1\input texinfo  @c -*-texinfo-*-
2@c %**start of header
3@setfilename gfortran.info
4@set copyrights-gfortran 1999-2022
5
6@include gcc-common.texi
7
8@settitle The GNU Fortran Compiler
9
10@c Create a separate index for command line options
11@defcodeindex op
12@c Merge the standard indexes into a single one.
13@syncodeindex fn cp
14@syncodeindex vr cp
15@syncodeindex ky cp
16@syncodeindex pg cp
17@syncodeindex tp cp
18
19@c TODO: The following "Part" definitions are included here temporarily
20@c until they are incorporated into the official Texinfo distribution.
21@c They borrow heavily from Texinfo's \unnchapentry definitions.
22
23@tex
24\gdef\part#1#2{%
25  \pchapsepmacro
26  \gdef\thischapter{}
27  \begingroup
28    \vglue\titlepagetopglue
29    \titlefonts \rm
30    \leftline{Part #1:@* #2}
31    \vskip4pt \hrule height 4pt width \hsize \vskip4pt
32  \endgroup
33  \writetocentry{part}{#2}{#1}
34}
35\gdef\blankpart{%
36  \writetocentry{blankpart}{}{}
37}
38% Part TOC-entry definition for summary contents.
39\gdef\dosmallpartentry#1#2#3#4{%
40  \vskip .5\baselineskip plus.2\baselineskip
41  \begingroup
42    \let\rm=\bf \rm
43    \tocentry{Part #2: #1}{\doshortpageno\bgroup#4\egroup}
44  \endgroup
45}
46\gdef\dosmallblankpartentry#1#2#3#4{%
47  \vskip .5\baselineskip plus.2\baselineskip
48}
49% Part TOC-entry definition for regular contents.  This has to be
50% equated to an existing entry to not cause problems when the PDF
51% outline is created.
52\gdef\dopartentry#1#2#3#4{%
53  \unnchapentry{Part #2: #1}{}{#3}{#4}
54}
55\gdef\doblankpartentry#1#2#3#4{}
56@end tex
57
58@c %**end of header
59
60@c Use with @@smallbook.
61
62@c %** start of document
63
64@c Cause even numbered pages to be printed on the left hand side of
65@c the page and odd numbered pages to be printed on the right hand
66@c side of the page.  Using this, you can print on both sides of a
67@c sheet of paper and have the text on the same part of the sheet.
68
69@c The text on right hand pages is pushed towards the right hand
70@c margin and the text on left hand pages is pushed toward the left
71@c hand margin.
72@c (To provide the reverse effect, set bindingoffset to -0.75in.)
73
74@c @tex
75@c \global\bindingoffset=0.75in
76@c \global\normaloffset =0.75in
77@c @end tex
78
79@copying
80Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.
81
82Permission is granted to copy, distribute and/or modify this document
83under the terms of the GNU Free Documentation License, Version 1.3 or
84any later version published by the Free Software Foundation; with the
85Invariant Sections being ``Funding Free Software'', the Front-Cover
86Texts being (a) (see below), and with the Back-Cover Texts being (b)
87(see below).  A copy of the license is included in the section entitled
88``GNU Free Documentation License''.
89
90(a) The FSF's Front-Cover Text is:
91
92     A GNU Manual
93
94(b) The FSF's Back-Cover Text is:
95
96     You have freedom to copy and modify this GNU Manual, like GNU
97     software.  Copies published by the Free Software Foundation raise
98     funds for GNU development.
99@end copying
100
101@ifinfo
102@dircategory Software development
103@direntry
104* gfortran: (gfortran).                  The GNU Fortran Compiler.
105@end direntry
106This file documents the use and the internals of
107the GNU Fortran compiler, (@command{gfortran}).
108
109Published by the Free Software Foundation
11051 Franklin Street, Fifth Floor
111Boston, MA 02110-1301 USA
112
113@insertcopying
114@end ifinfo
115
116
117@setchapternewpage odd
118@titlepage
119@title Using GNU Fortran
120@versionsubtitle
121@author The @t{gfortran} team
122@page
123@vskip 0pt plus 1filll
124Published by the Free Software Foundation@*
12551 Franklin Street, Fifth Floor@*
126Boston, MA 02110-1301, USA@*
127@c Last printed ??ber, 19??.@*
128@c Printed copies are available for $? each.@*
129@c ISBN ???
130@sp 1
131@insertcopying
132@end titlepage
133
134@c TODO: The following "Part" definitions are included here temporarily
135@c until they are incorporated into the official Texinfo distribution.
136
137@tex
138\global\let\partentry=\dosmallpartentry
139\global\let\blankpartentry=\dosmallblankpartentry
140@end tex
141@summarycontents
142
143@tex
144\global\let\partentry=\dopartentry
145\global\let\blankpartentry=\doblankpartentry
146@end tex
147@contents
148
149@page
150
151@c ---------------------------------------------------------------------
152@c TexInfo table of contents.
153@c ---------------------------------------------------------------------
154
155@ifnottex
156@node Top
157@top Introduction
158@cindex Introduction
159
160This manual documents the use of @command{gfortran},
161the GNU Fortran compiler.  You can find in this manual how to invoke
162@command{gfortran}, as well as its features and incompatibilities.
163
164@ifset DEVELOPMENT
165@emph{Warning:} This document, and the compiler it describes, are still
166under development.  While efforts are made to keep it up-to-date, it might
167not accurately reflect the status of the most recent GNU Fortran compiler.
168@end ifset
169
170@comment
171@comment  When you add a new menu item, please keep the right hand
172@comment  aligned to the same column.  Do not use tabs.  This provides
173@comment  better formatting.
174@comment
175@menu
176* Introduction::
177
178Part I: Invoking GNU Fortran
179* Invoking GNU Fortran:: Command options supported by @command{gfortran}.
180* Runtime::              Influencing runtime behavior with environment variables.
181
182Part II: Language Reference
183* Compiler Characteristics::      User-visible implementation details.
184* Extensions::                    Language extensions implemented by GNU Fortran.
185* Mixed-Language Programming::    Interoperability with C
186* Coarray Programming::
187* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
188* Intrinsic Modules::    Intrinsic modules supported by GNU Fortran.
189
190* Contributing::         How you can help.
191* Copying::              GNU General Public License says
192                         how you can copy and share GNU Fortran.
193* GNU Free Documentation License::
194                         How you can copy and share this manual.
195* Funding::              How to help assure continued work for free software.
196* Option Index::         Index of command line options
197* Keyword Index::        Index of concepts
198@end menu
199@end ifnottex
200
201@c ---------------------------------------------------------------------
202@c Introduction
203@c ---------------------------------------------------------------------
204
205@node Introduction
206@chapter Introduction
207
208@c The following duplicates the text on the TexInfo table of contents.
209@iftex
210This manual documents the use of @command{gfortran}, the GNU Fortran
211compiler.  You can find in this manual how to invoke @command{gfortran},
212as well as its features and incompatibilities.
213
214@ifset DEVELOPMENT
215@emph{Warning:} This document, and the compiler it describes, are still
216under development.  While efforts are made to keep it up-to-date, it
217might not accurately reflect the status of the most recent GNU Fortran
218compiler.
219@end ifset
220@end iftex
221
222@menu
223* About GNU Fortran::    What you should know about the GNU Fortran compiler.
224* GNU Fortran and GCC::  You can compile Fortran, C, or other programs.
225* Standards::            Standards supported by GNU Fortran.
226@end menu
227
228
229@c ---------------------------------------------------------------------
230@c About GNU Fortran
231@c ---------------------------------------------------------------------
232
233@node About GNU Fortran
234@section About GNU Fortran
235
236The GNU Fortran compiler is the successor to @command{g77}, the
237Fortran 77 front end included in GCC prior to version 4 (released in
2382005).  While it is backward-compatible with most @command{g77}
239extensions and command-line options, @command{gfortran} is a completely new
240implemention designed to support more modern dialects of Fortran.
241GNU Fortran implements the Fortran 77, 90 and 95 standards
242completely, most of the Fortran 2003 and 2008 standards, and some
243features from the 2018 standard.  It also implements several extensions
244including OpenMP and OpenACC support for parallel programming.
245
246The GNU Fortran compiler passes the
247@uref{http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html,
248NIST Fortran 77 Test Suite}, and produces acceptable results on the
249@uref{https://www.netlib.org/lapack/faq.html#1.21, LAPACK Test Suite}.
250It also provides respectable performance on
251the @uref{https://polyhedron.com/?page_id=175,
252Polyhedron Fortran compiler benchmarks} and the
253@uref{https://www.netlib.org/benchmark/livermore,
254Livermore Fortran Kernels test}.  It has been used to compile a number of
255large real-world programs, including
256@uref{http://hirlam.org/, the HARMONIE and HIRLAM weather forecasting code} and
257@uref{https://github.com/dylan-jayatilaka/tonto,
258the Tonto quantum chemistry package}; see
259@url{https://gcc.gnu.org/@/wiki/@/GfortranApps} for an extended list.
260
261GNU Fortran provides the following functionality:
262
263@itemize @bullet
264@item
265Read a program, stored in a file and containing @dfn{source code}
266instructions written in Fortran 77.
267
268@item
269Translate the program into instructions a computer
270can carry out more quickly than it takes to translate the
271original Fortran instructions.
272The result after compilation of a program is
273@dfn{machine code},
274which is efficiently translated and processed
275by a machine such as your computer.
276Humans usually are not as good writing machine code
277as they are at writing Fortran (or C++, Ada, or Java),
278because it is easy to make tiny mistakes writing machine code.
279
280@item
281Provide information about the reasons why
282the compiler may be unable to create a binary from the source code,
283for example if the source code is flawed.
284The Fortran language standards require that the compiler can point out
285mistakes in your code.
286An incorrect usage of the language causes an @dfn{error message}.
287
288The compiler also attempts to diagnose cases where your
289program contains a correct usage of the language,
290but instructs the computer to do something questionable.
291This kind of diagnostic message is called a @dfn{warning message}.
292
293@item
294Provide optional information about the translation passes
295from the source code to machine code.
296This can help you to find the cause of
297certain bugs which may not be obvious in the source code,
298but may be more easily found at a lower level compiler output.
299It also helps developers to find bugs in the compiler itself.
300
301@item
302Provide information in the generated machine code that can
303make it easier to find bugs in the program (using a debugging tool,
304called a @dfn{debugger}, such as the GNU Debugger @command{gdb}).
305
306@item
307Locate and gather machine code already generated to
308perform actions requested by statements in the program.
309This machine code is organized into @dfn{modules} and is located
310and @dfn{linked} to the user program.
311@end itemize
312
313The GNU Fortran compiler consists of several components:
314
315@itemize @bullet
316@item
317A version of the @command{gcc} command
318(which also might be installed as the system's @command{cc} command)
319that also understands and accepts Fortran source code.
320The @command{gcc} command is the @dfn{driver} program for
321all the languages in the GNU Compiler Collection (GCC);
322With @command{gcc},
323you can compile the source code of any language for
324which a front end is available in GCC.
325
326@item
327The @command{gfortran} command itself,
328which also might be installed as the
329system's @command{f95} command.
330@command{gfortran} is just another driver program,
331but specifically for the Fortran compiler only.
332The primary difference between the @command{gcc} and @command{gfortran}
333commands is that the latter automatically links the correct libraries
334to your program.
335
336@item
337A collection of run-time libraries.
338These libraries contain the machine code needed to support
339capabilities of the Fortran language that are not directly
340provided by the machine code generated by the
341@command{gfortran} compilation phase,
342such as intrinsic functions and subroutines,
343and routines for interaction with files and the operating system.
344@c and mechanisms to spawn,
345@c unleash and pause threads in parallelized code.
346
347@item
348The Fortran compiler itself, (@command{f951}).
349This is the GNU Fortran parser and code generator,
350linked to and interfaced with the GCC backend library.
351@command{f951} ``translates'' the source code to
352assembler code.  You would typically not use this
353program directly;
354instead, the @command{gcc} or @command{gfortran} driver
355programs call it for you.
356@end itemize
357
358
359@c ---------------------------------------------------------------------
360@c GNU Fortran and GCC
361@c ---------------------------------------------------------------------
362
363@node GNU Fortran and GCC
364@section GNU Fortran and GCC
365@cindex GNU Compiler Collection
366@cindex GCC
367
368GNU Fortran is a part of GCC, the @dfn{GNU Compiler Collection}.  GCC
369consists of a collection of front ends for various languages, which
370translate the source code into a language-independent form called
371@dfn{GENERIC}.  This is then processed by a common middle end which
372provides optimization, and then passed to one of a collection of back
373ends which generate code for different computer architectures and
374operating systems.
375
376Functionally, this is implemented with a driver program (@command{gcc})
377which provides the command-line interface for the compiler.  It calls
378the relevant compiler front-end program (e.g., @command{f951} for
379Fortran) for each file in the source code, and then calls the assembler
380and linker as appropriate to produce the compiled output.  In a copy of
381GCC that has been compiled with Fortran language support enabled,
382@command{gcc} recognizes files with @file{.f}, @file{.for}, @file{.ftn},
383@file{.f90}, @file{.f95}, @file{.f03} and @file{.f08} extensions as
384Fortran source code, and compiles it accordingly.  A @command{gfortran}
385driver program is also provided, which is identical to @command{gcc}
386except that it automatically links the Fortran runtime libraries into the
387compiled program.
388
389Source files with @file{.f}, @file{.for}, @file{.fpp}, @file{.ftn}, @file{.F},
390@file{.FOR}, @file{.FPP}, and @file{.FTN} extensions are treated as fixed form.
391Source files with @file{.f90}, @file{.f95}, @file{.f03}, @file{.f08},
392@file{.F90}, @file{.F95}, @file{.F03} and @file{.F08} extensions are
393treated as free form.  The capitalized versions of either form are run
394through preprocessing.  Source files with the lower case @file{.fpp}
395extension are also run through preprocessing.
396
397This manual specifically documents the Fortran front end, which handles
398the programming language's syntax and semantics.  The aspects of GCC
399that relate to the optimization passes and the back-end code generation
400are documented in the GCC manual; see
401@ref{Top,,Introduction,gcc,Using the GNU Compiler Collection (GCC)}.
402The two manuals together provide a complete reference for the GNU
403Fortran compiler.
404
405@c ---------------------------------------------------------------------
406@c Standards
407@c ---------------------------------------------------------------------
408
409@node Standards
410@section Standards
411@cindex Standards
412
413@menu
414* Fortran 95 status::
415* Fortran 2003 status::
416* Fortran 2008 status::
417* Fortran 2018 status::
418@end menu
419
420Fortran is developed by the Working Group 5 of Sub-Committee 22 of the
421Joint Technical Committee 1 of the International Organization for
422Standardization and the International Electrotechnical Commission (IEC).
423This group is known as @uref{http://www.nag.co.uk/sc22wg5/, WG5}.
424Official Fortran standard documents are available for purchase
425from ISO; a collection of free documents (typically final drafts) are
426also available on the @uref{https://gcc.gnu.org/wiki/GFortranStandards, wiki}.
427
428The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95).
429As such, it can also compile essentially all standard-compliant
430Fortran 90 and Fortran 77 programs.  It also supports the ISO/IEC
431TR-15581 enhancements to allocatable arrays.
432
433GNU Fortran also supports almost all of ISO/IEC 1539-1:2004
434(Fortran 2003) and ISO/IEC 1539-1:2010 (Fortran 2008).
435It has partial support for features introduced in ISO/IEC
4361539:2018 (Fortran 2018), the most recent version of the Fortran
437language standard, including full support for the Technical Specification
438@code{Further Interoperability of Fortran with C} (ISO/IEC TS 29113:2012).
439More details on support for these standards can be
440found in the following sections of the documentation.
441
442Additionally, the GNU Fortran compilers supports the OpenMP specification
443(version 4.5 and partial support of the features of the 5.0 version,
444@url{https://openmp.org/@/openmp-specifications/}).
445There also is support for the OpenACC specification (targeting
446version 2.6, @uref{https://www.openacc.org/}).  See
447@uref{https://gcc.gnu.org/wiki/OpenACC} for more information.
448
449@node Fortran 95 status
450@subsection Fortran 95 status
451@cindex Varying length strings
452@cindex strings, varying length
453@cindex conditional compilation
454
455The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
456varying length character strings.  While GNU Fortran currently does not
457support such strings directly, there exist two Fortran implementations
458for them, which work with GNU Fortran.  They can be found at
459@uref{https://www.fortran.com/@/iso_varying_string.f95} and at
460@uref{ftp://ftp.nag.co.uk/@/sc22wg5/@/ISO_VARYING_STRING/}.
461
462Deferred-length character strings of Fortran 2003 supports part of
463the features of @code{ISO_VARYING_STRING} and should be considered as
464replacement. (Namely, allocatable or pointers of the type
465@code{character(len=:)}.)
466
467Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
468Conditional Compilation, which is not widely used and not directly
469supported by the GNU Fortran compiler.  You can use the program coco
470to preprocess such files (@uref{http://www.daniellnagle.com/coco.html}).
471
472@node Fortran 2003 status
473@subsection Fortran 2003 status
474
475GNU Fortran implements the Fortran 2003 (ISO/IEC 1539-1:2004) standard
476except for finalization support, which is incomplete.
477See the
478@uref{https://gcc.gnu.org/wiki/Fortran2003, wiki page} for a full list
479of new features introduced by Fortran 2003 and their implementation status.
480
481@node Fortran 2008 status
482@subsection Fortran 2008 status
483
484The GNU Fortran compiler supports almost all features of Fortran 2008;
485the @uref{https://gcc.gnu.org/wiki/Fortran2008Status, wiki}
486has some information about the current implementation status.
487In particular, the following are not yet supported:
488
489@itemize @bullet
490@item
491@code{DO CONCURRENT} and @code{FORALL} do not recognize a
492type-spec in the loop header.
493
494@item
495The change to permit any constant expression in subscripts and
496nested implied-do limits in a @code{DATA} statement has not been implemented.
497@end itemize
498
499
500@node Fortran 2018 status
501@subsection Fortran 2018 status
502
503Fortran 2018 (ISO/IEC 1539:2018) is the most recent version
504of the Fortran language standard.  GNU Fortran implements some of the
505new features of this standard:
506
507@itemize @bullet
508@item
509All Fortran 2018 features derived from ISO/IEC TS 29113:2012,
510``Further Interoperability of Fortran with C'', are supported by GNU Fortran.
511This includes assumed-type and assumed-rank objects and
512the @code{SELECT RANK} construct as well as the parts relating to
513@code{BIND(C)} functions.
514See also @ref{Further Interoperability of Fortran with C}.
515
516@item
517GNU Fortran supports a subset of features derived from ISO/IEC TS 18508:2015,
518``Additional Parallel Features in Fortran'':
519
520@itemize @bullet
521@item
522The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR intrinsics.
523
524@item
525The @code{CO_MIN} and @code{CO_MAX} and @code{SUM} reduction intrinsics,
526and the @code{CO_BROADCAST} and @code{CO_REDUCE} intrinsic, except that those
527do not support polymorphic types or types with allocatable, pointer or
528polymorphic components.
529
530@item
531Events (@code{EVENT POST}, @code{EVENT WAIT}, @code{EVENT_QUERY}).
532
533@item
534Failed images (@code{FAIL IMAGE}, @code{IMAGE_STATUS},
535@code{FAILED_IMAGES}, @code{STOPPED_IMAGES}).
536
537@end itemize
538
539@item
540An @code{ERROR STOP} statement is permitted in a @code{PURE}
541procedure.
542
543@item
544GNU Fortran supports the @code{IMPLICIT NONE} statement with an
545@code{implicit-none-spec-list}.
546
547@item
548The behavior of the @code{INQUIRE} statement with the @code{RECL=}
549specifier now conforms to Fortran 2018.
550
551@end itemize
552
553
554@c =====================================================================
555@c PART I: INVOCATION REFERENCE
556@c =====================================================================
557
558@tex
559\part{I}{Invoking GNU Fortran}
560@end tex
561
562@c ---------------------------------------------------------------------
563@c Compiler Options
564@c ---------------------------------------------------------------------
565
566@include invoke.texi
567
568
569@c ---------------------------------------------------------------------
570@c Runtime
571@c ---------------------------------------------------------------------
572
573@node Runtime
574@chapter Runtime:  Influencing runtime behavior with environment variables
575@cindex environment variable
576
577The behavior of the @command{gfortran} can be influenced by
578environment variables.
579
580Malformed environment variables are silently ignored.
581
582@menu
583* TMPDIR:: Directory for scratch files
584* GFORTRAN_STDIN_UNIT:: Unit number for standard input
585* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
586* GFORTRAN_STDERR_UNIT:: Unit number for standard error
587* GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units
588* GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
589* GFORTRAN_SHOW_LOCUS::  Show location for runtime errors
590* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
591* GFORTRAN_LIST_SEPARATOR::  Separator for list output
592* GFORTRAN_CONVERT_UNIT::  Set conversion for unformatted I/O
593* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
594* GFORTRAN_FORMATTED_BUFFER_SIZE:: Buffer size for formatted files
595* GFORTRAN_UNFORMATTED_BUFFER_SIZE:: Buffer size for unformatted files
596@end menu
597
598@node TMPDIR
599@section @env{TMPDIR}---Directory for scratch files
600
601When opening a file with @code{STATUS='SCRATCH'}, GNU Fortran tries to
602create the file in one of the potential directories by testing each
603directory in the order below.
604
605@enumerate
606@item
607The environment variable @env{TMPDIR}, if it exists.
608
609@item
610On the MinGW target, the directory returned by the @code{GetTempPath}
611function. Alternatively, on the Cygwin target, the @env{TMP} and
612@env{TEMP} environment variables, if they exist, in that order.
613
614@item
615The @code{P_tmpdir} macro if it is defined, otherwise the directory
616@file{/tmp}.
617@end enumerate
618
619@node GFORTRAN_STDIN_UNIT
620@section @env{GFORTRAN_STDIN_UNIT}---Unit number for standard input
621
622This environment variable can be used to select the unit number
623preconnected to standard input.  This must be a positive integer.
624The default value is 5.
625
626@node GFORTRAN_STDOUT_UNIT
627@section @env{GFORTRAN_STDOUT_UNIT}---Unit number for standard output
628
629This environment variable can be used to select the unit number
630preconnected to standard output.  This must be a positive integer.
631The default value is 6.
632
633@node GFORTRAN_STDERR_UNIT
634@section @env{GFORTRAN_STDERR_UNIT}---Unit number for standard error
635
636This environment variable can be used to select the unit number
637preconnected to standard error.  This must be a positive integer.
638The default value is 0.
639
640@node GFORTRAN_UNBUFFERED_ALL
641@section @env{GFORTRAN_UNBUFFERED_ALL}---Do not buffer I/O on all units
642
643This environment variable controls whether all I/O is unbuffered.  If
644the first letter is @samp{y}, @samp{Y} or @samp{1}, all I/O is
645unbuffered.  This will slow down small sequential reads and writes.  If
646the first letter is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.
647This is the default.
648
649@node GFORTRAN_UNBUFFERED_PRECONNECTED
650@section @env{GFORTRAN_UNBUFFERED_PRECONNECTED}---Do not buffer I/O on preconnected units
651
652The environment variable named @env{GFORTRAN_UNBUFFERED_PRECONNECTED} controls
653whether I/O on a preconnected unit (i.e.@: STDOUT or STDERR) is unbuffered.  If
654the first letter is @samp{y}, @samp{Y} or @samp{1}, I/O is unbuffered.  This
655will slow down small sequential reads and writes.  If the first letter
656is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.  This is the default.
657
658@node GFORTRAN_SHOW_LOCUS
659@section @env{GFORTRAN_SHOW_LOCUS}---Show location for runtime errors
660
661If the first letter is @samp{y}, @samp{Y} or @samp{1}, filename and
662line numbers for runtime errors are printed.  If the first letter is
663@samp{n}, @samp{N} or @samp{0}, do not print filename and line numbers
664for runtime errors.  The default is to print the location.
665
666@node GFORTRAN_OPTIONAL_PLUS
667@section @env{GFORTRAN_OPTIONAL_PLUS}---Print leading + where permitted
668
669If the first letter is @samp{y}, @samp{Y} or @samp{1},
670a plus sign is printed
671where permitted by the Fortran standard.  If the first letter
672is @samp{n}, @samp{N} or @samp{0}, a plus sign is not printed
673in most cases.  Default is not to print plus signs.
