0 @2) @1)))
3240
3241/* True if we can easily extract the real and imaginary parts of a complex
3242   number.  */
3243(match compositional_complex
3244 (convert? (complex @0 @1)))
3245
3246/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
3247(simplify
3248 (complex (realpart @0) (imagpart @0))
3249 @0)
3250(simplify
3251 (realpart (complex @0 @1))
3252 @0)
3253(simplify
3254 (imagpart (complex @0 @1))
3255 @1)
3256
3257/* Sometimes we only care about half of a complex expression.  */
3258(simplify
3259 (realpart (convert?:s (conj:s @0)))
3260 (convert (realpart @0)))
3261(simplify
3262 (imagpart (convert?:s (conj:s @0)))
3263 (convert (negate (imagpart @0))))
3264(for part (realpart imagpart)
3265 (for op (plus minus)
3266  (simplify
3267   (part (convert?:s@2 (op:s @0 @1)))
3268   (convert (op (part @0) (part @1))))))
3269(simplify
3270 (realpart (convert?:s (CEXPI:s @0)))
3271 (convert (COS @0)))
3272(simplify
3273 (imagpart (convert?:s (CEXPI:s @0)))
3274 (convert (SIN @0)))
3275
3276/* conj(conj(x)) -> x  */
3277(simplify
3278 (conj (convert? (conj @0)))
3279 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3280  (convert @0)))
3281
3282/* conj({x,y}) -> {x,-y}  */
3283(simplify
3284 (conj (convert?:s (complex:s @0 @1)))
3285 (with { tree itype = TREE_TYPE (type); }
3286  (complex (convert:itype @0) (negate (convert:itype @1)))))
3287
3288/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
3289(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3290 (simplify
3291  (bswap (bswap @0))
3292  @0)
3293 (simplify
3294  (bswap (bit_not (bswap @0)))
3295  (bit_not @0))
3296 (for bitop (bit_xor bit_ior bit_and)
3297  (simplify
3298   (bswap (bitop:c (bswap @0) @1))
3299   (bitop @0 (bswap @1)))))
3300
3301
3302/* Combine COND_EXPRs and VEC_COND_EXPRs.  */
3303
3304/* Simplify constant conditions.
3305   Only optimize constant conditions when the selected branch
3306   has the same type as the COND_EXPR.  This avoids optimizing
3307   away "c ? x : throw", where the throw has a void type.
3308   Note that we cannot throw away the fold-const.c variant nor
3309   this one as we depend on doing this transform before possibly
3310   A ? B : B -> B triggers and the fold-const.c one can optimize
3311   0 ? A : B to B even if A has side-effects.  Something
3312   genmatch cannot handle.  */
3313(simplify
3314 (cond INTEGER_CST@0 @1 @2)
3315 (if (integer_zerop (@0))
3316  (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3317   @2)
3318  (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3319   @1)))
3320(simplify
3321 (vec_cond VECTOR_CST@0 @1 @2)
3322 (if (integer_all_onesp (@0))
3323  @1
3324  (if (integer_zerop (@0))
3325   @2)))
3326
3327/* Sink unary operations to constant branches, but only if we do fold it to
3328   constants.  */
3329(for op (negate bit_not abs absu)
3330 (simplify
3331  (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3332  (with
3333   {
3334     tree cst1, cst2;
3335     cst1 = const_unop (op, type, @1);
3336     if (cst1)
3337       cst2 = const_unop (op, type, @2);
3338   }
3339   (if (cst1 && cst2)
3340    (vec_cond @0 { cst1; } { cst2; })))))
3341
3342/* Simplification moved from fold_cond_expr_with_comparison.  It may also
3343   be extended.  */
3344/* This pattern implements two kinds simplification:
3345
3346   Case 1)
3347   (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3348     1) Conversions are type widening from smaller type.
3349     2) Const c1 equals to c2 after canonicalizing comparison.
3350     3) Comparison has tree code LT, LE, GT or GE.
3351   This specific pattern is needed when (cmp (convert x) c) may not
3352   be simplified by comparison patterns because of multiple uses of
3353   x.  It also makes sense here because simplifying across multiple
3354   referred var is always benefitial for complicated cases.
3355
3356   Case 2)
3357   (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2).  */
3358(for cmp (lt le gt ge eq)
3359 (simplify
3360  (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3361  (with
3362   {
3363     tree from_type = TREE_TYPE (@1);
3364     tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3365     enum tree_code code = ERROR_MARK;
3366
3367     if (INTEGRAL_TYPE_P (from_type)
3368	 && int_fits_type_p (@2, from_type)
3369	 && (types_match (c1_type, from_type)
3370	     || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3371		 && (TYPE_UNSIGNED (from_type)
3372		     || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3373	 && (types_match (c2_type, from_type)
3374	     || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3375		 && (TYPE_UNSIGNED (from_type)
3376		     || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3377       {
3378	 if (cmp != EQ_EXPR)
3379	   {
3380	     if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3381	       {
3382		 /* X <= Y - 1 equals to X < Y.  */
3383		 if (cmp == LE_EXPR)
3384		   code = LT_EXPR;
3385		 /* X > Y - 1 equals to X >= Y.  */
3386		 if (cmp == GT_EXPR)
3387		   code = GE_EXPR;
3388	       }
3389	     if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3390	       {
3391		 /* X < Y + 1 equals to X <= Y.  */
3392		 if (cmp == LT_EXPR)
3393		   code = LE_EXPR;
3394		 /* X >= Y + 1 equals to X > Y.  */
3395		 if (cmp == GE_EXPR)
3396		   code = GT_EXPR;
3397	       }
3398	     if (code != ERROR_MARK
3399		 || wi::to_widest (@2) == wi::to_widest (@3))
3400	       {
3401		 if (cmp == LT_EXPR || cmp == LE_EXPR)
3402		   code = MIN_EXPR;
3403		 if (cmp == GT_EXPR || cmp == GE_EXPR)
3404		   code = MAX_EXPR;
3405	       }
3406	   }
3407	 /* Can do A == C1 ? A : C2  ->  A == C1 ? C1 : C2?  */
3408	 else if (int_fits_type_p (@3, from_type))
3409	   code = EQ_EXPR;
3410       }
3411   }
3412   (if (code == MAX_EXPR)
3413    (convert (max @1 (convert @2)))
3414    (if (code == MIN_EXPR)
3415     (convert (min @1 (convert @2)))
3416     (if (code == EQ_EXPR)
3417      (convert (cond (eq @1 (convert @3))
3418		     (convert:from_type @3) (convert:from_type @2)))))))))
3419
3420/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3421
3422     1) OP is PLUS or MINUS.
3423     2) CMP is LT, LE, GT or GE.
3424     3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3425
3426   This pattern also handles special cases like:
3427
3428     A) Operand x is a unsigned to signed type conversion and c1 is
3429	integer zero.  In this case,
3430	  (signed type)x  < 0  <=>  x  > MAX_VAL(signed type)
3431	  (signed type)x >= 0  <=>  x <= MAX_VAL(signed type)
3432     B) Const c1 may not equal to (C3 op' C2).  In this case we also
3433	check equality for (c1+1) and (c1-1) by adjusting comparison
3434	code.
3435
3436   TODO: Though signed type is handled by this pattern, it cannot be
3437   simplified at the moment because C standard requires additional
3438   type promotion.  In order to match&simplify it here, the IR needs
3439   to be cleaned up by other optimizers, i.e, VRP.  */
3440(for op (plus minus)
3441 (for cmp (lt le gt ge)
3442  (simplify
3443   (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3444   (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3445    (if (types_match (from_type, to_type)
3446	 /* Check if it is special case A).  */
3447	 || (TYPE_UNSIGNED (from_type)
3448	     && !TYPE_UNSIGNED (to_type)
3449	     && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3450	     && integer_zerop (@1)
3451	     && (cmp == LT_EXPR || cmp == GE_EXPR)))
3452     (with
3453      {
3454	wi::overflow_type overflow = wi::OVF_NONE;
3455	enum tree_code code, cmp_code = cmp;
3456	wide_int real_c1;
3457	wide_int c1 = wi::to_wide (@1);
3458	wide_int c2 = wi::to_wide (@2);
3459	wide_int c3 = wi::to_wide (@3);
3460	signop sgn = TYPE_SIGN (from_type);
3461
3462	/* Handle special case A), given x of unsigned type:
3463	    ((signed type)x  < 0) <=> (x  > MAX_VAL(signed type))
3464	    ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type))  */
3465	if (!types_match (from_type, to_type))
3466	  {
3467	    if (cmp_code == LT_EXPR)
3468	      cmp_code = GT_EXPR;
3469	    if (cmp_code == GE_EXPR)
3470	      cmp_code = LE_EXPR;
3471	    c1 = wi::max_value (to_type);
3472	  }
3473	/* To simplify this pattern, we require c3 = (c1 op c2).  Here we
3474	   compute (c3 op' c2) and check if it equals to c1 with op' being
3475	   the inverted operator of op.  Make sure overflow doesn't happen
3476	   if it is undefined.  */
3477	if (op == PLUS_EXPR)
3478	  real_c1 = wi::sub (c3, c2, sgn, &overflow);
3479	else
3480	  real_c1 = wi::add (c3, c2, sgn, &overflow);
3481
3482	code = cmp_code;
3483	if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3484	  {
3485	    /* Check if c1 equals to real_c1.  Boundary condition is handled
3486	       by adjusting comparison operation if necessary.  */
3487	    if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3488		&& !overflow)
3489	      {
3490		/* X <= Y - 1 equals to X < Y.  */
3491		if (cmp_code == LE_EXPR)
3492		  code = LT_EXPR;
3493		/* X > Y - 1 equals to X >= Y.  */
3494		if (cmp_code == GT_EXPR)
3495		  code = GE_EXPR;
3496	      }
3497	    if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3498		&& !overflow)
3499	      {
3500		/* X < Y + 1 equals to X <= Y.  */
3501		if (cmp_code == LT_EXPR)
3502		  code = LE_EXPR;
3503		/* X >= Y + 1 equals to X > Y.  */
3504		if (cmp_code == GE_EXPR)
3505		  code = GT_EXPR;
3506	      }
3507	    if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3508	      {
3509		if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3510		  code = MIN_EXPR;
3511		if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3512		  code = MAX_EXPR;
3513	      }
3514	  }
3515      }
3516      (if (code == MAX_EXPR)
3517       (op (max @X { wide_int_to_tree (from_type, real_c1); })
3518	   { wide_int_to_tree (from_type, c2); })
3519       (if (code == MIN_EXPR)
3520	(op (min @X { wide_int_to_tree (from_type, real_c1); })
3521	    { wide_int_to_tree (from_type, c2); })))))))))
3522
3523(for cnd (cond vec_cond)
3524 /* A ? B : (A ? X : C) -> A ? B : C.  */
3525 (simplify
3526  (cnd @0 (cnd @0 @1 @2) @3)
3527  (cnd @0 @1 @3))
3528 (simplify
3529  (cnd @0 @1 (cnd @0 @2 @3))
3530  (cnd @0 @1 @3))
3531 /* A ? B : (!A ? C : X) -> A ? B : C.  */
3532 /* ???  This matches embedded conditions open-coded because genmatch
3533    would generate matching code for conditions in separate stmts only.
3534    The following is still important to merge then and else arm cases
3535    from if-conversion.  */
3536 (simplify
3537  (cnd @0 @1 (cnd @2 @3 @4))
3538  (if (inverse_conditions_p (@0, @2))
3539   (cnd @0 @1 @3)))
3540 (simplify
3541  (cnd @0 (cnd @1 @2 @3) @4)
3542  (if (inverse_conditions_p (@0, @1))
3543   (cnd @0 @3 @4)))
3544
3545 /* A ? B : B -> B.  */
3546 (simplify
3547  (cnd @0 @1 @1)
3548  @1)
3549
3550 /* !A ? B : C -> A ? C : B.  */
3551 (simplify
3552  (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3553  (cnd @0 @2 @1)))
3554
3555/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3556   return all -1 or all 0 results.  */
3557/* ??? We could instead convert all instances of the vec_cond to negate,
3558   but that isn't necessarily a win on its own.  */
3559(simplify
3560 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3561 (if (VECTOR_TYPE_P (type)
3562      && known_eq (TYPE_VECTOR_SUBPARTS (type),
3563		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3564      && (TYPE_MODE (TREE_TYPE (type))
3565          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3566  (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3567
3568/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0).  */
3569(simplify
3570 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3571 (if (VECTOR_TYPE_P (type)
3572      && known_eq (TYPE_VECTOR_SUBPARTS (type),
3573		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3574      && (TYPE_MODE (TREE_TYPE (type))
3575          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3576  (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3577
3578
3579/* Simplifications of comparisons.  */
3580
3581/* See if we can reduce the magnitude of a constant involved in a
3582   comparison by changing the comparison code.  This is a canonicalization
3583   formerly done by maybe_canonicalize_comparison_1.  */
3584(for cmp  (le gt)
3585     acmp (lt ge)
3586 (simplify
3587  (cmp @0 uniform_integer_cst_p@1)
3588  (with { tree cst = uniform_integer_cst_p (@1); }
3589   (if (tree_int_cst_sgn (cst) == -1)
3590     (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3591				   wide_int_to_tree (TREE_TYPE (cst),
3592						     wi::to_wide (cst)
3593						     + 1)); })))))
3594(for cmp  (ge lt)
3595     acmp (gt le)
3596 (simplify
3597  (cmp @0 uniform_integer_cst_p@1)
3598  (with { tree cst = uniform_integer_cst_p (@1); }
3599   (if (tree_int_cst_sgn (cst) == 1)
3600    (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3601				  wide_int_to_tree (TREE_TYPE (cst),
3602				  wi::to_wide (cst) - 1)); })))))
3603
3604/* We can simplify a logical negation of a comparison to the
3605   inverted comparison.  As we cannot compute an expression
3606   operator using invert_tree_comparison we have to simulate
3607   that with expression code iteration.  */
3608(for cmp (tcc_comparison)
3609     icmp (inverted_tcc_comparison)
3610     ncmp (inverted_tcc_comparison_with_nans)
3611 /* Ideally we'd like to combine the following two patterns
3612    and handle some more cases by using
3613      (logical_inverted_value (cmp @0 @1))
3614    here but for that genmatch would need to "inline" that.
