xref: /netbsd/external/gpl3/gcc/dist/gcc/config/arm/arm.h (revision 357230f7)
1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2020 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31 
32 /* We can't use machine_mode inside a generator file because it
33    hasn't been created yet; we shouldn't be using any code that
34    needs the real definition though, so this ought to be safe.  */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41 
42 #include "config/vxworks-dummy.h"
43 
44 /* The architecture define.  */
45 extern char arm_arch_name[];
46 
47 /* Target CPU builtins.  */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49 
50 /* Target CPU versions for D.  */
51 #define TARGET_D_CPU_VERSIONS arm_d_target_versions
52 
53 #include "config/arm/arm-opts.h"
54 
55 /* The processor for which instructions should be scheduled.  */
56 extern enum processor_type arm_tune;
57 
58 typedef enum arm_cond_code
59 {
60   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
61   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
62 }
63 arm_cc;
64 
65 extern arm_cc arm_current_cc;
66 
67 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
68 
69 /* The maximum number of instructions that is beneficial to
70    conditionally execute. */
71 #undef MAX_CONDITIONAL_EXECUTE
72 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
73 
74 extern int arm_target_label;
75 extern int arm_ccfsm_state;
76 extern GTY(()) rtx arm_target_insn;
77 /* Callback to output language specific object attributes.  */
78 extern void (*arm_lang_output_object_attributes_hook)(void);
79 
80 /* This type is the user-visible __fp16.  We need it in a few places in
81    the backend.  Defined in arm-builtins.c.  */
82 extern tree arm_fp16_type_node;
83 
84 /* This type is the user-visible __bf16.  We need it in a few places in
85    the backend.  Defined in arm-builtins.c.  */
86 extern tree arm_bf16_type_node;
87 extern tree arm_bf16_ptr_type_node;
88 
89 
90 #undef  CPP_SPEC
91 #define CPP_SPEC "%(subtarget_cpp_spec)					\
92 %{mfloat-abi=soft:%{mfloat-abi=hard:					\
93 	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
94 %{mbig-endian:%{mlittle-endian:						\
95 	%e-mbig-endian and -mlittle-endian may not be used together}}"
96 
97 #ifndef CC1_SPEC
98 #define CC1_SPEC ""
99 #endif
100 
101 /* This macro defines names of additional specifications to put in the specs
102    that can be used in various specifications like CC1_SPEC.  Its definition
103    is an initializer with a subgrouping for each command option.
104 
105    Each subgrouping contains a string constant, that defines the
106    specification name, and a string constant that used by the GCC driver
107    program.
108 
109    Do not define this macro if it does not need to do anything.  */
110 #define EXTRA_SPECS						\
111   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
112   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
113   SUBTARGET_EXTRA_SPECS
114 
115 #ifndef SUBTARGET_EXTRA_SPECS
116 #define SUBTARGET_EXTRA_SPECS
117 #endif
118 
119 #ifndef SUBTARGET_CPP_SPEC
120 #define SUBTARGET_CPP_SPEC      ""
121 #endif
122 
123 /* Tree Target Specification.  */
124 #define TARGET_ARM_P(flags)    (!TARGET_THUMB_P (flags))
125 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
126 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
127 #define TARGET_32BIT_P(flags)  (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
128 
129 /* Run-time Target Specification.  */
130 /* Use hardware floating point instructions. -mgeneral-regs-only prevents
131 the use of floating point instructions and registers but does not prevent
132 emission of floating point pcs attributes.  */
133 #define TARGET_HARD_FLOAT_SUB	(arm_float_abi != ARM_FLOAT_ABI_SOFT	\
134 				 && bitmap_bit_p (arm_active_target.isa, \
135 						  isa_bit_vfpv2) \
136 				 && TARGET_32BIT)
137 
138 #define TARGET_HARD_FLOAT	(TARGET_HARD_FLOAT_SUB		\
139 				 && !TARGET_GENERAL_REGS_ONLY)
140 
141 #define TARGET_SOFT_FLOAT	(!TARGET_HARD_FLOAT_SUB)
142 /* User has permitted use of FP instructions, if they exist for this
143    target.  */
144 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
145 /* Use hardware floating point calling convention.  */
146 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
147 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
148 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
149 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT \
150 					 && !TARGET_GENERAL_REGS_ONLY)
151 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT \
152 					 && !TARGET_GENERAL_REGS_ONLY)
153 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
154 #define TARGET_ARM                      (! TARGET_THUMB)
155 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
156 #define TARGET_BACKTRACE	        (crtl->is_leaf \
157 				         ? TARGET_TPCS_LEAF_FRAME \
158 				         : TARGET_TPCS_FRAME)
159 #define TARGET_AAPCS_BASED \
160     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
161 
162 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
163 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
164 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
165 
166 /* Only 16-bit thumb code.  */
167 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
168 /* Arm or Thumb-2 32-bit code.  */
169 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
170 /* 32-bit Thumb-2 code.  */
171 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
172 /* Thumb-1 only.  */
173 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
174 
175 #define TARGET_LDRD			(arm_arch5te && ARM_DOUBLEWORD_ALIGN \
176                                          && !TARGET_THUMB1)
177 
178 #define TARGET_CRC32			(arm_arch_crc)
179 
180 /* The following two macros concern the ability to execute coprocessor
181    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
182    only ever tested when we know we are generating for VFP hardware; we need
183    to be more careful with TARGET_NEON as noted below.  */
184 
185 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
186 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
187 
188 /* FPU supports VFPv3 instructions.  */
189 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
190 
191 /* FPU supports FPv5 instructions.  */
192 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
193 
194 /* FPU only supports VFP single-precision instructions.  */
195 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
196 
197 /* FPU supports VFP double-precision instructions.  */
198 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
199 
200 /* FPU supports half-precision floating-point with NEON element load/store.  */
201 #define TARGET_NEON_FP16					\
202   (bitmap_bit_p (arm_active_target.isa, isa_bit_neon)		\
203    && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
204 
205 /* FPU supports VFP half-precision floating-point conversions.  */
206 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
207 
208 /* FPU supports converting between HFmode and DFmode in a single hardware
209    step.  */
210 #define TARGET_FP16_TO_DOUBLE						\
211   (TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
212 
213 /* FPU supports fused-multiply-add operations.  */
214 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
215 
216 /* FPU supports Crypto extensions.  */
217 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
218 
219 /* FPU supports Neon instructions.  The setting of this macro gets
220    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
221    and TARGET_HARD_FLOAT to ensure that NEON instructions are
222    available.  */
223 #define TARGET_NEON							\
224   (TARGET_32BIT && TARGET_HARD_FLOAT					\
225    && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
226 
227 /* FPU supports ARMv8.1 Adv.SIMD extensions.  */
228 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
229 
230 /* Supports the Dot Product AdvSIMD extensions.  */
231 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5			\
232 			&& bitmap_bit_p (arm_active_target.isa,		\
233 					isa_bit_dotprod)		\
234 			&& arm_arch8_2)
235 
236 /* Supports the Armv8.3-a Complex number AdvSIMD extensions.  */
237 #define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
238 
239 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
240    and later.  */
241 #define TARGET_VFP_FP16INST \
242   (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
243 
244 /* Target supports the floating point FP16 instructions from ARMv8.2-A
245    and later.  */
246 #define TARGET_FP16FML (TARGET_NEON					\
247 			&& bitmap_bit_p (arm_active_target.isa,	\
248 					isa_bit_fp16fml)		\
249 			&& arm_arch8_2)
250 
251 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later.  */
252 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
253 
254 /* FPU supports 8-bit Integer Matrix Multiply (I8MM) AdvSIMD extensions.  */
255 #define TARGET_I8MM (TARGET_NEON && arm_arch8_2 && arm_arch_i8mm)
256 
257 /* FPU supports Brain half-precision floating-point (BFloat16) extension.  */
258 #define TARGET_BF16_FP (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 \
259 			&& arm_arch8_2 && arm_arch_bf16)
260 #define TARGET_BF16_SIMD (TARGET_NEON && TARGET_VFP5 \
261 			  && arm_arch8_2 && arm_arch_bf16)
262 
263 /* Q-bit is present.  */
264 #define TARGET_ARM_QBIT \
265   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
266 /* Saturation operation, e.g. SSAT.  */
267 #define TARGET_ARM_SAT \
268   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
269 /* "DSP" multiply instructions, eg. SMULxy.  */
270 #define TARGET_DSP_MULTIPLY \
271   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
272 /* Integer SIMD instructions, and extend-accumulate instructions.  */
273 #define TARGET_INT_SIMD \
274   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
275 
276 /* Should MOVW/MOVT be used in preference to a constant pool.  */
277 #define TARGET_USE_MOVT \
278   (TARGET_HAVE_MOVT \
279    && (arm_disable_literal_pool \
280        || (!optimize_size && !current_tune->prefer_constant_pool)))
281 
282 /* Nonzero if this chip provides the DMB instruction.  */
283 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
284 
285 /* Nonzero if this chip implements a memory barrier via CP15.  */
286 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
287 				 && ! TARGET_THUMB1)
288 
289 /* Nonzero if this chip implements a memory barrier instruction.  */
290 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
291 
292 /* Nonzero if this chip supports ldrex and strex */
293 #define TARGET_HAVE_LDREX        ((arm_arch6 && TARGET_ARM)	\
294 				  || arm_arch7			\
295 				  || (arm_arch8 && !arm_arch_notm))
296 
297 /* Nonzero if this chip supports LPAE.  */
298 #define TARGET_HAVE_LPAE (arm_arch_lpae)
299 
300 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
301 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM)		\
302 			     || arm_arch7			\
303 			     || (arm_arch8 && !arm_arch_notm))
304 
305 /* Nonzero if this chip supports ldrexd and strexd.  */
306 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
307 			     || arm_arch7) && arm_arch_notm)
308 
309 /* Nonzero if this chip supports load-acquire and store-release.  */
310 #define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
311 
312 /* Nonzero if this chip supports LDAEXD and STLEXD.  */
313 #define TARGET_HAVE_LDACQEXD	(TARGET_ARM_ARCH >= 8	\
314 				 && TARGET_32BIT	\
315 				 && arm_arch_notm)
316 
317 /* Nonzero if this chip provides the MOVW and MOVT instructions.  */
318 #define TARGET_HAVE_MOVT	(arm_arch_thumb2 || arm_arch8)
319 
320 /* Nonzero if this chip provides the CBZ and CBNZ instructions.  */
321 #define TARGET_HAVE_CBZ		(arm_arch_thumb2 || arm_arch8)
322 
323 /* Nonzero if this chip provides Armv8.1-M Mainline Security extensions
324    instructions (most are floating-point related).  */
325 #define TARGET_HAVE_FPCXT_CMSE	(arm_arch8_1m_main)
326 
327 #define TARGET_HAVE_MVE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
328 			 && bitmap_bit_p (arm_active_target.isa, \
329 					  isa_bit_mve) \
330 			 && !TARGET_GENERAL_REGS_ONLY)
331 
332 #define TARGET_HAVE_MVE_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
333 			       && bitmap_bit_p (arm_active_target.isa, \
334 						isa_bit_mve_float) \
335 			       && !TARGET_GENERAL_REGS_ONLY)
336 
337 /* MVE have few common instructions as VFP, like VLDM alias VPOP, VLDR, VSTM
338    alia VPUSH, VSTR and VMOV, VMSR and VMRS.  In the same manner it updates few
339    registers such as FPCAR, FPCCR, FPDSCR, FPSCR, MVFR0, MVFR1 and MVFR2.  All
340    the VFP instructions, RTL patterns and register are guarded by
341    TARGET_HARD_FLOAT.  But the common instructions, RTL pattern and registers
342    between MVE and VFP will be guarded by the following macro TARGET_VFP_BASE
343    hereafter.  */
344 
345 #define TARGET_VFP_BASE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
346 			 && bitmap_bit_p (arm_active_target.isa, \
347 					  isa_bit_vfp_base) \
348 			 && !TARGET_GENERAL_REGS_ONLY)
349 
350 /* Nonzero if integer division instructions supported.  */
351 #define TARGET_IDIV	((TARGET_ARM && arm_arch_arm_hwdiv)	\
352 			 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
353 
354 /* Nonzero if disallow volatile memory access in IT block.  */
355 #define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
356 
357 /* Nonzero if chip supports the Custom Datapath Extension.  */
358 #define TARGET_CDE	(arm_arch_cde && arm_arch8 && !arm_arch_notm)
359 
360 /* Should constant I be slplit for OP.  */
361 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
362 				((optimize >= 2) \
363 				 && can_create_pseudo_p () \
364 				 && !const_ok_for_op (i, op))
365 
366 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
367    then TARGET_AAPCS_BASED must be true -- but the converse does not
368    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
369    etc., in addition to just the AAPCS calling conventions.  */
370 #ifndef TARGET_BPABI
371 #define TARGET_BPABI false
372 #endif
373 
374 /* Transform lane numbers on big endian targets. This is used to allow for the
375    endianness difference between NEON architectural lane numbers and those
376    used in RTL */
377 #define NEON_ENDIAN_LANE_N(mode, n)  \
378   (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
379 
380 /* Support for a compile-time default CPU, et cetera.  The rules are:
381    --with-arch is ignored if -march or -mcpu are specified.