674
675@node GFORTRAN_LIST_SEPARATOR
676@section @env{GFORTRAN_LIST_SEPARATOR}---Separator for list output
677
678This environment variable specifies the separator when writing
679list-directed output.  It may contain any number of spaces and
680at most one comma.  If you specify this on the command line,
681be sure to quote spaces, as in
682@smallexample
683$ GFORTRAN_LIST_SEPARATOR='  ,  ' ./a.out
684@end smallexample
685when @command{a.out} is the compiled Fortran program that you want to run.
686Default is a single space.
687
688@node GFORTRAN_CONVERT_UNIT
689@section @env{GFORTRAN_CONVERT_UNIT}---Set conversion for unformatted I/O
690
691By setting the @env{GFORTRAN_CONVERT_UNIT} variable, it is possible
692to change the representation of data for unformatted files.
693The syntax for the @env{GFORTRAN_CONVERT_UNIT} variable for
694most systems is:
695@smallexample
696GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
697mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
698exception: mode ':' unit_list | unit_list ;
699unit_list: unit_spec | unit_list unit_spec ;
700unit_spec: INTEGER | INTEGER '-' INTEGER ;
701@end smallexample
702The variable consists of an optional default mode, followed by
703a list of optional exceptions, which are separated by semicolons
704from the preceding default and each other.  Each exception consists
705of a format and a comma-separated list of units.  Valid values for
706the modes are the same as for the @code{CONVERT} specifier:
707
708@itemize @w{}
709@item @code{NATIVE} Use the native format.  This is the default.
710@item @code{SWAP} Swap between little- and big-endian.
711@item @code{LITTLE_ENDIAN} Use the little-endian format
712for unformatted files.
713@item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
714@end itemize
715For POWER systems which support @option{-mabi=ieeelongdouble},
716there are additional options, which can be combined with the
717others with commas. Those are
718@itemize @w{}
719@item @code{R16_IEEE} Use IEEE 128-bit format for @code{REAL(KIND=16)}.
720@item @code{R16_IBM} Use IBM @code{long double} format for
721@code{REAL(KIND=16)}.
722@end itemize
723A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
724Examples of values for @env{GFORTRAN_CONVERT_UNIT} are:
725@itemize @w{}
726@item @code{'big_endian'}  Do all unformatted I/O in big_endian mode.
727@item @code{'little_endian;native:10-20,25'}  Do all unformatted I/O
728in little_endian mode, except for units 10 to 20 and 25, which are in
729native format.
730@item @code{'10-20'}  Units 10 to 20 are big-endian, the rest is native.
731@item @code{'big_endian,r16_ibm'} Do all unformatted I/O in big-endian
732mode and use IBM long double for output of @code{REAL(KIND=16)} values.
733@end itemize
734
735Setting the environment variables should be done on the command
736line or via the @command{export}
737command for @command{sh}-compatible shells and via @command{setenv}
738for @command{csh}-compatible shells.
739
740Example for @command{sh}:
741@smallexample
742$ gfortran foo.f90
743$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
744@end smallexample
745
746Example code for @command{csh}:
747@smallexample
748% gfortran foo.f90
749% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
750% ./a.out
751@end smallexample
752
753Using anything but the native representation for unformatted data
754carries a significant speed overhead.  If speed in this area matters
755to you, it is best if you use this only for data that needs to be
756portable.
757
758@xref{CONVERT specifier}, for an alternative way to specify the
759data representation for unformatted files.  @xref{Runtime Options}, for
760setting a default data representation for the whole program.  The
761@code{CONVERT} specifier overrides the @option{-fconvert} compile options.
762
763@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
764environment variable will override the CONVERT specifier in the
765open statement}.  This is to give control over data formats to
766users who do not have the source code of their program available.
767
768@node GFORTRAN_ERROR_BACKTRACE
769@section @env{GFORTRAN_ERROR_BACKTRACE}---Show backtrace on run-time errors
770
771If the @env{GFORTRAN_ERROR_BACKTRACE} variable is set to @samp{y},
772@samp{Y} or @samp{1} (only the first letter is relevant) then a
773backtrace is printed when a serious run-time error occurs.  To disable
774the backtracing, set the variable to @samp{n}, @samp{N}, @samp{0}.
775Default is to print a backtrace unless the @option{-fno-backtrace}
776compile option was used.
777
778@node GFORTRAN_FORMATTED_BUFFER_SIZE
779@section @env{GFORTRAN_FORMATTED_BUFFER_SIZE}---Set buffer size for formatted I/O
780
781The @env{GFORTRAN_FORMATTED_BUFFER_SIZE} environment variable
782specifies buffer size in bytes to be used for formatted output.
783The default value is 8192.
784
785@node GFORTRAN_UNFORMATTED_BUFFER_SIZE
786@section @env{GFORTRAN_UNFORMATTED_BUFFER_SIZE}---Set buffer size for unformatted I/O
787
788The @env{GFORTRAN_UNFORMATTED_BUFFER_SIZE} environment variable
789specifies buffer size in bytes to be used for unformatted output.
790The default value is 131072.
791
792@c =====================================================================
793@c PART II: LANGUAGE REFERENCE
794@c =====================================================================
795
796@tex
797\part{II}{Language Reference}
798@end tex
799
800
801
802@c ---------------------------------------------------------------------
803@c Compiler Characteristics
804@c ---------------------------------------------------------------------
805
806@node Compiler Characteristics
807@chapter Compiler Characteristics
808
809This chapter describes certain characteristics of the GNU Fortran
810compiler, that are not specified by the Fortran standard, but which
811might in some way or another become visible to the programmer.
812
813@menu
814* KIND Type Parameters::
815* Internal representation of LOGICAL variables::
816* Evaluation of logical expressions::
817* MAX and MIN intrinsics with REAL NaN arguments::
818* Thread-safety of the runtime library::
819* Data consistency and durability::
820* Files opened without an explicit ACTION= specifier::
821* File operations on symbolic links::
822* File format of unformatted sequential files::
823* Asynchronous I/O::
824@end menu
825
826
827@node KIND Type Parameters
828@section KIND Type Parameters
829@cindex kind
830
831The @code{KIND} type parameters supported by GNU Fortran for the primitive
832data types are:
833
834@table @code
835
836@item INTEGER
8371, 2, 4, 8*, 16*, default: 4**
838
839@item LOGICAL
8401, 2, 4, 8*, 16*, default: 4**
841
842@item REAL
8434, 8, 10*, 16*, default: 4***
844
845@item COMPLEX
8464, 8, 10*, 16*, default: 4***
847
848@item DOUBLE PRECISION
8494, 8, 10*, 16*, default: 8***
850
851@item CHARACTER
8521, 4, default: 1
853
854@end table
855
856@noindent
857* not available on all systems @*
858** unless @option{-fdefault-integer-8} is used @*
859*** unless @option{-fdefault-real-8} is used (see @ref{Fortran Dialect Options})
860
861@noindent
862The @code{KIND} value matches the storage size in bytes, except for
863@code{COMPLEX} where the storage size is twice as much (or both real and
864imaginary part are a real value of the given size).  It is recommended to use
865the @ref{SELECTED_CHAR_KIND}, @ref{SELECTED_INT_KIND} and
866@ref{SELECTED_REAL_KIND} intrinsics or the @code{INT8}, @code{INT16},
867@code{INT32}, @code{INT64}, @code{REAL32}, @code{REAL64}, and @code{REAL128}
868parameters of the @code{ISO_FORTRAN_ENV} module instead of the concrete values.
869The available kind parameters can be found in the constant arrays
870@code{CHARACTER_KINDS}, @code{INTEGER_KINDS}, @code{LOGICAL_KINDS} and
871@code{REAL_KINDS} in the @ref{ISO_FORTRAN_ENV} module.  For C interoperability,
872the kind parameters of the @ref{ISO_C_BINDING} module should be used.
873
874
875@node Internal representation of LOGICAL variables
876@section Internal representation of LOGICAL variables
877@cindex logical, variable representation
878
879The Fortran standard does not specify how variables of @code{LOGICAL}
880type are represented, beyond requiring that @code{LOGICAL} variables
881of default kind have the same storage size as default @code{INTEGER}
882and @code{REAL} variables.  The GNU Fortran internal representation is
883as follows.
884
885A @code{LOGICAL(KIND=N)} variable is represented as an
886@code{INTEGER(KIND=N)} variable, however, with only two permissible
887values: @code{1} for @code{.TRUE.} and @code{0} for
888@code{.FALSE.}.  Any other integer value results in undefined behavior.
889
890See also @ref{Argument passing conventions} and @ref{Interoperability with C}.
891
892
893@node Evaluation of logical expressions
894@section Evaluation of logical expressions
895
896The Fortran standard does not require the compiler to evaluate all parts of an
897expression, if they do not contribute to the final result.  For logical
898expressions with @code{.AND.} or @code{.OR.} operators, in particular, GNU
899Fortran will optimize out function calls (even to impure functions) if the
900result of the expression can be established without them.  However, since not
901all compilers do that, and such an optimization can potentially modify the
902program flow and subsequent results, GNU Fortran throws warnings for such
903situations with the @option{-Wfunction-elimination} flag.
904
905
906@node MAX and MIN intrinsics with REAL NaN arguments
907@section MAX and MIN intrinsics with REAL NaN arguments
908@cindex MAX, MIN, NaN
909
910The Fortran standard does not specify what the result of the
911@code{MAX} and @code{MIN} intrinsics are if one of the arguments is a
912@code{NaN}.  Accordingly, the GNU Fortran compiler does not specify
913that either, as this allows for faster and more compact code to be
914generated.  If the programmer wishes to take some specific action in
915case one of the arguments is a @code{NaN}, it is necessary to
916explicitly test the arguments before calling @code{MAX} or @code{MIN},
917e.g. with the @code{IEEE_IS_NAN} function from the intrinsic module
918@code{IEEE_ARITHMETIC}.
919
920
921@node Thread-safety of the runtime library
922@section Thread-safety of the runtime library
923@cindex thread-safety, threads
924
925GNU Fortran can be used in programs with multiple threads, e.g.@: by
926using OpenMP, by calling OS thread handling functions via the
927@code{ISO_C_BINDING} facility, or by GNU Fortran compiled library code
928being called from a multi-threaded program.
929
930The GNU Fortran runtime library, (@code{libgfortran}), supports being
931called concurrently from multiple threads with the following
932exceptions.
933
934During library initialization, the C @code{getenv} function is used,
935which need not be thread-safe.  Similarly, the @code{getenv}
936function is used to implement the @code{GET_ENVIRONMENT_VARIABLE} and
937@code{GETENV} intrinsics.  It is the responsibility of the user to
938ensure that the environment is not being updated concurrently when any
939of these actions are taking place.
940
941The @code{EXECUTE_COMMAND_LINE} and @code{SYSTEM} intrinsics are
942implemented with the @code{system} function, which need not be
943thread-safe.  It is the responsibility of the user to ensure that
944@code{system} is not called concurrently.
945
946For platforms not supporting thread-safe POSIX functions, further
947functionality might not be thread-safe.  For details, please consult
948the documentation for your operating system.
949
950The GNU Fortran runtime library uses various C library functions that
951depend on the locale, such as @code{strtod} and @code{snprintf}.  In
952order to work correctly in locale-aware programs that set the locale
953using @code{setlocale}, the locale is reset to the default ``C''
954locale while executing a formatted @code{READ} or @code{WRITE}
955statement.  On targets supporting the POSIX 2008 per-thread locale
956functions (e.g. @code{newlocale}, @code{uselocale},
957@code{freelocale}), these are used and thus the global locale set
958using @code{setlocale} or the per-thread locales in other threads are
959not affected.  However, on targets lacking this functionality, the
960global LC_NUMERIC locale is set to ``C'' during the formatted I/O.
961Thus, on such targets it's not safe to call @code{setlocale}
962concurrently from another thread while a Fortran formatted I/O
963operation is in progress.  Also, other threads doing something
964dependent on the LC_NUMERIC locale might not work correctly if a
965formatted I/O operation is in progress in another thread.
966
967@node Data consistency and durability
968@section Data consistency and durability
969@cindex consistency, durability
970
971This section contains a brief overview of data and metadata
972consistency and durability issues when doing I/O.
973
974With respect to durability, GNU Fortran makes no effort to ensure that
975data is committed to stable storage. If this is required, the GNU
976Fortran programmer can use the intrinsic @code{FNUM} to retrieve the
977low level file descriptor corresponding to an open Fortran unit. Then,
978using e.g. the @code{ISO_C_BINDING} feature, one can call the
979underlying system call to flush dirty data to stable storage, such as
980@code{fsync} on POSIX, @code{_commit} on MingW, or @code{fcntl(fd,
981F_FULLSYNC, 0)} on Mac OS X. The following example shows how to call
982fsync:
983
984@smallexample
985  ! Declare the interface for POSIX fsync function
986  interface
987    function fsync (fd) bind(c,name="fsync")
988    use iso_c_binding, only: c_int
989      integer(c_int), value :: fd
990      integer(c_int) :: fsync
991    end function fsync
992  end interface
993
994  ! Variable declaration
995  integer :: ret
996
997  ! Opening unit 10
998  open (10,file="foo")
999
1000  ! ...
1001  ! Perform I/O on unit 10
1002  ! ...
1003
1004  ! Flush and sync
1005  flush(10)
1006  ret = fsync(fnum(10))
1007
1008  ! Handle possible error
1009  if (ret /= 0) stop "Error calling FSYNC"
1010@end smallexample
1011
1012With respect to consistency, for regular files GNU Fortran uses
1013buffered I/O in order to improve performance. This buffer is flushed
1014automatically when full and in some other situations, e.g. when
1015closing a unit. It can also be explicitly flushed with the
1016@code{FLUSH} statement. Also, the buffering can be turned off with the
1017@code{GFORTRAN_UNBUFFERED_ALL} and
1018@code{GFORTRAN_UNBUFFERED_PRECONNECTED} environment variables. Special
1019files, such as terminals and pipes, are always unbuffered. Sometimes,
1020however, further things may need to be done in order to allow other
1021processes to see data that GNU Fortran has written, as follows.
1022
1023The Windows platform supports a relaxed metadata consistency model,
1024where file metadata is written to the directory lazily. This means
1025that, for instance, the @code{dir} command can show a stale size for a
1026file. One can force a directory metadata update by closing the unit,
1027or by calling @code{_commit} on the file descriptor. Note, though,
1028that @code{_commit} will force all dirty data to stable storage, which
1029is often a very slow operation.
1030
1031The Network File System (NFS) implements a relaxed consistency model
1032called open-to-close consistency. Closing a file forces dirty data and
1033metadata to be flushed to the server, and opening a file forces the
1034client to contact the server in order to revalidate cached
1035data. @code{fsync} will also force a flush of dirty data and metadata
1036to the server. Similar to @code{open} and @code{close}, acquiring and
1037releasing @code{fcntl} file locks, if the server supports them, will
1038also force cache validation and flushing dirty data and metadata.
1039
1040
1041@node Files opened without an explicit ACTION= specifier
1042@section Files opened without an explicit ACTION= specifier
1043@cindex open, action
1044
1045The Fortran standard says that if an @code{OPEN} statement is executed
1046without an explicit @code{ACTION=} specifier, the default value is
1047processor dependent.  GNU Fortran behaves as follows:
1048
1049@enumerate
1050@item Attempt to open the file with @code{ACTION='READWRITE'}
1051@item If that fails, try to open with @code{ACTION='READ'}
1052@item If that fails, try to open with @code{ACTION='WRITE'}
1053@item If that fails, generate an error
1054@end enumerate
1055
1056
1057@node File operations on symbolic links
1058@section File operations on symbolic links
1059@cindex file, symbolic link
1060
1061This section documents the behavior of GNU Fortran for file operations on
1062symbolic links, on systems that support them.
1063
1064@itemize
1065
1066@item Results of INQUIRE statements of the ``inquire by file'' form will
1067relate to the target of the symbolic link. For example,
1068@code{INQUIRE(FILE="foo",EXIST=ex)} will set @var{ex} to @var{.true.} if
1069@var{foo} is a symbolic link pointing to an existing file, and @var{.false.}
1070if @var{foo} points to an non-existing file (``dangling'' symbolic link).
1071
1072@item Using the @code{OPEN} statement with a @code{STATUS="NEW"} specifier
1073on a symbolic link will result in an error condition, whether the symbolic
1074link points to an existing target or is dangling.
1075
1076@item If a symbolic link was connected, using the @code{CLOSE} statement
1077with a @code{STATUS="DELETE"} specifier will cause the symbolic link itself
1078to be deleted, not its target.
1079
1080@end itemize
1081
1082@node File format of unformatted sequential files
1083@section File format of unformatted sequential files
1084@cindex file, unformatted sequential
1085@cindex unformatted sequential
1086@cindex sequential, unformatted
1087@cindex record marker
1088@cindex subrecord
1089
1090Unformatted sequential files are stored as logical records using
1091record markers.  Each logical record consists of one of more
1092subrecords.
1093
1094Each subrecord consists of a leading record marker, the data written
1095by the user program, and a trailing record marker.  The record markers
1096are four-byte integers by default, and eight-byte integers if the
1097@option{-fmax-subrecord-length=8} option (which exists for backwards
1098compability only) is in effect.
1099
1100The representation of the record markers is that of unformatted files
1101given with the @option{-fconvert} option, the @ref{CONVERT specifier}
1102in an open statement or the @ref{GFORTRAN_CONVERT_UNIT} environment
1103variable.
1104
1105The maximum number of bytes of user data in a subrecord is 2147483639
1106(2 GiB - 9) for a four-byte record marker.  This limit can be lowered
1107with the @option{-fmax-subrecord-length} option, although this is
1108rarely useful. If the length of a logical record exceeds this limit,
1109the data is distributed among several subrecords.
1110
1111The absolute of the number stored in the record markers is the number
1112of bytes of user data in the corresponding subrecord.  If the leading
1113record marker of a subrecord contains a negative number, another
1114subrecord follows the current one.  If the trailing record marker
1115contains a negative number, then there is a preceding subrecord.
1116
1117In the most simple case, with only one subrecord per logical record,
1118both record markers contain the number of bytes of user data in the
1119record.
1120
1121The format for unformatted sequential data can be duplicated using
1122unformatted stream, as shown in the example program for an unformatted
1123record containing a single subrecord:
1124
1125@smallexample
1126program main
1127  use iso_fortran_env, only: int32
1128  implicit none
1129  integer(int32) :: i
1130  real, dimension(10) :: a, b
1131  call random_number(a)
1132  open (10,file='test.dat',form='unformatted',access='stream')
1133  inquire (iolength=i) a
1134  write (10) i, a, i
1135  close (10)
1136  open (10,file='test.dat',form='unformatted')
1137  read (10) b
1138  if (all (a == b)) print *,'success!'
1139end program main
1140@end smallexample
1141
1142@node Asynchronous I/O
1143@section Asynchronous I/O
1144@cindex input/output, asynchronous
1145@cindex asynchronous I/O
1146
1147Asynchronous I/O is supported if the program is linked against the
1148POSIX thread library. If that is not the case, all I/O is performed
1149as synchronous. On systems which do not support pthread condition
1150variables, such as AIX, I/O is also performed as synchronous.
1151
1152On some systems, such as Darwin or Solaris, the POSIX thread library
1153is always linked in, so asynchronous I/O is always performed. On other
1154sytems, such as Linux, it is necessary to specify @option{-pthread},
1155@option{-lpthread} or @option{-fopenmp} during the linking step.
1156
1157@c ---------------------------------------------------------------------
1158@c Extensions
1159@c ---------------------------------------------------------------------
1160
1161@c Maybe this chapter should be merged with the 'Standards' section,
1162@c whenever that is written :-)
1163
1164@node Extensions
1165@chapter Extensions
1166@cindex extensions
1167
1168The two sections below detail the extensions to standard Fortran that are
1169implemented in GNU Fortran, as well as some of the popular or
1170historically important extensions that are not (or not yet) implemented.
1171For the latter case, we explain the alternatives available to GNU Fortran
1172users, including replacement by standard-conforming code or GNU
1173extensions.
1174
1175@menu
1176* Extensions implemented in GNU Fortran::
1177* Extensions not implemented in GNU Fortran::
1178@end menu
1179
1180
1181@node Extensions implemented in GNU Fortran
1182@section Extensions implemented in GNU Fortran
1183@cindex extensions, implemented
1184
1185GNU Fortran implements a number of extensions over standard Fortran.
1186This chapter contains information on their syntax and meaning.  There
1187are currently two categories of GNU Fortran extensions, those that
1188provide functionality beyond that provided by any standard, and those
1189that are supported by GNU Fortran purely for backward compatibility
1190with legacy compilers.  By default, @option{-std=gnu} allows the
1191compiler to accept both types of extensions, but to warn about the use
1192of the latter.  Specifying either @option{-std=f95},
1193@option{-std=f2003}, @option{-std=f2008}, or @option{-std=f2018}
1194disables both types of extensions, and @option{-std=legacy} allows
1195both without warning.  The special compile flag @option{-fdec} enables
1196additional compatibility extensions along with those enabled by
1197@option{-std=legacy}.
1198
1199@menu
1200* Old-style kind specifications::
1201* Old-style variable initialization::
1202* Extensions to namelist::
1203* X format descriptor without count field::
1204* Commas in FORMAT specifications::
1205* Missing period in FORMAT specifications::
1206* Default widths for F@comma{} G and I format descriptors::
1207* I/O item lists::
1208* @code{Q} exponent-letter::
1209* BOZ literal constants::
1210* Real array indices::
1211* Unary operators::
1212* Implicitly convert LOGICAL and INTEGER values::
1213* Hollerith constants support::
1214* Character conversion::
1215* Cray pointers::
1216* CONVERT specifier::
1217* OpenMP::
1218* OpenACC::
1219* Argument list functions::
1220* Read/Write after EOF marker::
1221* STRUCTURE and RECORD::
1222* UNION and MAP::
1223* Type variants for integer intrinsics::
1224* AUTOMATIC and STATIC attributes::
1225* Extended math intrinsics::
1226* Form feed as whitespace::
1227* TYPE as an alias for PRINT::
1228* %LOC as an rvalue::
1229* .XOR. operator::
1230* Bitwise logical operators::
1231* Extended I/O specifiers::
1232* Legacy PARAMETER statements::
1233* Default exponents::
1234@end menu
1235
1236@node Old-style kind specifications
1237@subsection Old-style kind specifications
1238@cindex kind, old-style
1239
1240GNU Fortran allows old-style kind specifications in declarations.  These
1241look like:
1242@smallexample
1243      TYPESPEC*size x,y,z
1244@end smallexample
1245@noindent
1246where @code{TYPESPEC} is a basic type (@code{INTEGER}, @code{REAL},
1247etc.), and where @code{size} is a byte count corresponding to the
1248storage size of a valid kind for that type.  (For @code{COMPLEX}
1249variables, @code{size} is the total size of the real and imaginary
1250parts.)  The statement then declares @code{x}, @code{y} and @code{z} to
1251be of type @code{TYPESPEC} with the appropriate kind.  This is
1252equivalent to the standard-conforming declaration
1253@smallexample
1254      TYPESPEC(k) x,y,z
1255@end smallexample
1256@noindent
1257where @code{k} is the kind parameter suitable for the intended precision.  As
1258kind parameters are implementation-dependent, use the @code{KIND},
1259@code{SELECTED_INT_KIND} and @code{SELECTED_REAL_KIND} intrinsics to retrieve
1260the correct value, for instance @code{REAL*8 x} can be replaced by:
1261@smallexample
1262INTEGER, PARAMETER :: dbl = KIND(1.0d0)
1263REAL(KIND=dbl) :: x
1264@end smallexample
1265
1266@node Old-style variable initialization
1267@subsection Old-style variable initialization
1268
1269GNU Fortran allows old-style initialization of variables of the
1270form:
1271@smallexample
1272      INTEGER i/1/,j/2/
1273      REAL x(2,2) /3*0.,1./
1274@end smallexample
1275The syntax for the initializers is as for the @code{DATA} statement, but
1276unlike in a @code{DATA} statement, an initializer only applies to the
1277variable immediately preceding the initialization.  In other words,
1278something like @code{INTEGER I,J/2,3/} is not valid.  This style of
1279initialization is only allowed in declarations without double colons
1280(@code{::}); the double colons were introduced in Fortran 90, which also
1281introduced a standard syntax for initializing variables in type
1282declarations.