3615    For now implement what forward_propagate_comparison did.  */
3616 (simplify
3617  (bit_not (cmp @0 @1))
3618  (if (VECTOR_TYPE_P (type)
3619       || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3620   /* Comparison inversion may be impossible for trapping math,
3621      invert_tree_comparison will tell us.  But we can't use
3622      a computed operator in the replacement tree thus we have
3623      to play the trick below.  */
3624   (with { enum tree_code ic = invert_tree_comparison
3625             (cmp, HONOR_NANS (@0)); }
3626    (if (ic == icmp)
3627     (icmp @0 @1)
3628     (if (ic == ncmp)
3629      (ncmp @0 @1))))))
3630 (simplify
3631  (bit_xor (cmp @0 @1) integer_truep)
3632  (with { enum tree_code ic = invert_tree_comparison
3633            (cmp, HONOR_NANS (@0)); }
3634   (if (ic == icmp)
3635    (icmp @0 @1)
3636    (if (ic == ncmp)
3637     (ncmp @0 @1))))))
3638
3639/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3640   ??? The transformation is valid for the other operators if overflow
3641   is undefined for the type, but performing it here badly interacts
3642   with the transformation in fold_cond_expr_with_comparison which
3643   attempts to synthetize ABS_EXPR.  */
3644(for cmp (eq ne)
3645 (for sub (minus pointer_diff)
3646  (simplify
3647   (cmp (sub@2 @0 @1) integer_zerop)
3648   (if (single_use (@2))
3649    (cmp @0 @1)))))
3650
3651/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3652   signed arithmetic case.  That form is created by the compiler
3653   often enough for folding it to be of value.  One example is in
3654   computing loop trip counts after Operator Strength Reduction.  */
3655(for cmp (simple_comparison)
3656     scmp (swapped_simple_comparison)
3657 (simplify
3658  (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3659  /* Handle unfolded multiplication by zero.  */
3660  (if (integer_zerop (@1))
3661   (cmp @1 @2)
3662   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3663	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3664	&& single_use (@3))
3665    /* If @1 is negative we swap the sense of the comparison.  */
3666    (if (tree_int_cst_sgn (@1) < 0)
3667     (scmp @0 @2)
3668     (cmp @0 @2))))))
3669
3670/* Simplify comparison of something with itself.  For IEEE
3671   floating-point, we can only do some of these simplifications.  */
3672(for cmp (eq ge le)
3673 (simplify
3674  (cmp @0 @0)
3675  (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3676       || ! HONOR_NANS (@0))
3677   { constant_boolean_node (true, type); }
3678   (if (cmp != EQ_EXPR)
3679    (eq @0 @0)))))
3680(for cmp (ne gt lt)
3681 (simplify
3682  (cmp @0 @0)
3683  (if (cmp != NE_EXPR
3684       || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3685       || ! HONOR_NANS (@0))
3686   { constant_boolean_node (false, type); })))
3687(for cmp (unle unge uneq)
3688 (simplify
3689  (cmp @0 @0)
3690  { constant_boolean_node (true, type); }))
3691(for cmp (unlt ungt)
3692 (simplify
3693  (cmp @0 @0)
3694  (unordered @0 @0)))
3695(simplify
3696 (ltgt @0 @0)
3697 (if (!flag_trapping_math)
3698  { constant_boolean_node (false, type); }))
3699
3700/* Fold ~X op ~Y as Y op X.  */
3701(for cmp (simple_comparison)
3702 (simplify
3703  (cmp (bit_not@2 @0) (bit_not@3 @1))
3704  (if (single_use (@2) && single_use (@3))
3705   (cmp @1 @0))))
3706
3707/* Fold ~X op C as X op' ~C, where op' is the swapped comparison.  */
3708(for cmp (simple_comparison)
3709     scmp (swapped_simple_comparison)
3710 (simplify
3711  (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3712  (if (single_use (@2)
3713       && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3714   (scmp @0 (bit_not @1)))))
3715
3716(for cmp (simple_comparison)
3717 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
3718 (simplify
3719  (cmp (convert@2 @0) (convert? @1))
3720  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3721       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3722	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3723       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3724	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3725   (with
3726    {
3727      tree type1 = TREE_TYPE (@1);
3728      if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3729        {
3730	  REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3731	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3732	      && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3733	    type1 = float_type_node;
3734	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3735	      && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3736	    type1 = double_type_node;
3737        }
3738      tree newtype
3739        = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3740	   ? TREE_TYPE (@0) : type1);
3741    }
3742    (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3743     (cmp (convert:newtype @0) (convert:newtype @1))))))
3744
3745 (simplify
3746  (cmp @0 REAL_CST@1)
3747  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
3748  (switch
3749   /* a CMP (-0) -> a CMP 0  */
3750   (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3751    (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3752   /* x != NaN is always true, other ops are always false.  */
3753   (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3754	&& ! HONOR_SNANS (@1))
3755    { constant_boolean_node (cmp == NE_EXPR, type); })
3756   /* Fold comparisons against infinity.  */
3757   (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3758	&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3759    (with
3760     {
3761       REAL_VALUE_TYPE max;
3762       enum tree_code code = cmp;
3763       bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3764       if (neg)
3765         code = swap_tree_comparison (code);
3766     }
3767     (switch
3768      /* x > +Inf is always false, if we ignore NaNs or exceptions.  */
3769      (if (code == GT_EXPR
3770	   && !(HONOR_NANS (@0) && flag_trapping_math))
3771       { constant_boolean_node (false, type); })
3772      (if (code == LE_EXPR)
3773       /* x <= +Inf is always true, if we don't care about NaNs.  */
3774       (if (! HONOR_NANS (@0))
3775	{ constant_boolean_node (true, type); }
3776	/* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3777	   an "invalid" exception.  */
3778	(if (!flag_trapping_math)
3779	 (eq @0 @0))))
3780      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3781	 for == this introduces an exception for x a NaN.  */
3782      (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3783	   || code == GE_EXPR)
3784       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3785	(if (neg)
3786	 (lt @0 { build_real (TREE_TYPE (@0), max); })
3787	 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3788      /* x < +Inf is always equal to x <= DBL_MAX.  */
3789      (if (code == LT_EXPR)
3790       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3791	(if (neg)
3792	 (ge @0 { build_real (TREE_TYPE (@0), max); })
3793	 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3794      /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3795	 an exception for x a NaN so use an unordered comparison.  */
3796      (if (code == NE_EXPR)
3797       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3798	(if (! HONOR_NANS (@0))
3799	 (if (neg)
3800	  (ge @0 { build_real (TREE_TYPE (@0), max); })
3801	  (le @0 { build_real (TREE_TYPE (@0), max); }))
3802	 (if (neg)
3803	  (unge @0 { build_real (TREE_TYPE (@0), max); })
3804	  (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3805
3806 /* If this is a comparison of a real constant with a PLUS_EXPR
3807    or a MINUS_EXPR of a real constant, we can convert it into a
3808    comparison with a revised real constant as long as no overflow
3809    occurs when unsafe_math_optimizations are enabled.  */
3810 (if (flag_unsafe_math_optimizations)
3811  (for op (plus minus)
3812   (simplify
3813    (cmp (op @0 REAL_CST@1) REAL_CST@2)
3814    (with
3815     {
3816       tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3817			       TREE_TYPE (@1), @2, @1);
3818     }
3819     (if (tem && !TREE_OVERFLOW (tem))
3820      (cmp @0 { tem; }))))))
3821
3822 /* Likewise, we can simplify a comparison of a real constant with
3823    a MINUS_EXPR whose first operand is also a real constant, i.e.
3824    (c1 - x) < c2 becomes x > c1-c2.  Reordering is allowed on
3825    floating-point types only if -fassociative-math is set.  */
3826 (if (flag_associative_math)
3827  (simplify
3828   (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3829   (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3830    (if (tem && !TREE_OVERFLOW (tem))
3831     (cmp { tem; } @1)))))
3832
3833 /* Fold comparisons against built-in math functions.  */
3834 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3835  (for sq (SQRT)
3836   (simplify
3837    (cmp (sq @0) REAL_CST@1)
3838    (switch
3839     (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3840      (switch
3841       /* sqrt(x) < y is always false, if y is negative.  */
3842       (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3843	{ constant_boolean_node (false, type); })
3844       /* sqrt(x) > y is always true, if y is negative and we
3845	  don't care about NaNs, i.e. negative values of x.  */
3846       (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3847	{ constant_boolean_node (true, type); })
3848       /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
3849       (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3850     (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3851      (switch
3852       /* sqrt(x) < 0 is always false.  */
3853       (if (cmp == LT_EXPR)
3854	{ constant_boolean_node (false, type); })
3855       /* sqrt(x) >= 0 is always true if we don't care about NaNs.  */
3856       (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3857	{ constant_boolean_node (true, type); })
3858       /* sqrt(x) <= 0 -> x == 0.  */
3859       (if (cmp == LE_EXPR)
3860	(eq @0 @1))
3861       /* Otherwise sqrt(x) cmp 0 -> x cmp 0.  Here cmp can be >=, >,
3862          == or !=.  In the last case:
3863
3864	    (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3865
3866	  if x is negative or NaN.  Due to -funsafe-math-optimizations,
3867	  the results for other x follow from natural arithmetic.  */
3868       (cmp @0 @1)))
3869     (if ((cmp == LT_EXPR
3870	   || cmp == LE_EXPR
3871	   || cmp == GT_EXPR
3872	   || cmp == GE_EXPR)
3873	  && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3874	  /* Give up for -frounding-math.  */
3875	  && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3876      (with
3877       {
3878	 REAL_VALUE_TYPE c2;
3879	 enum tree_code ncmp = cmp;
3880	 const real_format *fmt
3881	   = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3882	 real_arithmetic (&c2, MULT_EXPR,
3883			  &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3884	 real_convert (&c2, fmt, &c2);
3885	 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3886	    then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR.  */
3887	 if (!REAL_VALUE_ISINF (c2))
3888	   {
3889	     tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3890					build_real (TREE_TYPE (@0), c2));
3891	     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3892	       ncmp = ERROR_MARK;
3893	     else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3894		      && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3895	       ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3896	     else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3897		      && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3898	       ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3899	     else
3900	       {
3901		 /* With rounding to even, sqrt of up to 3 different values
3902		    gives the same normal result, so in some cases c2 needs
3903		    to be adjusted.  */
3904		 REAL_VALUE_TYPE c2alt, tow;
3905		 if (cmp == LT_EXPR || cmp == GE_EXPR)
3906		   tow = dconst0;
3907		 else
3908		   real_inf (&tow);
3909		 real_nextafter (&c2alt, fmt, &c2, &tow);
3910		 real_convert (&c2alt, fmt, &c2alt);
3911		 if (REAL_VALUE_ISINF (c2alt))
3912		   ncmp = ERROR_MARK;
3913		 else
3914		   {
3915		     c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3916					   build_real (TREE_TYPE (@0), c2alt));
3917		     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3918		       ncmp = ERROR_MARK;
3919		     else if (real_equal (&TREE_REAL_CST (c3),
3920					  &TREE_REAL_CST (@1)))
3921		       c2 = c2alt;
3922		   }
3923	       }
3924	   }
3925       }
3926       (if (cmp == GT_EXPR || cmp == GE_EXPR)
3927	(if (REAL_VALUE_ISINF (c2))
3928	 /* sqrt(x) > y is x == +Inf, when y is very large.  */
3929	 (if (HONOR_INFINITIES (@0))
3930	  (eq @0 { build_real (TREE_TYPE (@0), c2); })
3931	  { constant_boolean_node (false, type); })
3932	 /* sqrt(x) > c is the same as x > c*c.  */
3933	 (if (ncmp != ERROR_MARK)
3934	  (if (ncmp == GE_EXPR)
3935	   (ge @0 { build_real (TREE_TYPE (@0), c2); })
3936	   (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3937	/* else if (cmp == LT_EXPR || cmp == LE_EXPR)  */
3938	(if (REAL_VALUE_ISINF (c2))
3939	 (switch
3940	  /* sqrt(x) < y is always true, when y is a very large
3941	     value and we don't care about NaNs or Infinities.  */
3942	  (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3943	   { constant_boolean_node (true, type); })
3944	  /* sqrt(x) < y is x != +Inf when y is very large and we
3945	     don't care about NaNs.  */
3946	  (if (! HONOR_NANS (@0))
3947	   (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3948	  /* sqrt(x) < y is x >= 0 when y is very large and we
3949	     don't care about Infinities.  */
3950	  (if (! HONOR_INFINITIES (@0))
3951	   (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3952	  /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
3953	  (if (GENERIC)
3954	   (truth_andif
3955	    (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3956	    (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3957	 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
3958	 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3959	  (if (ncmp == LT_EXPR)
3960	   (lt @0 { build_real (TREE_TYPE (@0), c2); })
3961	   (le @0 { build_real (TREE_TYPE (@0), c2); }))
3962	  /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
3963	  (if (ncmp != ERROR_MARK && GENERIC)
3964	   (if (ncmp == LT_EXPR)
3965	    (truth_andif
3966	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3967	     (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3968	    (truth_andif
3969	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3970	     (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3971   /* Transform sqrt(x) cmp sqrt(y) -> x cmp y.  */
3972   (simplify
3973    (cmp (sq @0) (sq @1))
3974      (if (! HONOR_NANS (@0))
3975	(cmp @0 @1))))))
3976
3977/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M.  */
3978(for cmp  (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3979     icmp (lt le eq ne ge gt unordered ordered lt   le   gt   ge   eq   ne)
3980 (simplify
3981  (cmp (float@0 @1) (float @2))
3982   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3983	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3984    (with
3985     {
3986       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3987       tree type1 = TREE_TYPE (@1);
3988       bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3989       tree type2 = TREE_TYPE (@2);
3990       bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3991     }
3992     (if (fmt.can_represent_integral_type_p (type1)
3993	  && fmt.can_represent_integral_type_p (type2))
3994      (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3995       { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3996       (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3997            && type1_signed_p >= type2_signed_p)
3998        (icmp @1 (convert @2))
3999        (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4000             && type1_signed_p <= type2_signed_p)
4001         (icmp (convert:type2 @1) @2)
4002         (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4003              && type1_signed_p == type2_signed_p)
4004	  (icmp @1 @2))))))))))
4005
4006/* Optimize various special cases of (FTYPE) N CMP CST.  */
4007(for cmp  (lt le eq ne ge gt)
4008     icmp (le le eq ne ge ge)
4009 (simplify
4010  (cmp (float @0) REAL_CST@1)
4011   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4012	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4013    (with
4014     {
4015       tree itype = TREE_TYPE (@0);
4016       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4017       const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4018       /* Be careful to preserve any potential exceptions due to