382    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
383     by --with-arch.
384    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
385      by -march).
386    --with-float is ignored if -mfloat-abi is specified.
387    --with-fpu is ignored if -mfpu is specified.
388    --with-abi is ignored if -mabi is specified.
389    --with-tls is ignored if -mtls-dialect is specified. */
390 #define OPTION_DEFAULT_SPECS \
391   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
392   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
393   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
394   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
395   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
396   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
397   {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
398   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
399 
400 extern const struct arm_fpu_desc
401 {
402   const char *name;
403   enum isa_feature isa_bits[isa_num_bits];
404 } all_fpus[];
405 
406 /* Which floating point hardware to schedule for.  */
407 extern int arm_fpu_attr;
408 
409 #ifndef TARGET_DEFAULT_FLOAT_ABI
410 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
411 #endif
412 
413 #ifndef ARM_DEFAULT_ABI
414 #define ARM_DEFAULT_ABI ARM_ABI_APCS
415 #endif
416 
417 /* AAPCS based ABIs use short enums by default.  */
418 #ifndef ARM_DEFAULT_SHORT_ENUMS
419 #define ARM_DEFAULT_SHORT_ENUMS \
420   (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
421 #endif
422 
423 /* Map each of the micro-architecture variants to their corresponding
424    major architecture revision.  */
425 
426 enum base_architecture
427 {
428   BASE_ARCH_0 = 0,
429   BASE_ARCH_2 = 2,
430   BASE_ARCH_3 = 3,
431   BASE_ARCH_3M = 3,
432   BASE_ARCH_4 = 4,
433   BASE_ARCH_4T = 4,
434   BASE_ARCH_5T = 5,
435   BASE_ARCH_5TE = 5,
436   BASE_ARCH_5TEJ = 5,
437   BASE_ARCH_6 = 6,
438   BASE_ARCH_6J = 6,
439   BASE_ARCH_6KZ = 6,
440   BASE_ARCH_6K = 6,
441   BASE_ARCH_6T2 = 6,
442   BASE_ARCH_6M = 6,
443   BASE_ARCH_6Z = 6,
444   BASE_ARCH_7 = 7,
445   BASE_ARCH_7A = 7,
446   BASE_ARCH_7R = 7,
447   BASE_ARCH_7M = 7,
448   BASE_ARCH_7EM = 7,
449   BASE_ARCH_8A = 8,
450   BASE_ARCH_8M_BASE = 8,
451   BASE_ARCH_8M_MAIN = 8,
452   BASE_ARCH_8R = 8
453 };
454 
455 /* The major revision number of the ARM Architecture implemented by the target.  */
456 extern enum base_architecture arm_base_arch;
457 
458 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
459 extern int arm_arch4;
460 
461 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
462 extern int arm_arch4t;
463 
464 /* Nonzero if this chip supports the ARM Architecture 5T extensions.  */
465 extern int arm_arch5t;
466 
467 /* Nonzero if this chip supports the ARM Architecture 5TE extensions.  */
468 extern int arm_arch5te;
469 
470 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
471 extern int arm_arch6;
472 
473 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
474 extern int arm_arch6k;
475 
476 /* Nonzero if instructions present in ARMv6-M can be used.  */
477 extern int arm_arch6m;
478 
479 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
480 extern int arm_arch7;
481 
482 /* Nonzero if instructions not present in the 'M' profile can be used.  */
483 extern int arm_arch_notm;
484 
485 /* Nonzero if instructions present in ARMv7E-M can be used.  */
486 extern int arm_arch7em;
487 
488 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
489 extern int arm_arch8;
490 
491 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions.  */
492 extern int arm_arch8_1;
493 
494 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions.  */
495 extern int arm_arch8_2;
496 
497 /* Nonzero if this chip supports the ARM Architecture 8.3 extensions.  */
498 extern int arm_arch8_3;
499 
500 /* Nonzero if this chip supports the ARM Architecture 8.4 extensions.  */
501 extern int arm_arch8_4;
502 
503 /* Nonzero if this chip supports the ARM Architecture 8.1-M Mainline
504    extensions.  */
505 extern int arm_arch8_1m_main;
506 
507 /* Nonzero if this chip supports the FP16 instructions extension of ARM
508    Architecture 8.2.  */
509 extern int arm_fp16_inst;
510 
511 /* Nonzero if this chip can benefit from load scheduling.  */
512 extern int arm_ld_sched;
513 
514 /* Nonzero if this chip is a StrongARM.  */
515 extern int arm_tune_strongarm;
516 
517 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
518 extern int arm_arch_iwmmxt;
519 
520 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
521 extern int arm_arch_iwmmxt2;
522 
523 /* Nonzero if this chip is an XScale.  */
524 extern int arm_arch_xscale;
525 
526 /* Nonzero if tuning for XScale.  */
527 extern int arm_tune_xscale;
528 
529 /* Nonzero if tuning for stores via the write buffer.  */
530 extern int arm_tune_wbuf;
531 
532 /* Nonzero if tuning for Cortex-A9.  */
533 extern int arm_tune_cortex_a9;
534 
535 /* Nonzero if we should define __THUMB_INTERWORK__ in the
536    preprocessor.
537    XXX This is a bit of a hack, it's intended to help work around
538    problems in GLD which doesn't understand that armv5t code is
539    interworking clean.  */
540 extern int arm_cpp_interwork;
541 
542 /* Nonzero if chip supports Thumb 1.  */
543 extern int arm_arch_thumb1;
544 
545 /* Nonzero if chip supports Thumb 2.  */
546 extern int arm_arch_thumb2;
547 
548 /* Nonzero if chip supports integer division instruction in ARM mode.  */
549 extern int arm_arch_arm_hwdiv;
550 
551 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
552 extern int arm_arch_thumb_hwdiv;
553 
554 /* Nonzero if chip disallows volatile memory access in IT block.  */
555 extern int arm_arch_no_volatile_ce;
556 
557 /* Nonzero if we shouldn't use literal pools.  */
558 #ifndef USED_FOR_TARGET
559 extern bool arm_disable_literal_pool;
560 #endif
561 
562 /* Nonzero if chip supports the ARMv8 CRC instructions.  */
563 extern int arm_arch_crc;
564 
565 /* Nonzero if chip supports the ARMv8-M Security Extensions.  */
566 extern int arm_arch_cmse;
567 
568 /* Nonzero if chip supports the I8MM instructions.  */
569 extern int arm_arch_i8mm;
570 
571 /* Nonzero if chip supports the BFloat16 instructions.  */
572 extern int arm_arch_bf16;
573 
574 /* Nonzero if chip supports the Custom Datapath Extension.  */
575 extern int arm_arch_cde;
576 extern int arm_arch_cde_coproc;
577 extern const int arm_arch_cde_coproc_bits[];
578 #define ARM_CDE_CONST_COPROC	7
579 #define ARM_CCDE_CONST_1	((1 << 13) - 1)
580 #define ARM_CCDE_CONST_2	((1 << 9 ) - 1)
581 #define ARM_CCDE_CONST_3	((1 << 6 ) - 1)
582 #define ARM_VCDE_CONST_1	((1 << 11) - 1)
583 #define ARM_VCDE_CONST_2	((1 << 6 ) - 1)
584 #define ARM_VCDE_CONST_3	((1 << 3 ) - 1)
585 #define ARM_MVE_CDE_CONST_1	((1 << 12) - 1)
586 #define ARM_MVE_CDE_CONST_2	((1 << 7 ) - 1)
587 #define ARM_MVE_CDE_CONST_3	((1 << 4 ) - 1)
588 
589 #ifndef TARGET_DEFAULT
590 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
591 #endif
592 
593 /* Nonzero if PIC code requires explicit qualifiers to generate
594    PLT and GOT relocs rather than the assembler doing so implicitly.
595    Subtargets can override these if required.  */
596 #ifndef NEED_GOT_RELOC
597 #define NEED_GOT_RELOC	0
598 #endif
599 #ifndef NEED_PLT_RELOC
600 #define NEED_PLT_RELOC	0
601 #endif
602 
603 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
604 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
605 #endif
606 
607 /* Nonzero if we need to refer to the GOT with a PC-relative
608    offset.  In other words, generate
609 
610    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
611 
612    rather than
613 
614    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
615 
616    The default is true, which matches NetBSD.  Subtargets can
617    override this if required.  */
618 #ifndef GOT_PCREL
619 #define GOT_PCREL   1
620 #endif
621 
622 /* Target machine storage Layout.  */
623 
624 
625 /* Define this macro if it is advisable to hold scalars in registers
626    in a wider mode than that declared by the program.  In such cases,
627    the value is constrained to be within the bounds of the declared
628    type, but kept valid in the wider mode.  The signedness of the
629    extension may differ from that of the type.  */
630 
631 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
632   if (GET_MODE_CLASS (MODE) == MODE_INT		\
633       && GET_MODE_SIZE (MODE) < 4)      	\
634     {						\
635       (MODE) = SImode;				\
636     }
637 
638 /* Define this if most significant bit is lowest numbered
639    in instructions that operate on numbered bit-fields.  */
640 #define BITS_BIG_ENDIAN  0
641 
642 /* Define this if most significant byte of a word is the lowest numbered.