1283
1284Examples of standard-conforming code equivalent to the above example
1285are:
1286@smallexample
1287! Fortran 90
1288      INTEGER :: i = 1, j = 2
1289      REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
1290! Fortran 77
1291      INTEGER i, j
1292      REAL x(2,2)
1293      DATA i/1/, j/2/, x/3*0.,1./
1294@end smallexample
1295
1296Note that variables which are explicitly initialized in declarations
1297or in @code{DATA} statements automatically acquire the @code{SAVE}
1298attribute.
1299
1300@node Extensions to namelist
1301@subsection Extensions to namelist
1302@cindex Namelist
1303
1304GNU Fortran fully supports the Fortran 95 standard for namelist I/O
1305including array qualifiers, substrings and fully qualified derived types.
1306The output from a namelist write is compatible with namelist read.  The
1307output has all names in upper case and indentation to column 1 after the
1308namelist name.  Two extensions are permitted:
1309
1310Old-style use of @samp{$} instead of @samp{&}
1311@smallexample
1312$MYNML
1313 X(:)%Y(2) = 1.0 2.0 3.0
1314 CH(1:4) = "abcd"
1315$END
1316@end smallexample
1317
1318It should be noted that the default terminator is @samp{/} rather than
1319@samp{&END}.
1320
1321Querying of the namelist when inputting from stdin.  After at least
1322one space, entering @samp{?} sends to stdout the namelist name and the names of
1323the variables in the namelist:
1324@smallexample
1325 ?
1326
1327&mynml
1328 x
1329 x%y
1330 ch
1331&end
1332@end smallexample
1333
1334Entering @samp{=?} outputs the namelist to stdout, as if
1335@code{WRITE(*,NML = mynml)} had been called:
1336@smallexample
1337=?
1338
1339&MYNML
1340 X(1)%Y=  0.000000    ,  1.000000    ,  0.000000    ,
1341 X(2)%Y=  0.000000    ,  2.000000    ,  0.000000    ,
1342 X(3)%Y=  0.000000    ,  3.000000    ,  0.000000    ,
1343 CH=abcd,  /
1344@end smallexample
1345
1346To aid this dialog, when input is from stdin, errors send their
1347messages to stderr and execution continues, even if @code{IOSTAT} is set.
1348
1349@code{PRINT} namelist is permitted.  This causes an error if
1350@option{-std=f95} is used.
1351@smallexample
1352PROGRAM test_print
1353  REAL, dimension (4)  ::  x = (/1.0, 2.0, 3.0, 4.0/)
1354  NAMELIST /mynml/ x
1355  PRINT mynml
1356END PROGRAM test_print
1357@end smallexample
1358
1359Expanded namelist reads are permitted.  This causes an error if
1360@option{-std=f95} is used.  In the following example, the first element
1361of the array will be given the value 0.00 and the two succeeding
1362elements will be given the values 1.00 and 2.00.
1363@smallexample
1364&MYNML
1365  X(1,1) = 0.00 , 1.00 , 2.00
1366/
1367@end smallexample
1368
1369When writing a namelist, if no @code{DELIM=} is specified, by default a
1370double quote is used to delimit character strings. If -std=F95, F2003,
1371or F2008, etc, the delim status is set to 'none'.  Defaulting to
1372quotes ensures that namelists with character strings can be subsequently
1373read back in accurately.
1374
1375@node X format descriptor without count field
1376@subsection @code{X} format descriptor without count field
1377
1378To support legacy codes, GNU Fortran permits the count field of the
1379@code{X} edit descriptor in @code{FORMAT} statements to be omitted.
1380When omitted, the count is implicitly assumed to be one.
1381
1382@smallexample
1383       PRINT 10, 2, 3
138410     FORMAT (I1, X, I1)
1385@end smallexample
1386
1387@node Commas in FORMAT specifications
1388@subsection Commas in @code{FORMAT} specifications
1389
1390To support legacy codes, GNU Fortran allows the comma separator
1391to be omitted immediately before and after character string edit
1392descriptors in @code{FORMAT} statements.  A comma with no following format
1393decriptor is permited if the @option{-fdec-blank-format-item} is given on
1394the command line. This is considered non-conforming code and is
1395discouraged.
1396
1397@smallexample
1398       PRINT 10, 2, 3
139910     FORMAT ('FOO='I1' BAR='I2)
1400       print 20, 5, 6
140120     FORMAT (I3, I3,)
1402@end smallexample
1403
1404
1405@node Missing period in FORMAT specifications
1406@subsection Missing period in @code{FORMAT} specifications
1407
1408To support legacy codes, GNU Fortran allows missing periods in format
1409specifications if and only if @option{-std=legacy} is given on the
1410command line.  This is considered non-conforming code and is
1411discouraged.
1412
1413@smallexample
1414       REAL :: value
1415       READ(*,10) value
141610     FORMAT ('F4')
1417@end smallexample
1418
1419@node Default widths for F@comma{} G and I format descriptors
1420@subsection Default widths for @code{F}, @code{G} and @code{I} format descriptors
1421
1422To support legacy codes, GNU Fortran allows width to be omitted from format
1423specifications if and only if @option{-fdec-format-defaults} is given on the
1424command line.  Default widths will be used. This is considered non-conforming
1425code and is discouraged.
1426
1427@smallexample
1428       REAL :: value1
1429       INTEGER :: value2
1430       WRITE(*,10) value1, value1, value2
143110     FORMAT ('F, G, I')
1432@end smallexample
1433
1434
1435@node I/O item lists
1436@subsection I/O item lists
1437@cindex I/O item lists
1438
1439To support legacy codes, GNU Fortran allows the input item list
1440of the @code{READ} statement, and the output item lists of the
1441@code{WRITE} and @code{PRINT} statements, to start with a comma.
1442
1443@node @code{Q} exponent-letter
1444@subsection @code{Q} exponent-letter
1445@cindex @code{Q} exponent-letter
1446
1447GNU Fortran accepts real literal constants with an exponent-letter
1448of @code{Q}, for example, @code{1.23Q45}.  The constant is interpreted
1449as a @code{REAL(16)} entity on targets that support this type.  If
1450the target does not support @code{REAL(16)} but has a @code{REAL(10)}
1451type, then the real-literal-constant will be interpreted as a
1452@code{REAL(10)} entity.  In the absence of @code{REAL(16)} and
1453@code{REAL(10)}, an error will occur.
1454
1455@node BOZ literal constants
1456@subsection BOZ literal constants
1457@cindex BOZ literal constants
1458
1459Besides decimal constants, Fortran also supports binary (@code{b}),
1460octal (@code{o}) and hexadecimal (@code{z}) integer constants.  The
1461syntax is: @samp{prefix quote digits quote}, where the prefix is
1462either @code{b}, @code{o} or @code{z}, quote is either @code{'} or
1463@code{"} and the digits are @code{0} or @code{1} for binary,
1464between @code{0} and @code{7} for octal, and between @code{0} and
1465@code{F} for hexadecimal.  (Example: @code{b'01011101'}.)
1466
1467Up to Fortran 95, BOZ literal constants were only allowed to initialize
1468integer variables in DATA statements.  Since Fortran 2003 BOZ literal
1469constants are also allowed as actual arguments to the @code{REAL},
1470@code{DBLE}, @code{INT} and @code{CMPLX} intrinsic functions.
1471The BOZ literal constant is simply a string of bits, which is padded
1472or truncated as needed, during conversion to a numeric type.  The
1473Fortran standard states that the treatment of the sign bit is processor
1474dependent.  Gfortran interprets the sign bit as a user would expect.
1475
1476As a deprecated extension, GNU Fortran allows hexadecimal BOZ literal
1477constants to be specified using the @code{X} prefix.  That the BOZ literal
1478constant can also be specified by adding a suffix to the string, for
1479example, @code{Z'ABC'} and @code{'ABC'X} are equivalent.  Additionally,
1480as extension, BOZ literals are permitted in some contexts outside of
1481@code{DATA} and the intrinsic functions listed in the Fortran standard.
1482Use @option{-fallow-invalid-boz} to enable the extension.
1483
1484@node Real array indices
1485@subsection Real array indices
1486@cindex array, indices of type real
1487
1488As an extension, GNU Fortran allows the use of @code{REAL} expressions
1489or variables as array indices.
1490
1491@node Unary operators
1492@subsection Unary operators
1493@cindex operators, unary
1494
1495As an extension, GNU Fortran allows unary plus and unary minus operators
1496to appear as the second operand of binary arithmetic operators without
1497the need for parenthesis.
1498
1499@smallexample
1500       X = Y * -Z
1501@end smallexample
1502
1503@node Implicitly convert LOGICAL and INTEGER values
1504@subsection Implicitly convert @code{LOGICAL} and @code{INTEGER} values
1505@cindex conversion, to integer
1506@cindex conversion, to logical
1507
1508As an extension for backwards compatibility with other compilers, GNU
1509Fortran allows the implicit conversion of @code{LOGICAL} values to
1510@code{INTEGER} values and vice versa.  When converting from a
1511@code{LOGICAL} to an @code{INTEGER}, @code{.FALSE.} is interpreted as
1512zero, and @code{.TRUE.} is interpreted as one.  When converting from
1513@code{INTEGER} to @code{LOGICAL}, the value zero is interpreted as
1514@code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.
1515
1516@smallexample
1517        LOGICAL :: l
1518        l = 1
1519@end smallexample
1520@smallexample
1521        INTEGER :: i
1522        i = .TRUE.
1523@end smallexample
1524
1525However, there is no implicit conversion of @code{INTEGER} values in
1526@code{if}-statements, nor of @code{LOGICAL} or @code{INTEGER} values
1527in I/O operations.
1528
1529@node Hollerith constants support
1530@subsection Hollerith constants support
1531@cindex Hollerith constants
1532
1533GNU Fortran supports Hollerith constants in assignments, @code{DATA}
1534statements, function and subroutine arguments. A Hollerith constant is
1535written as a string of characters preceded by an integer constant
1536indicating the character count, and the letter @code{H} or
1537@code{h}, and stored in bytewise fashion in a numeric (@code{INTEGER},
1538@code{REAL}, or @code{COMPLEX}), @code{LOGICAL} or @code{CHARACTER} variable.
1539The constant will be padded with spaces or truncated to fit the size of
1540the variable in which it is stored.
1541
1542Examples of valid uses of Hollerith constants:
1543@smallexample
1544      complex*16 x(2)
1545      data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
1546      x(1) = 16HABCDEFGHIJKLMNOP
1547      call foo (4h abc)
1548@end smallexample
1549
1550Examples of Hollerith constants:
1551@smallexample
1552      integer*4 a
1553      a = 0H         ! Invalid, at least one character is needed.
1554      a = 4HAB12     ! Valid
1555      a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
1556      a = 3Hxyz      ! Valid, but the Hollerith constant will be padded.
1557@end smallexample
1558
1559In general, Hollerith constants were used to provide a rudimentary
1560facility for handling character strings in early Fortran compilers,
1561prior to the introduction of @code{CHARACTER} variables in Fortran 77;
1562in those cases, the standard-compliant equivalent is to convert the
1563program to use proper character strings.  On occasion, there may be a
1564case where the intent is specifically to initialize a numeric variable
1565with a given byte sequence.  In these cases, the same result can be
1566obtained by using the @code{TRANSFER} statement, as in this example.
1567@smallexample
1568      integer(kind=4) :: a
1569      a = transfer ("abcd", a)     ! equivalent to: a = 4Habcd
1570@end smallexample
1571
1572The use of the @option{-fdec} option extends support of Hollerith constants
1573to comparisons:
1574@smallexample
1575      integer*4 a
1576      a = 4hABCD
1577      if (a .ne. 4habcd) then
1578        write(*,*) "no match"
1579      end if
1580@end smallexample
1581
1582Supported types are numeric (@code{INTEGER}, @code{REAL}, or @code{COMPLEX}),
1583and @code{CHARACTER}.
1584
1585@node Character conversion
1586@subsection Character conversion
1587@cindex conversion, to character
1588
1589Allowing character literals to be used in a similar way to Hollerith constants
1590is a non-standard extension.  This feature is enabled using
1591-fdec-char-conversions and only applies to character literals of @code{kind=1}.
1592
1593Character literals can be used in @code{DATA} statements and assignments with
1594numeric (@code{INTEGER}, @code{REAL}, or @code{COMPLEX}) or @code{LOGICAL}
1595variables. Like Hollerith constants they are copied byte-wise fashion. The
1596constant will be padded with spaces or truncated to fit the size of the
1597variable in which it is stored.
1598
1599Examples:
1600@smallexample
1601      integer*4 x
1602      data x / 'abcd' /
1603
1604      x = 'A'       ! Will be padded.
1605      x = 'ab1234'  ! Will be truncated.
1606@end smallexample
1607
1608
1609@node Cray pointers
1610@subsection Cray pointers
1611@cindex pointer, Cray
1612
1613Cray pointers are part of a non-standard extension that provides a
1614C-like pointer in Fortran.  This is accomplished through a pair of
1615variables: an integer "pointer" that holds a memory address, and a
1616"pointee" that is used to dereference the pointer.
1617
1618Pointer/pointee pairs are declared in statements of the form:
1619@smallexample
1620        pointer ( <pointer> , <pointee> )
1621@end smallexample
1622or,
1623@smallexample
1624        pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
1625@end smallexample
1626The pointer is an integer that is intended to hold a memory address.
1627The pointee may be an array or scalar.
1628If an assumed-size array is permitted within the scoping unit, a
1629pointee can be an assumed-size array.
1630That is, the last dimension may be left unspecified by using a @code{*}
1631in place of a value. A pointee cannot be an assumed shape array.
1632No space is allocated for the pointee.
1633
1634The pointee may have its type declared before or after the pointer
1635statement, and its array specification (if any) may be declared
1636before, during, or after the pointer statement.  The pointer may be
1637declared as an integer prior to the pointer statement.  However, some
1638machines have default integer sizes that are different than the size
1639of a pointer, and so the following code is not portable:
1640@smallexample
1641        integer ipt
1642        pointer (ipt, iarr)
1643@end smallexample
1644If a pointer is declared with a kind that is too small, the compiler
1645will issue a warning; the resulting binary will probably not work
1646correctly, because the memory addresses stored in the pointers may be
1647truncated.  It is safer to omit the first line of the above example;
1648if explicit declaration of ipt's type is omitted, then the compiler
1649will ensure that ipt is an integer variable large enough to hold a
1650pointer.
1651
1652Pointer arithmetic is valid with Cray pointers, but it is not the same
1653as C pointer arithmetic.  Cray pointers are just ordinary integers, so
1654the user is responsible for determining how many bytes to add to a
1655pointer in order to increment it.  Consider the following example:
1656@smallexample
1657        real target(10)
1658        real pointee(10)
1659        pointer (ipt, pointee)
1660        ipt = loc (target)
1661        ipt = ipt + 1
1662@end smallexample
1663The last statement does not set @code{ipt} to the address of
1664@code{target(1)}, as it would in C pointer arithmetic.  Adding @code{1}
1665to @code{ipt} just adds one byte to the address stored in @code{ipt}.
1666
1667Any expression involving the pointee will be translated to use the
1668value stored in the pointer as the base address.
1669
1670To get the address of elements, this extension provides an intrinsic
1671function @code{LOC()}.  The @code{LOC()} function is equivalent to the
1672@code{&} operator in C, except the address is cast to an integer type:
1673@smallexample
1674        real ar(10)
1675        pointer(ipt, arpte(10))
1676        real arpte
1677        ipt = loc(ar)  ! Makes arpte is an alias for ar
1678        arpte(1) = 1.0 ! Sets ar(1) to 1.0
1679@end smallexample
1680The pointer can also be set by a call to the @code{MALLOC} intrinsic
1681(see @ref{MALLOC}).
1682
1683Cray pointees often are used to alias an existing variable.  For
1684example:
1685@smallexample
1686        integer target(10)
1687        integer iarr(10)
1688        pointer (ipt, iarr)
1689        ipt = loc(target)
1690@end smallexample
1691As long as @code{ipt} remains unchanged, @code{iarr} is now an alias for
1692@code{target}.  The optimizer, however, will not detect this aliasing, so
1693it is unsafe to use @code{iarr} and @code{target} simultaneously.  Using
1694a pointee in any way that violates the Fortran aliasing rules or
1695assumptions is illegal.  It is the user's responsibility to avoid doing
1696this; the compiler works under the assumption that no such aliasing
1697occurs.
1698
1699Cray pointers will work correctly when there is no aliasing (i.e., when
1700they are used to access a dynamically allocated block of memory), and
1701also in any routine where a pointee is used, but any variable with which
1702it shares storage is not used.  Code that violates these rules may not
1703run as the user intends.  This is not a bug in the optimizer; any code
1704that violates the aliasing rules is illegal.  (Note that this is not
1705unique to GNU Fortran; any Fortran compiler that supports Cray pointers
1706will ``incorrectly'' optimize code with illegal aliasing.)
1707
1708There are a number of restrictions on the attributes that can be applied
1709to Cray pointers and pointees.  Pointees may not have the
1710@code{ALLOCATABLE}, @code{INTENT}, @code{OPTIONAL}, @code{DUMMY},
1711@code{TARGET}, @code{INTRINSIC}, or @code{POINTER} attributes.  Pointers
1712may not have the @code{DIMENSION}, @code{POINTER}, @code{TARGET},
1713@code{ALLOCATABLE}, @code{EXTERNAL}, or @code{INTRINSIC} attributes, nor
1714may they be function results.  Pointees may not occur in more than one
1715pointer statement.  A pointee cannot be a pointer.  Pointees cannot occur
1716in equivalence, common, or data statements.
1717
1718A Cray pointer may also point to a function or a subroutine.  For
1719example, the following excerpt is valid:
1720@smallexample
1721  implicit none
1722  external sub
1723  pointer (subptr,subpte)
1724  external subpte
1725  subptr = loc(sub)
1726  call subpte()
1727  [...]
1728  subroutine sub
1729  [...]
1730  end subroutine sub
1731@end smallexample
1732
1733A pointer may be modified during the course of a program, and this
1734will change the location to which the pointee refers.  However, when
1735pointees are passed as arguments, they are treated as ordinary
1736variables in the invoked function.  Subsequent changes to the pointer
1737will not change the base address of the array that was passed.
1738
1739@node CONVERT specifier
1740@subsection @code{CONVERT} specifier
1741@cindex @code{CONVERT} specifier
1742
1743GNU Fortran allows the conversion of unformatted data between little-
1744and big-endian representation to facilitate moving of data
1745between different systems.  The conversion can be indicated with
1746the @code{CONVERT} specifier on the @code{OPEN} statement.
1747@xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
1748the data format via an environment variable.
1749
1750Valid values for @code{CONVERT} on most systems are:
1751@itemize @w{}
1752@item @code{CONVERT='NATIVE'} Use the native format.  This is the default.
1753@item @code{CONVERT='SWAP'} Swap between little- and big-endian.
1754@item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
1755for unformatted files.
1756@item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
1757unformatted files.
1758@end itemize
1759On POWER systems which support @option{-mabi=ieeelongdouble},
1760there are additional options, which can be combined with the others
1761with commas. Those are
1762@itemize @w{}
1763@item @code{CONVERT='R16_IEEE'} Use IEEE 128-bit format for
1764@code{REAL(KIND=16)}.
1765@item @code{CONVERT='R16_IBM'} Use IBM @code{long double} format for
1766real@code{REAL(KIND=16)}.
1767@end itemize
1768
1769Using the option could look like this:
1770@smallexample
1771  open(file='big.dat',form='unformatted',access='sequential', &
1772       convert='big_endian')
1773@end smallexample
1774
1775The value of the conversion can be queried by using
1776@code{INQUIRE(CONVERT=ch)}.  The values returned are
1777@code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.
1778
1779@code{CONVERT} works between big- and little-endian for
1780@code{INTEGER} values of all supported kinds and for @code{REAL}
1781on IEEE systems of kinds 4 and 8.  Conversion between different
1782``extended double'' types on different architectures such as
1783m68k and x86_64, which GNU Fortran
1784supports as @code{REAL(KIND=10)} and @code{REAL(KIND=16)}, will
1785probably not work.
1786
1787@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
1788environment variable will override the CONVERT specifier in the
1789open statement}.  This is to give control over data formats to
1790users who do not have the source code of their program available.
1791
1792Using anything but the native representation for unformatted data
1793carries a significant speed overhead.  If speed in this area matters
1794to you, it is best if you use this only for data that needs to be
1795portable.
1796
1797@node OpenMP
1798@subsection OpenMP
1799@cindex OpenMP
1800
1801OpenMP (Open Multi-Processing) is an application programming
1802interface (API) that supports multi-platform shared memory
1803multiprocessing programming in C/C++ and Fortran on many
1804architectures, including Unix and Microsoft Windows platforms.
1805It consists of a set of compiler directives, library routines,
1806and environment variables that influence run-time behavior.
1807
1808GNU Fortran strives to be compatible to the
1809@uref{https://openmp.org/wp/openmp-specifications/,
1810OpenMP Application Program Interface v4.5}.
1811
1812To enable the processing of the OpenMP directive @code{!$omp} in
1813free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
1814directives in fixed form; the @code{!$} conditional compilation sentinels
1815in free form; and the @code{c$}, @code{*$} and @code{!$} sentinels
1816in fixed form, @command{gfortran} needs to be invoked with the
1817@option{-fopenmp}.  This also arranges for automatic linking of the
1818GNU Offloading and Multi Processing Runtime Library
1819@ref{Top,,libgomp,libgomp,GNU Offloading and Multi Processing Runtime
1820Library}.
1821
1822The OpenMP Fortran runtime library routines are provided both in a
1823form of a Fortran 90 module named @code{omp_lib} and in a form of
1824a Fortran @code{include} file named @file{omp_lib.h}.
1825
1826An example of a parallelized loop taken from Appendix A.1 of
1827the OpenMP Application Program Interface v2.5:
1828@smallexample
1829SUBROUTINE A1(N, A, B)
1830  INTEGER I, N
1831  REAL B(N), A(N)
1832!$OMP PARALLEL DO !I is private by default
1833  DO I=2,N
1834    B(I) = (A(I) + A(I-1)) / 2.0
1835  ENDDO
1836!$OMP END PARALLEL DO
1837END SUBROUTINE A1
1838@end smallexample
1839
1840Please note:
1841@itemize
1842@item
1843@option{-fopenmp} implies @option{-frecursive}, i.e., all local arrays
1844will be allocated on the stack.  When porting existing code to OpenMP,
1845this may lead to surprising results, especially to segmentation faults
1846if the stacksize is limited.
1847
1848@item
1849On glibc-based systems, OpenMP enabled applications cannot be statically
1850linked due to limitations of the underlying pthreads-implementation.  It
1851might be possible to get a working solution if
1852@command{-Wl,--whole-archive -lpthread -Wl,--no-whole-archive} is added
1853to the command line.  However, this is not supported by @command{gcc} and
1854thus not recommended.
1855@end itemize
1856
1857@node OpenACC
1858@subsection OpenACC
1859@cindex OpenACC
1860
1861OpenACC is an application programming interface (API) that supports
1862offloading of code to accelerator devices.  It consists of a set of
1863compiler directives, library routines, and environment variables that
1864influence run-time behavior.
1865
1866GNU Fortran strives to be compatible to the
1867@uref{https://www.openacc.org/, OpenACC Application Programming
1868Interface v2.6}.
1869
1870To enable the processing of the OpenACC directive @code{!$acc} in
1871free-form source code; the @code{c$acc}, @code{*$acc} and @code{!$acc}
1872directives in fixed form; the @code{!$} conditional compilation
1873sentinels in free form; and the @code{c$}, @code{*$} and @code{!$}
1874sentinels in fixed form, @command{gfortran} needs to be invoked with
1875the @option{-fopenacc}.  This also arranges for automatic linking of
1876the GNU Offloading and Multi Processing Runtime Library
1877@ref{Top,,libgomp,libgomp,GNU Offloading and Multi Processing Runtime
1878Library}.
1879
1880The OpenACC Fortran runtime library routines are provided both in a
1881form of a Fortran 90 module named @code{openacc} and in a form of a
1882Fortran @code{include} file named @file{openacc_lib.h}.
1883
1884@node Argument list functions
1885@subsection Argument list functions @code{%VAL}, @code{%REF} and @code{%LOC}
1886@cindex argument list functions
1887@cindex @code{%VAL}
1888@cindex @code{%REF}
1889@cindex @code{%LOC}
1890
1891GNU Fortran supports argument list functions @code{%VAL}, @code{%REF}
1892and @code{%LOC} statements, for backward compatibility with g77.