4019	  NaNs.  qNaNs are ok in == or != context.
4020	  TODO: relax under -fno-trapping-math or
4021	  -fno-signaling-nans.  */
4022       bool exception_p
4023         = real_isnan (cst) && (cst->signalling
4024				|| (cmp != EQ_EXPR && cmp != NE_EXPR));
4025     }
4026     /* TODO: allow non-fitting itype and SNaNs when
4027	-fno-trapping-math.  */
4028     (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4029      (with
4030       {
4031	 signop isign = TYPE_SIGN (itype);
4032	 REAL_VALUE_TYPE imin, imax;
4033	 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4034	 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4035
4036	 REAL_VALUE_TYPE icst;
4037	 if (cmp == GT_EXPR || cmp == GE_EXPR)
4038	   real_ceil (&icst, fmt, cst);
4039	 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4040	   real_floor (&icst, fmt, cst);
4041	 else
4042	   real_trunc (&icst, fmt, cst);
4043
4044	 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4045
4046	 bool overflow_p = false;
4047	 wide_int icst_val
4048	   = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4049       }
4050       (switch
4051	/* Optimize cases when CST is outside of ITYPE's range.  */
4052	(if (real_compare (LT_EXPR, cst, &imin))
4053	 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4054				  type); })
4055	(if (real_compare (GT_EXPR, cst, &imax))
4056	 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4057				  type); })
4058	/* Remove cast if CST is an integer representable by ITYPE.  */
4059	(if (cst_int_p)
4060	 (cmp @0 { gcc_assert (!overflow_p);
4061		   wide_int_to_tree (itype, icst_val); })
4062	)
4063	/* When CST is fractional, optimize
4064	    (FTYPE) N == CST -> 0
4065	    (FTYPE) N != CST -> 1.  */
4066	(if (cmp == EQ_EXPR || cmp == NE_EXPR)
4067	 { constant_boolean_node (cmp == NE_EXPR, type); })
4068	/* Otherwise replace with sensible integer constant.  */
4069	(with
4070	 {
4071	   gcc_checking_assert (!overflow_p);
4072	 }
4073	 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4074
4075/* Fold A /[ex] B CMP C to A CMP B * C.  */
4076(for cmp (eq ne)
4077 (simplify
4078  (cmp (exact_div @0 @1) INTEGER_CST@2)
4079  (if (!integer_zerop (@1))
4080   (if (wi::to_wide (@2) == 0)
4081    (cmp @0 @2)
4082    (if (TREE_CODE (@1) == INTEGER_CST)
4083     (with
4084      {
4085	wi::overflow_type ovf;
4086	wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4087				 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4088      }
4089      (if (ovf)
4090       { constant_boolean_node (cmp == NE_EXPR, type); }
4091       (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4092(for cmp (lt le gt ge)
4093 (simplify
4094  (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4095  (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4096   (with
4097    {
4098      wi::overflow_type ovf;
4099      wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4100			       TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4101    }
4102    (if (ovf)
4103     { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4104					TYPE_SIGN (TREE_TYPE (@2)))
4105			      != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4106     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4107
4108/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4109
4110   For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4111   For large C (more than min/B+2^size), this is also true, with the
4112   multiplication computed modulo 2^size.
4113   For intermediate C, this just tests the sign of A.  */
4114(for cmp  (lt le gt ge)
4115     cmp2 (ge ge lt lt)
4116 (simplify
4117  (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4118  (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4119       && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4120       && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4121   (with
4122    {
4123      tree utype = TREE_TYPE (@2);
4124      wide_int denom = wi::to_wide (@1);
4125      wide_int right = wi::to_wide (@2);
4126      wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4127      wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4128      bool small = wi::leu_p (right, smax);
4129      bool large = wi::geu_p (right, smin);
4130    }
4131    (if (small || large)
4132     (cmp (convert:utype @0) (mult @2 (convert @1)))
4133     (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4134
4135/* Unordered tests if either argument is a NaN.  */
4136(simplify
4137 (bit_ior (unordered @0 @0) (unordered @1 @1))
4138 (if (types_match (@0, @1))
4139  (unordered @0 @1)))
4140(simplify
4141 (bit_and (ordered @0 @0) (ordered @1 @1))
4142 (if (types_match (@0, @1))
4143  (ordered @0 @1)))
4144(simplify
4145 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4146 @2)
4147(simplify
4148 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4149 @2)
4150
4151/* Simple range test simplifications.  */
4152/* A < B || A >= B -> true.  */
4153(for test1 (lt le le le ne ge)
4154     test2 (ge gt ge ne eq ne)
4155 (simplify
4156  (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4157  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4158       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4159   { constant_boolean_node (true, type); })))
4160/* A < B && A >= B -> false.  */
4161(for test1 (lt lt lt le ne eq)
4162     test2 (ge gt eq gt eq gt)
4163 (simplify
4164  (bit_and:c (test1 @0 @1) (test2 @0 @1))
4165  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4166       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4167   { constant_boolean_node (false, type); })))
4168
4169/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4170   A & (2**N - 1) >  2**K - 1 -> A & (2**N - 2**K) != 0
4171
4172   Note that comparisons
4173     A & (2**N - 1) <  2**K   -> A & (2**N - 2**K) == 0
4174     A & (2**N - 1) >= 2**K   -> A & (2**N - 2**K) != 0
4175   will be canonicalized to above so there's no need to
4176   consider them here.
4177 */
4178
4179(for cmp (le gt)
4180     eqcmp (eq ne)
4181 (simplify
4182  (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4183  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4184   (with
4185    {
4186     tree ty = TREE_TYPE (@0);
4187     unsigned prec = TYPE_PRECISION (ty);
4188     wide_int mask = wi::to_wide (@2, prec);
4189     wide_int rhs = wi::to_wide (@3, prec);
4190     signop sgn = TYPE_SIGN (ty);
4191    }
4192    (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4193	 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4194      (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4195	     { build_zero_cst (ty); }))))))
4196
4197/* -A CMP -B -> B CMP A.  */
4198(for cmp (tcc_comparison)
4199     scmp (swapped_tcc_comparison)
4200 (simplify
4201  (cmp (negate @0) (negate @1))
4202  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4203       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4204	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4205   (scmp @0 @1)))
4206 (simplify
4207  (cmp (negate @0) CONSTANT_CLASS_P@1)
4208  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4209       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4210	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4211   (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4212    (if (tem && !TREE_OVERFLOW (tem))
4213     (scmp @0 { tem; }))))))
4214
4215/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
4216(for op (eq ne)
4217 (simplify
4218  (op (abs @0) zerop@1)
4219  (op @0 @1)))
4220
4221/* From fold_sign_changed_comparison and fold_widened_comparison.
4222   FIXME: the lack of symmetry is disturbing.  */
4223(for cmp (simple_comparison)
4224 (simplify
4225  (cmp (convert@0 @00) (convert?@1 @10))
4226  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4227       /* Disable this optimization if we're casting a function pointer
4228	  type on targets that require function pointer canonicalization.  */
4229       && !(targetm.have_canonicalize_funcptr_for_compare ()
4230	    && ((POINTER_TYPE_P (TREE_TYPE (@00))
4231		 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4232		|| (POINTER_TYPE_P (TREE_TYPE (@10))
4233		    && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4234       && single_use (@0))
4235   (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4236	&& (TREE_CODE (@10) == INTEGER_CST
4237	    || @1 != @10)
4238	&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4239	    || cmp == NE_EXPR
4240	    || cmp == EQ_EXPR)
4241	&& !POINTER_TYPE_P (TREE_TYPE (@00)))
4242    /* ???  The special-casing of INTEGER_CST conversion was in the original
4243       code and here to avoid a spurious overflow flag on the resulting
4244       constant which fold_convert produces.  */
4245    (if (TREE_CODE (@1) == INTEGER_CST)
4246     (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4247				TREE_OVERFLOW (@1)); })
4248     (cmp @00 (convert @1)))
4249
4250    (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4251     /* If possible, express the comparison in the shorter mode.  */
4252     (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4253	   || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4254	   || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4255	       && TYPE_UNSIGNED (TREE_TYPE (@00))))
4256	  && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4257	      || ((TYPE_PRECISION (TREE_TYPE (@00))
4258		   >= TYPE_PRECISION (TREE_TYPE (@10)))
4259		  && (TYPE_UNSIGNED (TREE_TYPE (@00))
4260		      == TYPE_UNSIGNED (TREE_TYPE (@10))))
4261	      || (TREE_CODE (@10) == INTEGER_CST
4262		  && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4263		  && int_fits_type_p (@10, TREE_TYPE (@00)))))
4264      (cmp @00 (convert @10))
4265      (if (TREE_CODE (@10) == INTEGER_CST
4266	   && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4267	   && !int_fits_type_p (@10, TREE_TYPE (@00)))
4268       (with
4269	{
4270	  tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4271	  tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4272	  bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4273	  bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4274	}
4275	(if (above || below)
4276	 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4277	  { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4278	  (if (cmp == LT_EXPR || cmp == LE_EXPR)
4279	   { constant_boolean_node (above ? true : false, type); }
4280	   (if (cmp == GT_EXPR || cmp == GE_EXPR)
4281	    { constant_boolean_node (above ? false : true, type); }))))))))))))
4282
4283(for cmp (eq ne)
4284 (simplify
4285  /* SSA names are canonicalized to 2nd place.  */
4286  (cmp addr@0 SSA_NAME@1)
4287  (with
4288   { poly_int64 off; tree base; }
4289   /* A local variable can never be pointed to by
4290      the default SSA name of an incoming parameter.  */
4291   (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4292	&& TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4293	&& (base = get_base_address (TREE_OPERAND (@0, 0)))
4294	&& TREE_CODE (base) == VAR_DECL
4295	&& auto_var_in_fn_p (base, current_function_decl))
4296    (if (cmp == NE_EXPR)
4297     { constant_boolean_node (true, type); }
4298     { constant_boolean_node (false, type); })
4299    /* If the address is based on @1 decide using the offset.  */
4300    (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4301	 && TREE_CODE (base) == MEM_REF
4302	 && TREE_OPERAND (base, 0) == @1)
4303     (with { off += mem_ref_offset (base).force_shwi (); }
4304      (if (known_ne (off, 0))
4305       { constant_boolean_node (cmp == NE_EXPR, type); }
4306       (if (known_eq (off, 0))
4307        { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4308
4309/* Equality compare simplifications from fold_binary  */
4310(for cmp (eq ne)
4311
4312 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4313    Similarly for NE_EXPR.  */
4314 (simplify
4315  (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4316  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4317       && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4318   { constant_boolean_node (cmp == NE_EXPR, type); }))
4319
4320 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
4321 (simplify
4322  (cmp (bit_xor @0 @1) integer_zerop)
4323  (cmp @0 @1))
4324
4325 /* (X ^ Y) == Y becomes X == 0.