643    Most ARM processors are run in little endian mode, so that is the default.
644    If you want to have it run-time selectable, change the definition in a
645    cover file to be TARGET_BIG_ENDIAN.  */
646 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
647 
648 /* Define this if most significant word of a multiword number is the lowest
649    numbered.  */
650 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
651 
652 #define UNITS_PER_WORD	4
653 
654 /* True if natural alignment is used for doubleword types.  */
655 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
656 
657 #define DOUBLEWORD_ALIGNMENT 64
658 
659 #define PARM_BOUNDARY  	32
660 
661 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
662 
663 #define PREFERRED_STACK_BOUNDARY \
664     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
665 
666 #define FUNCTION_BOUNDARY_P(flags)  (TARGET_THUMB_P (flags) ? 16 : 32)
667 #define FUNCTION_BOUNDARY           (FUNCTION_BOUNDARY_P (target_flags))
668 
669 /* The lowest bit is used to indicate Thumb-mode functions, so the
670    vbit must go into the delta field of pointers to member
671    functions.  */
672 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
673 
674 #define EMPTY_FIELD_BOUNDARY  32
675 
676 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
677 
678 #define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
679 
680 /* XXX Blah -- this macro is used directly by libobjc.  Since it
681    supports no vector modes, cut out the complexity and fall back
682    on BIGGEST_FIELD_ALIGNMENT.  */
683 #ifdef IN_TARGET_LIBS
684 #define BIGGEST_FIELD_ALIGNMENT 64
685 #endif
686 
687 /* Align definitions of arrays, unions and structures so that
688    initializations and copies can be made more efficient.  This is not
689    ABI-changing, so it only affects places where we can see the
690    definition. Increasing the alignment tends to introduce padding,
691    so don't do this when optimizing for size/conserving stack space. */
692 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
693   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
694     && (TREE_CODE (EXP) == ARRAY_TYPE					\
695 	|| TREE_CODE (EXP) == UNION_TYPE				\
696 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
697 
698 /* Align global data. */
699 #define DATA_ALIGNMENT(EXP, ALIGN)			\
700   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
701 
702 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
703 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
704   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
705 
706 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
707    value set in previous versions of this toolchain was 8, which produces more
708    compact structures.  The command line option -mstructure_size_boundary=<n>
709    can be used to change this value.  For compatibility with the ARM SDK
710    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
711    0020D) page 2-20 says "Structures are aligned on word boundaries".
712    The AAPCS specifies a value of 8.  */
713 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
714 
715 /* This is the value used to initialize arm_structure_size_boundary.  If a
716    particular arm target wants to change the default value it should change
717    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
718    for an example of this.  */
719 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
720 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
721 #endif
722 
723 /* Nonzero if move instructions will actually fail to work
724    when given unaligned data.  */
725 #define STRICT_ALIGNMENT 1
726 
727 /* wchar_t is unsigned under the AAPCS.  */
728 #ifndef WCHAR_TYPE
729 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
730 
731 #define WCHAR_TYPE_SIZE BITS_PER_WORD
732 #endif
733 
734 /* Sized for fixed-point types.  */
735 
736 #define SHORT_FRACT_TYPE_SIZE 8
737 #define FRACT_TYPE_SIZE 16
738 #define LONG_FRACT_TYPE_SIZE 32
739 #define LONG_LONG_FRACT_TYPE_SIZE 64
740 
741 #define SHORT_ACCUM_TYPE_SIZE 16
742 #define ACCUM_TYPE_SIZE 32
743 #define LONG_ACCUM_TYPE_SIZE 64
744 #define LONG_LONG_ACCUM_TYPE_SIZE 64
745 
746 #define MAX_FIXED_MODE_SIZE 64
747 
748 #ifndef SIZE_TYPE
749 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
750 #endif
751 
752 #ifndef PTRDIFF_TYPE
753 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
754 #endif
755 
756 /* AAPCS requires that structure alignment is affected by bitfields.  */
757 #ifndef PCC_BITFIELD_TYPE_MATTERS
758 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
759 #endif
760 
761 /* The maximum size of the sync library functions supported.  */
762 #ifndef MAX_SYNC_LIBFUNC_SIZE
763 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
764 #endif
765 
766 
767 /* Standard register usage.  */
768 
769 /* Register allocation in ARM Procedure Call Standard
770    (S - saved over call, F - Frame-related).
771 
772 	r0	   *	argument word/integer result
773 	r1-r3		argument word
774 
775 	r4-r8	     S	register variable
776 	r9	     S	(rfp) register variable (real frame pointer)
777 
778 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
779 	r11 	   F S	(fp) argument pointer
780 	r12		(ip) temp workspace
781 	r13  	   F S	(sp) lower end of current stack frame
782 	r14		(lr) link address/workspace
783 	r15	   F	(pc) program counter
784 
785 	cc		This is NOT a real register, but is used internally
786 	                to represent things that use or set the condition
787 			codes.
788 	sfp             This isn't either.  It is used during rtl generation
789 	                since the offset between the frame pointer and the
790 			auto's isn't known until after register allocation.
791 	afp		Nor this, we only need this because of non-local
792 	                goto.  Without it fp appears to be used and the
793 			elimination code won't get rid of sfp.  It tracks
794 			fp exactly at all times.
795 	apsrq		Nor this, it is used to track operations on the Q bit
796 			of APSR by ACLE saturating intrinsics.
797 	apsrge		Nor this, it is used to track operations on the GE bits
798 			of APSR by ACLE SIMD32 intrinsics
799 
800    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
801 
802 /*	s0-s15		VFP scratch (aka d0-d7).
803 	s16-s31	      S	VFP variable (aka d8-d15).
804 	vfpcc		Not a real register.  Represents the VFP condition
805 			code flags.
806 	vpr		Used to represent MVE VPR predication.  */
807 
808 /* The stack backtrace structure is as follows:
809   fp points to here:  |  save code pointer  |      [fp]
810                       |  return link value  |      [fp, #-4]
811                       |  return sp value    |      [fp, #-8]
812                       |  return fp value    |      [fp, #-12]
813                      [|  saved r10 value    |]
814                      [|  saved r9 value     |]
815                      [|  saved r8 value     |]
816                      [|  saved r7 value     |]
817                      [|  saved r6 value     |]
818                      [|  saved r5 value     |]
819                      [|  saved r4 value     |]
820                      [|  saved r3 value     |]
821                      [|  saved r2 value     |]
822                      [|  saved r1 value     |]
823                      [|  saved r0 value     |]
824   r0-r3 are not normally saved in a C function.  */
825 
826 /* 1 for registers that have pervasive standard uses
827    and are not available for the register allocator.  */
828 #define FIXED_REGISTERS 	\
829 {				\
830   /* Core regs.  */		\
831   0,0,0,0,0,0,0,0,		\
832   0,0,0,0,0,1,0,1,		\
833   /* VFP regs.  */		\
834   1,1,1,1,1,1,1,1,		\
835   1,1,1,1,1,1,1,1,		\
836   1,1,1,1,1,1,1,1,		\
837   1,1,1,1,1,1,1,1,		\
838   1,1,1,1,1,1,1,1,		\
839   1,1,1,1,1,1,1,1,		\
840   1,1,1,1,1,1,1,1,		\
841   1,1,1,1,1,1,1,1,		\
842   /* IWMMXT regs.  */		\
843   1,1,1,1,1,1,1,1,		\
844   1,1,1,1,1,1,1,1,		\
845   1,1,1,1,			\
846   /* Specials.  */		\
847   1,1,1,1,1,1,1			\
848 }
849 
850 /* 1 for registers not available across function calls.
851    These must include the FIXED_REGISTERS and also any
852    registers that can be used without being saved.
853    The latter must include the registers where values are returned
854    and the register where structure-value addresses are passed.
855    Aside from that, you can include as many other registers as you like.
856    The CC is not preserved over function calls on the ARM 6, so it is
857    easier to assume this for all.  SFP is preserved, since FP is.  */
858 #define CALL_USED_REGISTERS	\
859 {				\
860   /* Core regs.  */		\
861   1,1,1,1,0,0,0,0,		\
862   0,0,0,0,1,1,1,1,		\
863   /* VFP Regs.  */		\
864   1,1,1,1,1,1,1,1,		\
865   1,1,1,1,1,1,1,1,		\
866   1,1,1,1,1,1,1,1,		\
867   1,1,1,1,1,1,1,1,		\
868   1,1,1,1,1,1,1,1,		\
869   1,1,1,1,1,1,1,1,		\
870   1,1,1,1,1,1,1,1,		\
871   1,1,1,1,1,1,1,1,		\
872   /* IWMMXT regs.  */		\
873   1,1,1,1,1,1,1,1,		\
874   1,1,1,1,1,1,1,1,		\
875   1,1,1,1,			\
876   /* Specials.  */		\
877   1,1,1,1,1,1,1			\
878 }
879 
880 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
881 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
882 #endif
883 
884 /* These are a couple of extensions to the formats accepted
885    by asm_fprintf:
886      %@ prints out ASM_COMMENT_START
887      %r prints out REGISTER_PREFIX reg_names[arg]  */
888 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
889   case '@':						\
890     fputs (ASM_COMMENT_START, FILE);			\
891     break;						\
892 							\
893   case 'r':						\
894     fputs (REGISTER_PREFIX, FILE);			\
895     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
896     break;
897 
898 /* Round X up to the nearest word.  */
899 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
900 
901 /* Convert fron bytes to ints.  */
902 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
903 
904 /* The number of (integer) registers required to hold a quantity of type MODE.