1893It is recommended that these should be used only for code that is
1894accessing facilities outside of GNU Fortran, such as operating system
1895or windowing facilities.  It is best to constrain such uses to isolated
1896portions of a program--portions that deal specifically and exclusively
1897with low-level, system-dependent facilities.  Such portions might well
1898provide a portable interface for use by the program as a whole, but are
1899themselves not portable, and should be thoroughly tested each time they
1900are rebuilt using a new compiler or version of a compiler.
1901
1902@code{%VAL} passes a scalar argument by value, @code{%REF} passes it by
1903reference and @code{%LOC} passes its memory location.  Since gfortran
1904already passes scalar arguments by reference, @code{%REF} is in effect
1905a do-nothing.  @code{%LOC} has the same effect as a Fortran pointer.
1906
1907An example of passing an argument by value to a C subroutine foo.:
1908@smallexample
1909C
1910C prototype      void foo_ (float x);
1911C
1912      external foo
1913      real*4 x
1914      x = 3.14159
1915      call foo (%VAL (x))
1916      end
1917@end smallexample
1918
1919For details refer to the g77 manual
1920@uref{https://gcc.gnu.org/@/onlinedocs/@/gcc-3.4.6/@/g77/@/index.html#Top}.
1921
1922Also, @code{c_by_val.f} and its partner @code{c_by_val.c} of the
1923GNU Fortran testsuite are worth a look.
1924
1925@node Read/Write after EOF marker
1926@subsection Read/Write after EOF marker
1927@cindex @code{EOF}
1928@cindex @code{BACKSPACE}
1929@cindex @code{REWIND}
1930
1931Some legacy codes rely on allowing @code{READ} or @code{WRITE} after the
1932EOF file marker in order to find the end of a file. GNU Fortran normally
1933rejects these codes with a run-time error message and suggests the user
1934consider @code{BACKSPACE} or @code{REWIND} to properly position
1935the file before the EOF marker.  As an extension, the run-time error may
1936be disabled using -std=legacy.
1937
1938
1939@node STRUCTURE and RECORD
1940@subsection @code{STRUCTURE} and @code{RECORD}
1941@cindex @code{STRUCTURE}
1942@cindex @code{RECORD}
1943
1944Record structures are a pre-Fortran-90 vendor extension to create
1945user-defined aggregate data types.  Support for record structures in GNU
1946Fortran can be enabled with the @option{-fdec-structure} compile flag.
1947If you have a choice, you should instead use Fortran 90's ``derived types'',
1948which have a different syntax.
1949
1950In many cases, record structures can easily be converted to derived types.
1951To convert, replace @code{STRUCTURE /}@var{structure-name}@code{/}
1952by @code{TYPE} @var{type-name}.  Additionally, replace
1953@code{RECORD /}@var{structure-name}@code{/} by
1954@code{TYPE(}@var{type-name}@code{)}. Finally, in the component access,
1955replace the period (@code{.}) by the percent sign (@code{%}).
1956
1957Here is an example of code using the non portable record structure syntax:
1958
1959@example
1960! Declaring a structure named ``item'' and containing three fields:
1961! an integer ID, an description string and a floating-point price.
1962STRUCTURE /item/
1963  INTEGER id
1964  CHARACTER(LEN=200) description
1965  REAL price
1966END STRUCTURE
1967
1968! Define two variables, an single record of type ``item''
1969! named ``pear'', and an array of items named ``store_catalog''
1970RECORD /item/ pear, store_catalog(100)
1971
1972! We can directly access the fields of both variables
1973pear.id = 92316
1974pear.description = "juicy D'Anjou pear"
1975pear.price = 0.15
1976store_catalog(7).id = 7831
1977store_catalog(7).description = "milk bottle"
1978store_catalog(7).price = 1.2
1979
1980! We can also manipulate the whole structure
1981store_catalog(12) = pear
1982print *, store_catalog(12)
1983@end example
1984
1985@noindent
1986This code can easily be rewritten in the Fortran 90 syntax as following:
1987
1988@example
1989! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
1990! ``TYPE name ... END TYPE''
1991TYPE item
1992  INTEGER id
1993  CHARACTER(LEN=200) description
1994  REAL price
1995END TYPE
1996
1997! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
1998TYPE(item) pear, store_catalog(100)
1999
2000! Instead of using a dot (.) to access fields of a record, the
2001! standard syntax uses a percent sign (%)
2002pear%id = 92316
2003pear%description = "juicy D'Anjou pear"
2004pear%price = 0.15
2005store_catalog(7)%id = 7831
2006store_catalog(7)%description = "milk bottle"
2007store_catalog(7)%price = 1.2
2008
2009! Assignments of a whole variable do not change
2010store_catalog(12) = pear
2011print *, store_catalog(12)
2012@end example
2013
2014@noindent
2015GNU Fortran implements STRUCTURES like derived types with the following
2016rules and exceptions:
2017
2018@itemize @bullet
2019@item Structures act like derived types with the @code{SEQUENCE} attribute.
2020Otherwise they may contain no specifiers.
2021
2022@item Structures may contain a special field with the name @code{%FILL}.
2023This will create an anonymous component which cannot be accessed but occupies
2024space just as if a component of the same type was declared in its place, useful
2025for alignment purposes.  As an example, the following structure will consist
2026of at least sixteen bytes:
2027
2028@smallexample
2029structure /padded/
2030  character(4) start
2031  character(8) %FILL
2032  character(4) end
2033end structure
2034@end smallexample
2035
2036@item Structures may share names with other symbols. For example, the following
2037is invalid for derived types, but valid for structures:
2038
2039@smallexample
2040structure /header/
2041  ! ...
2042end structure
2043record /header/ header
2044@end smallexample
2045
2046@item Structure types may be declared nested within another parent structure.
2047The syntax is:
2048@smallexample
2049structure /type-name/
2050    ...
2051    structure [/<type-name>/] <field-list>
2052...
2053@end smallexample
2054
2055The type name may be ommitted, in which case the structure type itself is
2056anonymous, and other structures of the same type cannot be instantiated. The
2057following shows some examples:
2058
2059@example
2060structure /appointment/
2061  ! nested structure definition: app_time is an array of two 'time'
2062  structure /time/ app_time (2)
2063    integer(1) hour, minute
2064  end structure
2065  character(10) memo
2066end structure
2067
2068! The 'time' structure is still usable
2069record /time/ now
2070now = time(5, 30)
2071
2072...
2073
2074structure /appointment/
2075  ! anonymous nested structure definition
2076  structure start, end
2077    integer(1) hour, minute
2078  end structure
2079  character(10) memo
2080end structure
2081@end example
2082
2083@item Structures may contain @code{UNION} blocks. For more detail see the
2084section on @ref{UNION and MAP}.
2085
2086@item Structures support old-style initialization of components, like
2087those described in @ref{Old-style variable initialization}. For array
2088initializers, an initializer may contain a repeat specification of the form
2089@code{<literal-integer> * <constant-initializer>}. The value of the integer
2090indicates the number of times to repeat the constant initializer when expanding
2091the initializer list.
2092@end itemize
2093
2094@node UNION and MAP
2095@subsection @code{UNION} and @code{MAP}
2096@cindex @code{UNION}
2097@cindex @code{MAP}
2098
2099Unions are an old vendor extension which were commonly used with the
2100non-standard @ref{STRUCTURE and RECORD} extensions. Use of @code{UNION} and
2101@code{MAP} is automatically enabled with @option{-fdec-structure}.
2102
2103A @code{UNION} declaration occurs within a structure; within the definition of
2104each union is a number of @code{MAP} blocks. Each @code{MAP} shares storage
2105with its sibling maps (in the same union), and the size of the union is the
2106size of the largest map within it, just as with unions in C. The major
2107difference is that component references do not indicate which union or map the
2108component is in (the compiler gets to figure that out).
2109
2110Here is a small example:
2111@smallexample
2112structure /myunion/
2113union
2114  map
2115    character(2) w0, w1, w2
2116  end map
2117  map
2118    character(6) long
2119  end map
2120end union
2121end structure
2122
2123record /myunion/ rec
2124! After this assignment...
2125rec.long = 'hello!'
2126
2127! The following is true:
2128! rec.w0 === 'he'
2129! rec.w1 === 'll'
2130! rec.w2 === 'o!'
2131@end smallexample
2132
2133The two maps share memory, and the size of the union is ultimately six bytes:
2134
2135@example
21360    1    2    3    4   5   6     Byte offset
2137-------------------------------
2138|    |    |    |    |    |    |
2139-------------------------------
2140
2141^    W0   ^    W1   ^    W2   ^
2142 \-------/ \-------/ \-------/
2143
2144^             LONG            ^
2145 \---------------------------/
2146@end example
2147
2148Following is an example mirroring the layout of an Intel x86_64 register:
2149
2150@example
2151structure /reg/
2152  union ! U0                ! rax
2153    map
2154      character(16) rx
2155    end map
2156    map
2157      character(8) rh         ! rah
2158      union ! U1
2159        map
2160          character(8) rl     ! ral
2161        end map
2162        map
2163          character(8) ex     ! eax
2164        end map
2165        map
2166          character(4) eh     ! eah
2167          union ! U2
2168            map
2169              character(4) el ! eal
2170            end map
2171            map
2172              character(4) x  ! ax
2173            end map
2174            map
2175              character(2) h  ! ah
2176              character(2) l  ! al
2177            end map
2178          end union
2179        end map
2180      end union
2181    end map
2182  end union
2183end structure
2184record /reg/ a
2185
2186! After this assignment...
2187a.rx     =     'AAAAAAAA.BBB.C.D'
2188
2189! The following is true:
2190a.rx === 'AAAAAAAA.BBB.C.D'
2191a.rh === 'AAAAAAAA'
2192a.rl ===         '.BBB.C.D'
2193a.ex ===         '.BBB.C.D'
2194a.eh ===         '.BBB'
2195a.el ===             '.C.D'
2196a.x  ===             '.C.D'
2197a.h  ===             '.C'
2198a.l  ===               '.D'
2199@end example
2200
2201@node Type variants for integer intrinsics
2202@subsection Type variants for integer intrinsics
2203@cindex intrinsics, integer
2204
2205Similar to the D/C prefixes to real functions to specify the input/output
2206types, GNU Fortran offers B/I/J/K prefixes to integer functions for
2207compatibility with DEC programs. The types implied by each are:
2208
2209@example
2210@code{B} - @code{INTEGER(kind=1)}
2211@code{I} - @code{INTEGER(kind=2)}
2212@code{J} - @code{INTEGER(kind=4)}
2213@code{K} - @code{INTEGER(kind=8)}
2214@end example
2215
2216GNU Fortran supports these with the flag @option{-fdec-intrinsic-ints}.
2217Intrinsics for which prefixed versions are available and in what form are noted
2218in @ref{Intrinsic Procedures}. The complete list of supported intrinsics is
2219here:
2220
2221@multitable @columnfractions .2 .2 .2 .2 .2
2222
2223@headitem Intrinsic @tab B @tab I @tab J @tab K
2224
2225@item @code{@ref{ABS}}
2226  @tab @code{BABS} @tab @code{IIABS} @tab @code{JIABS} @tab @code{KIABS}
2227@item @code{@ref{BTEST}}
2228  @tab @code{BBTEST} @tab @code{BITEST} @tab @code{BJTEST} @tab @code{BKTEST}
2229@item @code{@ref{IAND}}
2230  @tab @code{BIAND} @tab @code{IIAND} @tab @code{JIAND} @tab @code{KIAND}
2231@item @code{@ref{IBCLR}}
2232  @tab @code{BBCLR} @tab @code{IIBCLR} @tab @code{JIBCLR} @tab @code{KIBCLR}
2233@item @code{@ref{IBITS}}
2234  @tab @code{BBITS} @tab @code{IIBITS} @tab @code{JIBITS} @tab @code{KIBITS}
2235@item @code{@ref{IBSET}}
2236  @tab @code{BBSET} @tab @code{IIBSET} @tab @code{JIBSET} @tab @code{KIBSET}
2237@item @code{@ref{IEOR}}
2238  @tab @code{BIEOR} @tab @code{IIEOR} @tab @code{JIEOR} @tab @code{KIEOR}
2239@item @code{@ref{IOR}}
2240  @tab @code{BIOR} @tab @code{IIOR} @tab @code{JIOR} @tab @code{KIOR}
2241@item @code{@ref{ISHFT}}
2242  @tab @code{BSHFT} @tab @code{IISHFT} @tab @code{JISHFT} @tab @code{KISHFT}
2243@item @code{@ref{ISHFTC}}
2244  @tab @code{BSHFTC} @tab @code{IISHFTC} @tab @code{JISHFTC} @tab @code{KISHFTC}
2245@item @code{@ref{MOD}}
2246  @tab @code{BMOD} @tab @code{IMOD} @tab @code{JMOD} @tab @code{KMOD}
2247@item @code{@ref{NOT}}
2248  @tab @code{BNOT} @tab @code{INOT} @tab @code{JNOT} @tab @code{KNOT}
2249@item @code{@ref{REAL}}
2250  @tab @code{--} @tab @code{FLOATI} @tab @code{FLOATJ} @tab @code{FLOATK}
2251@end multitable
2252
2253@node AUTOMATIC and STATIC attributes
2254@subsection @code{AUTOMATIC} and @code{STATIC} attributes
2255@cindex variable attributes
2256@cindex @code{AUTOMATIC}
2257@cindex @code{STATIC}
2258
2259With @option{-fdec-static} GNU Fortran supports the DEC extended attributes
2260@code{STATIC} and @code{AUTOMATIC} to provide explicit specification of entity
2261storage.  These follow the syntax of the Fortran standard @code{SAVE} attribute.
2262
2263@code{STATIC} is exactly equivalent to @code{SAVE}, and specifies that
2264an entity should be allocated in static memory.  As an example, @code{STATIC}
2265local variables will retain their values across multiple calls to a function.
2266
2267Entities marked @code{AUTOMATIC} will be stack automatic whenever possible.
2268@code{AUTOMATIC} is the default for local variables smaller than
2269@option{-fmax-stack-var-size}, unless @option{-fno-automatic} is given.  This
2270attribute overrides @option{-fno-automatic}, @option{-fmax-stack-var-size}, and
2271blanket @code{SAVE} statements.
2272
2273
2274Examples:
2275
2276@example
2277subroutine f
2278  integer, automatic :: i  ! automatic variable
2279  integer x, y             ! static variables
2280  save
2281  ...
2282endsubroutine
2283@end example
2284@example
2285subroutine f
2286  integer a, b, c, x, y, z
2287  static :: x
2288  save y
2289  automatic z, c
2290  ! a, b, c, and z are automatic
2291  ! x and y are static
2292endsubroutine
2293@end example
2294@example
2295! Compiled with -fno-automatic
2296subroutine f
2297  integer a, b, c, d
2298  automatic :: a
2299  ! a is automatic; b, c, and d are static
2300endsubroutine
2301@end example
2302
2303@node Extended math intrinsics
2304@subsection Extended math intrinsics
2305@cindex intrinsics, math
2306@cindex intrinsics, trigonometric functions
2307
2308GNU Fortran supports an extended list of mathematical intrinsics with the
2309compile flag @option{-fdec-math} for compatability with legacy code.
2310These intrinsics are described fully in @ref{Intrinsic Procedures} where it is
2311noted that they are extensions and should be avoided whenever possible.
2312
2313Specifically, @option{-fdec-math} enables the @ref{COTAN} intrinsic, and
2314trigonometric intrinsics which accept or produce values in degrees instead of
2315radians.  Here is a summary of the new intrinsics:
2316
2317@multitable @columnfractions .5 .5
2318@headitem Radians @tab Degrees
2319@item @code{@ref{ACOS}}   @tab @code{@ref{ACOSD}}*
2320@item @code{@ref{ASIN}}   @tab @code{@ref{ASIND}}*
2321@item @code{@ref{ATAN}}   @tab @code{@ref{ATAND}}*
2322@item @code{@ref{ATAN2}}  @tab @code{@ref{ATAN2D}}*
2323@item @code{@ref{COS}}    @tab @code{@ref{COSD}}*
2324@item @code{@ref{COTAN}}* @tab @code{@ref{COTAND}}*
2325@item @code{@ref{SIN}}    @tab @code{@ref{SIND}}*
2326@item @code{@ref{TAN}}    @tab @code{@ref{TAND}}*
2327@end multitable
2328
2329* Enabled with @option{-fdec-math}.
2330
2331For advanced users, it may be important to know the implementation of these
2332functions. They are simply wrappers around the standard radian functions, which
2333have more accurate builtin versions. These functions convert their arguments
2334(or results) to degrees (or radians) by taking the value modulus 360 (or 2*pi)
2335and then multiplying it by a constant radian-to-degree (or degree-to-radian)
2336factor, as appropriate. The factor is computed at compile-time as 180/pi (or
2337pi/180).
2338
2339@node Form feed as whitespace
2340@subsection Form feed as whitespace
2341@cindex form feed whitespace
2342
2343Historically, legacy compilers allowed insertion of form feed characters ('\f',
2344ASCII 0xC) at the beginning of lines for formatted output to line printers,
2345though the Fortran standard does not mention this. GNU Fortran supports the
2346interpretation of form feed characters in source as whitespace for
2347compatibility.
2348
2349@node TYPE as an alias for PRINT
2350@subsection TYPE as an alias for PRINT
2351@cindex type alias print
2352For compatibility, GNU Fortran will interpret @code{TYPE} statements as
2353@code{PRINT} statements with the flag @option{-fdec}.  With this flag asserted,
2354the following two examples are equivalent:
2355
2356@smallexample
2357TYPE *, 'hello world'
2358@end smallexample
2359
2360@smallexample
2361PRINT *, 'hello world'
2362@end smallexample
2363
2364@node %LOC as an rvalue
2365@subsection %LOC as an rvalue
2366@cindex LOC
2367Normally @code{%LOC} is allowed only in parameter lists.  However the intrinsic
2368function @code{LOC} does the same thing, and is usable as the right-hand-side of
2369assignments. For compatibility, GNU Fortran supports the use of @code{%LOC} as
2370an alias for the builtin @code{LOC} with @option{-std=legacy}.  With this
2371feature enabled the following two examples are equivalent:
2372
2373@smallexample
2374integer :: i, l
2375l = %loc(i)
2376call sub(l)
2377@end smallexample
2378
2379@smallexample
2380integer :: i
2381call sub(%loc(i))
2382@end smallexample
2383
2384@node .XOR. operator
2385@subsection .XOR. operator
2386@cindex operators, xor
2387
2388GNU Fortran supports @code{.XOR.} as a logical operator with @code{-std=legacy}
2389for compatibility with legacy code. @code{.XOR.} is equivalent to
2390@code{.NEQV.}. That is, the output is true if and only if the inputs differ.
2391
2392@node Bitwise logical operators
2393@subsection Bitwise logical operators
2394@cindex logical, bitwise
2395
2396With @option{-fdec}, GNU Fortran relaxes the type constraints on
2397logical operators to allow integer operands, and performs the corresponding
2398bitwise operation instead.  This flag is for compatibility only, and should be
2399avoided in new code.  Consider:
2400
2401@smallexample
2402  INTEGER :: i, j
2403  i = z'33'
2404  j = z'cc'
2405  print *, i .AND. j
2406@end smallexample
2407
2408In this example, compiled with @option{-fdec}, GNU Fortran will
2409replace the @code{.AND.} operation with a call to the intrinsic
2410@code{@ref{IAND}} function, yielding the bitwise-and of @code{i} and @code{j}.
2411
2412Note that this conversion will occur if at least one operand is of integral
2413type.  As a result, a logical operand will be converted to an integer when the
2414other operand is an integer in a logical operation.  In this case,
2415@code{.TRUE.} is converted to @code{1} and @code{.FALSE.} to @code{0}.
2416
2417Here is the mapping of logical operator to bitwise intrinsic used with
2418@option{-fdec}:
2419
2420@multitable @columnfractions .25 .25 .5
2421@headitem Operator @tab Intrinsic @tab Bitwise operation
2422@item @code{.NOT.} @tab @code{@ref{NOT}} @tab complement
2423@item @code{.AND.} @tab @code{@ref{IAND}} @tab intersection
2424@item @code{.OR.} @tab @code{@ref{IOR}} @tab union
2425@item @code{.NEQV.} @tab @code{@ref{IEOR}} @tab exclusive or
2426@item @code{.EQV.} @tab @code{@ref{NOT}(@ref{IEOR})} @tab complement of exclusive or
2427@end multitable
2428
2429@node Extended I/O specifiers
2430@subsection Extended I/O specifiers
2431@cindex @code{CARRIAGECONTROL}
2432@cindex @code{READONLY}
2433@cindex @code{SHARE}
2434@cindex @code{SHARED}
2435@cindex @code{NOSHARED}
2436@cindex I/O specifiers
2437
2438GNU Fortran supports the additional legacy I/O specifiers
2439@code{CARRIAGECONTROL}, @code{READONLY}, and @code{SHARE} with the
2440compile flag @option{-fdec}, for compatibility.
2441
2442@table @code
2443@item CARRIAGECONTROL
2444The @code{CARRIAGECONTROL} specifier allows a user to control line
2445termination settings between output records for an I/O unit. The specifier has
2446no meaning for readonly files. When @code{CARRAIGECONTROL} is specified upon
2447opening a unit for formatted writing, the exact @code{CARRIAGECONTROL} setting
2448determines what characters to write between output records. The syntax is:
2449
2450@smallexample
2451OPEN(..., CARRIAGECONTROL=cc)
2452@end smallexample
2453
2454Where @emph{cc} is a character expression that evaluates to one of the
2455following values:
2456
2457@multitable @columnfractions .2 .8
2458@item @code{'LIST'} @tab One line feed between records (default)
2459@item @code{'FORTRAN'} @tab Legacy interpretation of the first character (see below)
2460@item @code{'NONE'} @tab No separator between records
2461@end multitable
2462
2463With @code{CARRIAGECONTROL='FORTRAN'}, when a record is written, the first
2464character of the input record is not written, and instead determines the output
2465record separator as follows:
2466
2467@multitable @columnfractions .3 .3 .4
2468@headitem Leading character @tab Meaning @tab Output separating character(s)
2469@item @code{'+'} @tab Overprinting @tab Carriage return only
2470@item @code{'-'} @tab New line @tab Line feed and carriage return
2471@item @code{'0'} @tab Skip line @tab Two line feeds and carriage return
2472@item @code{'1'} @tab New page @tab Form feed and carriage return
2473@item @code{'$'} @tab Prompting @tab Line feed (no carriage return)
2474@item @code{CHAR(0)} @tab Overprinting (no advance) @tab None
2475@end multitable
2476
2477@item READONLY
2478The @code{READONLY} specifier may be given upon opening a unit, and is
2479equivalent to specifying @code{ACTION='READ'}, except that the file may not be
2480deleted on close (i.e. @code{CLOSE} with @code{STATUS="DELETE"}). The syntax
2481is:
2482
2483@smallexample
2484@code{OPEN(..., READONLY)}
2485@end smallexample
2486
2487@item SHARE
2488The @code{SHARE} specifier allows system-level locking on a unit upon opening
2489it for controlled access from multiple processes/threads. The @code{SHARE}
2490specifier has several forms:
2491
2492@smallexample
2493OPEN(..., SHARE=sh)
2494OPEN(..., SHARED)
2495OPEN(..., NOSHARED)
2496@end smallexample
2497
2498Where @emph{sh} in the first form is a character expression that evaluates to
2499a value as seen in the table below. The latter two forms are aliases
2500for particular values of @emph{sh}:
2501
2502@multitable @columnfractions .3 .3 .4
2503@headitem Explicit form @tab Short form @tab Meaning
2504@item @code{SHARE='DENYRW'} @tab @code{NOSHARED} @tab Exclusive (write) lock
2505@item @code{SHARE='DENYNONE'} @tab @code{SHARED} @tab Shared (read) lock
2506@end multitable
2507
2508In general only one process may hold an exclusive (write) lock for a given file
2509at a time, whereas many processes may hold shared (read) locks for the same
2510file.
2511
2512The behavior of locking may vary with your operating system. On POSIX systems,
2513locking is implemented with @code{fcntl}. Consult your corresponding operating
2514system's manual pages for further details. Locking via @code{SHARE=} is not
2515supported on other systems.