4326    Likewise (X ^ Y) == X becomes Y == 0.  */
4327 (simplify
4328  (cmp:c (bit_xor:c @0 @1) @0)
4329  (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4330
4331 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
4332 (simplify
4333  (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4334  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4335   (cmp @0 (bit_xor @1 (convert @2)))))
4336
4337 (simplify
4338  (cmp (convert? addr@0) integer_zerop)
4339  (if (tree_single_nonzero_warnv_p (@0, NULL))
4340   { constant_boolean_node (cmp == NE_EXPR, type); })))
4341
4342/* If we have (A & C) == C where C is a power of 2, convert this into
4343   (A & C) != 0.  Similarly for NE_EXPR.  */
4344(for cmp (eq ne)
4345     icmp (ne eq)
4346 (simplify
4347  (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4348  (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4349
4350/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4351   convert this into a shift followed by ANDing with D.  */
4352(simplify
4353 (cond
4354  (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4355  INTEGER_CST@2 integer_zerop)
4356 (if (integer_pow2p (@2))
4357  (with {
4358     int shift = (wi::exact_log2 (wi::to_wide (@2))
4359		  - wi::exact_log2 (wi::to_wide (@1)));
4360   }
4361   (if (shift > 0)
4362    (bit_and
4363     (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4364    (bit_and
4365     (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4366     @2)))))
4367
4368/* If we have (A & C) != 0 where C is the sign bit of A, convert
4369   this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
4370(for cmp (eq ne)
4371     ncmp (ge lt)
4372 (simplify
4373  (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4374  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4375       && type_has_mode_precision_p (TREE_TYPE (@0))
4376       && element_precision (@2) >= element_precision (@0)
4377       && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4378   (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4379    (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4380
4381/* If we have A < 0 ? C : 0 where C is a power of 2, convert
4382   this into a right shift or sign extension followed by ANDing with C.  */
4383(simplify
4384 (cond
4385  (lt @0 integer_zerop)
4386  INTEGER_CST@1 integer_zerop)
4387 (if (integer_pow2p (@1)
4388      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4389  (with {
4390    int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4391   }
4392   (if (shift >= 0)
4393    (bit_and
4394     (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4395     @1)
4396    /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4397       sign extension followed by AND with C will achieve the effect.  */
4398    (bit_and (convert @0) @1)))))
4399
4400/* When the addresses are not directly of decls compare base and offset.
4401   This implements some remaining parts of fold_comparison address
4402   comparisons but still no complete part of it.  Still it is good
4403   enough to make fold_stmt not regress when not dispatching to fold_binary.  */
4404(for cmp (simple_comparison)
4405 (simplify
4406  (cmp (convert1?@2 addr@0) (convert2? addr@1))
4407  (with
4408   {
4409     poly_int64 off0, off1;
4410     tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4411     tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4412     if (base0 && TREE_CODE (base0) == MEM_REF)
4413       {
4414	 off0 += mem_ref_offset (base0).force_shwi ();
4415         base0 = TREE_OPERAND (base0, 0);
4416       }
4417     if (base1 && TREE_CODE (base1) == MEM_REF)
4418       {
4419	 off1 += mem_ref_offset (base1).force_shwi ();
4420         base1 = TREE_OPERAND (base1, 0);
4421       }
4422   }
4423   (if (base0 && base1)
4424    (with
4425     {
4426       int equal = 2;
4427       /* Punt in GENERIC on variables with value expressions;
4428	  the value expressions might point to fields/elements
4429	  of other vars etc.  */
4430       if (GENERIC
4431	   && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4432	       || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4433	 ;
4434       else if (decl_in_symtab_p (base0)
4435		&& decl_in_symtab_p (base1))
4436         equal = symtab_node::get_create (base0)
4437	           ->equal_address_to (symtab_node::get_create (base1));
4438       else if ((DECL_P (base0)
4439		 || TREE_CODE (base0) == SSA_NAME
4440		 || TREE_CODE (base0) == STRING_CST)
4441		&& (DECL_P (base1)
4442		    || TREE_CODE (base1) == SSA_NAME
4443		    || TREE_CODE (base1) == STRING_CST))
4444         equal = (base0 == base1);
4445       if (equal == 0)
4446	 {
4447	   HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4448	   off0.is_constant (&ioff0);
4449	   off1.is_constant (&ioff1);
4450	   if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4451	       || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4452	       || (TREE_CODE (base0) == STRING_CST
4453		   && TREE_CODE (base1) == STRING_CST
4454		   && ioff0 >= 0 && ioff1 >= 0
4455		   && ioff0 < TREE_STRING_LENGTH (base0)
4456		   && ioff1 < TREE_STRING_LENGTH (base1)
4457		   /* This is a too conservative test that the STRING_CSTs
4458		      will not end up being string-merged.  */
4459		   && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4460			       TREE_STRING_POINTER (base1) + ioff1,
4461			       MIN (TREE_STRING_LENGTH (base0) - ioff0,
4462				    TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4463	     ;
4464	   else if (!DECL_P (base0) || !DECL_P (base1))
4465	     equal = 2;
4466	   else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4467	     equal = 2;
4468	   /* If this is a pointer comparison, ignore for now even
4469	      valid equalities where one pointer is the offset zero
4470	      of one object and the other to one past end of another one.  */
4471	   else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4472	     ;
4473	   /* Assume that automatic variables can't be adjacent to global
4474	      variables.  */
4475	   else if (is_global_var (base0) != is_global_var (base1))
4476	     ;
4477	   else
4478	     {
4479	       tree sz0 = DECL_SIZE_UNIT (base0);
4480	       tree sz1 = DECL_SIZE_UNIT (base1);
4481	       /* If sizes are unknown, e.g. VLA or not representable,
4482		  punt.  */
4483	       if (!tree_fits_poly_int64_p (sz0)
4484		   || !tree_fits_poly_int64_p (sz1))
4485		 equal = 2;
4486	       else
4487		 {
4488		   poly_int64 size0 = tree_to_poly_int64 (sz0);
4489		   poly_int64 size1 = tree_to_poly_int64 (sz1);
4490		   /* If one offset is pointing (or could be) to the beginning
4491		      of one object and the other is pointing to one past the
4492		      last byte of the other object, punt.  */
4493		   if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4494		     equal = 2;
4495		   else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4496		     equal = 2;
4497		   /* If both offsets are the same, there are some cases
4498		      we know that are ok.  Either if we know they aren't
4499		      zero, or if we know both sizes are no zero.  */
4500		   if (equal == 2
4501		       && known_eq (off0, off1)
4502		       && (known_ne (off0, 0)
4503			   || (known_ne (size0, 0) && known_ne (size1, 0))))
4504		     equal = 0;
4505		 }
4506	     }
4507	 }
4508     }
4509     (if (equal == 1
4510	  && (cmp == EQ_EXPR || cmp == NE_EXPR
4511	      /* If the offsets are equal we can ignore overflow.  */
4512	      || known_eq (off0, off1)
4513	      || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4514		 /* Or if we compare using pointers to decls or strings.  */
4515	      || (POINTER_TYPE_P (TREE_TYPE (@2))
4516		  && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4517      (switch
4518       (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4519	{ constant_boolean_node (known_eq (off0, off1), type); })
4520       (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4521	{ constant_boolean_node (known_ne (off0, off1), type); })
4522       (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4523	{ constant_boolean_node (known_lt (off0, off1), type); })
4524       (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4525	{ constant_boolean_node (known_le (off0, off1), type); })
4526       (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4527	{ constant_boolean_node (known_ge (off0, off1), type); })
4528       (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4529	{ constant_boolean_node (known_gt (off0, off1), type); }))
4530      (if (equal == 0)
4531	(switch
4532	 (if (cmp == EQ_EXPR)
4533	  { constant_boolean_node (false, type); })
4534	 (if (cmp == NE_EXPR)
4535	  { constant_boolean_node (true, type); })))))))))
4536
4537/* Simplify pointer equality compares using PTA.  */
4538(for neeq (ne eq)
4539 (simplify
4540  (neeq @0 @1)
4541  (if (POINTER_TYPE_P (TREE_TYPE (@0))
4542       && ptrs_compare_unequal (@0, @1))
4543   { constant_boolean_node (neeq != EQ_EXPR, type); })))
4544
4545/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4546   and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4547   Disable the transform if either operand is pointer to function.
4548   This broke pr22051-2.c for arm where function pointer
4549   canonicalizaion is not wanted.  */
4550
4551(for cmp (ne eq)
4552 (simplify
4553  (cmp (convert @0) INTEGER_CST@1)
4554  (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4555	 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4556	 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
4557	 /* Don't perform this optimization in GENERIC if @0 has reference
4558	    type when sanitizing.  See PR101210.  */
4559	 && !(GENERIC
4560	      && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
4561	      && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
4562	|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4563	    && POINTER_TYPE_P (TREE_TYPE (@1))
4564	    && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4565       && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4566   (cmp @0 (convert @1)))))
4567
4568/* Non-equality compare simplifications from fold_binary  */
4569(for cmp (lt gt le ge)
4570 /* Comparisons with the highest or lowest possible integer of
4571    the specified precision will have known values.  */
4572 (simplify
4573  (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4574  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4575	|| POINTER_TYPE_P (TREE_TYPE (@1))
4576	|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4577       && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4578   (with
4579    {
4580      tree cst = uniform_integer_cst_p (@1);
4581      tree arg1_type = TREE_TYPE (cst);
4582      unsigned int prec = TYPE_PRECISION (arg1_type);
4583      wide_int max = wi::max_value (arg1_type);
4584      wide_int signed_max = wi::max_value (prec, SIGNED);
4585      wide_int min = wi::min_value (arg1_type);
4586    }
4587    (switch
4588     (if (wi::to_wide (cst) == max)
4589      (switch
4590       (if (cmp == GT_EXPR)
4591	{ constant_boolean_node (false, type); })
4592       (if (cmp == GE_EXPR)
4593	(eq @2 @1))
4594       (if (cmp == LE_EXPR)
4595	{ constant_boolean_node (true, type); })
4596       (if (cmp == LT_EXPR)
4597	(ne @2 @1))))
4598     (if (wi::to_wide (cst) == min)
4599      (switch
4600       (if (cmp == LT_EXPR)
4601        { constant_boolean_node (false, type); })
4602       (if (cmp == LE_EXPR)
4603        (eq @2 @1))
4604       (if (cmp == GE_EXPR)
4605        { constant_boolean_node (true, type); })
4606       (if (cmp == GT_EXPR)
4607        (ne @2 @1))))
4608     (if (wi::to_wide (cst) == max - 1)
4609      (switch
4610       (if (cmp == GT_EXPR)
4611	(eq @2 { build_uniform_cst (TREE_TYPE (@1),
4612				    wide_int_to_tree (TREE_TYPE (cst),
4613						      wi::to_wide (cst)
4614						      + 1)); }))
4615       (if (cmp == LE_EXPR)
4616	(ne @2 { build_uniform_cst (TREE_TYPE (@1),
4617				    wide_int_to_tree (TREE_TYPE (cst),
4618						      wi::to_wide (cst)
4619						      + 1)); }))))
4620     (if (wi::to_wide (cst) == min + 1)
4621      (switch
4622       (if (cmp == GE_EXPR)
4623        (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4624				    wide_int_to_tree (TREE_TYPE (cst),
4625						      wi::to_wide (cst)
4626						      - 1)); }))
4627       (if (cmp == LT_EXPR)
4628        (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4629				    wide_int_to_tree (TREE_TYPE (cst),
4630						      wi::to_wide (cst)
4631						      - 1)); }))))
4632     (if (wi::to_wide (cst) == signed_max
4633	  && TYPE_UNSIGNED (arg1_type)
4634	  /* We will flip the signedness of the comparison operator
4635	     associated with the mode of @1, so the sign bit is
4636	     specified by this mode.  Check that @1 is the signed
4637	     max associated with this sign bit.  */
4638	  && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4639	  /* signed_type does not work on pointer types.  */
4640	  && INTEGRAL_TYPE_P (arg1_type))
4641      /* The following case also applies to X < signed_max+1
4642	 and X >= signed_max+1 because previous transformations.  */
4643      (if (cmp == LE_EXPR || cmp == GT_EXPR)
4644       (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4645       	(switch
4646	 (if (cst == @1 && cmp == LE_EXPR)
4647	  (ge (convert:st @0) { build_zero_cst (st); }))
4648	 (if (cst == @1 && cmp == GT_EXPR)
4649	  (lt (convert:st @0) { build_zero_cst (st); }))
4650	 (if (cmp == LE_EXPR)
4651	  (ge (view_convert:st @0) { build_zero_cst (st); }))
4652	 (if (cmp == GT_EXPR)
4653	  (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4654
4655(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4656 /* If the second operand is NaN, the result is constant.  */
4657 (simplify
4658  (cmp @0 REAL_CST@1)
4659  (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4660       && (cmp != LTGT_EXPR || ! flag_trapping_math))
4661   { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4662			    ? false : true, type); })))
4663
4664/* bool_var != 0 becomes bool_var.  */
4665(simplify
4666 (ne @0 integer_zerop)
4667 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4668      && types_match (type, TREE_TYPE (@0)))
4669  (non_lvalue @0)))
4670/* bool_var == 1 becomes bool_var.  */
4671(simplify
4672 (eq @0 integer_onep)
4673 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4674      && types_match (type, TREE_TYPE (@0)))
4675  (non_lvalue @0)))
4676/* Do not handle
4677   bool_var == 0 becomes !bool_var or
4678   bool_var != 1 becomes !bool_var
4679   here because that only is good in assignment context as long
4680   as we require a tcc_comparison in GIMPLE_CONDs where we'd
4681   replace if (x == 0) with tem = ~x; if (tem != 0) which is
4682   clearly less optimal and which we'll transform again in forwprop.  */
4683
4684/* When one argument is a constant, overflow detection can be simplified.