905    Also used for VFP registers.  */
906 #define ARM_NUM_REGS(MODE)				\
907   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
908 
909 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
910 #define ARM_NUM_REGS2(MODE, TYPE)                   \
911   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
912   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
913 
914 /* The number of (integer) argument register available.  */
915 #define NUM_ARG_REGS		4
916 
917 /* And similarly for the VFP.  */
918 #define NUM_VFP_ARG_REGS	16
919 
920 /* Return the register number of the N'th (integer) argument.  */
921 #define ARG_REGISTER(N) 	(N - 1)
922 
923 /* Specify the registers used for certain standard purposes.
924    The values of these macros are register numbers.  */
925 
926 /* The number of the last argument register.  */
927 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
928 
929 /* The numbers of the Thumb register ranges.  */
930 #define FIRST_LO_REGNUM  	0
931 #define LAST_LO_REGNUM  	7
932 #define FIRST_HI_REGNUM		8
933 #define LAST_HI_REGNUM		11
934 
935 /* Overridden by config/arm/bpabi.h.  */
936 #ifndef ARM_UNWIND_INFO
937 #define ARM_UNWIND_INFO  0
938 #endif
939 
940 /* Overriden by config/arm/netbsd-eabi.h.  */
941 #ifndef ARM_DWARF_UNWIND_TABLES
942 #define ARM_DWARF_UNWIND_TABLES 0
943 #endif
944 
945 /* Use r0 and r1 to pass exception handling information.  */
946 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
947 
948 /* The register that holds the return address in exception handlers.  */
949 #define ARM_EH_STACKADJ_REGNUM	2
950 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
951 
952 #ifndef ARM_TARGET2_DWARF_FORMAT
953 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
954 #endif
955 
956 #if ARM_DWARF_UNWIND_TABLES
957 /* DWARF unwinding uses the normal indirect/pcrel vs absptr format
958    for 32bit platforms. */
959 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
960   (flag_pic ? (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
961             : DW_EH_PE_absptr)
962 #else
963 /* ttype entries (the only interesting data references used)
964    use TARGET2 relocations.  */
965 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
966   (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
967 			       : DW_EH_PE_absptr)
968 #endif
969 
970 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
971    as an invisible last argument (possible since varargs don't exist in
972    Pascal), so the following is not true.  */
973 #define STATIC_CHAIN_REGNUM	12
974 
975 /* r9 is the FDPIC register (base register for GOT and FUNCDESC accesses).  */
976 #define FDPIC_REGNUM		9
977 
978 /* Define this to be where the real frame pointer is if it is not possible to
979    work out the offset between the frame pointer and the automatic variables
980    until after register allocation has taken place.  FRAME_POINTER_REGNUM
981    should point to a special register that we will make sure is eliminated.
982 
983    For the Thumb we have another problem.  The TPCS defines the frame pointer
984    as r11, and GCC believes that it is always possible to use the frame pointer
985    as base register for addressing purposes.  (See comments in
986    find_reloads_address()).  But - the Thumb does not allow high registers,
987    including r11, to be used as base address registers.  Hence our problem.
988 
989    The solution used here, and in the old thumb port is to use r7 instead of
990    r11 as the hard frame pointer and to have special code to generate
991    backtrace structures on the stack (if required to do so via a command line
992    option) using r11.  This is the only 'user visible' use of r11 as a frame
993    pointer.  */
994 #define ARM_HARD_FRAME_POINTER_REGNUM	11
995 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
996 
997 #define HARD_FRAME_POINTER_REGNUM		\
998   (TARGET_ARM					\
999    ? ARM_HARD_FRAME_POINTER_REGNUM		\
1000    : THUMB_HARD_FRAME_POINTER_REGNUM)
1001 
1002 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1003 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1004 
1005 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
1006 
1007 /* Register to use for pushing function arguments.  */
1008 #define STACK_POINTER_REGNUM	SP_REGNUM
1009 
1010 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
1011 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
1012 
1013 /* Need to sync with WCGR in iwmmxt.md.  */
1014 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
1015 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
1016 
1017 #define IS_IWMMXT_REGNUM(REGNUM) \
1018   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1019 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1020   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1021 
1022 /* Base register for access to local variables of the function.  */
1023 #define FRAME_POINTER_REGNUM	102
1024 
1025 /* Base register for access to arguments of the function.  */
1026 #define ARG_POINTER_REGNUM	103
1027 
1028 #define FIRST_VFP_REGNUM	16
1029 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
1030 #define LAST_VFP_REGNUM	\
1031   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1032 
1033 #define IS_VFP_REGNUM(REGNUM) \
1034   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1035 
1036 /* VFP registers are split into two types: those defined by VFP versions < 3
1037    have D registers overlaid on consecutive pairs of S registers. VFP version 3
1038    defines 16 new D registers (d16-d31) which, for simplicity and correctness
1039    in various parts of the backend, we implement as "fake" single-precision
1040    registers (which would be S32-S63, but cannot be used in that way).  The
1041    following macros define these ranges of registers.  */
1042 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
1043 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
1044 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
1045 
1046 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1047   ((REGNUM) <= LAST_LO_VFP_REGNUM)
1048 
1049 /* DFmode values are only valid in even register pairs.  */
1050 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1051   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1052 
1053 /* Neon Quad values must start at a multiple of four registers.  */
1054 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1055   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1056 
1057 /* Neon structures of vectors must be in even register pairs and there
1058    must be enough registers available.  Because of various patterns
1059    requiring quad registers, we require them to start at a multiple of
1060    four.  */
1061 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1062   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1063    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1064 
1065 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP
1066    + 1 APSRQ + 1 APSRGE + 1 VPR.  */
1067 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1068 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1069 #define FIRST_PSEUDO_REGISTER   107
1070 
1071 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1072 
1073 /* Value should be nonzero if functions must have frame pointers.
1074    Zero means the frame pointer need not be set up (and parms may be accessed
1075    via the stack pointer) in functions that seem suitable.
1076    If we have to have a frame pointer we might as well make use of it.
1077    APCS says that the frame pointer does not need to be pushed in leaf
1078    functions, or simple tail call functions.  */
1079 
1080 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1081 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1082 #endif
1083 
1084 #define VALID_IWMMXT_REG_MODE(MODE) \
1085  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1086 
1087 /* Modes valid for Neon D registers.  */
1088 #define VALID_NEON_DREG_MODE(MODE) \
1089   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1090    || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode \
1091    || (MODE) == V4BFmode)
1092 
1093 /* Modes valid for Neon Q registers.  */
1094 #define VALID_NEON_QREG_MODE(MODE) \
1095   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1096    || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode \
1097    || (MODE) == V8BFmode)
1098 
1099 #define VALID_MVE_MODE(MODE) \
1100   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1101    || (MODE) == V16QImode || (MODE) == V8HFmode || (MODE) == V4SFmode \
1102    || (MODE) == V2DFmode)
1103 
1104 #define VALID_MVE_SI_MODE(MODE) \
1105   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1106    || (MODE) == V16QImode)
1107 
1108 #define VALID_MVE_SF_MODE(MODE) \
1109   ((MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DFmode)
1110 
1111 /* Structure modes valid for Neon registers.  */
1112 #define VALID_NEON_STRUCT_MODE(MODE) \
1113   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1114    || (MODE) == CImode || (MODE) == XImode)
1115 
1116 #define VALID_MVE_STRUCT_MODE(MODE) \
1117   ((MODE) == TImode || (MODE) == OImode || (MODE) == XImode)
1118 
1119 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1120 extern int arm_regs_in_sequence[];
1121 
1122 /* The order in which register should be allocated.  It is good to use ip
1123    since no saving is required (though calls clobber it) and it never contains
1124    function parameters.  It is quite good to use lr since other calls may
1125    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1126    least likely to contain a function parameter; in addition results are
1127    returned in r0.
1128    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1129    then D8-D15.  The reason for doing this is to attempt to reduce register
1130    pressure when both single- and double-precision registers are used in a
1131    function.  */
1132 
1133 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1134 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1135 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1136 
1137 #define REG_ALLOC_ORDER				\
1138 {						\
1139   /* General registers.  */			\
1140   3,  2,  1,  0,  12, 14,  4,  5,		\
1141   6,  7,  8,  9,  10, 11,			\
1142   /* High VFP registers.  */			\
1143   VREG(32), VREG(33), VREG(34), VREG(35),	\
1144   VREG(36), VREG(37), VREG(38), VREG(39),	\
1145   VREG(40), VREG(41), VREG(42), VREG(43),	\
1146   VREG(44), VREG(45), VREG(46), VREG(47),	\
1147   VREG(48), VREG(49), VREG(50), VREG(51),	\
1148   VREG(52), VREG(53), VREG(54), VREG(55),	\
1149   VREG(56), VREG(57), VREG(58), VREG(59),	\
1150   VREG(60), VREG(61), VREG(62), VREG(63),	\
1151   /* VFP argument registers.  */		\
1152   VREG(15), VREG(14), VREG(13), VREG(12),	\
1153   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1154   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1155   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1156   /* VFP call-saved registers.  */		\
1157   VREG(16), VREG(17), VREG(18), VREG(19),	\
1158   VREG(20), VREG(21), VREG(22), VREG(23),	\
1159   VREG(24), VREG(25), VREG(26), VREG(27),	\
1160   VREG(28), VREG(29), VREG(30), VREG(31),	\
1161   /* IWMMX registers.  */			\
1162   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1163   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1164   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1165   WREG(12), WREG(13), WREG(14), WREG(15),	\
1166   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1167   /* Registers not for general use.  */		\
1168   CC_REGNUM, VFPCC_REGNUM,			\
1169   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1170   SP_REGNUM, PC_REGNUM, APSRQ_REGNUM,		\
1171   APSRGE_REGNUM, VPR_REGNUM			\
1172 }
1173 
1174 #define IS_VPR_REGNUM(REGNUM) \
1175   ((REGNUM) == VPR_REGNUM)
1176 
1177 /* Use different register alloc ordering for Thumb.  */
1178 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1179 
1180 /* Tell IRA to use the order we define when optimizing for size.  */
1181 #define HONOR_REG_ALLOC_ORDER optimize_function_for_size_p (cfun)
1182 
1183 /* Interrupt functions can only use registers that have already been
1184    saved by the prologue, even if they would normally be
1185    call-clobbered.  */
1186 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1187 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1188 	 df_regs_ever_live_p (DST))
1189 
1190 /* Register and constant classes.  */
1191 
1192 /* Register classes.  */
1193 enum reg_class
1194 {
1195   NO_REGS,
1196   LO_REGS,
1197   STACK_REG,
1198   BASE_REGS,
1199   HI_REGS,
1200   CALLER_SAVE_REGS,
1201   EVEN_REG,
1202   GENERAL_REGS,
1203   CORE_REGS,
1204   VFP_D0_D7_REGS,
1205   VFP_LO_REGS,
1206   VFP_HI_REGS,
1207   VFP_REGS,
1208   IWMMXT_REGS,
1209   IWMMXT_GR_REGS,
1210   CC_REG,
1211   VFPCC_REG,
1212   SFP_REG,
1213   AFP_REG,
1214   VPR_REG,
1215   ALL_REGS,
1216   LIM_REG_CLASSES
1217 };
1218 
1219 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1220 
1221 /* Give names of register classes as strings for dump file.  */
1222 #define REG_CLASS_NAMES \
1223 {			\
1224   "NO_REGS",		\
1225   "LO_REGS",		\
1226   "STACK_REG",		\
1227   "BASE_REGS",		\
1228   "HI_REGS",		\
1229   "CALLER_SAVE_REGS",	\
1230   "EVEN_REG",		\
1231   "GENERAL_REGS",	\
1232   "CORE_REGS",		\
1233   "VFP_D0_D7_REGS",	\
1234   "VFP_LO_REGS",	\
1235   "VFP_HI_REGS",	\
1236   "VFP_REGS",		\
1237   "IWMMXT_REGS",	\
1238   "IWMMXT_GR_REGS",	\
1239   "CC_REG",		\
1240   "VFPCC_REG",		\
1241   "SFP_REG",		\
1242   "AFP_REG",		\
1243   "VPR_REG",		\
1244   "ALL_REGS"		\
1245 }
1246 
1247 /* Define which registers fit in which classes.