2516
2517@end table
2518
2519@node Legacy PARAMETER statements
2520@subsection Legacy PARAMETER statements
2521@cindex PARAMETER
2522
2523For compatibility, GNU Fortran supports legacy PARAMETER statements without
2524parentheses with @option{-std=legacy}.  A warning is emitted if used with
2525@option{-std=gnu}, and an error is acknowledged with a real Fortran standard
2526flag (@option{-std=f95}, etc...).  These statements take the following form:
2527
2528@smallexample
2529implicit real (E)
2530parameter e = 2.718282
2531real c
2532parameter c = 3.0e8
2533@end smallexample
2534
2535@node Default exponents
2536@subsection Default exponents
2537@cindex exponent
2538
2539For compatibility, GNU Fortran supports a default exponent of zero in real
2540constants with @option{-fdec}.  For example, @code{9e} would be
2541interpreted as @code{9e0}, rather than an error.
2542
2543
2544@node Extensions not implemented in GNU Fortran
2545@section Extensions not implemented in GNU Fortran
2546@cindex extensions, not implemented
2547
2548The long history of the Fortran language, its wide use and broad
2549userbase, the large number of different compiler vendors and the lack of
2550some features crucial to users in the first standards have lead to the
2551existence of a number of important extensions to the language.  While
2552some of the most useful or popular extensions are supported by the GNU
2553Fortran compiler, not all existing extensions are supported.  This section
2554aims at listing these extensions and offering advice on how best make
2555code that uses them running with the GNU Fortran compiler.
2556
2557@c More can be found here:
2558@c   -- https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Missing-Features.html
2559@c   -- the list of Fortran and libgfortran bugs closed as WONTFIX:
2560@c      http://tinyurl.com/2u4h5y
2561
2562@menu
2563* ENCODE and DECODE statements::
2564* Variable FORMAT expressions::
2565@c * TYPE and ACCEPT I/O Statements::
2566@c * DEFAULTFILE, DISPOSE and RECORDTYPE I/O specifiers::
2567@c * Omitted arguments in procedure call::
2568* Alternate complex function syntax::
2569* Volatile COMMON blocks::
2570* OPEN( ... NAME=)::
2571* Q edit descriptor::
2572@end menu
2573
2574@node ENCODE and DECODE statements
2575@subsection @code{ENCODE} and @code{DECODE} statements
2576@cindex @code{ENCODE}
2577@cindex @code{DECODE}
2578
2579GNU Fortran does not support the @code{ENCODE} and @code{DECODE}
2580statements.  These statements are best replaced by @code{READ} and
2581@code{WRITE} statements involving internal files (@code{CHARACTER}
2582variables and arrays), which have been part of the Fortran standard since
2583Fortran 77.  For example, replace a code fragment like
2584
2585@smallexample
2586      INTEGER*1 LINE(80)
2587      REAL A, B, C
2588c     ... Code that sets LINE
2589      DECODE (80, 9000, LINE) A, B, C
2590 9000 FORMAT (1X, 3(F10.5))
2591@end smallexample
2592
2593@noindent
2594with the following:
2595
2596@smallexample
2597      CHARACTER(LEN=80) LINE
2598      REAL A, B, C
2599c     ... Code that sets LINE
2600      READ (UNIT=LINE, FMT=9000) A, B, C
2601 9000 FORMAT (1X, 3(F10.5))
2602@end smallexample
2603
2604Similarly, replace a code fragment like
2605
2606@smallexample
2607      INTEGER*1 LINE(80)
2608      REAL A, B, C
2609c     ... Code that sets A, B and C
2610      ENCODE (80, 9000, LINE) A, B, C
2611 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
2612@end smallexample
2613
2614@noindent
2615with the following:
2616
2617@smallexample
2618      CHARACTER(LEN=80) LINE
2619      REAL A, B, C
2620c     ... Code that sets A, B and C
2621      WRITE (UNIT=LINE, FMT=9000) A, B, C
2622 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
2623@end smallexample
2624
2625
2626@node Variable FORMAT expressions
2627@subsection Variable @code{FORMAT} expressions
2628@cindex @code{FORMAT}
2629
2630A variable @code{FORMAT} expression is format statement which includes
2631angle brackets enclosing a Fortran expression: @code{FORMAT(I<N>)}.  GNU
2632Fortran does not support this legacy extension.  The effect of variable
2633format expressions can be reproduced by using the more powerful (and
2634standard) combination of internal output and string formats.  For example,
2635replace a code fragment like this:
2636
2637@smallexample
2638      WRITE(6,20) INT1
2639 20   FORMAT(I<N+1>)
2640@end smallexample
2641
2642@noindent
2643with the following:
2644
2645@smallexample
2646c     Variable declaration
2647      CHARACTER(LEN=20) FMT
2648c
2649c     Other code here...
2650c
2651      WRITE(FMT,'("(I", I0, ")")') N+1
2652      WRITE(6,FMT) INT1
2653@end smallexample
2654
2655@noindent
2656or with:
2657
2658@smallexample
2659c     Variable declaration
2660      CHARACTER(LEN=20) FMT
2661c
2662c     Other code here...
2663c
2664      WRITE(FMT,*) N+1
2665      WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
2666@end smallexample
2667
2668
2669@node Alternate complex function syntax
2670@subsection Alternate complex function syntax
2671@cindex Complex function
2672
2673Some Fortran compilers, including @command{g77}, let the user declare
2674complex functions with the syntax @code{COMPLEX FUNCTION name*16()}, as
2675well as @code{COMPLEX*16 FUNCTION name()}.  Both are non-standard, legacy
2676extensions.  @command{gfortran} accepts the latter form, which is more
2677common, but not the former.
2678
2679
2680@node Volatile COMMON blocks
2681@subsection Volatile @code{COMMON} blocks
2682@cindex @code{VOLATILE}
2683@cindex @code{COMMON}
2684
2685Some Fortran compilers, including @command{g77}, let the user declare
2686@code{COMMON} with the @code{VOLATILE} attribute. This is
2687invalid standard Fortran syntax and is not supported by
2688@command{gfortran}.  Note that @command{gfortran} accepts
2689@code{VOLATILE} variables in @code{COMMON} blocks since revision 4.3.
2690
2691
2692@node OPEN( ... NAME=)
2693@subsection @code{OPEN( ... NAME=)}
2694@cindex @code{NAME}
2695
2696Some Fortran compilers, including @command{g77}, let the user declare
2697@code{OPEN( ... NAME=)}. This is
2698invalid standard Fortran syntax and is not supported by
2699@command{gfortran}.  @code{OPEN( ... NAME=)} should be replaced
2700with @code{OPEN( ... FILE=)}.
2701
2702@node Q edit descriptor
2703@subsection @code{Q} edit descriptor
2704@cindex @code{Q} edit descriptor
2705
2706Some Fortran compilers provide the @code{Q} edit descriptor, which
2707transfers the number of characters left within an input record into an
2708integer variable.
2709
2710A direct replacement of the @code{Q} edit descriptor is not available
2711in @command{gfortran}.  How to replicate its functionality using
2712standard-conforming code depends on what the intent of the original
2713code is.
2714
2715Options to replace @code{Q} may be to read the whole line into a
2716character variable and then counting the number of non-blank
2717characters left using @code{LEN_TRIM}.  Another method may be to use
2718formatted stream, read the data up to the position where the @code{Q}
2719descriptor occurred, use @code{INQUIRE} to get the file position,
2720count the characters up to the next @code{NEW_LINE} and then start
2721reading from the position marked previously.
2722
2723
2724@c ---------------------------------------------------------------------
2725@c ---------------------------------------------------------------------
2726@c Mixed-Language Programming
2727@c ---------------------------------------------------------------------
2728
2729@node Mixed-Language Programming
2730@chapter Mixed-Language Programming
2731@cindex Interoperability
2732@cindex Mixed-language programming
2733
2734@menu
2735* Interoperability with C::
2736* GNU Fortran Compiler Directives::
2737* Non-Fortran Main Program::
2738* Naming and argument-passing conventions::
2739@end menu
2740
2741This chapter is about mixed-language interoperability, but also
2742applies if you link Fortran code compiled by different compilers.  In
2743most cases, use of the C Binding features of the Fortran 2003 and
2744later standards is sufficient.
2745
2746For example, it is possible to mix Fortran code with C++ code as well
2747as C, if you declare the interface functions as @code{extern "C"} on
2748the C++ side and @code{BIND(C)} on the Fortran side, and follow the
2749rules for interoperability with C.  Note that you cannot manipulate
2750C++ class objects in Fortran or vice versa except as opaque pointers.
2751
2752You can use the @command{gfortran} command to link both Fortran and
2753non-Fortran code into the same program, or you can use @command{gcc}
2754or @command{g++} if you also add an explicit @option{-lgfortran} option
2755to link with the Fortran library.  If your main program is written in
2756C or some other language instead of Fortran, see
2757@ref{Non-Fortran Main Program}, below.
2758
2759@node Interoperability with C
2760@section Interoperability with C
2761@cindex interoperability with C
2762@cindex C interoperability
2763
2764@menu
2765* Intrinsic Types::
2766* Derived Types and struct::
2767* Interoperable Global Variables::
2768* Interoperable Subroutines and Functions::
2769* Working with C Pointers::
2770* Further Interoperability of Fortran with C::
2771@end menu
2772
2773Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a
2774standardized way to generate procedure and derived-type
2775declarations and global variables that are interoperable with C
2776(ISO/IEC 9899:1999).  The @code{BIND(C)} attribute has been added
2777to inform the compiler that a symbol shall be interoperable with C;
2778also, some constraints are added.  Note, however, that not
2779all C features have a Fortran equivalent or vice versa.  For instance,
2780neither C's unsigned integers nor C's functions with variable number
2781of arguments have an equivalent in Fortran.
2782
2783Note that array dimensions are reversely ordered in C and that arrays in
2784C always start with index 0 while in Fortran they start by default with
27851.  Thus, an array declaration @code{A(n,m)} in Fortran matches
2786@code{A[m][n]} in C and accessing the element @code{A(i,j)} matches
2787@code{A[j-1][i-1]}.  The element following @code{A(i,j)} (C: @code{A[j-1][i-1]};
2788assuming @math{i < n}) in memory is @code{A(i+1,j)} (C: @code{A[j-1][i]}).
2789
2790@node Intrinsic Types
2791@subsection Intrinsic Types
2792@cindex C intrinsic type interoperability
2793@cindex intrinsic type interoperability with C
2794@cindex interoperability, intrinsic type
2795
2796In order to ensure that exactly the same variable type and kind is used
2797in C and Fortran, you should use the named constants for kind parameters
2798that are defined in the @code{ISO_C_BINDING} intrinsic module.
2799That module contains named constants of character type representing
2800the escaped special characters in C, such as newline.
2801For a list of the constants, see @ref{ISO_C_BINDING}.
2802
2803For logical types, please note that the Fortran standard only guarantees
2804interoperability between C99's @code{_Bool} and Fortran's @code{C_Bool}-kind
2805logicals and C99 defines that @code{true} has the value 1 and @code{false}
2806the value 0.  Using any other integer value with GNU Fortran's @code{LOGICAL}
2807(with any kind parameter) gives an undefined result.  (Passing other integer
2808values than 0 and 1 to GCC's @code{_Bool} is also undefined, unless the
2809integer is explicitly or implicitly casted to @code{_Bool}.)
2810
2811@node Derived Types and struct
2812@subsection Derived Types and struct
2813@cindex C derived type and struct interoperability
2814@cindex derived type interoperability with C
2815@cindex interoperability, derived type and struct
2816
2817For compatibility of derived types with @code{struct}, use
2818the @code{BIND(C)} attribute in the type declaration.  For instance, the
2819following type declaration
2820
2821@smallexample
2822 USE ISO_C_BINDING
2823 TYPE, BIND(C) :: myType
2824   INTEGER(C_INT) :: i1, i2
2825   INTEGER(C_SIGNED_CHAR) :: i3
2826   REAL(C_DOUBLE) :: d1
2827   COMPLEX(C_FLOAT_COMPLEX) :: c1
2828   CHARACTER(KIND=C_CHAR) :: str(5)
2829 END TYPE
2830@end smallexample
2831
2832@noindent
2833matches the following @code{struct} declaration in C
2834
2835@smallexample
2836 struct @{
2837   int i1, i2;
2838   /* Note: "char" might be signed or unsigned.  */
2839   signed char i3;
2840   double d1;
2841   float _Complex c1;
2842   char str[5];
2843 @} myType;
2844@end smallexample
2845
2846Derived types with the C binding attribute shall not have the @code{sequence}
2847attribute, type parameters, the @code{extends} attribute, nor type-bound
2848procedures.  Every component must be of interoperable type and kind and may not
2849have the @code{pointer} or @code{allocatable} attribute.  The names of the
2850components are irrelevant for interoperability.
2851
2852As there exist no direct Fortran equivalents, neither unions nor structs
2853with bit field or variable-length array members are interoperable.
2854
2855@node Interoperable Global Variables
2856@subsection Interoperable Global Variables
2857@cindex C variable interoperability
2858@cindex variable interoperability with C
2859@cindex interoperability, variable
2860
2861Variables can be made accessible from C using the C binding attribute,
2862optionally together with specifying a binding name.  Those variables
2863have to be declared in the declaration part of a @code{MODULE},
2864be of interoperable type, and have neither the @code{pointer} nor
2865the @code{allocatable} attribute.
2866
2867@smallexample
2868  MODULE m
2869    USE myType_module
2870    USE ISO_C_BINDING
2871    integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
2872    type(myType), bind(C) :: tp
2873  END MODULE
2874@end smallexample
2875
2876Here, @code{_MyProject_flags} is the case-sensitive name of the variable
2877as seen from C programs while @code{global_flag} is the case-insensitive
2878name as seen from Fortran.  If no binding name is specified, as for
2879@var{tp}, the C binding name is the (lowercase) Fortran binding name.
2880If a binding name is specified, only a single variable may be after the
2881double colon.  Note of warning: You cannot use a global variable to
2882access @var{errno} of the C library as the C standard allows it to be
2883a macro.  Use the @code{IERRNO} intrinsic (GNU extension) instead.
2884
2885@node Interoperable Subroutines and Functions
2886@subsection Interoperable Subroutines and Functions
2887@cindex C procedure interoperability
2888@cindex procedure interoperability with C
2889@cindex function interoperability with C
2890@cindex subroutine interoperability with C
2891@cindex interoperability, subroutine and function
2892
2893Subroutines and functions have to have the @code{BIND(C)} attribute to
2894be compatible with C.  The dummy argument declaration is relatively
2895straightforward.  However, one needs to be careful because C uses
2896call-by-value by default while Fortran behaves usually similar to
2897call-by-reference.  Furthermore, strings and pointers are handled
2898differently.
2899
2900To pass a variable by value, use the @code{VALUE} attribute.
2901Thus, the following C prototype
2902
2903@smallexample
2904@code{int func(int i, int *j)}
2905@end smallexample
2906
2907@noindent
2908matches the Fortran declaration
2909
2910@smallexample
2911  integer(c_int) function func(i,j)
2912    use iso_c_binding, only: c_int
2913    integer(c_int), VALUE :: i
2914    integer(c_int) :: j
2915@end smallexample
2916
2917Note that pointer arguments also frequently need the @code{VALUE} attribute,
2918see @ref{Working with C Pointers}.
2919
2920Strings are handled quite differently in C and Fortran.  In C a string
2921is a @code{NUL}-terminated array of characters while in Fortran each string
2922has a length associated with it and is thus not terminated (by e.g.
2923@code{NUL}).  For example, if you want to use the following C function,
2924
2925@smallexample
2926  #include <stdio.h>
2927  void print_C(char *string) /* equivalent: char string[]  */
2928  @{
2929     printf("%s\n", string);
2930  @}
2931@end smallexample
2932
2933@noindent
2934to print ``Hello World'' from Fortran, you can call it using
2935
2936@smallexample
2937  use iso_c_binding, only: C_CHAR, C_NULL_CHAR
2938  interface
2939    subroutine print_c(string) bind(C, name="print_C")
2940      use iso_c_binding, only: c_char
2941      character(kind=c_char) :: string(*)
2942    end subroutine print_c
2943  end interface
2944  call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
2945@end smallexample
2946
2947As the example shows, you need to ensure that the
2948string is @code{NUL} terminated.  Additionally, the dummy argument
2949@var{string} of @code{print_C} is a length-one assumed-size
2950array; using @code{character(len=*)} is not allowed.  The example
2951above uses @code{c_char_"Hello World"} to ensure the string
2952literal has the right type; typically the default character
2953kind and @code{c_char} are the same and thus @code{"Hello World"}
2954is equivalent.  However, the standard does not guarantee this.
2955
2956The use of strings is now further illustrated using the C library
2957function @code{strncpy}, whose prototype is
2958
2959@smallexample
2960  char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
2961@end smallexample
2962
2963@noindent
2964The function @code{strncpy} copies at most @var{n} characters from
2965string @var{s2} to @var{s1} and returns @var{s1}.  In the following
2966example, we ignore the return value:
2967
2968@smallexample
2969  use iso_c_binding
2970  implicit none
2971  character(len=30) :: str,str2
2972  interface
2973    ! Ignore the return value of strncpy -> subroutine
2974    ! "restrict" is always assumed if we do not pass a pointer
2975    subroutine strncpy(dest, src, n) bind(C)
2976      import
2977      character(kind=c_char),  intent(out) :: dest(*)
2978      character(kind=c_char),  intent(in)  :: src(*)
2979      integer(c_size_t), value, intent(in) :: n
2980    end subroutine strncpy
2981  end interface
2982  str = repeat('X',30) ! Initialize whole string with 'X'
2983  call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
2984               len(c_char_"Hello World",kind=c_size_t))
2985  print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
2986  end
2987@end smallexample
2988
2989The intrinsic procedures are described in @ref{Intrinsic Procedures}.
2990
2991@node Working with C Pointers
2992@subsection Working with C Pointers
2993@cindex C pointers
2994@cindex pointers, C
2995
2996C pointers are represented in Fortran via the special opaque derived
2997type @code{type(c_ptr)} (with private components).  C pointers are distinct
2998from Fortran objects with the @code{POINTER} attribute.  Thus one needs to
2999use intrinsic conversion procedures to convert from or to C pointers.
3000For some applications, using an assumed type (@code{TYPE(*)}) can be
3001an alternative to a C pointer, and you can also use library routines
3002to access Fortran pointers from C.  See @ref{Further Interoperability
3003of Fortran with C}.
3004
3005Here is an example of using C pointers in Fortran:
3006
3007@smallexample
3008  use iso_c_binding
3009  type(c_ptr) :: cptr1, cptr2
3010  integer, target :: array(7), scalar
3011  integer, pointer :: pa(:), ps
3012  cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
3013                          ! array is contiguous if required by the C
3014                          ! procedure
3015  cptr2 = c_loc(scalar)
3016  call c_f_pointer(cptr2, ps)
3017  call c_f_pointer(cptr2, pa, shape=[7])
3018@end smallexample
3019
3020When converting C to Fortran arrays, the one-dimensional @code{SHAPE} argument
3021has to be passed.
3022
3023If a pointer is a dummy argument of an interoperable procedure, it usually
3024has to be declared using the @code{VALUE} attribute.  @code{void*}
3025matches @code{TYPE(C_PTR), VALUE}, while @code{TYPE(C_PTR)} alone
3026matches @code{void**}.
3027
3028Procedure pointers are handled analogously to pointers; the C type is
3029@code{TYPE(C_FUNPTR)} and the intrinsic conversion procedures are
3030@code{C_F_PROCPOINTER} and @code{C_FUNLOC}.
3031
3032Let us consider two examples of actually passing a procedure pointer from
3033C to Fortran and vice versa.  Note that these examples are also very
3034similar to passing ordinary pointers between both languages. First,
3035consider this code in C:
3036
3037@smallexample
3038/* Procedure implemented in Fortran.  */
3039void get_values (void (*)(double));
3040
3041/* Call-back routine we want called from Fortran.  */
3042void
3043print_it (double x)
3044@{
3045  printf ("Number is %f.\n", x);
3046@}
3047
3048/* Call Fortran routine and pass call-back to it.  */
3049void
3050foobar ()
3051@{
3052  get_values (&print_it);
3053@}
3054@end smallexample
3055
3056A matching implementation for @code{get_values} in Fortran, that correctly
3057receives the procedure pointer from C and is able to call it, is given
3058in the following @code{MODULE}:
3059
3060@smallexample
3061MODULE m
3062  IMPLICIT NONE
3063
3064  ! Define interface of call-back routine.
3065  ABSTRACT INTERFACE
3066    SUBROUTINE callback (x)
3067      USE, INTRINSIC :: ISO_C_BINDING
3068      REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
3069    END SUBROUTINE callback
3070  END INTERFACE
3071
3072CONTAINS
3073
3074  ! Define C-bound procedure.
3075  SUBROUTINE get_values (cproc) BIND(C)
3076    USE, INTRINSIC :: ISO_C_BINDING
3077    TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
3078
3079    PROCEDURE(callback), POINTER :: proc
3080
3081    ! Convert C to Fortran procedure pointer.
3082    CALL C_F_PROCPOINTER (cproc, proc)
3083
3084    ! Call it.
3085    CALL proc (1.0_C_DOUBLE)
3086    CALL proc (-42.0_C_DOUBLE)
3087    CALL proc (18.12_C_DOUBLE)
3088  END SUBROUTINE get_values
3089
3090END MODULE m
3091@end smallexample
3092
3093Next, we want to call a C routine that expects a procedure pointer argument
3094and pass it a Fortran procedure (which clearly must be interoperable!).
3095Again, the C function may be:
3096
3097@smallexample
3098int
3099call_it (int (*func)(int), int arg)
3100@{
3101  return func (arg);
3102@}
3103@end smallexample
3104
3105It can be used as in the following Fortran code:
3106
3107@smallexample
3108MODULE m
3109  USE, INTRINSIC :: ISO_C_BINDING
3110  IMPLICIT NONE
3111
3112  ! Define interface of C function.
3113  INTERFACE
3114    INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
3115      USE, INTRINSIC :: ISO_C_BINDING
3116      TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
3117      INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
3118    END FUNCTION call_it
3119  END INTERFACE
3120
3121CONTAINS
3122
3123  ! Define procedure passed to C function.
3124  ! It must be interoperable!
3125  INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
3126    INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
3127    double_it = arg + arg
3128  END FUNCTION double_it
3129
3130  ! Call C function.
3131  SUBROUTINE foobar ()
3132    TYPE(C_FUNPTR) :: cproc
3133    INTEGER(KIND=C_INT) :: i
3134
3135    ! Get C procedure pointer.
3136    cproc = C_FUNLOC (double_it)
3137
3138    ! Use it.
3139    DO i = 1_C_INT, 10_C_INT
3140      PRINT *, call_it (cproc, i)
3141    END DO
3142  END SUBROUTINE foobar
3143
3144END MODULE m
3145@end smallexample
3146
3147@node Further Interoperability of Fortran with C
3148@subsection Further Interoperability of Fortran with C
3149@cindex Further Interoperability of Fortran with C
3150@cindex TS 29113
3151@cindex array descriptor
3152@cindex dope vector
3153@cindex assumed-type
3154@cindex assumed-rank
3155
3156GNU Fortran implements the Technical Specification ISO/IEC TS
315729113:2012, which extends the interoperability support of Fortran 2003
3158and Fortran 2008 and is now part of the 2018 Fortran standard.
3159Besides removing some restrictions and constraints, the Technical
3160Specification adds assumed-type (@code{TYPE(*)}) and assumed-rank
3161(@code{DIMENSION(..)}) variables and allows for interoperability of
3162assumed-shape, assumed-rank, and deferred-shape arrays, as well as
3163allocatables and pointers.  Objects of these types are passed to
3164@code{BIND(C)} functions as descriptors with a standard interface,
3165declared in the header file @code{<ISO_Fortran_binding.h>}.
3166
3167Note: Currently, GNU Fortran does not use internally the array descriptor
3168(dope vector) as specified in the Technical Specification, but uses
3169an array descriptor with different fields in functions without the
3170@code{BIND(C)} attribute.  Arguments to functions marked @code{BIND(C)}
3171are converted to the specified form.  If you need to access GNU Fortran's
3172internal array descriptor, you can use the Chasm Language Interoperability
3173Tools, @url{http://chasm-interop.sourceforge.net/}.
3174
3175@node GNU Fortran Compiler Directives
3176@section GNU Fortran Compiler Directives
3177
3178@menu
3179* ATTRIBUTES directive::
3180* UNROLL directive::
3181* BUILTIN directive::
3182* IVDEP directive::
3183* VECTOR directive::
3184* NOVECTOR directive::
3185@end menu
3186
3187@node ATTRIBUTES directive
3188@subsection ATTRIBUTES directive
3189
3190The Fortran standard describes how a conforming program shall
3191behave; however, the exact implementation is not standardized.  In order
3192to allow the user to choose specific implementation details, compiler
3193directives can be used to set attributes of variables and procedures
3194which are not part of the standard.  Whether a given attribute is
3195supported and its exact effects depend on both the operating system and
3196on the processor; see
3197@ref{Top,,C Extensions,gcc,Using the GNU Compiler Collection (GCC)}
3198for details.