4685   Currently restricted to single use so as not to interfere too much with
4686   ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4687   A + CST CMP A  ->  A CMP' CST' */
4688(for cmp (lt le ge gt)
4689     out (gt gt le le)
4690 (simplify
4691  (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4692  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4693       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4694       && wi::to_wide (@1) != 0
4695       && single_use (@2))
4696   (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4697    (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4698			        wi::max_value (prec, UNSIGNED)
4699				- wi::to_wide (@1)); })))))
4700
4701/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4702   However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4703   expects the long form, so we restrict the transformation for now.  */
4704(for cmp (gt le)
4705 (simplify
4706  (cmp:c (minus@2 @0 @1) @0)
4707  (if (single_use (@2)
4708       && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4709       && TYPE_UNSIGNED (TREE_TYPE (@0))
4710       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4711   (cmp @1 @0))))
4712
4713/* Testing for overflow is unnecessary if we already know the result.  */
4714/* A - B > A  */
4715(for cmp (gt le)
4716     out (ne eq)
4717 (simplify
4718  (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4719  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4720       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4721   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4722/* A + B < A  */
4723(for cmp (lt ge)
4724     out (ne eq)
4725 (simplify
4726  (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4727  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4728       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4729   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4730
4731/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4732   Simplify it to __builtin_mul_overflow (A, B, <unused>).  */
4733(for cmp (lt ge)
4734     out (ne eq)
4735 (simplify
4736  (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4737  (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4738   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4739    (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4740
4741/* Simplification of math builtins.  These rules must all be optimizations
4742   as well as IL simplifications.  If there is a possibility that the new
4743   form could be a pessimization, the rule should go in the canonicalization
4744   section that follows this one.
4745
4746   Rules can generally go in this section if they satisfy one of
4747   the following:
4748
4749   - the rule describes an identity
4750
4751   - the rule replaces calls with something as simple as addition or
4752     multiplication
4753
4754   - the rule contains unary calls only and simplifies the surrounding
4755     arithmetic.  (The idea here is to exclude non-unary calls in which
4756     one operand is constant and in which the call is known to be cheap
4757     when the operand has that value.)  */
4758
4759(if (flag_unsafe_math_optimizations)
4760 /* Simplify sqrt(x) * sqrt(x) -> x.  */
4761 (simplify
4762  (mult (SQRT_ALL@1 @0) @1)
4763  (if (!HONOR_SNANS (type))
4764   @0))
4765
4766 (for op (plus minus)
4767  /* Simplify (A / C) +- (B / C) -> (A +- B) / C.  */
4768  (simplify
4769   (op (rdiv @0 @1)
4770       (rdiv @2 @1))
4771   (rdiv (op @0 @2) @1)))
4772
4773 (for cmp (lt le gt ge)
4774      neg_cmp (gt ge lt le)
4775  /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0.  */
4776  (simplify
4777   (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4778   (with
4779    { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4780    (if (tem
4781	 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4782	      || (real_zerop (tem) && !real_zerop (@1))))
4783     (switch
4784      (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4785       (cmp @0 { tem; }))
4786      (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4787       (neg_cmp @0 { tem; })))))))
4788
4789 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y).  */
4790 (for root (SQRT CBRT)
4791  (simplify
4792   (mult (root:s @0) (root:s @1))
4793    (root (mult @0 @1))))
4794
4795 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4796 (for exps (EXP EXP2 EXP10 POW10)
4797  (simplify
4798   (mult (exps:s @0) (exps:s @1))
4799    (exps (plus @0 @1))))
4800
4801 /* Simplify a/root(b/c) into a*root(c/b).  */
4802 (for root (SQRT CBRT)
4803  (simplify
4804   (rdiv @0 (root:s (rdiv:s @1 @2)))
4805    (mult @0 (root (rdiv @2 @1)))))
4806
4807 /* Simplify x/expN(y) into x*expN(-y).  */
4808 (for exps (EXP EXP2 EXP10 POW10)
4809  (simplify
4810   (rdiv @0 (exps:s @1))
4811    (mult @0 (exps (negate @1)))))
4812
4813 (for logs (LOG LOG2 LOG10 LOG10)
4814      exps (EXP EXP2 EXP10 POW10)
4815  /* logN(expN(x)) -> x.  */
4816  (simplify
4817   (logs (exps @0))
4818   @0)
4819  /* expN(logN(x)) -> x.  */
4820  (simplify
4821   (exps (logs @0))
4822   @0))
4823
4824 /* Optimize logN(func()) for various exponential functions.  We
4825    want to determine the value "x" and the power "exponent" in
4826    order to transform logN(x**exponent) into exponent*logN(x).  */
4827 (for logs (LOG  LOG   LOG   LOG2 LOG2  LOG2  LOG10 LOG10)
4828      exps (EXP2 EXP10 POW10 EXP  EXP10 POW10 EXP   EXP2)
4829  (simplify
4830   (logs (exps @0))
4831   (if (SCALAR_FLOAT_TYPE_P (type))
4832    (with {
4833      tree x;
4834      switch (exps)
4835	{
4836	CASE_CFN_EXP:
4837	  /* Prepare to do logN(exp(exponent)) -> exponent*logN(e).  */
4838	  x = build_real_truncate (type, dconst_e ());
4839	  break;
4840	CASE_CFN_EXP2:
4841	  /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2).  */
4842	  x = build_real (type, dconst2);
4843	  break;
4844	CASE_CFN_EXP10:
4845	CASE_CFN_POW10:
4846	  /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10).  */
4847	  {
4848	    REAL_VALUE_TYPE dconst10;
4849	    real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4850	    x = build_real (type, dconst10);
4851	  }
4852	  break;
4853	default:
4854	  gcc_unreachable ();
4855	}
4856      }
4857     (mult (logs { x; }) @0)))))
4858
4859 (for logs (LOG LOG
4860            LOG2 LOG2
4861	    LOG10 LOG10)
4862      exps (SQRT CBRT)
4863  (simplify
4864   (logs (exps @0))
4865   (if (SCALAR_FLOAT_TYPE_P (type))
4866    (with {
4867      tree x;
4868      switch (exps)
4869	{
4870	CASE_CFN_SQRT:
4871	  /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x).  */
4872	  x = build_real (type, dconsthalf);
4873	  break;
4874	CASE_CFN_CBRT:
4875	  /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x).  */
4876	  x = build_real_truncate (type, dconst_third ());
4877	  break;
4878	default:
4879	  gcc_unreachable ();
4880	}
4881      }
4882     (mult { x; } (logs @0))))))
4883
4884 /* logN(pow(x,exponent)) -> exponent*logN(x).  */
4885 (for logs (LOG LOG2 LOG10)
4886      pows (POW)
4887  (simplify
4888   (logs (pows @0 @1))
4889   (mult @1 (logs @0))))
4890
4891 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4892    or if C is a positive power of 2,
4893    pow(C,x) -> exp2(log2(C)*x).  */
4894#if GIMPLE
4895 (for pows (POW)
4896      exps (EXP)
4897      logs (LOG)
4898      exp2s (EXP2)
4899      log2s (LOG2)
4900  (simplify
4901   (pows REAL_CST@0 @1)
4902   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4903	&& real_isfinite (TREE_REAL_CST_PTR (@0))
4904	/* As libmvec doesn't have a vectorized exp2, defer optimizing
4905	   the use_exp2 case until after vectorization.  It seems actually
4906	   beneficial for all constants to postpone this until later,
4907	   because exp(log(C)*x), while faster, will have worse precision
4908	   and if x folds into a constant too, that is unnecessary
4909	   pessimization.  */
4910	&& canonicalize_math_after_vectorization_p ())
4911    (with {
4912       const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4913       bool use_exp2 = false;
4914       if (targetm.libc_has_function (function_c99_misc)
4915	   && value->cl == rvc_normal)
4916	 {
4917	   REAL_VALUE_TYPE frac_rvt = *value;
4918	   SET_REAL_EXP (&frac_rvt, 1);
4919	   if (real_equal (&frac_rvt, &dconst1))
4920	     use_exp2 = true;
4921	 }
4922     }
4923     (if (!use_exp2)
4924      (if (optimize_pow_to_exp (@0, @1))
4925       (exps (mult (logs @0) @1)))
4926      (exp2s (mult (log2s @0) @1)))))))
4927#endif
4928
4929 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0.  */
4930 (for pows (POW)
4931      exps (EXP EXP2 EXP10 POW10)
4932      logs (LOG LOG2 LOG10 LOG10)
4933  (simplify
4934   (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4935   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4936	&& real_isfinite (TREE_REAL_CST_PTR (@0)))
4937    (exps (plus (mult (logs @0) @1) @2)))))
4938
4939 (for sqrts (SQRT)
4940      cbrts (CBRT)
4941      pows (POW)
4942      exps (EXP EXP2 EXP10 POW10)
4943  /* sqrt(expN(x)) -> expN(x*0.5).  */
4944  (simplify
4945   (sqrts (exps @0))
4946   (exps (mult @0 { build_real (type, dconsthalf); })))
4947  /* cbrt(expN(x)) -> expN(x/3).  */
4948  (simplify
4949   (cbrts (exps @0))
4950   (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4951  /* pow(expN(x), y) -> expN(x*y).  */
4952  (simplify
4953   (pows (exps @0) @1)
4954   (exps (mult @0 @1))))
4955
4956 /* tan(atan(x)) -> x.  */
4957 (for tans (TAN)
4958      atans (ATAN)
4959  (simplify
4960   (tans (atans @0))
4961   @0)))
4962
4963 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4964 (for sins (SIN)
4965      atans (ATAN)
4966      sqrts (SQRT)
4967      copysigns (COPYSIGN)
4968  (simplify
4969   (sins (atans:s @0))
4970   (with
4971     {
4972      REAL_VALUE_TYPE r_cst;
4973      build_sinatan_real (&r_cst, type);
4974      tree t_cst = build_real (type, r_cst);
4975      tree t_one = build_one_cst (type);
4976     }
4977    (if (SCALAR_FLOAT_TYPE_P (type))
4978     (cond (lt (abs @0) { t_cst; })
4979      (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4980      (copysigns { t_one; } @0))))))
4981
4982/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4983 (for coss (COS)
4984      atans (ATAN)
4985      sqrts (SQRT)
4986      copysigns (COPYSIGN)
4987  (simplify
4988   (coss (atans:s @0))
4989   (with
4990     {
4991      REAL_VALUE_TYPE r_cst;
4992      build_sinatan_real (&r_cst, type);
4993      tree t_cst = build_real (type, r_cst);
4994      tree t_one = build_one_cst (type);
4995      tree t_zero = build_zero_cst (type);
4996     }
4997    (if (SCALAR_FLOAT_TYPE_P (type))
4998     (cond (lt (abs @0) { t_cst; })
4999      (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5000      (copysigns { t_zero; } @0))))))
5001
5002 (if (!flag_errno_math)
5003  /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5004  (for sinhs (SINH)
5005       atanhs (ATANH)
5006       sqrts (SQRT)
5007   (simplify
5008    (sinhs (atanhs:s @0))
5009    (with { tree t_one = build_one_cst (type); }
5010    (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5011
5012  /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5013  (for coshs (COSH)
5014       atanhs (ATANH)
5015       sqrts (SQRT)
5016   (simplify
5017    (coshs (atanhs:s @0))
5018    (with { tree t_one = build_one_cst (type); }
5019    (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5020
5021/* cabs(x+0i) or cabs(0+xi) -> abs(x).  */
5022(simplify
5023 (CABS (complex:C @0 real_zerop@1))
5024 (abs @0))
5025
5026/* trunc(trunc(x)) -> trunc(x), etc.  */
5027(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5028 (simplify
5029  (fns (fns @0))
5030  (fns @0)))
5031/* f(x) -> x if x is integer valued and f does nothing for such values.  */
5032(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5033 (simplify
5034  (fns integer_valued_real_p@0)
5035  @0))
5036
5037/* hypot(x,0) and hypot(0,x) -> abs(x).  */
5038(simplify
5039 (HYPOT:c @0 real_zerop@1)
5040 (abs @0))
5041
5042/* pow(1,x) -> 1.  */
5043(simplify
5044 (POW real_onep@0 @1)
5045 @0)
5046
5047(simplify
5048 /* copysign(x,x) -> x.  */
5049 (COPYSIGN_ALL @0 @0)
5050 @0)
5051
5052(simplify
5053 /* copysign(x,y) -> fabs(x) if y is nonnegative.  */
5054 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5055 (abs @0))
5056
5057(for scale (LDEXP SCALBN SCALBLN)
5058 /* ldexp(0, x) -> 0.  */
5059 (simplify
5060  (scale real_zerop@0 @1)
5061  @0)
5062 /* ldexp(x, 0) -> x.  */
5063 (simplify
5064  (scale @0 integer_zerop@1)
5065  @0)
5066 /* ldexp(x, y) -> x if x is +-Inf or NaN.  */
5067 (simplify
5068  (scale REAL_CST@0 @1)
5069  (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5070   @0)))
5071
5072/* Canonicalization of sequences of math builtins.  These rules represent
5073   IL simplifications but are not necessarily optimizations.
5074
5075   The sincos pass is responsible for picking "optimal" implementations
5076   of math builtins, which may be more complicated and can sometimes go
5077   the other way, e.g. converting pow into a sequence of sqrts.