1248    This is an initializer for a vector of HARD_REG_SET
1249    of length N_REG_CLASSES.  */
1250 #define REG_CLASS_CONTENTS						\
1251 {									\
1252   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1253   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1254   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1255   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1256   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1257   { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1258   { 0x00005555, 0x00000000, 0x00000000, 0x00000000 }, /* EVEN_REGS.  */ \
1259   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1260   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1261   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1262   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1263   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1264   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1265   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1266   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1267   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1268   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1269   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1270   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1271   { 0x00000000, 0x00000000, 0x00000000, 0x00000400 }, /* VPR_REG.  */	\
1272   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F }  /* ALL_REGS.  */	\
1273 }
1274 
1275 #define FP_SYSREGS \
1276   DEF_FP_SYSREG (FPSCR) \
1277   DEF_FP_SYSREG (FPSCR_nzcvqc) \
1278   DEF_FP_SYSREG (VPR) \
1279   DEF_FP_SYSREG (P0) \
1280   DEF_FP_SYSREG (FPCXTNS) \
1281   DEF_FP_SYSREG (FPCXTS)
1282 
1283 #define DEF_FP_SYSREG(reg) reg ## _ENUM,
1284 enum vfp_sysregs_encoding {
1285   FP_SYSREGS
1286   NB_FP_SYSREGS
1287 };
1288 #undef DEF_FP_SYSREG
1289 extern const char *fp_sysreg_names[NB_FP_SYSREGS];
1290 
1291 /* Any of the VFP register classes.  */
1292 #define IS_VFP_CLASS(X) \
1293   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1294    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1295 
1296 /* The same information, inverted:
1297    Return the class number of the smallest class containing
1298    reg number REGNO.  This could be a conditional expression
1299    or could index an array.  */
1300 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1301 
1302 /* The class value for index registers, and the one for base regs.  */
1303 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1304 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1305 
1306 /* For the Thumb the high registers cannot be used as base registers
1307    when addressing quantities in QI or HI mode; if we don't know the
1308    mode, then we must be conservative. For MVE we need to load from
1309    memory to low regs based on given modes i.e [Rn], Rn <= LO_REGS.  */
1310 #define MODE_BASE_REG_CLASS(MODE)				\
1311    (TARGET_HAVE_MVE ? arm_mode_base_reg_class (MODE)		\
1312    :(TARGET_32BIT ? CORE_REGS					\
1313    : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1314    : LO_REGS))
1315 
1316 /* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
1317    instead of BASE_REGS.  */
1318 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1319 
1320 /* When this hook returns true for MODE, the compiler allows
1321    registers explicitly used in the rtl to be used as spill registers
1322    but prevents the compiler from extending the lifetime of these
1323    registers.  */
1324 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1325   arm_small_register_classes_for_mode_p
1326 
1327 /* Must leave BASE_REGS reloads alone */
1328 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1329   (lra_in_progress ? NO_REGS						\
1330    : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1331       ? ((true_regnum (X) == -1 ? LO_REGS				\
1332          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1333          : NO_REGS)) 							\
1334       : NO_REGS))
1335 
1336 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1337   (lra_in_progress ? NO_REGS						\
1338    : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1339       ? ((true_regnum (X) == -1 ? LO_REGS				\
1340          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1341          : NO_REGS)) 							\
1342       : NO_REGS)
1343 
1344 /* Return the register class of a scratch register needed to copy IN into
1345    or out of a register in CLASS in MODE.  If it can be done directly,
1346    NO_REGS is returned.  */
1347 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1348   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1349   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1350    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1351    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1352    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1353    : TARGET_32BIT						\
1354    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1355     ? GENERAL_REGS : NO_REGS)					\
1356    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1357 
1358 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1359 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1360   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1361   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1362     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1363     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1364     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1365    (TARGET_32BIT ?						\
1366     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1367      && CONSTANT_P (X))						\
1368     ? GENERAL_REGS :						\
1369     (((MODE) == HImode && ! arm_arch4				\
1370       && (MEM_P (X)					\
1371 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1372 	      && true_regnum (X) == -1)))			\
1373      ? GENERAL_REGS : NO_REGS)					\
1374     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1375 
1376 /* Return the maximum number of consecutive registers
1377    needed to represent mode MODE in a register of class CLASS.
1378    ARM regs are UNITS_PER_WORD bits.
1379    FIXME: Is this true for iWMMX?  */
1380 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1381   (ARM_NUM_REGS (MODE))
1382 
1383 /* If defined, gives a class of registers that cannot be used as the
1384    operand of a SUBREG that changes the mode of the object illegally.  */
1385 
1386 /* Stack layout; function entry, exit and calling.  */
1387 
1388 /* Define this if pushing a word on the stack
1389    makes the stack pointer a smaller address.  */
1390 #define STACK_GROWS_DOWNWARD  1
1391 
1392 /* Define this to nonzero if the nominal address of the stack frame
1393    is at the high-address end of the local variables;
1394    that is, each additional local variable allocated
1395    goes at a more negative offset in the frame.  */
1396 #define FRAME_GROWS_DOWNWARD 1
1397 
1398 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1399    When present, it is one word in size, and sits at the top of the frame,
1400    between the soft frame pointer and either r7 or r11.
1401 
1402    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1403    and only then if some outgoing arguments are passed on the stack.  It would
1404    be tempting to also check whether the stack arguments are passed by indirect
1405    calls, but there seems to be no reason in principle why a post-reload pass
1406    couldn't convert a direct call into an indirect one.  */
1407 #define CALLER_INTERWORKING_SLOT_SIZE			\
1408   (TARGET_CALLER_INTERWORKING				\
1409    && maybe_ne (crtl->outgoing_args_size, 0)		\
1410    ? UNITS_PER_WORD : 0)
1411 
1412 /* If we generate an insn to push BYTES bytes,
1413    this says how many the stack pointer really advances by.  */
1414 /* The push insns do not do this rounding implicitly.
1415    So don't define this.  */
1416 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1417 
1418 /* Define this if the maximum size of all the outgoing args is to be
1419    accumulated and pushed during the prologue.  The amount can be
1420    found in the variable crtl->outgoing_args_size.  */
1421 #define ACCUMULATE_OUTGOING_ARGS 1
1422 
1423 /* Offset of first parameter from the argument pointer register value.  */
1424 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1425 
1426 /* Amount of memory needed for an untyped call to save all possible return
1427    registers.  */
1428 #define APPLY_RESULT_SIZE arm_apply_result_size()
1429 
1430 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1431    values must be in memory.  On the ARM, they need only do so if larger
1432    than a word, or if they contain elements offset from zero in the struct.  */
1433 #define DEFAULT_PCC_STRUCT_RETURN 0
1434 
1435 /* These bits describe the different types of function supported
1436    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1437    normal function and an interworked function, for example.  Knowing the
1438    type of a function is important for determining its prologue and
1439    epilogue sequences.
1440    Note value 7 is currently unassigned.  Also note that the interrupt
1441    function types all have bit 2 set, so that they can be tested for easily.
1442    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1443    machine_function structure is initialized (to zero) func_type will
1444    default to unknown.  This will force the first use of arm_current_func_type
1445    to call arm_compute_func_type.  */
1446 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1447 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1448 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1449 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1450 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1451 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1452 
1453 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1454 
1455 /* In addition functions can have several type modifiers,
1456    outlined by these bit masks:  */
1457 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1458 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1459 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1460 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1461 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1462 #define ARM_FT_CMSE_ENTRY	(1 << 7) /* ARMv8-M non-secure entry function.  */
1463 
1464 /* Some macros to test these flags.  */
1465 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1466 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1467 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1468 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1469 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1470 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1471 #define IS_CMSE_ENTRY(t)	(t & ARM_FT_CMSE_ENTRY)
1472 
1473 
1474 /* Structure used to hold the function stack frame layout.  Offsets are
1475    relative to the stack pointer on function entry.  Positive offsets are
1476    in the direction of stack growth.
1477    Only soft_frame is used in thumb mode.  */
1478 
1479 typedef struct GTY(()) arm_stack_offsets
1480 {
1481   int saved_args;	/* ARG_POINTER_REGNUM.  */
1482   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1483   int saved_regs;
1484   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1485   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1486   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1487   unsigned int saved_regs_mask;
1488 }
1489 arm_stack_offsets;
1490 
1491 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1492 /* A C structure for machine-specific, per-function data.