3199
3200For procedures and procedure pointers, the following attributes can
3201be used to change the calling convention:
3202
3203@itemize
3204@item @code{CDECL} -- standard C calling convention
3205@item @code{STDCALL} -- convention where the called procedure pops the stack
3206@item @code{FASTCALL} -- part of the arguments are passed via registers
3207instead using the stack
3208@end itemize
3209
3210Besides changing the calling convention, the attributes also influence
3211the decoration of the symbol name, e.g., by a leading underscore or by
3212a trailing at-sign followed by the number of bytes on the stack.  When
3213assigning a procedure to a procedure pointer, both should use the same
3214calling convention.
3215
3216On some systems, procedures and global variables (module variables and
3217@code{COMMON} blocks) need special handling to be accessible when they
3218are in a shared library.  The following attributes are available:
3219
3220@itemize
3221@item @code{DLLEXPORT} -- provide a global pointer to a pointer in the DLL
3222@item @code{DLLIMPORT} -- reference the function or variable using a
3223global pointer
3224@end itemize
3225
3226For dummy arguments, the @code{NO_ARG_CHECK} attribute can be used; in
3227other compilers, it is also known as @code{IGNORE_TKR}.  For dummy arguments
3228with this attribute actual arguments of any type and kind (similar to
3229@code{TYPE(*)}), scalars and arrays of any rank (no equivalent
3230in Fortran standard) are accepted.  As with @code{TYPE(*)}, the argument
3231is unlimited polymorphic and no type information is available.
3232Additionally, the argument may only be passed to dummy arguments
3233with the @code{NO_ARG_CHECK} attribute and as argument to the
3234@code{PRESENT} intrinsic function and to @code{C_LOC} of the
3235@code{ISO_C_BINDING} module.
3236
3237Variables with @code{NO_ARG_CHECK} attribute shall be of assumed-type
3238(@code{TYPE(*)}; recommended) or of type @code{INTEGER}, @code{LOGICAL},
3239@code{REAL} or @code{COMPLEX}. They shall not have the @code{ALLOCATE},
3240@code{CODIMENSION}, @code{INTENT(OUT)}, @code{POINTER} or @code{VALUE}
3241attribute; furthermore, they shall be either scalar or of assumed-size
3242(@code{dimension(*)}). As @code{TYPE(*)}, the @code{NO_ARG_CHECK} attribute
3243requires an explicit interface.
3244
3245@itemize
3246@item @code{NO_ARG_CHECK} -- disable the type, kind and rank checking
3247@item @code{DEPRECATED} -- print a warning when using a such-tagged
3248deprecated procedure, variable or parameter; the warning can be suppressed
3249with @option{-Wno-deprecated-declarations}.
3250@end itemize
3251
3252
3253The attributes are specified using the syntax
3254
3255@code{!GCC$ ATTRIBUTES} @var{attribute-list} @code{::} @var{variable-list}
3256
3257where in free-form source code only whitespace is allowed before @code{!GCC$}
3258and in fixed-form source code @code{!GCC$}, @code{cGCC$} or @code{*GCC$} shall
3259start in the first column.
3260
3261For procedures, the compiler directives shall be placed into the body
3262of the procedure; for variables and procedure pointers, they shall be in
3263the same declaration part as the variable or procedure pointer.
3264
3265
3266@node UNROLL directive
3267@subsection UNROLL directive
3268
3269The syntax of the directive is
3270
3271@code{!GCC$ unroll N}
3272
3273You can use this directive to control how many times a loop should be unrolled.
3274It must be placed immediately before a @code{DO} loop and applies only to the
3275loop that follows.  N is an integer constant specifying the unrolling factor.
3276The values of 0 and 1 block any unrolling of the loop.
3277
3278
3279@node BUILTIN directive
3280@subsection BUILTIN directive
3281
3282The syntax of the directive is
3283
3284@code{!GCC$ BUILTIN (B) attributes simd FLAGS IF('target')}
3285
3286You can use this directive to define which middle-end built-ins provide vector
3287implementations.  @code{B} is name of the middle-end built-in.  @code{FLAGS}
3288are optional and must be either "(inbranch)" or "(notinbranch)".
3289@code{IF} statement is optional and is used to filter multilib ABIs
3290for the built-in that should be vectorized.  Example usage:
3291
3292@smallexample
3293!GCC$ builtin (sinf) attributes simd (notinbranch) if('x86_64')
3294@end smallexample
3295
3296The purpose of the directive is to provide an API among the GCC compiler and
3297the GNU C Library which would define vector implementations of math routines.
3298
3299
3300@node IVDEP directive
3301@subsection IVDEP directive
3302
3303The syntax of the directive is
3304
3305@code{!GCC$ ivdep}
3306
3307This directive tells the compiler to ignore vector dependencies in the
3308following loop.  It must be placed immediately before a @code{DO} loop
3309and applies only to the loop that follows.
3310
3311Sometimes the compiler may not have sufficient information to decide
3312whether a particular loop is vectorizable due to potential
3313dependencies between iterations.  The purpose of the directive is to
3314tell the compiler that vectorization is safe.
3315
3316This directive is intended for annotation of existing code.  For new
3317code it is recommended to consider OpenMP SIMD directives as potential
3318alternative.
3319
3320
3321@node VECTOR directive
3322@subsection VECTOR directive
3323
3324The syntax of the directive is
3325
3326@code{!GCC$ vector}
3327
3328This directive tells the compiler to vectorize the following loop.  It
3329must be placed immediately before a @code{DO} loop and applies only to
3330the loop that follows.
3331
3332
3333@node NOVECTOR directive
3334@subsection NOVECTOR directive
3335
3336The syntax of the directive is
3337
3338@code{!GCC$ novector}
3339
3340This directive tells the compiler to not vectorize the following loop.
3341It must be placed immediately before a @code{DO} loop and applies only
3342to the loop that follows.
3343
3344
3345@node Non-Fortran Main Program
3346@section Non-Fortran Main Program
3347
3348@menu
3349* _gfortran_set_args:: Save command-line arguments
3350* _gfortran_set_options:: Set library option flags
3351* _gfortran_set_convert:: Set endian conversion
3352* _gfortran_set_record_marker:: Set length of record markers
3353* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
3354* _gfortran_set_max_subrecord_length:: Set subrecord length
3355@end menu
3356
3357Even if you are doing mixed-language programming, it is very
3358likely that you do not need to know or use the information in this
3359section.  Since it is about the internal structure of GNU Fortran,
3360it may also change in GCC minor releases.
3361
3362When you compile a @code{PROGRAM} with GNU Fortran, a function
3363with the name @code{main} (in the symbol table of the object file)
3364is generated, which initializes the libgfortran library and then
3365calls the actual program which uses the name @code{MAIN__}, for
3366historic reasons.  If you link GNU Fortran compiled procedures
3367to, e.g., a C or C++ program or to a Fortran program compiled by
3368a different compiler, the libgfortran library is not initialized
3369and thus a few intrinsic procedures do not work properly, e.g.
3370those for obtaining the command-line arguments.
3371
3372Therefore, if your @code{PROGRAM} is not compiled with
3373GNU Fortran and the GNU Fortran compiled procedures require
3374intrinsics relying on the library initialization, you need to
3375initialize the library yourself.  Using the default options,
3376gfortran calls @code{_gfortran_set_args} and
3377@code{_gfortran_set_options}.  The initialization of the former
3378is needed if the called procedures access the command line
3379(and for backtracing); the latter sets some flags based on the
3380standard chosen or to enable backtracing.  In typical programs,
3381it is not necessary to call any initialization function.
3382
3383If your @code{PROGRAM} is compiled with GNU Fortran, you shall
3384not call any of the following functions.  The libgfortran
3385initialization functions are shown in C syntax but using C
3386bindings they are also accessible from Fortran.
3387
3388
3389@node _gfortran_set_args
3390@subsection @code{_gfortran_set_args} --- Save command-line arguments
3391@fnindex _gfortran_set_args
3392@cindex libgfortran initialization, set_args
3393
3394@table @asis
3395@item @emph{Description}:
3396@code{_gfortran_set_args} saves the command-line arguments; this
3397initialization is required if any of the command-line intrinsics
3398is called.  Additionally, it shall be called if backtracing is
3399enabled (see @code{_gfortran_set_options}).
3400
3401@item @emph{Syntax}:
3402@code{void _gfortran_set_args (int argc, char *argv[])}
3403
3404@item @emph{Arguments}:
3405@multitable @columnfractions .15 .70
3406@item @var{argc} @tab number of command line argument strings
3407@item @var{argv} @tab the command-line argument strings; argv[0]
3408is the pathname of the executable itself.
3409@end multitable
3410
3411@item @emph{Example}:
3412@smallexample
3413int main (int argc, char *argv[])
3414@{
3415  /* Initialize libgfortran.  */
3416  _gfortran_set_args (argc, argv);
3417  return 0;
3418@}
3419@end smallexample
3420@end table
3421
3422
3423@node _gfortran_set_options
3424@subsection @code{_gfortran_set_options} --- Set library option flags
3425@fnindex _gfortran_set_options
3426@cindex libgfortran initialization, set_options
3427
3428@table @asis
3429@item @emph{Description}:
3430@code{_gfortran_set_options} sets several flags related to the Fortran
3431standard to be used, whether backtracing should be enabled
3432and whether range checks should be performed.  The syntax allows for
3433upward compatibility since the number of passed flags is specified; for
3434non-passed flags, the default value is used.  See also
3435@pxref{Code Gen Options}.  Please note that not all flags are actually
3436used.
3437
3438@item @emph{Syntax}:
3439@code{void _gfortran_set_options (int num, int options[])}
3440
3441@item @emph{Arguments}:
3442@multitable @columnfractions .15 .70
3443@item @var{num} @tab number of options passed
3444@item @var{argv} @tab The list of flag values
3445@end multitable
3446
3447@item @emph{option flag list}:
3448@multitable @columnfractions .15 .70
3449@item @var{option}[0] @tab Allowed standard; can give run-time errors
3450if e.g. an input-output edit descriptor is invalid in a given
3451standard.  Possible values are (bitwise or-ed) @code{GFC_STD_F77} (1),
3452@code{GFC_STD_F95_OBS} (2), @code{GFC_STD_F95_DEL} (4),
3453@code{GFC_STD_F95} (8), @code{GFC_STD_F2003} (16), @code{GFC_STD_GNU}
3454(32), @code{GFC_STD_LEGACY} (64), @code{GFC_STD_F2008} (128),
3455@code{GFC_STD_F2008_OBS} (256), @code{GFC_STD_F2008_TS} (512),
3456@code{GFC_STD_F2018} (1024), @code{GFC_STD_F2018_OBS} (2048), and
3457@code{GFC_STD=F2018_DEL} (4096). Default: @code{GFC_STD_F95_OBS |
3458GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003 | GFC_STD_F2008 |
3459GFC_STD_F2008_TS | GFC_STD_F2008_OBS | GFC_STD_F77 | GFC_STD_F2018 |
3460GFC_STD_F2018_OBS | GFC_STD_F2018_DEL | GFC_STD_GNU | GFC_STD_LEGACY}.
3461@item @var{option}[1] @tab Standard-warning flag; prints a warning to
3462standard error.  Default: @code{GFC_STD_F95_DEL | GFC_STD_LEGACY}.
3463@item @var{option}[2] @tab If non zero, enable pedantic checking.
3464Default: off.
3465@item @var{option}[3] @tab Unused.
3466@item @var{option}[4] @tab If non zero, enable backtracing on run-time
3467errors.  Default: off. (Default in the compiler: on.)
3468Note: Installs a signal handler and requires command-line
3469initialization using @code{_gfortran_set_args}.
3470@item @var{option}[5] @tab If non zero, supports signed zeros.
3471Default: enabled.
3472@item @var{option}[6] @tab Enables run-time checking.  Possible values
3473are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), GFC_RTCHECK_ARRAY_TEMPS (2),
3474GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (8), GFC_RTCHECK_POINTER (16),
3475GFC_RTCHECK_MEM (32), GFC_RTCHECK_BITS (64).
3476Default: disabled.
3477@item @var{option}[7] @tab Unused.
3478@item @var{option}[8] @tab Show a warning when invoking @code{STOP} and
3479@code{ERROR STOP} if a floating-point exception occurred. Possible values
3480are (bitwise or-ed) @code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
3481@code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
3482@code{GFC_FPE_UNDERFLOW} (16), @code{GFC_FPE_INEXACT} (32). Default: None (0).
3483(Default in the compiler: @code{GFC_FPE_INVALID | GFC_FPE_DENORMAL |
3484GFC_FPE_ZERO | GFC_FPE_OVERFLOW | GFC_FPE_UNDERFLOW}.)
3485@end multitable
3486
3487@item @emph{Example}:
3488@smallexample
3489  /* Use gfortran 4.9 default options.  */
3490  static int options[] = @{68, 511, 0, 0, 1, 1, 0, 0, 31@};
3491  _gfortran_set_options (9, &options);
3492@end smallexample
3493@end table
3494
3495
3496@node _gfortran_set_convert
3497@subsection @code{_gfortran_set_convert} --- Set endian conversion
3498@fnindex _gfortran_set_convert
3499@cindex libgfortran initialization, set_convert
3500
3501@table @asis
3502@item @emph{Description}:
3503@code{_gfortran_set_convert} set the representation of data for
3504unformatted files.
3505
3506@item @emph{Syntax}:
3507@code{void _gfortran_set_convert (int conv)}
3508
3509@item @emph{Arguments}:
3510@multitable @columnfractions .15 .70
3511@item @var{conv} @tab Endian conversion, possible values:
3512GFC_CONVERT_NATIVE (0, default), GFC_CONVERT_SWAP (1),
3513GFC_CONVERT_BIG (2), GFC_CONVERT_LITTLE (3).
3514@end multitable
3515
3516@item @emph{Example}:
3517@smallexample
3518int main (int argc, char *argv[])
3519@{
3520  /* Initialize libgfortran.  */
3521  _gfortran_set_args (argc, argv);
3522  _gfortran_set_convert (1);
3523  return 0;
3524@}
3525@end smallexample
3526@end table
3527
3528
3529@node _gfortran_set_record_marker
3530@subsection @code{_gfortran_set_record_marker} --- Set length of record markers
3531@fnindex _gfortran_set_record_marker
3532@cindex libgfortran initialization, set_record_marker
3533
3534@table @asis
3535@item @emph{Description}:
3536@code{_gfortran_set_record_marker} sets the length of record markers
3537for unformatted files.
3538
3539@item @emph{Syntax}:
3540@code{void _gfortran_set_record_marker (int val)}
3541
3542@item @emph{Arguments}:
3543@multitable @columnfractions .15 .70
3544@item @var{val} @tab Length of the record marker; valid values
3545are 4 and 8.  Default is 4.
3546@end multitable
3547
3548@item @emph{Example}:
3549@smallexample
3550int main (int argc, char *argv[])
3551@{
3552  /* Initialize libgfortran.  */
3553  _gfortran_set_args (argc, argv);
3554  _gfortran_set_record_marker (8);
3555  return 0;
3556@}
3557@end smallexample
3558@end table
3559
3560
3561@node _gfortran_set_fpe
3562@subsection @code{_gfortran_set_fpe} --- Enable floating point exception traps
3563@fnindex _gfortran_set_fpe
3564@cindex libgfortran initialization, set_fpe
3565
3566@table @asis
3567@item @emph{Description}:
3568@code{_gfortran_set_fpe} enables floating point exception traps for
3569the specified exceptions.  On most systems, this will result in a
3570SIGFPE signal being sent and the program being aborted.
3571
3572@item @emph{Syntax}:
3573@code{void _gfortran_set_fpe (int val)}
3574
3575@item @emph{Arguments}:
3576@multitable @columnfractions .15 .70
3577@item @var{option}[0] @tab IEEE exceptions.  Possible values are
3578(bitwise or-ed) zero (0, default) no trapping,
3579@code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
3580@code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
3581@code{GFC_FPE_UNDERFLOW} (16), and @code{GFC_FPE_INEXACT} (32).
3582@end multitable
3583
3584@item @emph{Example}:
3585@smallexample
3586int main (int argc, char *argv[])
3587@{
3588  /* Initialize libgfortran.  */
3589  _gfortran_set_args (argc, argv);
3590  /* FPE for invalid operations such as SQRT(-1.0).  */
3591  _gfortran_set_fpe (1);
3592  return 0;
3593@}
3594@end smallexample
3595@end table
3596
3597
3598@node _gfortran_set_max_subrecord_length
3599@subsection @code{_gfortran_set_max_subrecord_length} --- Set subrecord length
3600@fnindex _gfortran_set_max_subrecord_length
3601@cindex libgfortran initialization, set_max_subrecord_length
3602
3603@table @asis
3604@item @emph{Description}:
3605@code{_gfortran_set_max_subrecord_length} set the maximum length
3606for a subrecord.  This option only makes sense for testing and
3607debugging of unformatted I/O.
3608
3609@item @emph{Syntax}:
3610@code{void _gfortran_set_max_subrecord_length (int val)}
3611
3612@item @emph{Arguments}:
3613@multitable @columnfractions .15 .70
3614@item @var{val} @tab the maximum length for a subrecord;
3615the maximum permitted value is 2147483639, which is also
3616the default.
3617@end multitable
3618
3619@item @emph{Example}:
3620@smallexample
3621int main (int argc, char *argv[])
3622@{
3623  /* Initialize libgfortran.  */
3624  _gfortran_set_args (argc, argv);
3625  _gfortran_set_max_subrecord_length (8);
3626  return 0;
3627@}
3628@end smallexample
3629@end table
3630
3631
3632@node Naming and argument-passing conventions
3633@section Naming and argument-passing conventions
3634
3635This section gives an overview about the naming convention of procedures
3636and global variables and about the argument passing conventions used by
3637GNU Fortran.  If a C binding has been specified, the naming convention
3638and some of the argument-passing conventions change.  If possible,
3639mixed-language and mixed-compiler projects should use the better defined
3640C binding for interoperability.  See @pxref{Interoperability with C}.
3641
3642@menu
3643* Naming conventions::
3644* Argument passing conventions::
3645@end menu
3646
3647
3648@node Naming conventions
3649@subsection Naming conventions
3650
3651According the Fortran standard, valid Fortran names consist of a letter
3652between @code{A} to @code{Z}, @code{a} to @code{z}, digits @code{0},
3653@code{1} to @code{9} and underscores (@code{_}) with the restriction
3654that names may only start with a letter.  As vendor extension, the
3655dollar sign (@code{$}) is additionally permitted with the option
3656@option{-fdollar-ok}, but not as first character and only if the
3657target system supports it.
3658
3659By default, the procedure name is the lower-cased Fortran name with an
3660appended underscore (@code{_}); using @option{-fno-underscoring} no
3661underscore is appended while @code{-fsecond-underscore} appends two
3662underscores.  Depending on the target system and the calling convention,
3663the procedure might be additionally dressed; for instance, on 32bit
3664Windows with @code{stdcall}, an at-sign @code{@@} followed by an integer
3665number is appended.  For the changing the calling convention, see
3666@pxref{GNU Fortran Compiler Directives}.
3667
3668For common blocks, the same convention is used, i.e. by default an
3669underscore is appended to the lower-cased Fortran name.  Blank commons
3670have the name @code{__BLNK__}.
3671
3672For procedures and variables declared in the specification space of a
3673module, the name is formed by @code{__}, followed by the lower-cased
3674module name, @code{_MOD_}, and the lower-cased Fortran name.  Note that
3675no underscore is appended.
3676
3677
3678@node Argument passing conventions
3679@subsection Argument passing conventions
3680
3681Subroutines do not return a value (matching C99's @code{void}) while
3682functions either return a value as specified in the platform ABI or
3683the result variable is passed as hidden argument to the function and
3684no result is returned.  A hidden result variable is used when the
3685result variable is an array or of type @code{CHARACTER}.
3686
3687Arguments are passed according to the platform ABI. In particular,
3688complex arguments might not be compatible to a struct with two real
3689components for the real and imaginary part. The argument passing
3690matches the one of C99's @code{_Complex}.  Functions with scalar
3691complex result variables return their value and do not use a
3692by-reference argument.  Note that with the @option{-ff2c} option,
3693the argument passing is modified and no longer completely matches
3694the platform ABI.  Some other Fortran compilers use @code{f2c}
3695semantic by default; this might cause problems with
3696interoperablility.
3697
3698GNU Fortran passes most arguments by reference, i.e. by passing a
3699pointer to the data.  Note that the compiler might use a temporary
3700variable into which the actual argument has been copied, if required
3701semantically (copy-in/copy-out).
3702
3703For arguments with @code{ALLOCATABLE} and @code{POINTER}
3704attribute (including procedure pointers), a pointer to the pointer
3705is passed such that the pointer address can be modified in the
3706procedure.
3707
3708For dummy arguments with the @code{VALUE} attribute: Scalar arguments
3709of the type @code{INTEGER}, @code{LOGICAL}, @code{REAL} and
3710@code{COMPLEX} are passed by value according to the platform ABI.
3711(As vendor extension and not recommended, using @code{%VAL()} in the
3712call to a procedure has the same effect.) For @code{TYPE(C_PTR)} and
3713procedure pointers, the pointer itself is passed such that it can be
3714modified without affecting the caller.
3715@c FIXME: Document how VALUE is handled for CHARACTER, TYPE,
3716@c CLASS and arrays, i.e. whether the copy-in is done in the caller
3717@c or in the callee.
3718
3719For Boolean (@code{LOGICAL}) arguments, please note that GCC expects
3720only the integer value 0 and 1.  If a GNU Fortran @code{LOGICAL}
3721variable contains another integer value, the result is undefined.
3722As some other Fortran compilers use @math{-1} for @code{.TRUE.},
3723extra care has to be taken -- such as passing the value as
3724@code{INTEGER}.  (The same value restriction also applies to other
3725front ends of GCC, e.g. to GCC's C99 compiler for @code{_Bool}
3726or GCC's Ada compiler for @code{Boolean}.)
3727
3728For arguments of @code{CHARACTER} type, the character length is passed
3729as a hidden argument at the end of the argument list.  For
3730deferred-length strings, the value is passed by reference, otherwise
3731by value.  The character length has the C type @code{size_t} (or
3732@code{INTEGER(kind=C_SIZE_T)} in Fortran).  Note that this is
3733different to older versions of the GNU Fortran compiler, where the
3734type of the hidden character length argument was a C @code{int}.  In
3735order to retain compatibility with older versions, one can e.g. for
3736the following Fortran procedure
3737
3738@smallexample
3739subroutine fstrlen (s, a)
3740   character(len=*) :: s
3741   integer :: a
3742   print*, len(s)
3743end subroutine fstrlen
3744@end smallexample
3745
3746define the corresponding C prototype as follows:
3747
3748@smallexample
3749#if __GNUC__ > 7
3750typedef size_t fortran_charlen_t;
3751#else
3752typedef int fortran_charlen_t;
3753#endif
3754
3755void fstrlen_ (char*, int*, fortran_charlen_t);
3756@end smallexample
3757
3758In order to avoid such compiler-specific details, for new code it is
3759instead recommended to use the ISO_C_BINDING feature.
3760
3761Note with C binding, @code{CHARACTER(len=1)} result variables are
3762returned according to the platform ABI and no hidden length argument
3763is used for dummy arguments; with @code{VALUE}, those variables are
3764passed by value.
3765
3766For @code{OPTIONAL} dummy arguments, an absent argument is denoted
3767by a NULL pointer, except for scalar dummy arguments of type
3768@code{INTEGER}, @code{LOGICAL}, @code{REAL} and @code{COMPLEX}
3769which have the @code{VALUE} attribute.  For those, a hidden Boolean
3770argument (@code{logical(kind=C_bool),value}) is used to indicate
3771whether the argument is present.
3772
3773Arguments which are assumed-shape, assumed-rank or deferred-rank
3774arrays or, with @option{-fcoarray=lib}, allocatable scalar coarrays use
3775an array descriptor.  All other arrays pass the address of the
3776first element of the array.  With @option{-fcoarray=lib}, the token
3777and the offset belonging to nonallocatable coarrays dummy arguments
3778are passed as hidden argument along the character length hidden
3779arguments.  The token is an opaque pointer identifying the coarray
3780and the offset is a passed-by-value integer of kind @code{C_PTRDIFF_T},
3781denoting the byte offset between the base address of the coarray and
3782the passed scalar or first element of the passed array.