5078   We only want to do these canonicalizations before the pass has run.  */
5079
5080(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5081 /* Simplify tan(x) * cos(x) -> sin(x). */
5082 (simplify
5083  (mult:c (TAN:s @0) (COS:s @0))
5084   (SIN @0))
5085
5086 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5087 (simplify
5088  (mult:c @0 (POW:s @0 REAL_CST@1))
5089  (if (!TREE_OVERFLOW (@1))
5090   (POW @0 (plus @1 { build_one_cst (type); }))))
5091
5092 /* Simplify sin(x) / cos(x) -> tan(x). */
5093 (simplify
5094  (rdiv (SIN:s @0) (COS:s @0))
5095   (TAN @0))
5096
5097 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5098 (simplify
5099  (rdiv (SINH:s @0) (COSH:s @0))
5100   (TANH @0))
5101
5102 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5103 (simplify
5104  (rdiv (COS:s @0) (SIN:s @0))
5105   (rdiv { build_one_cst (type); } (TAN @0)))
5106
5107 /* Simplify sin(x) / tan(x) -> cos(x). */
5108 (simplify
5109  (rdiv (SIN:s @0) (TAN:s @0))
5110  (if (! HONOR_NANS (@0)
5111       && ! HONOR_INFINITIES (@0))
5112   (COS @0)))
5113
5114 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5115 (simplify
5116  (rdiv (TAN:s @0) (SIN:s @0))
5117  (if (! HONOR_NANS (@0)
5118       && ! HONOR_INFINITIES (@0))
5119   (rdiv { build_one_cst (type); } (COS @0))))
5120
5121 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5122 (simplify
5123  (mult (POW:s @0 @1) (POW:s @0 @2))
5124   (POW @0 (plus @1 @2)))
5125
5126 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5127 (simplify
5128  (mult (POW:s @0 @1) (POW:s @2 @1))
5129   (POW (mult @0 @2) @1))
5130
5131 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5132 (simplify
5133  (mult (POWI:s @0 @1) (POWI:s @2 @1))
5134   (POWI (mult @0 @2) @1))
5135
5136 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5137 (simplify
5138  (rdiv (POW:s @0 REAL_CST@1) @0)
5139  (if (!TREE_OVERFLOW (@1))
5140   (POW @0 (minus @1 { build_one_cst (type); }))))
5141
5142 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5143 (simplify
5144  (rdiv @0 (POW:s @1 @2))
5145   (mult @0 (POW @1 (negate @2))))
5146
5147 (for sqrts (SQRT)
5148      cbrts (CBRT)
5149      pows (POW)
5150  /* sqrt(sqrt(x)) -> pow(x,1/4).  */
5151  (simplify
5152   (sqrts (sqrts @0))
5153   (pows @0 { build_real (type, dconst_quarter ()); }))
5154  /* sqrt(cbrt(x)) -> pow(x,1/6).  */
5155  (simplify
5156   (sqrts (cbrts @0))
5157   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5158  /* cbrt(sqrt(x)) -> pow(x,1/6).  */
5159  (simplify
5160   (cbrts (sqrts @0))
5161   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5162  /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative.  */
5163  (simplify
5164   (cbrts (cbrts tree_expr_nonnegative_p@0))
5165   (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5166  /* sqrt(pow(x,y)) -> pow(|x|,y*0.5).  */
5167  (simplify
5168   (sqrts (pows @0 @1))
5169   (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5170  /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative.  */
5171  (simplify
5172   (cbrts (pows tree_expr_nonnegative_p@0 @1))
5173   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5174  /* pow(sqrt(x),y) -> pow(x,y*0.5).  */
5175  (simplify
5176   (pows (sqrts @0) @1)
5177   (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5178  /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative.  */
5179  (simplify
5180   (pows (cbrts tree_expr_nonnegative_p@0) @1)
5181   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5182  /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative.  */
5183  (simplify
5184   (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5185   (pows @0 (mult @1 @2))))
5186
5187 /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
5188 (simplify
5189  (CABS (complex @0 @0))
5190  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5191
5192 /* hypot(x,x) -> fabs(x)*sqrt(2).  */
5193 (simplify
5194  (HYPOT @0 @0)
5195  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5196
5197 /* cexp(x+yi) -> exp(x)*cexpi(y).  */
5198 (for cexps (CEXP)
5199      exps (EXP)
5200      cexpis (CEXPI)
5201  (simplify
5202   (cexps compositional_complex@0)
5203   (if (targetm.libc_has_function (function_c99_math_complex))
5204    (complex
5205     (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5206     (mult @1 (imagpart @2)))))))
5207
5208(if (canonicalize_math_p ())
5209 /* floor(x) -> trunc(x) if x is nonnegative.  */
5210 (for floors (FLOOR_ALL)
5211      truncs (TRUNC_ALL)
5212  (simplify
5213   (floors tree_expr_nonnegative_p@0)
5214   (truncs @0))))
5215
5216(match double_value_p
5217 @0
5218 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5219(for froms (BUILT_IN_TRUNCL
5220	    BUILT_IN_FLOORL
5221	    BUILT_IN_CEILL
5222	    BUILT_IN_ROUNDL
5223	    BUILT_IN_NEARBYINTL
5224	    BUILT_IN_RINTL)
5225     tos (BUILT_IN_TRUNC
5226	  BUILT_IN_FLOOR
5227	  BUILT_IN_CEIL
5228	  BUILT_IN_ROUND
5229	  BUILT_IN_NEARBYINT
5230	  BUILT_IN_RINT)
5231 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double.  */
5232 (if (optimize && canonicalize_math_p ())
5233  (simplify
5234   (froms (convert double_value_p@0))
5235   (convert (tos @0)))))
5236
5237(match float_value_p
5238 @0
5239 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5240(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5241	    BUILT_IN_FLOORL BUILT_IN_FLOOR
5242	    BUILT_IN_CEILL BUILT_IN_CEIL
5243	    BUILT_IN_ROUNDL BUILT_IN_ROUND
5244	    BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5245	    BUILT_IN_RINTL BUILT_IN_RINT)
5246     tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5247	  BUILT_IN_FLOORF BUILT_IN_FLOORF
5248	  BUILT_IN_CEILF BUILT_IN_CEILF
5249	  BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5250	  BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5251	  BUILT_IN_RINTF BUILT_IN_RINTF)
5252 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5253    if x is a float.  */
5254 (if (optimize && canonicalize_math_p ()
5255      && targetm.libc_has_function (function_c99_misc))
5256  (simplify
5257   (froms (convert float_value_p@0))
5258   (convert (tos @0)))))
5259
5260(for froms (XFLOORL XCEILL XROUNDL XRINTL)
5261     tos (XFLOOR XCEIL XROUND XRINT)
5262 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double.  */
5263 (if (optimize && canonicalize_math_p ())
5264  (simplify
5265   (froms (convert double_value_p@0))
5266   (tos @0))))
5267
5268(for froms (XFLOORL XCEILL XROUNDL XRINTL
5269	    XFLOOR XCEIL XROUND XRINT)
5270     tos (XFLOORF XCEILF XROUNDF XRINTF)
5271 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5272    if x is a float.  */
5273 (if (optimize && canonicalize_math_p ())
5274  (simplify
5275   (froms (convert float_value_p@0))
5276   (tos @0))))
5277
5278(if (canonicalize_math_p ())
5279 /* xfloor(x) -> fix_trunc(x) if x is nonnegative.  */
5280 (for floors (IFLOOR LFLOOR LLFLOOR)
5281  (simplify
5282   (floors tree_expr_nonnegative_p@0)
5283   (fix_trunc @0))))
5284
5285(if (canonicalize_math_p ())
5286 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued.  */
5287 (for fns (IFLOOR LFLOOR LLFLOOR
5288	   ICEIL LCEIL LLCEIL
5289	   IROUND LROUND LLROUND)
5290  (simplify
5291   (fns integer_valued_real_p@0)
5292   (fix_trunc @0)))
5293 (if (!flag_errno_math)
5294  /* xrint(x) -> fix_trunc(x), etc., if x is integer valued.  */
5295  (for rints (IRINT LRINT LLRINT)
5296   (simplify
5297    (rints integer_valued_real_p@0)
5298    (fix_trunc @0)))))
5299
5300(if (canonicalize_math_p ())
5301 (for ifn (IFLOOR ICEIL IROUND IRINT)
5302      lfn (LFLOOR LCEIL LROUND LRINT)
5303      llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5304  /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5305     sizeof (int) == sizeof (long).  */
5306  (if (TYPE_PRECISION (integer_type_node)
5307       == TYPE_PRECISION (long_integer_type_node))
5308   (simplify
5309    (ifn @0)
5310    (lfn:long_integer_type_node @0)))
5311  /* Canonicalize llround (x) to lround (x) on LP64 targets where
5312     sizeof (long long) == sizeof (long).  */
5313  (if (TYPE_PRECISION (long_long_integer_type_node)
5314       == TYPE_PRECISION (long_integer_type_node))
5315   (simplify
5316    (llfn @0)
5317    (lfn:long_integer_type_node @0)))))
5318
5319/* cproj(x) -> x if we're ignoring infinities.  */
5320(simplify
5321 (CPROJ @0)
5322 (if (!HONOR_INFINITIES (type))
5323   @0))
5324
5325/* If the real part is inf and the imag part is known to be
5326   nonnegative, return (inf + 0i).  */
5327(simplify
5328 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5329 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5330  { build_complex_inf (type, false); }))
5331
5332/* If the imag part is inf, return (inf+I*copysign(0,imag)).  */
5333(simplify
5334 (CPROJ (complex @0 REAL_CST@1))
5335 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5336  { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5337
5338(for pows (POW)
5339     sqrts (SQRT)
5340     cbrts (CBRT)
5341 (simplify
5342  (pows @0 REAL_CST@1)
5343  (with {
5344    const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5345    REAL_VALUE_TYPE tmp;
5346   }
5347   (switch
5348    /* pow(x,0) -> 1.  */
5349    (if (real_equal (value, &dconst0))
5350     { build_real (type, dconst1); })
5351    /* pow(x,1) -> x.  */
5352    (if (real_equal (value, &dconst1))
5353     @0)
5354    /* pow(x,-1) -> 1/x.  */
5355    (if (real_equal (value, &dconstm1))
5356     (rdiv { build_real (type, dconst1); } @0))
5357    /* pow(x,0.5) -> sqrt(x).  */
5358    (if (flag_unsafe_math_optimizations
5359	 && canonicalize_math_p ()
5360	 && real_equal (value, &dconsthalf))
5361     (sqrts @0))
5362    /* pow(x,1/3) -> cbrt(x).  */
5363    (if (flag_unsafe_math_optimizations
5364	 && canonicalize_math_p ()
5365	 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5366	     real_equal (value, &tmp)))
5367     (cbrts @0))))))
5368
5369/* powi(1,x) -> 1.  */
5370(simplify
5371 (POWI real_onep@0 @1)
5372 @0)
5373
5374(simplify
5375 (POWI @0 INTEGER_CST@1)
5376 (switch
5377  /* powi(x,0) -> 1.  */
5378  (if (wi::to_wide (@1) == 0)
5379   { build_real (type, dconst1); })
5380  /* powi(x,1) -> x.  */
5381  (if (wi::to_wide (@1) == 1)
5382   @0)
5383  /* powi(x,-1) -> 1/x.  */
5384  (if (wi::to_wide (@1) == -1)
5385   (rdiv { build_real (type, dconst1); } @0))))
5386
5387/* Narrowing of arithmetic and logical operations.