1493    This is added to the cfun structure.  */
1494 typedef struct GTY(()) machine_function
1495 {
1496   /* Additional stack adjustment in __builtin_eh_throw.  */
1497   rtx eh_epilogue_sp_ofs;
1498   /* Records if LR has to be saved for far jumps.  */
1499   int far_jump_used;
1500   /* Records if ARG_POINTER was ever live.  */
1501   int arg_pointer_live;
1502   /* Records if the save of LR has been eliminated.  */
1503   int lr_save_eliminated;
1504   /* The size of the stack frame.  Only valid after reload.  */
1505   arm_stack_offsets stack_offsets;
1506   /* Records the type of the current function.  */
1507   unsigned long func_type;
1508   /* Record if the function has a variable argument list.  */
1509   int uses_anonymous_args;
1510   /* Records if sibcalls are blocked because an argument
1511      register is needed to preserve stack alignment.  */
1512   int sibcall_blocked;
1513   /* The PIC register for this function.  This might be a pseudo.  */
1514   rtx pic_reg;
1515   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1516      register.  We can never call via LR or PC.  We can call via SP if a
1517      trampoline happens to be on the top of the stack.  */
1518   rtx call_via[14];
1519   /* Set to 1 when a return insn is output, this means that the epilogue
1520      is not needed.  */
1521   int return_used_this_function;
1522   /* When outputting Thumb-1 code, record the last insn that provides
1523      information about condition codes, and the comparison operands.  */
1524   rtx thumb1_cc_insn;
1525   rtx thumb1_cc_op0;
1526   rtx thumb1_cc_op1;
1527   /* Also record the CC mode that is supported.  */
1528   machine_mode thumb1_cc_mode;
1529   /* Set to 1 after arm_reorg has started.  */
1530   int after_arm_reorg;
1531   /* The number of bytes used to store the static chain register on the
1532      stack, above the stack frame.  */
1533   int static_chain_stack_bytes;
1534 }
1535 machine_function;
1536 #endif
1537 
1538 #define ARM_Q_BIT_READ (arm_q_bit_access ())
1539 #define ARM_GE_BITS_READ (arm_ge_bits_access ())
1540 
1541 /* As in the machine_function, a global set of call-via labels, for code
1542    that is in text_section.  */
1543 extern GTY(()) rtx thumb_call_via_label[14];
1544 
1545 /* The number of potential ways of assigning to a co-processor.  */
1546 #define ARM_NUM_COPROC_SLOTS 1
1547 
1548 /* Enumeration of procedure calling standard variants.  We don't really
1549    support all of these yet.  */
1550 enum arm_pcs
1551 {
1552   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1553   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1554   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1555   /* This must be the last AAPCS variant.  */
1556   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1557   ARM_PCS_ATPCS,	/* ATPCS.  */
1558   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1559   ARM_PCS_UNKNOWN
1560 };
1561 
1562 /* Default procedure calling standard of current compilation unit. */
1563 extern enum arm_pcs arm_pcs_default;
1564 
1565 #if !defined (USED_FOR_TARGET)
1566 /* A C type for declaring a variable that is used as the first argument of
1567    `FUNCTION_ARG' and other related values.  */
1568 typedef struct
1569 {
1570   /* This is the number of registers of arguments scanned so far.  */
1571   int nregs;
1572   /* This is the number of iWMMXt register arguments scanned so far.  */
1573   int iwmmxt_nregs;
1574   int named_count;
1575   int nargs;
1576   /* Which procedure call variant to use for this call.  */
1577   enum arm_pcs pcs_variant;
1578 
1579   /* AAPCS related state tracking.  */
1580   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1581   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1582 			       this argument, or -1 if using core
1583 			       registers.  */
1584   int aapcs_ncrn;
1585   int aapcs_next_ncrn;
1586   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1587   int aapcs_partial;	    /* How many bytes are passed in regs (if
1588 			       split between core regs and stack.
1589 			       Zero otherwise.  */
1590   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1591   int can_split;	    /* Argument can be split between core regs
1592 			       and the stack.  */
1593   /* Private data for tracking VFP register allocation */
1594   unsigned aapcs_vfp_regs_free;
1595   unsigned aapcs_vfp_reg_alloc;
1596   int aapcs_vfp_rcount;
1597   MACHMODE aapcs_vfp_rmode;
1598 } CUMULATIVE_ARGS;
1599 #endif
1600 
1601 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1602   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1603 
1604 /* For AAPCS, padding should never be below the argument. For other ABIs,
1605  * mimic the default.  */
1606 #define PAD_VARARGS_DOWN \
1607   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1608 
1609 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1610    for a call to a function whose data type is FNTYPE.
1611    For a library call, FNTYPE is 0.
1612    On the ARM, the offset starts at 0.  */
1613 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1614   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1615 
1616 /* 1 if N is a possible register number for function argument passing.
1617    On the ARM, r0-r3 are used to pass args.  */
1618 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1619    (IN_RANGE ((REGNO), 0, 3)						\
1620     || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT				\
1621 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1622     || (TARGET_IWMMXT_ABI						\
1623 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1624 
1625 
1626 /* If your target environment doesn't prefix user functions with an
1627    underscore, you may wish to re-define this to prevent any conflicts.  */
1628 #ifndef ARM_MCOUNT_NAME
1629 #define ARM_MCOUNT_NAME "*mcount"
1630 #endif
1631 
1632 /* Call the function profiler with a given profile label.  The Acorn
1633    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1634    On the ARM the full profile code will look like:
1635 	.data
1636 	LP1
1637 		.word	0
1638 	.text
1639 		mov	ip, lr
1640 		bl	mcount
1641 		.word	LP1
1642 
1643    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1644    will output the .text section.
1645 
1646    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1647    ``prof'' doesn't seem to mind about this!
1648 
1649    Note - this version of the code is designed to work in both ARM and
1650    Thumb modes.  */
1651 #ifndef ARM_FUNCTION_PROFILER
1652 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1653 {							\
1654   char temp[20];					\
1655   rtx sym;						\
1656 							\
1657   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1658 	   IP_REGNUM, LR_REGNUM);			\
1659   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1660   fputc ('\n', STREAM);					\
1661   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1662   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1663   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1664 }
1665 #endif
1666 
1667 #ifdef THUMB_FUNCTION_PROFILER
1668 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1669   if (TARGET_ARM)					\
1670     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1671   else							\
1672     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1673 #else
1674 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1675     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1676 #endif
1677 
1678 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1679    the stack pointer does not matter.  The value is tested only in
1680    functions that have frame pointers.
1681    No definition is equivalent to always zero.
1682 
1683    On the ARM, the function epilogue recovers the stack pointer from the
1684    frame.  */
1685 #define EXIT_IGNORE_STACK 1
1686 
1687 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1688 
1689 /* Determine if the epilogue should be output as RTL.
1690    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1691 #define USE_RETURN_INSN(ISCOND)				\
1692   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1693 
1694 /* Definitions for register eliminations.
1695 
1696    This is an array of structures.  Each structure initializes one pair
1697    of eliminable registers.  The "from" register number is given first,
1698    followed by "to".  Eliminations of the same "from" register are listed
1699    in order of preference.
1700 
1701    We have two registers that can be eliminated on the ARM.  First, the
1702    arg pointer register can often be eliminated in favor of the stack
1703    pointer register.  Secondly, the pseudo frame pointer register can always
1704    be eliminated; it is replaced with either the stack or the real frame
1705    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1706    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1707 
1708 #define ELIMINABLE_REGS						\
1709 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1710  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1711  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1712  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1713  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1714  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1715  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1716 
1717 /* Define the offset between two registers, one to be eliminated, and the
1718    other its replacement, at the start of a routine.  */
1719 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1720   if (TARGET_ARM)							\
1721     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1722   else									\
1723     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1724 
1725 /* Special case handling of the location of arguments passed on the stack.  */
1726 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1727 
1728 /* Initialize data used by insn expanders.  This is called from insn_emit,
1729    once for every function before code is generated.  */
1730 #define INIT_EXPANDERS  arm_init_expanders ()
1731 
1732 /* Length in units of the trampoline for entering a nested function.  */
1733 #define TRAMPOLINE_SIZE  (TARGET_FDPIC ? 32 : (TARGET_32BIT ? 16 : 20))
1734 
1735 /* Alignment required for a trampoline in bits.  */
1736 #define TRAMPOLINE_ALIGNMENT  32
1737 
1738 /* Addressing modes, and classification of registers for them.  */
1739 #define HAVE_POST_INCREMENT   1
1740 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1741 #define HAVE_POST_DECREMENT   TARGET_32BIT
1742 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1743 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1744 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1745 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1746 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1747 
1748 enum arm_auto_incmodes
1749   {
1750     ARM_POST_INC,
1751     ARM_PRE_INC,
1752     ARM_POST_DEC,
1753     ARM_PRE_DEC
1754   };
1755 
1756 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1757   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1758 #define USE_LOAD_POST_INCREMENT(mode) \
1759   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1760 #define USE_LOAD_PRE_INCREMENT(mode)  \
1761   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1762 #define USE_LOAD_POST_DECREMENT(mode) \
1763   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1764 #define USE_LOAD_PRE_DECREMENT(mode)  \
1765   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1766 
1767 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1768 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1769 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1770 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1771 
1772 /* Macros to check register numbers against specific register classes.  */
1773 
1774 /* These assume that REGNO is a hard or pseudo reg number.
1775    They give nonzero only if REGNO is a hard reg of the suitable class
1776    or a pseudo reg currently allocated to a suitable hard reg.  */
1777 #define TEST_REGNO(R, TEST, VALUE) \
1778   ((R TEST VALUE)	\
1779     || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1780 
1781 /* Don't allow the pc to be used.  */
1782 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1783   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1784    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1785    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1786 
1787 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1788   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1789    || (GET_MODE_SIZE (MODE) >= 4				\
1790        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1791 
1792 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1793   (TARGET_THUMB1					\
1794    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1795    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1796 
1797 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1798    For Thumb, we cannot use SP + reg, so reject SP.  */
1799 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1800   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1801 
1802 /* For ARM code, we don't care about the mode, but for Thumb, the index
1803    must be suitable for use in a QImode load.  */
1804 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1805   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1806    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1807 
1808 /* Maximum number of registers that can appear in a valid memory address.
1809    Shifts in addresses can't be by a register.  */
1810 #define MAX_REGS_PER_ADDRESS 2
1811 
1812 /* Recognize any constant value that is a valid address.  */
1813 /* XXX We can address any constant, eventually...  */
1814 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1815 #define CONSTANT_ADDRESS_P(X)  			\
1816   (GET_CODE (X) == SYMBOL_REF 			\
1817    && (CONSTANT_POOL_ADDRESS_P (X)		\
1818        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1819 
1820 /* True if SYMBOL + OFFSET constants must refer to something within
1821    SYMBOL's section.  */
1822 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1823 
1824 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1825 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1826 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1827 #endif
1828 
1829 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1830 #define SUBTARGET_NAME_ENCODING_LENGTHS
1831 #endif
1832 
1833 /* This is a C fragment for the inside of a switch statement.
1834    Each case label should return the number of characters to
1835    be stripped from the start of a function's name, if that
1836    name starts with the indicated character.  */
1837 #define ARM_NAME_ENCODING_LENGTHS		\
1838   case '*':  return 1;				\
1839   SUBTARGET_NAME_ENCODING_LENGTHS
1840 
1841 /* This is how to output a reference to a user-level label named NAME.
1842    `assemble_name' uses this.  */
1843 #undef  ASM_OUTPUT_LABELREF
1844 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1845    arm_asm_output_labelref (FILE, NAME)
1846 
1847 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1848 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1849   if (TARGET_THUMB2)			\
1850     thumb2_asm_output_opcode (STREAM);
1851 
1852 /* The EABI specifies that constructors should go in .init_array.