3783
3784The arguments are passed in the following order
3785@itemize @bullet
3786@item Result variable, when the function result is passed by reference
3787@item Character length of the function result, if it is a of type
3788@code{CHARACTER} and no C binding is used
3789@item The arguments in the order in which they appear in the Fortran
3790declaration
3791@item The the present status for optional arguments with value attribute,
3792which are internally passed by value
3793@item The character length and/or coarray token and offset for the first
3794argument which is a @code{CHARACTER} or a nonallocatable coarray dummy
3795argument, followed by the hidden arguments of the next dummy argument
3796of such a type
3797@end itemize
3798
3799
3800@c ---------------------------------------------------------------------
3801@c Coarray Programming
3802@c ---------------------------------------------------------------------
3803
3804@node Coarray Programming
3805@chapter Coarray Programming
3806@cindex Coarrays
3807
3808@menu
3809* Type and enum ABI Documentation::
3810* Function ABI Documentation::
3811@end menu
3812
3813
3814@node Type and enum ABI Documentation
3815@section Type and enum ABI Documentation
3816
3817@menu
3818* caf_token_t::
3819* caf_register_t::
3820* caf_deregister_t::
3821* caf_reference_t::
3822* caf_team_t::
3823@end menu
3824
3825@node caf_token_t
3826@subsection @code{caf_token_t}
3827
3828Typedef of type @code{void *} on the compiler side. Can be any data
3829type on the library side.
3830
3831@node caf_register_t
3832@subsection @code{caf_register_t}
3833
3834Indicates which kind of coarray variable should be registered.
3835
3836@verbatim
3837typedef enum caf_register_t {
3838  CAF_REGTYPE_COARRAY_STATIC,
3839  CAF_REGTYPE_COARRAY_ALLOC,
3840  CAF_REGTYPE_LOCK_STATIC,
3841  CAF_REGTYPE_LOCK_ALLOC,
3842  CAF_REGTYPE_CRITICAL,
3843  CAF_REGTYPE_EVENT_STATIC,
3844  CAF_REGTYPE_EVENT_ALLOC,
3845  CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,
3846  CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY
3847}
3848caf_register_t;
3849@end verbatim
3850
3851The values @code{CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY} and
3852@code{CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY} are for allocatable components
3853in derived type coarrays only.  The first one sets up the token without
3854allocating memory for allocatable component.  The latter one only allocates the
3855memory for an allocatable component in a derived type coarray.  The token
3856needs to be setup previously by the REGISTER_ONLY.  This allows to have
3857allocatable components un-allocated on some images.  The status whether an
3858allocatable component is allocated on a remote image can be queried by
3859@code{_caf_is_present} which used internally by the @code{ALLOCATED}
3860intrinsic.
3861
3862@node caf_deregister_t
3863@subsection @code{caf_deregister_t}
3864
3865@verbatim
3866typedef enum caf_deregister_t {
3867  CAF_DEREGTYPE_COARRAY_DEREGISTER,
3868  CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
3869}
3870caf_deregister_t;
3871@end verbatim
3872
3873Allows to specifiy the type of deregistration of a coarray object.  The
3874@code{CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY} flag is only allowed for
3875allocatable components in derived type coarrays.
3876
3877@node caf_reference_t
3878@subsection @code{caf_reference_t}
3879
3880The structure used for implementing arbitrary reference chains.
3881A @code{CAF_REFERENCE_T} allows to specify a component reference or any kind
3882of array reference of any rank supported by gfortran.  For array references all
3883kinds as known by the compiler/Fortran standard are supported indicated by
3884a @code{MODE}.
3885
3886@verbatim
3887typedef enum caf_ref_type_t {
3888  /* Reference a component of a derived type, either regular one or an
3889     allocatable or pointer type.  For regular ones idx in caf_reference_t is
3890     set to -1.  */
3891  CAF_REF_COMPONENT,
3892  /* Reference an allocatable array.  */
3893  CAF_REF_ARRAY,
3894  /* Reference a non-allocatable/non-pointer array.  I.e., the coarray object
3895     has no array descriptor associated and the addressing is done
3896     completely using the ref.  */
3897  CAF_REF_STATIC_ARRAY
3898} caf_ref_type_t;
3899@end verbatim
3900
3901@verbatim
3902typedef enum caf_array_ref_t {
3903  /* No array ref.  This terminates the array ref.  */
3904  CAF_ARR_REF_NONE = 0,
3905  /* Reference array elements given by a vector.  Only for this mode
3906     caf_reference_t.u.a.dim[i].v is valid.  */
3907  CAF_ARR_REF_VECTOR,
3908  /* A full array ref (:).  */
3909  CAF_ARR_REF_FULL,
3910  /* Reference a range on elements given by start, end and stride.  */
3911  CAF_ARR_REF_RANGE,
3912  /* Only a single item is referenced given in the start member.  */
3913  CAF_ARR_REF_SINGLE,
3914  /* An array ref of the kind (i:), where i is an arbitrary valid index in the
3915     array.  The index i is given in the start member.  */
3916  CAF_ARR_REF_OPEN_END,
3917  /* An array ref of the kind (:i), where the lower bound of the array ref
3918     is given by the remote side.  The index i is given in the end member.  */
3919  CAF_ARR_REF_OPEN_START
3920} caf_array_ref_t;
3921@end verbatim
3922
3923@verbatim
3924/* References to remote components of a derived type.  */
3925typedef struct caf_reference_t {
3926  /* A pointer to the next ref or NULL.  */
3927  struct caf_reference_t *next;
3928  /* The type of the reference.  */
3929  /* caf_ref_type_t, replaced by int to allow specification in fortran FE.  */
3930  int type;
3931  /* The size of an item referenced in bytes.  I.e. in an array ref this is
3932     the factor to advance the array pointer with to get to the next item.
3933     For component refs this gives just the size of the element referenced.  */
3934  size_t item_size;
3935  union {
3936    struct {
3937      /* The offset (in bytes) of the component in the derived type.
3938         Unused for allocatable or pointer components.  */
3939      ptrdiff_t offset;
3940      /* The offset (in bytes) to the caf_token associated with this
3941         component.  NULL, when not allocatable/pointer ref.  */
3942      ptrdiff_t caf_token_offset;
3943    } c;
3944    struct {
3945      /* The mode of the array ref.  See CAF_ARR_REF_*.  */
3946      /* caf_array_ref_t, replaced by unsigend char to allow specification in
3947         fortran FE.  */
3948     unsigned char mode[GFC_MAX_DIMENSIONS];
3949      /* The type of a static array.  Unset for array's with descriptors.  */
3950      int static_array_type;
3951      /* Subscript refs (s) or vector refs (v).  */
3952      union {
3953        struct {
3954          /* The start and end boundary of the ref and the stride.  */
3955          index_type start, end, stride;
3956        } s;
3957        struct {
3958          /* nvec entries of kind giving the elements to reference.  */
3959          void *vector;
3960          /* The number of entries in vector.  */
3961          size_t nvec;
3962          /* The integer kind used for the elements in vector.  */
3963          int kind;
3964        } v;
3965      } dim[GFC_MAX_DIMENSIONS];
3966    } a;
3967  } u;
3968} caf_reference_t;
3969@end verbatim
3970
3971The references make up a single linked list of reference operations.  The
3972@code{NEXT} member links to the next reference or NULL to indicate the end of
3973the chain.  Component and array refs can be arbitrarily mixed as long as they
3974comply to the Fortran standard.
3975
3976@emph{NOTES}
3977The member @code{STATIC_ARRAY_TYPE} is used only when the @code{TYPE} is
3978@code{CAF_REF_STATIC_ARRAY}.  The member gives the type of the data referenced.
3979Because no array descriptor is available for a descriptor-less array and
3980type conversion still needs to take place the type is transported here.
3981
3982At the moment @code{CAF_ARR_REF_VECTOR} is not implemented in the front end for
3983descriptor-less arrays.  The library caf_single has untested support for it.
3984
3985@node caf_team_t
3986@subsection @code{caf_team_t}
3987
3988Opaque pointer to represent a team-handle.  This type is a stand-in for the
3989future implementation of teams.  It is about to change without further notice.
3990
3991@node Function ABI Documentation
3992@section Function ABI Documentation
3993
3994@menu
3995* _gfortran_caf_init:: Initialiation function
3996* _gfortran_caf_finish:: Finalization function
3997* _gfortran_caf_this_image:: Querying the image number
3998* _gfortran_caf_num_images:: Querying the maximal number of images
3999* _gfortran_caf_image_status :: Query the status of an image
4000* _gfortran_caf_failed_images :: Get an array of the indexes of the failed images
4001* _gfortran_caf_stopped_images :: Get an array of the indexes of the stopped images
4002* _gfortran_caf_register:: Registering coarrays
4003* _gfortran_caf_deregister:: Deregistering coarrays
4004* _gfortran_caf_is_present:: Query whether an allocatable or pointer component in a derived type coarray is allocated
4005* _gfortran_caf_send:: Sending data from a local image to a remote image
4006* _gfortran_caf_get:: Getting data from a remote image
4007* _gfortran_caf_sendget:: Sending data between remote images
4008* _gfortran_caf_send_by_ref:: Sending data from a local image to a remote image using enhanced references
4009* _gfortran_caf_get_by_ref:: Getting data from a remote image using enhanced references
4010* _gfortran_caf_sendget_by_ref:: Sending data between remote images using enhanced references
4011* _gfortran_caf_lock:: Locking a lock variable
4012* _gfortran_caf_unlock:: Unlocking a lock variable
4013* _gfortran_caf_event_post:: Post an event
4014* _gfortran_caf_event_wait:: Wait that an event occurred
4015* _gfortran_caf_event_query:: Query event count
4016* _gfortran_caf_sync_all:: All-image barrier
4017* _gfortran_caf_sync_images:: Barrier for selected images
4018* _gfortran_caf_sync_memory:: Wait for completion of segment-memory operations
4019* _gfortran_caf_error_stop:: Error termination with exit code
4020* _gfortran_caf_error_stop_str:: Error termination with string
4021* _gfortran_caf_fail_image :: Mark the image failed and end its execution
4022* _gfortran_caf_atomic_define:: Atomic variable assignment
4023* _gfortran_caf_atomic_ref:: Atomic variable reference
4024* _gfortran_caf_atomic_cas:: Atomic compare and swap
4025* _gfortran_caf_atomic_op:: Atomic operation
4026* _gfortran_caf_co_broadcast:: Sending data to all images
4027* _gfortran_caf_co_max:: Collective maximum reduction
4028* _gfortran_caf_co_min:: Collective minimum reduction
4029* _gfortran_caf_co_sum:: Collective summing reduction
4030* _gfortran_caf_co_reduce:: Generic collective reduction
4031@end menu
4032
4033
4034@node _gfortran_caf_init
4035@subsection @code{_gfortran_caf_init} --- Initialiation function
4036@cindex Coarray, _gfortran_caf_init
4037
4038@table @asis
4039@item @emph{Description}:
4040This function is called at startup of the program before the Fortran main
4041program, if the latter has been compiled with @option{-fcoarray=lib}.
4042It takes as arguments the command-line arguments of the program.  It is
4043permitted to pass two @code{NULL} pointers as argument; if non-@code{NULL},
4044the library is permitted to modify the arguments.
4045
4046@item @emph{Syntax}:
4047@code{void _gfortran_caf_init (int *argc, char ***argv)}
4048
4049@item @emph{Arguments}:
4050@multitable @columnfractions .15 .70
4051@item @var{argc} @tab intent(inout) An integer pointer with the number of
4052arguments passed to the program or @code{NULL}.
4053@item @var{argv} @tab intent(inout) A pointer to an array of strings with the
4054command-line arguments or @code{NULL}.
4055@end multitable
4056
4057@item @emph{NOTES}
4058The function is modelled after the initialization function of the Message
4059Passing Interface (MPI) specification.  Due to the way coarray registration
4060works, it might not be the first call to the library.  If the main program is
4061not written in Fortran and only a library uses coarrays, it can happen that
4062this function is never called.  Therefore, it is recommended that the library
4063does not rely on the passed arguments and whether the call has been done.
4064@end table
4065
4066
4067@node _gfortran_caf_finish
4068@subsection @code{_gfortran_caf_finish} --- Finalization function
4069@cindex Coarray, _gfortran_caf_finish
4070
4071@table @asis
4072@item @emph{Description}:
4073This function is called at the end of the Fortran main program, if it has
4074been compiled with the @option{-fcoarray=lib} option.
4075
4076@item @emph{Syntax}:
4077@code{void _gfortran_caf_finish (void)}
4078
4079@item @emph{NOTES}
4080For non-Fortran programs, it is recommended to call the function at the end
4081of the main program.  To ensure that the shutdown is also performed for
4082programs where this function is not explicitly invoked, for instance
4083non-Fortran programs or calls to the system's exit() function, the library
4084can use a destructor function.  Note that programs can also be terminated
4085using the STOP and ERROR STOP statements; those use different library calls.
4086@end table
4087
4088
4089@node _gfortran_caf_this_image
4090@subsection @code{_gfortran_caf_this_image} --- Querying the image number
4091@cindex Coarray, _gfortran_caf_this_image
4092
4093@table @asis
4094@item @emph{Description}:
4095This function returns the current image number, which is a positive number.
4096
4097@item @emph{Syntax}:
4098@code{int _gfortran_caf_this_image (int distance)}
4099
4100@item @emph{Arguments}:
4101@multitable @columnfractions .15 .70
4102@item @var{distance} @tab As specified for the @code{this_image} intrinsic
4103in TS18508.  Shall be a non-negative number.
4104@end multitable
4105
4106@item @emph{NOTES}
4107If the Fortran intrinsic @code{this_image} is invoked without an argument, which
4108is the only permitted form in Fortran 2008, GCC passes @code{0} as
4109first argument.
4110@end table
4111
4112
4113@node _gfortran_caf_num_images
4114@subsection @code{_gfortran_caf_num_images} --- Querying the maximal number of images
4115@cindex Coarray, _gfortran_caf_num_images
4116
4117@table @asis
4118@item @emph{Description}:
4119This function returns the number of images in the current team, if
4120@var{distance} is 0 or the number of images in the parent team at the specified
4121distance. If failed is -1, the function returns the number of all images at
4122the specified distance; if it is 0, the function returns the number of
4123nonfailed images, and if it is 1, it returns the number of failed images.
4124
4125@item @emph{Syntax}:
4126@code{int _gfortran_caf_num_images(int distance, int failed)}
4127
4128@item @emph{Arguments}:
4129@multitable @columnfractions .15 .70
4130@item @var{distance} @tab the distance from this image to the ancestor.
4131Shall be positive.
4132@item @var{failed} @tab shall be -1, 0, or 1
4133@end multitable
4134
4135@item @emph{NOTES}
4136This function follows TS18508. If the num_image intrinsic has no arguments,
4137then the compiler passes @code{distance=0} and @code{failed=-1} to the function.
4138@end table
4139
4140
4141@node _gfortran_caf_image_status
4142@subsection @code{_gfortran_caf_image_status} --- Query the status of an image
4143@cindex Coarray, _gfortran_caf_image_status
4144
4145@table @asis
4146@item @emph{Description}:
4147Get the status of the image given by the id @var{image} of the team given by
4148@var{team}.  Valid results are zero, for image is ok, @code{STAT_STOPPED_IMAGE}
4149from the ISO_FORTRAN_ENV module to indicate that the image has been stopped and
4150@code{STAT_FAILED_IMAGE} also from ISO_FORTRAN_ENV to indicate that the image
4151has executed a @code{FAIL IMAGE} statement.
4152
4153@item @emph{Syntax}:
4154@code{int _gfortran_caf_image_status (int image, caf_team_t * team)}
4155
4156@item @emph{Arguments}:
4157@multitable @columnfractions .15 .70
4158@item @var{image} @tab the positive scalar id of the image in the current TEAM.
4159@item @var{team} @tab optional; team on the which the inquiry is to be
4160performed.
4161@end multitable
4162
4163@item @emph{NOTES}
4164This function follows TS18508.  Because team-functionality is not yet
4165implemented a null-pointer is passed for the @var{team} argument at the moment.
4166@end table
4167
4168
4169@node _gfortran_caf_failed_images
4170@subsection @code{_gfortran_caf_failed_images} --- Get an array of the indexes of the failed images
4171@cindex Coarray, _gfortran_caf_failed_images
4172
4173@table @asis
4174@item @emph{Description}:
4175Get an array of image indexes in the current @var{team} that have failed.  The
4176array is sorted ascendingly.  When @var{team} is not provided the current team
4177is to be used.  When @var{kind} is provided then the resulting array is of that
4178integer kind else it is of default integer kind.  The returns an unallocated
4179size zero array when no images have failed.
4180
4181@item @emph{Syntax}:
4182@code{int _gfortran_caf_failed_images (caf_team_t * team, int * kind)}
4183
4184@item @emph{Arguments}:
4185@multitable @columnfractions .15 .70
4186@item @var{team} @tab optional; team on the which the inquiry is to be
4187performed.
4188@item @var{image} @tab optional; the kind of the resulting integer array.
4189@end multitable
4190
4191@item @emph{NOTES}
4192This function follows TS18508.  Because team-functionality is not yet
4193implemented a null-pointer is passed for the @var{team} argument at the moment.
4194@end table
4195
4196
4197@node _gfortran_caf_stopped_images
4198@subsection @code{_gfortran_caf_stopped_images} --- Get an array of the indexes of the stopped images
4199@cindex Coarray, _gfortran_caf_stopped_images
4200
4201@table @asis
4202@item @emph{Description}:
4203Get an array of image indexes in the current @var{team} that have stopped.  The
4204array is sorted ascendingly.  When @var{team} is not provided the current team
4205is to be used.  When @var{kind} is provided then the resulting array is of that
4206integer kind else it is of default integer kind.  The returns an unallocated
4207size zero array when no images have failed.
4208
4209@item @emph{Syntax}:
4210@code{int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)}
4211
4212@item @emph{Arguments}:
4213@multitable @columnfractions .15 .70
4214@item @var{team} @tab optional; team on the which the inquiry is to be
4215performed.
4216@item @var{image} @tab optional; the kind of the resulting integer array.
4217@end multitable
4218
4219@item @emph{NOTES}
4220This function follows TS18508.  Because team-functionality is not yet
4221implemented a null-pointer is passed for the @var{team} argument at the moment.
4222@end table
4223
4224
4225@node _gfortran_caf_register
4226@subsection @code{_gfortran_caf_register} --- Registering coarrays
4227@cindex Coarray, _gfortran_caf_register
4228
4229@table @asis
4230@item @emph{Description}:
4231Registers memory for a coarray and creates a token to identify the coarray.  The
4232routine is called for both coarrays with @code{SAVE} attribute and using an
4233explicit @code{ALLOCATE} statement.  If an error occurs and @var{STAT} is a
4234@code{NULL} pointer, the function shall abort with printing an error message
4235and starting the error termination.  If no error occurs and @var{STAT} is
4236present, it shall be set to zero.  Otherwise, it shall be set to a positive
4237value and, if not-@code{NULL}, @var{ERRMSG} shall be set to a string describing
4238the failure.  The routine shall register the memory provided in the
4239@code{DATA}-component of the array descriptor @var{DESC}, when that component
4240is non-@code{NULL}, else it shall allocate sufficient memory and provide a
4241pointer to it in the @code{DATA}-component of @var{DESC}.  The array descriptor
4242has rank zero, when a scalar object is to be registered and the array
4243descriptor may be invalid after the call to @code{_gfortran_caf_register}.
4244When an array is to be allocated the descriptor persists.
4245
4246For @code{CAF_REGTYPE_COARRAY_STATIC} and @code{CAF_REGTYPE_COARRAY_ALLOC},
4247the passed size is the byte size requested.  For @code{CAF_REGTYPE_LOCK_STATIC},
4248@code{CAF_REGTYPE_LOCK_ALLOC} and @code{CAF_REGTYPE_CRITICAL} it is the array
4249size or one for a scalar.
4250
4251When @code{CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY} is used, then only a token
4252for an allocatable or pointer component is created.  The @code{SIZE} parameter
4253is not used then.  On the contrary when
4254@code{CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY} is specified, then the
4255@var{token} needs to be registered by a previous call with regtype
4256@code{CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY} and either the memory specified
4257in the @var{DESC}'s data-ptr is registered or allocate when the data-ptr is
4258@code{NULL}.
4259
4260@item @emph{Syntax}:
4261@code{void caf_register (size_t size, caf_register_t type, caf_token_t *token,
4262gfc_descriptor_t *desc, int *stat, char *errmsg, size_t errmsg_len)}
4263
4264@item @emph{Arguments}:
4265@multitable @columnfractions .15 .70
4266@item @var{size} @tab For normal coarrays, the byte size of the coarray to be
4267allocated; for lock types and event types, the number of elements.
4268@item @var{type} @tab one of the caf_register_t types.
4269@item @var{token} @tab intent(out) An opaque pointer identifying the coarray.
4270@item @var{desc} @tab intent(inout) The (pseudo) array descriptor.
4271@item @var{stat} @tab intent(out) For allocatable coarrays, stores the STAT=;
4272may be @code{NULL}
4273@item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
4274an error message; may be @code{NULL}
4275@item @var{errmsg_len} @tab the buffer size of errmsg.
4276@end multitable
4277
4278@item @emph{NOTES}
4279Nonallocatable coarrays have to be registered prior use from remote images.
4280In order to guarantee this, they have to be registered before the main
4281program. This can be achieved by creating constructor functions. That is what
4282GCC does such that also for nonallocatable coarrays the memory is allocated and
4283no static memory is used.  The token permits to identify the coarray; to the
4284processor, the token is a nonaliasing pointer. The library can, for instance,
4285store the base address of the coarray in the token, some handle or a more
4286complicated struct.  The library may also store the array descriptor
4287@var{DESC} when its rank is non-zero.
4288
4289For lock types, the value shall only be used for checking the allocation
4290status. Note that for critical blocks, the locking is only required on one
4291image; in the locking statement, the processor shall always pass an
4292image index of one for critical-block lock variables
4293(@code{CAF_REGTYPE_CRITICAL}). For lock types and critical-block variables,
4294the initial value shall be unlocked (or, respectively, not in critical
4295section) such as the value false; for event types, the initial state should
4296be no event, e.g. zero.
4297@end table
4298
4299
4300@node _gfortran_caf_deregister
4301@subsection @code{_gfortran_caf_deregister} --- Deregistering coarrays
4302@cindex Coarray, _gfortran_caf_deregister
4303
4304@table @asis
4305@item @emph{Description}:
4306Called to free or deregister the memory of a coarray; the processor calls this
4307function for automatic and explicit deallocation.  In case of an error, this
4308function shall fail with an error message, unless the @var{STAT} variable is
4309not null.  The library is only expected to free memory it allocated itself
4310during a call to @code{_gfortran_caf_register}.
4311
4312@item @emph{Syntax}:
4313@code{void caf_deregister (caf_token_t *token, caf_deregister_t type,
4314int *stat, char *errmsg, size_t errmsg_len)}
4315
4316@item @emph{Arguments}:
4317@multitable @columnfractions .15 .70
4318@item @var{token} @tab the token to free.
4319@item @var{type} @tab the type of action to take for the coarray.  A
4320@code{CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY} is allowed only for allocatable or
4321pointer components of derived type coarrays.  The action only deallocates the
4322local memory without deleting the token.
4323@item @var{stat} @tab intent(out) Stores the STAT=; may be NULL
4324@item @var{errmsg} @tab intent(out) When an error occurs, this will be set
4325to an error message; may be NULL
4326@item @var{errmsg_len} @tab the buffer size of errmsg.
4327@end multitable
4328
4329@item @emph{NOTES}
4330For nonalloatable coarrays this function is never called.  If a cleanup is
4331required, it has to be handled via the finish, stop and error stop functions,
4332and via destructors.
4333@end table
4334
4335
4336@node _gfortran_caf_is_present
4337@subsection @code{_gfortran_caf_is_present} --- Query whether an allocatable or pointer component in a derived type coarray is allocated
4338@cindex Coarray, _gfortran_caf_is_present
4339
4340@table @asis
4341@item @emph{Description}:
4342Used to query the coarray library whether an allocatable component in a derived
4343type coarray is allocated on a remote image.