5388
5389   These are conceptually similar to the transformations performed for
5390   the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
5391   term we want to move all that code out of the front-ends into here.  */
5392
5393/* Convert (outertype)((innertype0)a+(innertype1)b)
5394   into ((newtype)a+(newtype)b) where newtype
5395   is the widest mode from all of these.  */
5396(for op (plus minus mult rdiv)
5397 (simplify
5398   (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5399   /* If we have a narrowing conversion of an arithmetic operation where
5400      both operands are widening conversions from the same type as the outer
5401      narrowing conversion.  Then convert the innermost operands to a
5402      suitable unsigned type (to avoid introducing undefined behavior),
5403      perform the operation and convert the result to the desired type.  */
5404   (if (INTEGRAL_TYPE_P (type)
5405	&& op != MULT_EXPR
5406	&& op != RDIV_EXPR
5407	/* We check for type compatibility between @0 and @1 below,
5408	   so there's no need to check that @2/@4 are integral types.  */
5409	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
5410	&& INTEGRAL_TYPE_P (TREE_TYPE (@3))
5411	/* The precision of the type of each operand must match the
5412	   precision of the mode of each operand, similarly for the
5413	   result.  */
5414	&& type_has_mode_precision_p (TREE_TYPE (@1))
5415	&& type_has_mode_precision_p (TREE_TYPE (@2))
5416	&& type_has_mode_precision_p (type)
5417	/* The inner conversion must be a widening conversion.  */
5418	&& TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5419	&& types_match (@1, type)
5420	&& (types_match (@1, @2)
5421	    /* Or the second operand is const integer or converted const
5422	       integer from valueize.  */
5423	    || TREE_CODE (@2) == INTEGER_CST))
5424     (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5425       (op @1 (convert @2))
5426       (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5427	(convert (op (convert:utype @1)
5428		     (convert:utype @2)))))
5429     (if (FLOAT_TYPE_P (type)
5430	  && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5431	       == DECIMAL_FLOAT_TYPE_P (type))
5432      (with { tree arg0 = strip_float_extensions (@1);
5433	      tree arg1 = strip_float_extensions (@2);
5434	      tree itype = TREE_TYPE (@0);
5435	      tree ty1 = TREE_TYPE (arg0);
5436	      tree ty2 = TREE_TYPE (arg1);
5437	      enum tree_code code = TREE_CODE (itype); }
5438	(if (FLOAT_TYPE_P (ty1)
5439	     && FLOAT_TYPE_P (ty2))
5440	 (with { tree newtype = type;
5441		 if (TYPE_MODE (ty1) == SDmode
5442		     || TYPE_MODE (ty2) == SDmode
5443		     || TYPE_MODE (type) == SDmode)
5444		   newtype = dfloat32_type_node;
5445		 if (TYPE_MODE (ty1) == DDmode
5446		     || TYPE_MODE (ty2) == DDmode
5447		     || TYPE_MODE (type) == DDmode)
5448		   newtype = dfloat64_type_node;
5449		 if (TYPE_MODE (ty1) == TDmode
5450		     || TYPE_MODE (ty2) == TDmode
5451		     || TYPE_MODE (type) == TDmode)
5452		   newtype = dfloat128_type_node; }
5453	  (if ((newtype == dfloat32_type_node
5454		|| newtype == dfloat64_type_node
5455		|| newtype == dfloat128_type_node)
5456	      && newtype == type
5457	      && types_match (newtype, type))
5458	    (op (convert:newtype @1) (convert:newtype @2))
5459	    (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5460		      newtype = ty1;
5461		    if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5462		      newtype = ty2; }
5463	       /* Sometimes this transformation is safe (cannot
5464		  change results through affecting double rounding
5465		  cases) and sometimes it is not.  If NEWTYPE is
5466		  wider than TYPE, e.g. (float)((long double)double
5467		  + (long double)double) converted to
5468		  (float)(double + double), the transformation is
5469		  unsafe regardless of the details of the types
5470		  involved; double rounding can arise if the result
5471		  of NEWTYPE arithmetic is a NEWTYPE value half way
5472		  between two representable TYPE values but the
5473		  exact value is sufficiently different (in the
5474		  right direction) for this difference to be
5475		  visible in ITYPE arithmetic.  If NEWTYPE is the
5476		  same as TYPE, however, the transformation may be
5477		  safe depending on the types involved: it is safe
5478		  if the ITYPE has strictly more than twice as many
5479		  mantissa bits as TYPE, can represent infinities
5480		  and NaNs if the TYPE can, and has sufficient
5481		  exponent range for the product or ratio of two
5482		  values representable in the TYPE to be within the
5483		  range of normal values of ITYPE.  */
5484	      (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5485		   && (flag_unsafe_math_optimizations
5486		       || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5487			   && real_can_shorten_arithmetic (TYPE_MODE (itype),
5488							   TYPE_MODE (type))
5489			   && !excess_precision_type (newtype)))
5490		   && !types_match (itype, newtype))
5491		 (convert:type (op (convert:newtype @1)
5492				   (convert:newtype @2)))
5493	 )))) )
5494   ))
5495)))
5496
5497/* This is another case of narrowing, specifically when there's an outer
5498   BIT_AND_EXPR which masks off bits outside the type of the innermost
5499   operands.   Like the previous case we have to convert the operands
5500   to unsigned types to avoid introducing undefined behavior for the
5501   arithmetic operation.  */
5502(for op (minus plus)
5503 (simplify
5504  (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5505  (if (INTEGRAL_TYPE_P (type)
5506       /* We check for type compatibility between @0 and @1 below,
5507	  so there's no need to check that @1/@3 are integral types.  */
5508       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5509       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5510       /* The precision of the type of each operand must match the
5511	  precision of the mode of each operand, similarly for the
5512	  result.  */
5513       && type_has_mode_precision_p (TREE_TYPE (@0))
5514       && type_has_mode_precision_p (TREE_TYPE (@1))
5515       && type_has_mode_precision_p (type)
5516       /* The inner conversion must be a widening conversion.  */
5517       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5518       && types_match (@0, @1)
5519       && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5520	   <= TYPE_PRECISION (TREE_TYPE (@0)))
5521       && (wi::to_wide (@4)
5522	   & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5523		       true, TYPE_PRECISION (type))) == 0)
5524   (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5525    (with { tree ntype = TREE_TYPE (@0); }
5526     (convert (bit_and (op @0 @1) (convert:ntype @4))))
5527    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5528     (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5529	       (convert:utype @4))))))))
5530
5531/* Transform (@0 < @1 and @0 < @2) to use min,
5532   (@0 > @1 and @0 > @2) to use max */
5533(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5534     op    (lt      le      gt      ge      lt      le      gt      ge     )
5535     ext   (min     min     max     max     max     max     min     min    )
5536 (simplify
5537  (logic (op:cs @0 @1) (op:cs @0 @2))
5538  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5539       && TREE_CODE (@0) != INTEGER_CST)
5540   (op @0 (ext @1 @2)))))
5541
5542(simplify
5543 /* signbit(x) -> 0 if x is nonnegative.  */
5544 (SIGNBIT tree_expr_nonnegative_p@0)
5545 { integer_zero_node; })
5546
5547(simplify
5548 /* signbit(x) -> x<0 if x doesn't have signed zeros.  */
5549 (SIGNBIT @0)
5550 (if (!HONOR_SIGNED_ZEROS (@0))
5551  (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5552
5553/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1.  */
5554(for cmp (eq ne)
5555 (for op (plus minus)
5556      rop (minus plus)
5557  (simplify
5558   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5559   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5560	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5561	&& !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5562	&& !TYPE_SATURATING (TREE_TYPE (@0)))
5563    (with { tree res = int_const_binop (rop, @2, @1); }
5564     (if (TREE_OVERFLOW (res)
5565	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5566      { constant_boolean_node (cmp == NE_EXPR, type); }
5567      (if (single_use (@3))
5568       (cmp @0 { TREE_OVERFLOW (res)
5569		 ? drop_tree_overflow (res) : res; }))))))))
5570(for cmp (lt le gt ge)
5571 (for op (plus minus)
5572      rop (minus plus)
5573  (simplify
5574   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5575   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5576	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5577    (with { tree res = int_const_binop (rop, @2, @1); }
5578     (if (TREE_OVERFLOW (res))
5579      {
5580	fold_overflow_warning (("assuming signed overflow does not occur "
5581				"when simplifying conditional to constant"),
5582			       WARN_STRICT_OVERFLOW_CONDITIONAL);
5583        bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5584	/* wi::ges_p (@2, 0) should be sufficient for a signed type.  */
5585	bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5586				  TYPE_SIGN (TREE_TYPE (@1)))
5587			!= (op == MINUS_EXPR);
5588	constant_boolean_node (less == ovf_high, type);
5589      }
5590      (if (single_use (@3))
5591       (with
5592	{
5593	  fold_overflow_warning (("assuming signed overflow does not occur "
5594				  "when changing X +- C1 cmp C2 to "
5595				  "X cmp C2 -+ C1"),
5596				 WARN_STRICT_OVERFLOW_COMPARISON);
5597	}
5598	(cmp @0 { res; })))))))))
5599
5600/* Canonicalizations of BIT_FIELD_REFs.  */
5601
5602(simplify
5603 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5604 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5605
5606(simplify
5607 (BIT_FIELD_REF (view_convert @0) @1 @2)
5608 (BIT_FIELD_REF @0 @1 @2))
5609
5610(simplify
5611 (BIT_FIELD_REF @0 @1 integer_zerop)
5612 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5613  (view_convert @0)))
5614
5615(simplify
5616 (BIT_FIELD_REF @0 @1 @2)
5617 (switch
5618  (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5619       && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5620   (switch
5621    (if (integer_zerop (@2))
5622     (view_convert (realpart @0)))
5623    (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5624     (view_convert (imagpart @0)))))
5625  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5626       && INTEGRAL_TYPE_P (type)
5627       /* On GIMPLE this should only apply to register arguments.  */
5628       && (! GIMPLE || is_gimple_reg (@0))
5629       /* A bit-field-ref that referenced the full argument can be stripped.  */
5630       && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5631	    && integer_zerop (@2))
5632	   /* Low-parts can be reduced to integral conversions.
5633	      ???  The following doesn't work for PDP endian.  */
5634	   || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5635	       /* Don't even think about BITS_BIG_ENDIAN.  */
5636	       && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5637	       && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5638	       && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5639					 ? (TYPE_PRECISION (TREE_TYPE (@0))
5640					    - TYPE_PRECISION (type))
5641					 : 0)) == 0)))
5642   (convert @0))))
5643
5644/* Simplify vector extracts.  */
5645
5646(simplify
5647 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5648 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5649      && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5650          || (VECTOR_TYPE_P (type)
5651	      && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5652  (with
5653   {
5654     tree ctor = (TREE_CODE (@0) == SSA_NAME
5655		  ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5656     tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5657     unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5658     unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5659     unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5660   }
5661   (if (n != 0
5662	&& (idx % width) == 0
5663	&& (n % width) == 0
5664	&& known_le ((idx + n) / width,
5665		     TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5666    (with
5667     {
5668       idx = idx / width;
5669       n = n / width;
5670       /* Constructor elements can be subvectors.  */
5671       poly_uint64 k = 1;
5672       if (CONSTRUCTOR_NELTS (ctor) != 0)
5673         {
5674           tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5675	   if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5676	     k = TYPE_VECTOR_SUBPARTS (cons_elem);
5677	 }
5678       unsigned HOST_WIDE_INT elt, count, const_k;
5679     }
5680     (switch
5681      /* We keep an exact subset of the constructor elements.  */
5682      (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5683       (if (CONSTRUCTOR_NELTS (ctor) == 0)
5684        { build_constructor (type, NULL); }
5685	(if (count == 1)
5686	 (if (elt < CONSTRUCTOR_NELTS (ctor))
5687	  (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5688	  { build_zero_cst (type); })
5689	 /* We don't want to emit new CTORs unless the old one goes away.
5690	    ???  Eventually allow this if the CTOR ends up constant or
5691	    uniform.  */
5692	 (if (single_use (@0))
5693	  {
5694	    vec<constructor_elt, va_gc> *vals;
5695	    vec_alloc (vals, count);
5696	    for (unsigned i = 0;
5697		 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5698	      CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5699				      CONSTRUCTOR_ELT (ctor, elt + i)->value);
5700	    build_constructor (type, vals);
5701	  }))))
5702      /* The bitfield references a single constructor element.  */
5703      (if (k.is_constant (&const_k)
5704	   && idx + n <= (idx / const_k + 1) * const_k)
5705       (switch
5706	(if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5707	 { build_zero_cst (type); })
5708	(if (n == const_k)
5709	 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5710	(BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5711		       @1 { bitsize_int ((idx % const_k) * width); })))))))))
5712
5713/* Simplify a bit extraction from a bit insertion for the cases with
5714   the inserted element fully covering the extraction or the insertion
5715   not touching the extraction.  */
5716(simplify
5717 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5718 (with
5719  {
5720    unsigned HOST_WIDE_INT isize;
5721    if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5722      isize = TYPE_PRECISION (TREE_TYPE (@1));
5723    else
5724      isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5725  }
5726  (switch
5727   (if ((!INTEGRAL_TYPE_P (TREE_TYPE (@1))
5728         || type_has_mode_precision_p (TREE_TYPE (@1)))
5729        && wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5730	&& wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5731		      wi::to_wide (@ipos) + isize))
5732    (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5733                                                 wi::to_wide (@rpos)
5734						 - wi::to_wide (@ipos)); }))
5735   (if (wi::geu_p (wi::to_wide (@ipos),
5736		   wi::to_wide (@rpos) + wi::to_wide (@rsize))
5737	|| wi::geu_p (wi::to_wide (@rpos),
5738		      wi::to_wide (@ipos) + isize))
5739    (BIT_FIELD_REF @0 @rsize @rpos)))))
5740
5741(if (canonicalize_math_after_vectorization_p ())
5742 (for fmas (FMA)
5743  (simplify
5744   (fmas:c (negate @0) @1 @2)
5745   (IFN_FNMA @0 @1 @2))
5746  (simplify
5747   (fmas @0 @1 (negate @2))
5748   (IFN_FMS @0 @1 @2))
5749  (simplify
5750   (fmas:c (negate @0) @1 (negate @2))
5751   (IFN_FNMS @0 @1 @2))
5752  (simplify
5753   (negate (fmas@3 @0 @1 @2))
5754   (if (single_use (@3))
5755    (IFN_FNMS @0 @1 @2))))
5756
5757 (simplify
5758  (IFN_FMS:c (negate @0) @1 @2)
5759  (IFN_FNMS @0 @1 @2))
5760 (simplify
5761  (IFN_FMS @0 @1 (negate @2))
5762  (IFN_FMA @0 @1 @2))
5763 (simplify
5764  (IFN_FMS:c (negate @0) @1 (negate @2))
5765  (IFN_FNMA @0 @1 @2))
5766 (simplify
5767  (negate (IFN_FMS@3 @0 @1 @2))
5768   (if (single_use (@3))
5769    (IFN_FNMA @0 @1 @2)))
5770
5771 (simplify
5772  (IFN_FNMA:c (negate @0) @1 @2)
5773  (IFN_FMA @0 @1 @2))
5774 (simplify
5775  (IFN_FNMA @0 @1 (negate @2))
5776  (IFN_FNMS @0 @1 @2))
5777 (simplify
5778  (IFN_FNMA:c (negate @0) @1 (negate @2))
5779  (IFN_FMS @0 @1 @2))
5780 (simplify
5781  (negate (IFN_FNMA@3 @0 @1 @2))
5782  (if (single_use (@3))
5783   (IFN_FMS @0 @1 @2)))
5784
5785 (simplify
5786  (IFN_FNMS:c (negate @0) @1 @2)
5787  (IFN_FMS @0 @1 @2))
5788 (simplify
5789  (IFN_FNMS @0 @1 (negate @2))
5790  (IFN_FNMA @0 @1 @2))
5791 (simplify
5792  (IFN_FNMS:c (negate @0) @1 (negate @2))
5793  (IFN_FMA @0 @1 @2))
5794 (simplify
5795  (negate (IFN_FNMS@3 @0 @1 @2))
5796  (if (single_use (@3))
5797   (IFN_FMA @0 @1 @2))))
5798
5799/* POPCOUNT simplifications.  */
5800(for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5801	       BUILT_IN_POPCOUNTIMAX)
5802  /* popcount(X&1) is nop_expr(X&1).  */
5803  (simplify
5804    (popcount @0)
5805    (if (tree_nonzero_bits (@0) == 1)
5806      (convert @0)))
5807  /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero.  */
5808  (simplify
5809    (plus (popcount:s @0) (popcount:s @1))
5810    (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5811      (popcount (bit_ior @0 @1))))
5812  /* popcount(X) == 0 is X == 0, and related (in)equalities.  */
5813  (for cmp (le eq ne gt)
5814       rep (eq eq ne ne)
5815    (simplify
5816      (cmp (popcount @0) integer_zerop)
5817      (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5818
5819#if GIMPLE
5820/* 64- and 32-bits branchless implementations of popcount are detected:
5821
5822   int popcount64c (uint64_t x)
5823   {
5824     x -= (x >> 1) & 0x5555555555555555ULL;
5825     x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5826     x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5827     return (x * 0x0101010101010101ULL) >> 56;
5828   }
5829
5830   int popcount32c (uint32_t x)
5831   {
5832     x -= (x >> 1) & 0x55555555;
5833     x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5834     x = (x + (x >> 4)) & 0x0f0f0f0f;
5835     return (x * 0x01010101) >> 24;
5836   }  */
5837(simplify
5838 (rshift
5839  (mult
5840   (bit_and
5841    (plus:c
5842     (rshift @8 INTEGER_CST@5)
5843      (plus:c@8
5844       (bit_and @6 INTEGER_CST@7)
5845	(bit_and
5846	 (rshift
5847	  (minus@6 @0
5848	   (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
5849	  INTEGER_CST@10)
5850	 INTEGER_CST@9)))
5851    INTEGER_CST@3)
5852   INTEGER_CST@2)
5853  INTEGER_CST@1)
5854  /* Check constants and optab.  */
5855  (with { unsigned prec = TYPE_PRECISION (type);
5856	  int shift = (64 - prec) & 63;
5857	  unsigned HOST_WIDE_INT c1
5858	    = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
5859	  unsigned HOST_WIDE_INT c2
5860	    = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
5861	  unsigned HOST_WIDE_INT c3
5862	    = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
5863	  unsigned HOST_WIDE_INT c4
5864	    = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
5865   }
5866   (if (prec >= 16
5867	&& prec <= 64
5868	&& pow2p_hwi (prec)
5869	&& TYPE_UNSIGNED (type)
5870	&& integer_onep (@4)
5871	&& wi::to_widest (@10) == 2
5872	&& wi::to_widest (@5) == 4
5873	&& wi::to_widest (@1) == prec - 8
5874	&& tree_to_uhwi (@2) == c1
5875	&& tree_to_uhwi (@3) == c2
5876	&& tree_to_uhwi (@9) == c3
5877	&& tree_to_uhwi (@7) == c3
5878	&& tree_to_uhwi (@11) == c4
5879	&& direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5880					   OPTIMIZE_FOR_BOTH))
5881    (convert (IFN_POPCOUNT:type @0)))))
5882#endif
5883
5884/* Simplify:
5885
5886     a = a1 op a2
5887     r = c ? a : b;
5888
5889   to:
5890
5891     r = c ? a1 op a2 : b;
5892
5893   if the target can do it in one go.  This makes the operation conditional
5894   on c, so could drop potentially-trapping arithmetic, but that's a valid
5895   simplification if the result of the operation isn't needed.