1853    Other targets use .ctors for compatibility.  */
1854 #ifndef ARM_EABI_CTORS_SECTION_OP
1855 #define ARM_EABI_CTORS_SECTION_OP \
1856   "\t.section\t.init_array,\"aw\",%init_array"
1857 #endif
1858 #ifndef ARM_EABI_DTORS_SECTION_OP
1859 #define ARM_EABI_DTORS_SECTION_OP \
1860   "\t.section\t.fini_array,\"aw\",%fini_array"
1861 #endif
1862 #define ARM_CTORS_SECTION_OP \
1863   "\t.section\t.ctors,\"aw\",%progbits"
1864 #define ARM_DTORS_SECTION_OP \
1865   "\t.section\t.dtors,\"aw\",%progbits"
1866 
1867 /* Define CTORS_SECTION_ASM_OP.  */
1868 #undef CTORS_SECTION_ASM_OP
1869 #undef DTORS_SECTION_ASM_OP
1870 #ifndef IN_LIBGCC2
1871 # define CTORS_SECTION_ASM_OP \
1872    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1873 # define DTORS_SECTION_ASM_OP \
1874    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1875 #else /* !defined (IN_LIBGCC2) */
1876 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1877    so we cannot use the definition above.  */
1878 # ifdef __ARM_EABI__
1879 /* The .ctors section is not part of the EABI, so we do not define
1880    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1881    from trying to use it.  We do define it when doing normal
1882    compilation, as .init_array can be used instead of .ctors.  */
1883 /* There is no need to emit begin or end markers when using
1884    init_array; the dynamic linker will compute the size of the
1885    array itself based on special symbols created by the static
1886    linker.  However, we do need to arrange to set up
1887    exception-handling here.  */
1888 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1889 #   define CTOR_LIST_END /* empty */
1890 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1891 #   define DTOR_LIST_END /* empty */
1892 # else /* !defined (__ARM_EABI__) */
1893 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1894 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1895 # endif /* !defined (__ARM_EABI__) */
1896 #endif /* !defined (IN_LIBCC2) */
1897 
1898 /* True if the operating system can merge entities with vague linkage
1899    (e.g., symbols in COMDAT group) during dynamic linking.  */
1900 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1901 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1902 #endif
1903 
1904 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1905 
1906 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1907    and check its validity for a certain class.
1908    We have two alternate definitions for each of them.
1909    The usual definition accepts all pseudo regs; the other rejects
1910    them unless they have been allocated suitable hard regs.
1911    The symbol REG_OK_STRICT causes the latter definition to be used.
1912    Thumb-2 has the same restrictions as arm.  */
1913 #ifndef REG_OK_STRICT
1914 
1915 #define ARM_REG_OK_FOR_BASE_P(X)		\
1916   (REGNO (X) <= LAST_ARM_REGNUM			\
1917    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1918    || REGNO (X) == FRAME_POINTER_REGNUM		\
1919    || REGNO (X) == ARG_POINTER_REGNUM)
1920 
1921 #define ARM_REG_OK_FOR_INDEX_P(X)		\
1922   ((REGNO (X) <= LAST_ARM_REGNUM		\
1923     && REGNO (X) != STACK_POINTER_REGNUM)	\
1924    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1925    || REGNO (X) == FRAME_POINTER_REGNUM		\
1926    || REGNO (X) == ARG_POINTER_REGNUM)
1927 
1928 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1929   (REGNO (X) <= LAST_LO_REGNUM			\
1930    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1931    || (GET_MODE_SIZE (MODE) >= 4		\
1932        && (REGNO (X) == STACK_POINTER_REGNUM	\
1933 	   || (X) == hard_frame_pointer_rtx	\
1934 	   || (X) == arg_pointer_rtx)))
1935 
1936 #define REG_STRICT_P 0
1937 
1938 #else /* REG_OK_STRICT */
1939 
1940 #define ARM_REG_OK_FOR_BASE_P(X) 		\
1941   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1942 
1943 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
1944   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1945 
1946 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1947   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1948 
1949 #define REG_STRICT_P 1
1950 
1951 #endif /* REG_OK_STRICT */
1952 
1953 /* Now define some helpers in terms of the above.  */
1954 
1955 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1956   (TARGET_THUMB1				\
1957    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1958    : ARM_REG_OK_FOR_BASE_P (X))
1959 
1960 /* For 16-bit Thumb, a valid index register is anything that can be used in
1961    a byte load instruction.  */
1962 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1963   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1964 
1965 /* Nonzero if X is a hard reg that can be used as an index
1966    or if it is a pseudo reg.  On the Thumb, the stack pointer
1967    is not suitable.  */
1968 #define REG_OK_FOR_INDEX_P(X)			\
1969   (TARGET_THUMB1				\
1970    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
1971    : ARM_REG_OK_FOR_INDEX_P (X))
1972 
1973 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1974    For Thumb, we cannot use SP + reg, so reject SP.  */
1975 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1976   REG_OK_FOR_INDEX_P (X)
1977 
1978 #define ARM_BASE_REGISTER_RTX_P(X)  \
1979   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1980 
1981 #define ARM_INDEX_REGISTER_RTX_P(X)  \
1982   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1983 
1984 /* Specify the machine mode that this machine uses
1985    for the index in the tablejump instruction.  */
1986 #define CASE_VECTOR_MODE Pmode
1987 
1988 #define CASE_VECTOR_PC_RELATIVE ((TARGET_THUMB2				\
1989 				  || (TARGET_THUMB1			\
1990 				      && (optimize_size || flag_pic)))	\
1991 				 && (!target_pure_code))
1992 
1993 
1994 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
1995   (TARGET_THUMB1							\
1996    ? (min >= 0 && max < 512						\
1997       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
1998       : min >= -256 && max < 256					\
1999       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
2000       : min >= 0 && max < 8192						\
2001       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
2002       : min >= -4096 && max < 4096					\
2003       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
2004       : SImode)								\
2005    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
2006       : (max >= 0x200) ? HImode						\
2007       : QImode))
2008 
2009 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2010    unsigned is probably best, but may break some code.  */
2011 #ifndef DEFAULT_SIGNED_CHAR
2012 #define DEFAULT_SIGNED_CHAR  0
2013 #endif
2014 
2015 /* Max number of bytes we can move from memory to memory
2016    in one reasonably fast instruction.  */
2017 #define MOVE_MAX 4
2018 
2019 #undef  MOVE_RATIO
2020 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2021 
2022 /* Define if operations between registers always perform the operation
2023    on the full register even if a narrower mode is specified.  */
2024 #define WORD_REGISTER_OPERATIONS 1
2025 
2026 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2027    will either zero-extend or sign-extend.  The value of this macro should
2028    be the code that says which one of the two operations is implicitly
2029    done, UNKNOWN if none.  */
2030 #define LOAD_EXTEND_OP(MODE)						\
2031   (TARGET_THUMB ? ZERO_EXTEND :						\
2032    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2033     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2034 
2035 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2036 #define SLOW_BYTE_ACCESS 0
2037 
2038 /* Immediate shift counts are truncated by the output routines (or was it
2039    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2040    that the native compiler puts too large (> 32) immediate shift counts
2041    into a register and shifts by the register, letting the ARM decide what
2042    to do instead of doing that itself.  */
2043 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2044    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2045    On the arm, Y in a register is used modulo 256 for the shift. Only for
2046    rotates is modulo 32 used.  */
2047 /* #define SHIFT_COUNT_TRUNCATED 1 */
2048 
2049 /* Calling from registers is a massive pain.  */
2050 #define NO_FUNCTION_CSE 1
2051 
2052 /* The machine modes of pointers and functions */
2053 #define Pmode  SImode
2054 #define FUNCTION_MODE  Pmode
2055 
2056 #define ARM_FRAME_RTX(X)					\
2057   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2058    || (X) == arg_pointer_rtx)
2059 
2060 /* Try to generate sequences that don't involve branches, we can then use
2061    conditional instructions.  */
2062 #define BRANCH_COST(speed_p, predictable_p)			\
2063   ((arm_branch_cost != -1) ? arm_branch_cost :			\
2064    (current_tune->branch_cost (speed_p, predictable_p)))
2065 
2066 /* False if short circuit operation is preferred.  */
2067 #define LOGICAL_OP_NON_SHORT_CIRCUIT					\
2068   ((optimize_size)							\
2069    ? (TARGET_THUMB ? false : true)					\
2070    : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
2071    : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
2072 
2073 
2074 /* Position Independent Code.  */
2075 /* We decide which register to use based on the compilation options and
2076    the assembler in use; this is more general than the APCS restriction of
2077    using sb (r9) all the time.  */
2078 extern unsigned arm_pic_register;
2079 
2080 /* The register number of the register used to address a table of static
2081    data addresses in memory.  */
2082 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2083 
2084 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
2085    entries would need to handle saving and restoring it).  */
2086 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
2087 
2088 /* We can't directly access anything that contains a symbol,
2089    nor can we indirect via the constant pool.  One exception is
2090    UNSPEC_TLS, which is always PIC.  */
2091 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2092 	(!(symbol_mentioned_p (X)					\
2093 	   || label_mentioned_p (X)					\
2094 	   || (GET_CODE (X) == SYMBOL_REF				\
2095 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2096 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2097 		   || label_mentioned_p (get_pool_constant (X)))))	\
2098 	 || tls_mentioned_p (X))
2099 
2100 /* We may want to save the PIC register if it is a dedicated one.  */
2101 #define PIC_REGISTER_MAY_NEED_SAVING			\
2102   (flag_pic						\
2103    && !TARGET_SINGLE_PIC_BASE				\
2104    && !TARGET_FDPIC					\
2105    && arm_pic_register != INVALID_REGNUM)
2106 
2107 /* We need to know when we are making a constant pool; this determines
2108    whether data needs to be in the GOT or can be referenced via a GOT
2109    offset.  */
2110 extern int making_const_table;
2111 
2112 /* Handle pragmas for compatibility with Intel's compilers.  */
2113 /* Also abuse this to register additional C specific EABI attributes.  */
2114 #define REGISTER_TARGET_PRAGMAS() do {					\
2115   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2116   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2117   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2118   arm_lang_object_attributes_init();					\
2119   arm_register_target_pragmas();                                       \
2120 } while (0)
2121 
2122 /* Condition code information.  */
2123 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2124    return the mode to be used for the comparison.  */
2125 
2126 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2127 
2128 #define REVERSIBLE_CC_MODE(MODE) 1
2129 
2130 #define REVERSE_CONDITION(CODE,MODE) \
2131   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2132    ? reverse_condition_maybe_unordered (code) \
2133    : reverse_condition (code))
2134 
2135 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2136   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2137 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2138   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2139 
2140 #define CC_STATUS_INIT \
2141   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2142 
2143 #undef ASM_APP_ON
2144 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2145 		    "\t.syntax divided\n")
2146 
2147 #undef  ASM_APP_OFF
2148 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2149 		     "\t.thumb\n\t.syntax unified\n")
2150 
2151 /* Output a push or a pop instruction (only used when profiling).
2152    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2153    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2154    that r7 isn't used by the function profiler, so we can use it as a
2155    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2156    sensitive to future changes in final.c:profile_function.  */
2157 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2158   do							\
2159     {							\
2160       if (TARGET_THUMB1					\
2161 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2162 	{						\
2163 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2164 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2165 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2166 	}						\
2167       else						\
2168 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2169     } while (0)
2170 
2171 
2172 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2173 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2174   do							\
2175     {							\
2176       if (TARGET_THUMB1					\
2177 	  && (REGNO) == STATIC_CHAIN_REGNUM)		\
2178 	{						\
2179 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2180 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2181 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2182 	}						\
2183       else						\
2184 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2185     } while (0)
2186 
2187 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2188   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2189 
2190 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2191    default alignment from elfos.h.  */
2192 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2193 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2194 
2195 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2196    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2197    ? 1 : 0)
2198 
2199 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2200   arm_declare_function_name ((STREAM), (NAME), (DECL));
2201 
2202 /* For aliases of functions we use .thumb_set instead.  */
2203 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2204   do						   		\
2205     {								\
2206       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2207       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2208 								\
2209       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2210 	{							\
2211 	  fprintf (FILE, "\t.thumb_set ");			\
2212 	  assemble_name (FILE, LABEL1);			   	\
2213 	  fprintf (FILE, ",");			   		\
2214 	  assemble_name (FILE, LABEL2);		   		\
2215 	  fprintf (FILE, "\n");					\
2216 	}							\
2217       else							\
2218 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2219     }								\
2220   while (0)
2221 
2222 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2223 /* To support -falign-* switches we need to use .p2align so
2224    that alignment directives in code sections will be padded
2225    with no-op instructions, rather than zeroes.  */
2226 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2227   if ((LOG) != 0)						\
2228     {								\
2229       if ((MAX_SKIP) == 0)					\
2230         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2231       else							\
2232         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2233                  (int) (LOG), (int) (MAX_SKIP));		\
2234     }
2235 #endif
2236 
2237 /* Add two bytes to the length of conditionally executed Thumb-2
2238    instructions for the IT instruction.  */
2239 #define ADJUST_INSN_LENGTH(insn, length) \
2240   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2241     length += 2;
2242 
2243 /* Only perform branch elimination (by making instructions conditional) if
2244    we're optimizing.  For Thumb-2 check if any IT instructions need
2245    outputting.  */
2246 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2247   if (TARGET_ARM && optimize)				\
2248     arm_final_prescan_insn (INSN);			\
2249   else if (TARGET_THUMB2)				\
2250     thumb2_final_prescan_insn (INSN);			\
2251   else if (TARGET_THUMB1)				\
2252     thumb1_final_prescan_insn (INSN)
2253 
2254 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2255   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2256    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2257       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2258        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2259 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2260        : 0))))
2261 
2262 /* A C expression whose value is RTL representing the value of the return
2263    address for the frame COUNT steps up from the current frame.  */
2264 
2265 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2266   arm_return_addr (COUNT, FRAME)
2267 
2268 /* Mask of the bits in the PC that contain the real return address
2269    when running in 26-bit mode.  */
2270 #define RETURN_ADDR_MASK26 (0x03fffffc)
2271 
2272 /* Pick up the return address upon entry to a procedure. Used for
2273    dwarf2 unwind information.  This also enables the table driven
2274    mechanism.  */
2275 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2276 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2277 
2278 /* Used to mask out junk bits from the return address, such as
2279    processor state, interrupt status, condition codes and the like.  */
2280 #define MASK_RETURN_ADDR \
2281   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2282      in 26 bit mode, the condition codes must be masked out of the	\
2283      return address.  This does not apply to ARM6 and later processors	\
2284      when running in 32 bit mode.  */					\
2285   ((arm_arch4 || TARGET_THUMB)						\
2286    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2287    : arm_gen_return_addr_mask ())
2288 
2289 
2290 /* Do not emit .note.GNU-stack by default.  */
2291 #ifndef NEED_INDICATE_EXEC_STACK
2292 #define NEED_INDICATE_EXEC_STACK	0
2293 #endif
2294 
2295 #define TARGET_ARM_ARCH	\
2296   (arm_base_arch)	\
2297 
2298 /* The highest Thumb instruction set version supported by the chip.  */
2299 #define TARGET_ARM_ARCH_ISA_THUMB		\
2300   (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2301 
2302 /* Expands to an upper-case char of the target's architectural
2303    profile.  */
2304 #define TARGET_ARM_ARCH_PROFILE				\
2305   (arm_active_target.profile)
2306 
2307 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2308    Bit 0 for bytes, up to bit 3 for double-words.  */
2309 #define TARGET_ARM_FEATURE_LDREX				\
2310   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2311    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2312    | (TARGET_HAVE_LDREXD ? 8 : 0))
2313 
2314 /* Set as a bit mask indicating the available widths of hardware floating
2315    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2316    32-bit support, bit 3 indicates 64-bit support.  */
2317 #define TARGET_ARM_FP			\
2318   (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2319 			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2320 		      : 0)
2321 
2322 
2323 /* Set as a bit mask indicating the available widths of floating point
2324    types for hardware NEON floating point.  This is the same as
2325    TARGET_ARM_FP without the 64-bit bit set.  */
2326 #define TARGET_NEON_FP				 \
2327   (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2328 	       : 0)
2329 
2330 /* Name of the automatic fpu-selection option.  */
2331 #define FPUTYPE_AUTO "auto"
2332 
2333 /* The maximum number of parallel loads or stores we support in an ldm/stm
2334    instruction.  */
2335 #define MAX_LDM_STM_OPS 4
2336 
2337 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2338 extern const char *arm_rewrite_march (int argc, const char **argv);
2339 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2340 #define ASM_CPU_SPEC_FUNCTIONS			\
2341   { "rewrite_mcpu", arm_rewrite_mcpu },	\
2342   { "rewrite_march", arm_rewrite_march },	\
2343   { "asm_auto_mfpu", arm_asm_auto_mfpu },
2344 
2345 #define ASM_CPU_SPEC							\
2346   " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}"	\
2347   " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});"	\
2348   "   march=*:-march=%:rewrite_march(%{march=*:%*});"			\
2349   "   mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})"			\
2350   " }"
2351 
2352 extern const char *arm_target_thumb_only (int argc, const char **argv);
2353 #define TARGET_MODE_SPEC_FUNCTIONS			\
2354   { "target_mode_check", arm_target_thumb_only },
2355 
2356 /* -mcpu=native handling only makes sense with compiler running on
2357    an ARM chip.  */
2358 #if defined(__arm__) && defined(__linux__)
2359 extern const char *host_detect_local_cpu (int argc, const char **argv);
2360 #define HAVE_LOCAL_CPU_DETECT
2361 # define MCPU_MTUNE_NATIVE_FUNCTIONS			\
2362   { "local_cpu_detect", host_detect_local_cpu },
2363 # define MCPU_MTUNE_NATIVE_SPECS				\
2364    " %{march=native:%<march=native %:local_cpu_detect(arch)}"	\
2365    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"	\
2366    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2367 #else
2368 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2369 # define MCPU_MTUNE_NATIVE_SPECS ""
2370 #endif
2371 
2372 const char *arm_canon_arch_option (int argc, const char **argv);
2373 const char *arm_canon_arch_multilib_option (int argc, const char **argv);
2374 
2375 #define CANON_ARCH_SPEC_FUNCTION		\
2376   { "canon_arch", arm_canon_arch_option },
2377 
2378 #define CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2379   { "canon_arch_multilib", arm_canon_arch_multilib_option },
2380 
2381 const char *arm_be8_option (int argc, const char **argv);
2382 #define BE8_SPEC_FUNCTION			\
2383   { "be8_linkopt", arm_be8_option },
2384 
2385 # define EXTRA_SPEC_FUNCTIONS			\
2386   MCPU_MTUNE_NATIVE_FUNCTIONS			\
2387   ASM_CPU_SPEC_FUNCTIONS			\
2388   CANON_ARCH_SPEC_FUNCTION			\
2389   CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2390   TARGET_MODE_SPEC_FUNCTIONS			\
2391   BE8_SPEC_FUNCTION
2392 
2393 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2394    via the configuration option --with-mode or via the command line. The
2395    function target_mode_check is called to do the check with either:
2396    - an array of -march values if any is given;
2397    - an array of -mcpu values if any is given;
2398    - an empty array.  */
2399 #define TARGET_MODE_SPECS						\
2400   " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2401 
2402 /* Generate a canonical string to represent the architecture selected.  */
2403 #define ARCH_CANONICAL_SPECS				\
2404   " -march=%:canon_arch(%{mcpu=*: cpu %*} "		\
2405   "                     %{march=*: arch %*} "		\
2406   "                     %{mfpu=*: fpu %*} "		\
2407   "                     %{mfloat-abi=*: abi %*}"	\
2408   "                     %<march=*) "
2409 
2410 /* Generate a canonical string to represent the architecture selected ignoring
2411    the options not required for multilib linking.  */
2412 #define MULTILIB_ARCH_CANONICAL_SPECS				\
2413   "-mlibarch=%:canon_arch_multilib(%{mcpu=*: cpu %*} "		\
2414   "				   %{march=*: arch %*} "	\
2415   "				   %{mfpu=*: fpu %*} "		\
2416   "				   %{mfloat-abi=*: abi %*}"	\
2417   "				   %<mlibarch=*) "
2418 
2419 /* Complete set of specs for the driver.  Commas separate the
2420    individual rules so that any option suppression (%<opt...)is
2421    completed before starting subsequent rules.  */
2422 #define DRIVER_SELF_SPECS			\
2423   MCPU_MTUNE_NATIVE_SPECS,			\
2424   TARGET_MODE_SPECS,				\
2425   MULTILIB_ARCH_CANONICAL_SPECS,		\
2426   ARCH_CANONICAL_SPECS
2427 
2428 #define TARGET_SUPPORTS_WIDE_INT 1
2429 
2430 /* For switching between functions with different target attributes.  */
2431 #define SWITCHABLE_TARGET 1
2432 
2433 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2434    representation for SHF_ARM_PURECODE in GCC.  */
2435 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2436 
2437 #endif /* ! GCC_ARM_H */
2438