5896
5897   Avoid speculatively generating a stand-alone vector comparison
5898   on targets that might not support them.  Any target implementing
5899   conditional internal functions must support the same comparisons
5900   inside and outside a VEC_COND_EXPR.  */
5901
5902#if GIMPLE
5903(for uncond_op (UNCOND_BINARY)
5904     cond_op (COND_BINARY)
5905 (simplify
5906  (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5907  (with { tree op_type = TREE_TYPE (@4); }
5908   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5909	&& element_precision (type) == element_precision (op_type))
5910    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5911 (simplify
5912  (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5913  (with { tree op_type = TREE_TYPE (@4); }
5914   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5915	&& element_precision (type) == element_precision (op_type))
5916    (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5917
5918/* Same for ternary operations.  */
5919(for uncond_op (UNCOND_TERNARY)
5920     cond_op (COND_TERNARY)
5921 (simplify
5922  (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5923  (with { tree op_type = TREE_TYPE (@5); }
5924   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5925	&& element_precision (type) == element_precision (op_type))
5926    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5927 (simplify
5928  (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5929  (with { tree op_type = TREE_TYPE (@5); }
5930   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5931	&& element_precision (type) == element_precision (op_type))
5932    (view_convert (cond_op (bit_not @0) @2 @3 @4
5933		  (view_convert:op_type @1)))))))
5934#endif
5935
5936/* Detect cases in which a VEC_COND_EXPR effectively replaces the
5937   "else" value of an IFN_COND_*.  */
5938(for cond_op (COND_BINARY)
5939 (simplify
5940  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5941  (with { tree op_type = TREE_TYPE (@3); }
5942   (if (element_precision (type) == element_precision (op_type))
5943    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5944 (simplify
5945  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5946  (with { tree op_type = TREE_TYPE (@5); }
5947   (if (inverse_conditions_p (@0, @2)
5948        && element_precision (type) == element_precision (op_type))
5949    (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5950
5951/* Same for ternary operations.  */
5952(for cond_op (COND_TERNARY)
5953 (simplify
5954  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5955  (with { tree op_type = TREE_TYPE (@4); }
5956   (if (element_precision (type) == element_precision (op_type))
5957    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5958 (simplify
5959  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5960  (with { tree op_type = TREE_TYPE (@6); }
5961   (if (inverse_conditions_p (@0, @2)
5962        && element_precision (type) == element_precision (op_type))
5963    (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5964
5965/* For pointers @0 and @2 and nonnegative constant offset @1, look for
5966   expressions like:
5967
5968   A: (@0 + @1 < @2) | (@2 + @1 < @0)
5969   B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5970
5971   If pointers are known not to wrap, B checks whether @1 bytes starting
5972   at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5973   bytes.  A is more efficiently tested as:
5974
5975   A: (sizetype) (@0 + @1 - @2) > @1 * 2
5976
5977   The equivalent expression for B is given by replacing @1 with @1 - 1:
5978
5979   B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5980
5981   @0 and @2 can be swapped in both expressions without changing the result.
5982
5983   The folds rely on sizetype's being unsigned (which is always true)
5984   and on its being the same width as the pointer (which we have to check).
5985
5986   The fold replaces two pointer_plus expressions, two comparisons and
5987   an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5988   the best case it's a saving of two operations.  The A fold retains one
5989   of the original pointer_pluses, so is a win even if both pointer_pluses
5990   are used elsewhere.  The B fold is a wash if both pointer_pluses are
5991   used elsewhere, since all we end up doing is replacing a comparison with
5992   a pointer_plus.  We do still apply the fold under those circumstances
5993   though, in case applying it to other conditions eventually makes one of the
5994   pointer_pluses dead.  */
5995(for ior (truth_orif truth_or bit_ior)
5996 (for cmp (le lt)
5997  (simplify
5998   (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5999	(cmp:cs (pointer_plus@4 @2 @1) @0))
6000   (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6001	&& TYPE_OVERFLOW_WRAPS (sizetype)
6002	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
6003    /* Calculate the rhs constant.  */
6004    (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
6005	    offset_int rhs = off * 2; }
6006     /* Always fails for negative values.  */
6007     (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
6008      /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6009	 pick a canonical order.  This increases the chances of using the
6010	 same pointer_plus in multiple checks.  */
6011      (with { bool swap_p = tree_swap_operands_p (@0, @2);
6012	      tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6013       (if (cmp == LT_EXPR)
6014	(gt (convert:sizetype
6015	     (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6016				     { swap_p ? @0 : @2; }))
6017	    { rhs_tree; })
6018	(gt (convert:sizetype
6019	     (pointer_diff:ssizetype
6020	      (pointer_plus { swap_p ? @2 : @0; }
6021			    { wide_int_to_tree (sizetype, off); })
6022	      { swap_p ? @0 : @2; }))
6023	    { rhs_tree; })))))))))
6024
6025/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6026   element of @1.  */
6027(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6028 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6029  (with { int i = single_nonzero_element (@1); }
6030   (if (i >= 0)
6031    (with { tree elt = vector_cst_elt (@1, i);
6032	    tree elt_type = TREE_TYPE (elt);
6033	    unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6034	    tree size = bitsize_int (elt_bits);
6035	    tree pos = bitsize_int (elt_bits * i); }
6036     (view_convert
6037      (bit_and:elt_type
6038       (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6039       { elt; })))))))
6040
6041(simplify
6042 (vec_perm @0 @1 VECTOR_CST@2)
6043 (with
6044  {
6045    tree op0 = @0, op1 = @1, op2 = @2;
6046
6047    /* Build a vector of integers from the tree mask.  */
6048    vec_perm_builder builder;
6049    if (!tree_to_vec_perm_builder (&builder, op2))
6050      return NULL_TREE;
6051
6052    /* Create a vec_perm_indices for the integer vector.  */
6053    poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6054    bool single_arg = (op0 == op1);
6055    vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6056  }
6057  (if (sel.series_p (0, 1, 0, 1))
6058   { op0; }
6059   (if (sel.series_p (0, 1, nelts, 1))
6060    { op1; }
6061    (with
6062     {
6063       if (!single_arg)
6064         {
6065	   if (sel.all_from_input_p (0))
6066	     op1 = op0;
6067	   else if (sel.all_from_input_p (1))
6068	     {
6069	       op0 = op1;
6070	       sel.rotate_inputs (1);
6071	     }
6072	   else if (known_ge (poly_uint64 (sel[0]), nelts))
6073	     {
6074	       std::swap (op0, op1);
6075	       sel.rotate_inputs (1);
6076	     }
6077         }
6078       gassign *def;
6079       tree cop0 = op0, cop1 = op1;
6080       if (TREE_CODE (op0) == SSA_NAME
6081           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6082	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6083	 cop0 = gimple_assign_rhs1 (def);
6084       if (TREE_CODE (op1) == SSA_NAME
6085           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6086	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6087	 cop1 = gimple_assign_rhs1 (def);
6088
6089       tree t;
6090    }
6091    (if ((TREE_CODE (cop0) == VECTOR_CST
6092	  || TREE_CODE (cop0) == CONSTRUCTOR)
6093	 && (TREE_CODE (cop1) == VECTOR_CST
6094	     || TREE_CODE (cop1) == CONSTRUCTOR)
6095	 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6096     { t; }
6097     (with
6098      {
6099	bool changed = (op0 == op1 && !single_arg);
6100	tree ins = NULL_TREE;
6101	unsigned at = 0;
6102
6103	/* See if the permutation is performing a single element
6104	   insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6105	   in that case.  But only if the vector mode is supported,
6106	   otherwise this is invalid GIMPLE.  */
6107        if (TYPE_MODE (type) != BLKmode
6108	    && (TREE_CODE (cop0) == VECTOR_CST
6109		|| TREE_CODE (cop0) == CONSTRUCTOR
6110		|| TREE_CODE (cop1) == VECTOR_CST
6111		|| TREE_CODE (cop1) == CONSTRUCTOR))
6112          {
6113	    bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6114	    if (insert_first_p)
6115	      {
6116	        /* After canonicalizing the first elt to come from the
6117		   first vector we only can insert the first elt from
6118		   the first vector.  */
6119	        at = 0;
6120		if ((ins = fold_read_from_vector (cop0, sel[0])))
6121		  op0 = op1;
6122	      }
6123	    /* The above can fail for two-element vectors which always
6124	       appear to insert the first element, so try inserting
6125	       into the second lane as well.  For more than two
6126	       elements that's wasted time.  */
6127	    if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6128	      {
6129	        unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6130		for (at = 0; at < encoded_nelts; ++at)
6131		  if (maybe_ne (sel[at], at))
6132		    break;
6133		if (at < encoded_nelts
6134		    && (known_eq (at + 1, nelts)
6135			|| sel.series_p (at + 1, 1, at + 1, 1)))
6136		  {
6137		    if (known_lt (poly_uint64 (sel[at]), nelts))
6138		      ins = fold_read_from_vector (cop0, sel[at]);
6139		    else
6140		      ins = fold_read_from_vector (cop1, sel[at] - nelts);
6141		  }
6142	      }
6143	  }
6144
6145	/* Generate a canonical form of the selector.  */
6146	if (!ins && sel.encoding () != builder)
6147	  {
6148	    /* Some targets are deficient and fail to expand a single
6149	       argument permutation while still allowing an equivalent
6150	       2-argument version.  */
6151	    tree oldop2 = op2;
6152	    if (sel.ninputs () == 2
6153	       || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6154	      op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6155	    else
6156	      {
6157	        vec_perm_indices sel2 (builder, 2, nelts);
6158	        if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6159	          op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6160	        else
6161	          /* Not directly supported with either encoding,
6162		     so use the preferred form.  */
6163		  op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6164	      }
6165	    if (!operand_equal_p (op2, oldop2, 0))
6166	      changed = true;
6167	  }
6168      }
6169      (if (ins)
6170       (bit_insert { op0; } { ins; }
6171         { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6172       (if (changed)
6173        (vec_perm { op0; } { op1; } { op2; }))))))))))
6174
6175/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element.  */
6176
6177(match vec_same_elem_p
6178 @0
6179 (if (uniform_vector_p (@0))))
6180
6181(match vec_same_elem_p
6182 (vec_duplicate @0))
6183
6184(simplify
6185 (vec_perm vec_same_elem_p@0 @0 @1)
6186 @0)
6187
6188/* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6189   The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6190   constant which when multiplied by a power of 2 contains a unique value
6191   in the top 5 or 6 bits.  This is then indexed into a table which maps it
6192   to the number of trailing zeroes.  */
6193(match (ctz_table_index @1 @2 @3)
6194  (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
6195