4344
4345@item @emph{Syntax}:
4346@code{void _gfortran_caf_is_present (caf_token_t token, int image_index,
4347gfc_reference_t *ref)}
4348
4349@item @emph{Arguments}:
4350@multitable @columnfractions .15 .70
4351@item @var{token} @tab An opaque pointer identifying the coarray.
4352@item @var{image_index} @tab The ID of the remote image; must be a positive
4353number.
4354@item @var{ref} @tab A chain of references to address the allocatable or
4355pointer component in the derived type coarray.  The object reference needs to be
4356a scalar or a full array reference, respectively.
4357@end multitable
4358
4359@end table
4360
4361@node _gfortran_caf_send
4362@subsection @code{_gfortran_caf_send} --- Sending data from a local image to a remote image
4363@cindex Coarray, _gfortran_caf_send
4364
4365@table @asis
4366@item @emph{Description}:
4367Called to send a scalar, an array section or a whole array from a local
4368to a remote image identified by the image_index.
4369
4370@item @emph{Syntax}:
4371@code{void _gfortran_caf_send (caf_token_t token, size_t offset,
4372int image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
4373gfc_descriptor_t *src, int dst_kind, int src_kind, bool may_require_tmp,
4374int *stat)}
4375
4376@item @emph{Arguments}:
4377@multitable @columnfractions .15 .70
4378@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4379@item @var{offset} @tab intent(in)  By which amount of bytes the actual data is
4380shifted compared to the base address of the coarray.
4381@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4382positive number.
4383@item @var{dest} @tab intent(in)  Array descriptor for the remote image for the
4384bounds and the size.  The @code{base_addr} shall not be accessed.
4385@item @var{dst_vector} @tab intent(in)  If not NULL, it contains the vector
4386subscript of the destination array; the values are relative to the dimension
4387triplet of the dest argument.
4388@item @var{src} @tab intent(in)  Array descriptor of the local array to be
4389transferred to the remote image
4390@item @var{dst_kind} @tab intent(in)  Kind of the destination argument
4391@item @var{src_kind} @tab intent(in)  Kind of the source argument
4392@item @var{may_require_tmp} @tab intent(in)  The variable is @code{false} when
4393it is known at compile time that the @var{dest} and @var{src} either cannot
4394overlap or overlap (fully or partially) such that walking @var{src} and
4395@var{dest} in element wise element order (honoring the stride value) will not
4396lead to wrong results.  Otherwise, the value is @code{true}.
4397@item @var{stat} @tab intent(out) when non-NULL give the result of the
4398operation, i.e., zero on success and non-zero on error.  When NULL and an error
4399occurs, then an error message is printed and the program is terminated.
4400@end multitable
4401
4402@item @emph{NOTES}
4403It is permitted to have @var{image_index} equal the current image; the memory
4404of the send-to and the send-from might (partially) overlap in that case.  The
4405implementation has to take care that it handles this case, e.g. using
4406@code{memmove} which handles (partially) overlapping memory. If
4407@var{may_require_tmp} is true, the library might additionally create a
4408temporary variable, unless additional checks show that this is not required
4409(e.g. because walking backward is possible or because both arrays are
4410contiguous and @code{memmove} takes care of overlap issues).
4411
4412Note that the assignment of a scalar to an array is permitted. In addition,
4413the library has to handle numeric-type conversion and for strings, padding
4414and different character kinds.
4415@end table
4416
4417
4418@node _gfortran_caf_get
4419@subsection @code{_gfortran_caf_get} --- Getting data from a remote image
4420@cindex Coarray, _gfortran_caf_get
4421
4422@table @asis
4423@item @emph{Description}:
4424Called to get an array section or a whole array from a remote,
4425image identified by the image_index.
4426
4427@item @emph{Syntax}:
4428@code{void _gfortran_caf_get (caf_token_t token, size_t offset,
4429int image_index, gfc_descriptor_t *src, caf_vector_t *src_vector,
4430gfc_descriptor_t *dest, int src_kind, int dst_kind, bool may_require_tmp,
4431int *stat)}
4432
4433@item @emph{Arguments}:
4434@multitable @columnfractions .15 .70
4435@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4436@item @var{offset} @tab intent(in)  By which amount of bytes the actual data is
4437shifted compared to the base address of the coarray.
4438@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4439positive number.
4440@item @var{dest} @tab intent(out) Array descriptor of the local array to store
4441the data retrieved from the remote image
4442@item @var{src} @tab intent(in) Array descriptor for the remote image for the
4443bounds and the size.  The @code{base_addr} shall not be accessed.
4444@item @var{src_vector} @tab intent(in)  If not NULL, it contains the vector
4445subscript of the source array; the values are relative to the dimension
4446triplet of the @var{src} argument.
4447@item @var{dst_kind} @tab intent(in)  Kind of the destination argument
4448@item @var{src_kind} @tab intent(in)  Kind of the source argument
4449@item @var{may_require_tmp} @tab intent(in)  The variable is @code{false} when
4450it is known at compile time that the @var{dest} and @var{src} either cannot
4451overlap or overlap (fully or partially) such that walking @var{src} and
4452@var{dest} in element wise element order (honoring the stride value) will not
4453lead to wrong results.  Otherwise, the value is @code{true}.
4454@item @var{stat} @tab intent(out) When non-NULL give the result of the
4455operation, i.e., zero on success and non-zero on error.  When NULL and an error
4456occurs, then an error message is printed and the program is terminated.
4457@end multitable
4458
4459@item @emph{NOTES}
4460It is permitted to have @var{image_index} equal the current image; the memory of
4461the send-to and the send-from might (partially) overlap in that case.  The
4462implementation has to take care that it handles this case, e.g. using
4463@code{memmove} which handles (partially) overlapping memory. If
4464@var{may_require_tmp} is true, the library might additionally create a
4465temporary variable, unless additional checks show that this is not required
4466(e.g. because walking backward is possible or because both arrays are
4467contiguous and @code{memmove} takes care of overlap issues).
4468
4469Note that the library has to handle numeric-type conversion and for strings,
4470padding and different character kinds.
4471@end table
4472
4473
4474@node _gfortran_caf_sendget
4475@subsection @code{_gfortran_caf_sendget} --- Sending data between remote images
4476@cindex Coarray, _gfortran_caf_sendget
4477
4478@table @asis
4479@item @emph{Description}:
4480Called to send a scalar, an array section or a whole array from a remote image
4481identified by the @var{src_image_index} to a remote image identified by the
4482@var{dst_image_index}.
4483
4484@item @emph{Syntax}:
4485@code{void _gfortran_caf_sendget (caf_token_t dst_token, size_t dst_offset,
4486int dst_image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
4487caf_token_t src_token, size_t src_offset, int src_image_index,
4488gfc_descriptor_t *src, caf_vector_t *src_vector, int dst_kind, int src_kind,
4489bool may_require_tmp, int *stat)}
4490
4491@item @emph{Arguments}:
4492@multitable @columnfractions .15 .70
4493@item @var{dst_token} @tab intent(in)  An opaque pointer identifying the
4494destination coarray.
4495@item @var{dst_offset} @tab intent(in)  By which amount of bytes the actual data
4496is shifted compared to the base address of the destination coarray.
4497@item @var{dst_image_index} @tab intent(in)  The ID of the destination remote
4498image; must be a positive number.
4499@item @var{dest} @tab intent(in) Array descriptor for the destination
4500remote image for the bounds and the size.  The @code{base_addr} shall not be
4501accessed.
4502@item @var{dst_vector} @tab intent(int)  If not NULL, it contains the vector
4503subscript of the destination array; the values are relative to the dimension
4504triplet of the @var{dest} argument.
4505@item @var{src_token} @tab intent(in)  An opaque pointer identifying the source
4506coarray.
4507@item @var{src_offset} @tab intent(in)  By which amount of bytes the actual data
4508is shifted compared to the base address of the source coarray.
4509@item @var{src_image_index} @tab intent(in)  The ID of the source remote image;
4510must be a positive number.
4511@item @var{src} @tab intent(in) Array descriptor of the local array to be
4512transferred to the remote image.
4513@item @var{src_vector} @tab intent(in) Array descriptor of the local array to
4514be transferred to the remote image
4515@item @var{dst_kind} @tab intent(in)  Kind of the destination argument
4516@item @var{src_kind} @tab intent(in)  Kind of the source argument
4517@item @var{may_require_tmp} @tab intent(in)  The variable is @code{false} when
4518it is known at compile time that the @var{dest} and @var{src} either cannot
4519overlap or overlap (fully or partially) such that walking @var{src} and
4520@var{dest} in element wise element order (honoring the stride value) will not
4521lead to wrong results.  Otherwise, the value is @code{true}.
4522@item @var{stat} @tab intent(out) when non-NULL give the result of the
4523operation, i.e., zero on success and non-zero on error.  When NULL and an error
4524occurs, then an error message is printed and the program is terminated.
4525@end multitable
4526
4527@item @emph{NOTES}
4528It is permitted to have the same image index for both @var{src_image_index} and
4529@var{dst_image_index}; the memory of the send-to and the send-from might
4530(partially) overlap in that case.  The implementation has to take care that it
4531handles this case, e.g. using @code{memmove} which handles (partially)
4532overlapping memory.  If @var{may_require_tmp} is true, the library
4533might additionally create a temporary variable, unless additional checks show
4534that this is not required (e.g. because walking backward is possible or because
4535both arrays are contiguous and @code{memmove} takes care of overlap issues).
4536
4537Note that the assignment of a scalar to an array is permitted. In addition,
4538the library has to handle numeric-type conversion and for strings, padding and
4539different character kinds.
4540@end table
4541
4542@node _gfortran_caf_send_by_ref
4543@subsection @code{_gfortran_caf_send_by_ref} --- Sending data from a local image to a remote image with enhanced referencing options
4544@cindex Coarray, _gfortran_caf_send_by_ref
4545
4546@table @asis
4547@item @emph{Description}:
4548Called to send a scalar, an array section or a whole array from a local to a
4549remote image identified by the @var{image_index}.
4550
4551@item @emph{Syntax}:
4552@code{void _gfortran_caf_send_by_ref (caf_token_t token, int image_index,
4553gfc_descriptor_t *src, caf_reference_t *refs, int dst_kind, int src_kind,
4554bool may_require_tmp, bool dst_reallocatable, int *stat, int dst_type)}
4555
4556@item @emph{Arguments}:
4557@multitable @columnfractions .15 .70
4558@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4559@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4560positive number.
4561@item @var{src} @tab intent(in) Array descriptor of the local array to be
4562transferred to the remote image
4563@item @var{refs} @tab intent(in) The references on the remote array to store
4564the data given by src.  Guaranteed to have at least one entry.
4565@item @var{dst_kind} @tab intent(in)  Kind of the destination argument
4566@item @var{src_kind} @tab intent(in)  Kind of the source argument
4567@item @var{may_require_tmp} @tab intent(in)  The variable is @code{false} when
4568it is known at compile time that the @var{dest} and @var{src} either cannot
4569overlap or overlap (fully or partially) such that walking @var{src} and
4570@var{dest} in element wise element order (honoring the stride value) will not
4571lead to wrong results.  Otherwise, the value is @code{true}.
4572@item @var{dst_reallocatable} @tab intent(in)  Set when the destination is of
4573allocatable or pointer type and the refs will allow reallocation, i.e., the ref
4574is a full array or component ref.
4575@item @var{stat} @tab intent(out) When non-@code{NULL} give the result of the
4576operation, i.e., zero on success and non-zero on error.  When @code{NULL} and
4577an error occurs, then an error message is printed and the program is terminated.
4578@item @var{dst_type} @tab intent(in)  Give the type of the destination.  When
4579the destination is not an array, than the precise type, e.g. of a component in
4580a derived type, is not known, but provided here.
4581@end multitable
4582
4583@item @emph{NOTES}
4584It is permitted to have @var{image_index} equal the current image; the memory of
4585the send-to and the send-from might (partially) overlap in that case.  The
4586implementation has to take care that it handles this case, e.g. using
4587@code{memmove} which handles (partially) overlapping memory.  If
4588@var{may_require_tmp} is true, the library might additionally create a
4589temporary variable, unless additional checks show that this is not required
4590(e.g. because walking backward is possible or because both arrays are
4591contiguous and @code{memmove} takes care of overlap issues).
4592
4593Note that the assignment of a scalar to an array is permitted.  In addition,
4594the library has to handle numeric-type conversion and for strings, padding
4595and different character kinds.
4596
4597Because of the more complicated references possible some operations may be
4598unsupported by certain libraries.  The library is expected to issue a precise
4599error message why the operation is not permitted.
4600@end table
4601
4602
4603@node _gfortran_caf_get_by_ref
4604@subsection @code{_gfortran_caf_get_by_ref} --- Getting data from a remote image using enhanced references
4605@cindex Coarray, _gfortran_caf_get_by_ref
4606
4607@table @asis
4608@item @emph{Description}:
4609Called to get a scalar, an array section or a whole array from a remote image
4610identified by the @var{image_index}.
4611
4612@item @emph{Syntax}:
4613@code{void _gfortran_caf_get_by_ref (caf_token_t token, int image_index,
4614caf_reference_t *refs, gfc_descriptor_t *dst, int dst_kind, int src_kind,
4615bool may_require_tmp, bool dst_reallocatable, int *stat, int src_type)}
4616
4617@item @emph{Arguments}:
4618@multitable @columnfractions .15 .70
4619@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4620@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4621positive number.
4622@item @var{refs} @tab intent(in) The references to apply to the remote structure
4623to get the data.
4624@item @var{dst} @tab intent(in) Array descriptor of the local array to store
4625the data transferred from the remote image.  May be reallocated where needed
4626and when @var{DST_REALLOCATABLE} allows it.
4627@item @var{dst_kind} @tab intent(in)  Kind of the destination argument
4628@item @var{src_kind} @tab intent(in)  Kind of the source argument
4629@item @var{may_require_tmp} @tab intent(in)  The variable is @code{false} when
4630it is known at compile time that the @var{dest} and @var{src} either cannot
4631overlap or overlap (fully or partially) such that walking @var{src} and
4632@var{dest} in element wise element order (honoring the stride value) will not
4633lead to wrong results.  Otherwise, the value is @code{true}.
4634@item @var{dst_reallocatable} @tab intent(in)  Set when @var{DST} is of
4635allocatable or pointer type and its refs allow reallocation, i.e., the full
4636array or a component is referenced.
4637@item @var{stat} @tab intent(out) When non-@code{NULL} give the result of the
4638operation, i.e., zero on success and non-zero on error.  When @code{NULL} and an
4639error occurs, then an error message is printed and the program is terminated.
4640@item @var{src_type} @tab intent(in)  Give the type of the source.  When the
4641source is not an array, than the precise type, e.g. of a component in a
4642derived type, is not known, but provided here.
4643@end multitable
4644
4645@item @emph{NOTES}
4646It is permitted to have @code{image_index} equal the current image; the memory
4647of the send-to and the send-from might (partially) overlap in that case.  The
4648implementation has to take care that it handles this case, e.g. using
4649@code{memmove} which handles (partially) overlapping memory.  If
4650@var{may_require_tmp} is true, the library might additionally create a
4651temporary variable, unless additional checks show that this is not required
4652(e.g. because walking backward is possible or because both arrays are
4653contiguous and @code{memmove} takes care of overlap issues).
4654
4655Note that the library has to handle numeric-type conversion and for strings,
4656padding and different character kinds.
4657
4658Because of the more complicated references possible some operations may be
4659unsupported by certain libraries.  The library is expected to issue a precise
4660error message why the operation is not permitted.
4661@end table
4662
4663
4664@node _gfortran_caf_sendget_by_ref
4665@subsection @code{_gfortran_caf_sendget_by_ref} --- Sending data between remote images using enhanced references on both sides
4666@cindex Coarray, _gfortran_caf_sendget_by_ref
4667
4668@table @asis
4669@item @emph{Description}:
4670Called to send a scalar, an array section or a whole array from a remote image
4671identified by the @var{src_image_index} to a remote image identified by the
4672@var{dst_image_index}.
4673
4674@item @emph{Syntax}:
4675@code{void _gfortran_caf_sendget_by_ref (caf_token_t dst_token,
4676int dst_image_index, caf_reference_t *dst_refs,
4677caf_token_t src_token, int src_image_index, caf_reference_t *src_refs,
4678int dst_kind, int src_kind, bool may_require_tmp, int *dst_stat,
4679int *src_stat, int dst_type, int src_type)}
4680
4681@item @emph{Arguments}:
4682@multitable @columnfractions .15 .70
4683@item @var{dst_token} @tab intent(in)  An opaque pointer identifying the
4684destination coarray.
4685@item @var{dst_image_index} @tab intent(in)  The ID of the destination remote
4686image; must be a positive number.
4687@item @var{dst_refs} @tab intent(in) The references on the remote array to store
4688the data given by the source.  Guaranteed to have at least one entry.
4689@item @var{src_token} @tab intent(in)  An opaque pointer identifying the source
4690coarray.
4691@item @var{src_image_index} @tab intent(in)  The ID of the source remote image;
4692must be a positive number.
4693@item @var{src_refs} @tab intent(in) The references to apply to the remote
4694structure to get the data.
4695@item @var{dst_kind} @tab intent(in)  Kind of the destination argument
4696@item @var{src_kind} @tab intent(in)  Kind of the source argument
4697@item @var{may_require_tmp} @tab intent(in)  The variable is @code{false} when
4698it is known at compile time that the @var{dest} and @var{src} either cannot
4699overlap or overlap (fully or partially) such that walking @var{src} and
4700@var{dest} in element wise element order (honoring the stride value) will not
4701lead to wrong results.  Otherwise, the value is @code{true}.
4702@item @var{dst_stat} @tab intent(out) when non-@code{NULL} give the result of
4703the send-operation, i.e., zero on success and non-zero on error.  When
4704@code{NULL} and an error occurs, then an error message is printed and the
4705program is terminated.
4706@item @var{src_stat} @tab intent(out) When non-@code{NULL} give the result of
4707the get-operation, i.e., zero on success and non-zero on error.  When
4708@code{NULL} and an error occurs, then an error message is printed and the
4709program is terminated.
4710@item @var{dst_type} @tab intent(in)  Give the type of the destination.  When
4711the destination is not an array, than the precise type, e.g. of a component in
4712a derived type, is not known, but provided here.
4713@item @var{src_type} @tab intent(in)  Give the type of the source.  When the
4714source is not an array, than the precise type, e.g. of a component in a
4715derived type, is not known, but provided here.
4716@end multitable
4717
4718@item @emph{NOTES}
4719It is permitted to have the same image index for both @var{src_image_index} and
4720@var{dst_image_index}; the memory of the send-to and the send-from might
4721(partially) overlap in that case.  The implementation has to take care that it
4722handles this case, e.g. using @code{memmove} which handles (partially)
4723overlapping memory.  If @var{may_require_tmp} is true, the library
4724might additionally create a temporary variable, unless additional checks show
4725that this is not required (e.g. because walking backward is possible or because
4726both arrays are contiguous and @code{memmove} takes care of overlap issues).
4727
4728Note that the assignment of a scalar to an array is permitted.  In addition,
4729the library has to handle numeric-type conversion and for strings, padding and
4730different character kinds.
4731
4732Because of the more complicated references possible some operations may be
4733unsupported by certain libraries.  The library is expected to issue a precise
4734error message why the operation is not permitted.
4735@end table
4736
4737
4738@node _gfortran_caf_lock
4739@subsection @code{_gfortran_caf_lock} --- Locking a lock variable
4740@cindex Coarray, _gfortran_caf_lock
4741
4742@table @asis
4743@item @emph{Description}:
4744Acquire a lock on the given image on a scalar locking variable or for the
4745given array element for an array-valued variable.  If the @var{acquired_lock}
4746is @code{NULL}, the function returns after having obtained the lock.  If it is
4747non-@code{NULL}, then @var{acquired_lock} is assigned the value true (one) when
4748the lock could be obtained and false (zero) otherwise.  Locking a lock variable
4749which has already been locked by the same image is an error.
4750
4751@item @emph{Syntax}:
4752@code{void _gfortran_caf_lock (caf_token_t token, size_t index, int image_index,
4753int *acquired_lock, int *stat, char *errmsg, size_t errmsg_len)}
4754
4755@item @emph{Arguments}:
4756@multitable @columnfractions .15 .70
4757@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4758@item @var{index} @tab intent(in)  Array index; first array index is 0.  For
4759scalars, it is always 0.
4760@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4761positive number.
4762@item @var{acquired_lock} @tab intent(out) If not NULL, it returns whether lock
4763could be obtained.
4764@item @var{stat} @tab intent(out) Stores the STAT=; may be NULL.
4765@item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
4766an error message; may be NULL.
4767@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4768@end multitable
4769
4770@item @emph{NOTES}
4771This function is also called for critical blocks; for those, the array index
4772is always zero and the image index is one.  Libraries are permitted to use other
4773images for critical-block locking variables.
4774@end table
4775
4776@node _gfortran_caf_unlock
4777@subsection @code{_gfortran_caf_lock} --- Unlocking a lock variable
4778@cindex Coarray, _gfortran_caf_unlock
4779
4780@table @asis
4781@item @emph{Description}:
4782Release a lock on the given image on a scalar locking variable or for the
4783given array element for an array-valued variable. Unlocking a lock variable
4784which is unlocked or has been locked by a different image is an error.
4785
4786@item @emph{Syntax}:
4787@code{void _gfortran_caf_unlock (caf_token_t token, size_t index, int image_index,
4788int *stat, char *errmsg, size_t errmsg_len)}
4789
4790@item @emph{Arguments}:
4791@multitable @columnfractions .15 .70
4792@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4793@item @var{index} @tab intent(in)  Array index; first array index is 0.  For
4794scalars, it is always 0.
4795@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4796positive number.
4797@item @var{stat} @tab intent(out) For allocatable coarrays, stores the STAT=;
4798may be NULL.
4799@item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
4800an error message; may be NULL.
4801@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4802@end multitable
4803
4804@item @emph{NOTES}
4805This function is also called for critical block; for those, the array index
4806is always zero and the image index is one.  Libraries are permitted to use other
4807images for critical-block locking variables.
4808@end table
4809
4810@node _gfortran_caf_event_post
4811@subsection @code{_gfortran_caf_event_post} --- Post an event
4812@cindex Coarray, _gfortran_caf_event_post
4813
4814@table @asis
4815@item @emph{Description}:
4816Increment the event count of the specified event variable.
4817
4818@item @emph{Syntax}:
4819@code{void _gfortran_caf_event_post (caf_token_t token, size_t index,
4820int image_index, int *stat, char *errmsg, size_t errmsg_len)}
4821
4822@item @emph{Arguments}:
4823@multitable @columnfractions .15 .70
4824@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4825@item @var{index} @tab intent(in)  Array index; first array index is 0.  For
4826scalars, it is always 0.
4827@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4828positive number; zero indicates the current image, when accessed noncoindexed.
4829@item @var{stat} @tab intent(out)  Stores the STAT=; may be NULL.
4830@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
4831an error message; may be NULL.
4832@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4833@end multitable
4834
4835@item @emph{NOTES}
4836This acts like an atomic add of one to the remote image's event variable.
4837The statement is an image-control statement but does not imply sync memory.
4838Still, all preceeding push communications of this image to the specified
4839remote image have to be completed before @code{event_wait} on the remote
4840image returns.
4841@end table
4842
4843
4844
4845@node _gfortran_caf_event_wait
4846@subsection @code{_gfortran_caf_event_wait} --- Wait that an event occurred
4847@cindex Coarray, _gfortran_caf_event_wait
4848
4849@table @asis
4850@item @emph{Description}:
4851Wait until the event count has reached at least the specified
4852@var{until_count}; if so, atomically decrement the event variable by this
4853amount and return.
4854
4855@item @emph{Syntax}:
4856@code{void _gfortran_caf_event_wait (caf_token_t token, size_t index,
4857int until_count, int *stat, char *errmsg, size_t errmsg_len)}
4858
4859@item @emph{Arguments}:
4860@multitable @columnfractions .15 .70
4861@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4862@item @var{index} @tab intent(in)  Array index; first array index is 0.  For
4863scalars, it is always 0.
4864@item @var{until_count} @tab intent(in)  The number of events which have to be
4865available before the function returns.
4866@item @var{stat} @tab intent(out)  Stores the STAT=; may be NULL.
4867@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
4868an error message; may be NULL.
4869@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4870@end multitable
4871
4872@item @emph{NOTES}
4873This function only operates on a local coarray. It acts like a loop checking
4874atomically the value of the event variable, breaking if the value is greater
4875or equal the requested number of counts. Before the function returns, the
4876event variable has to be decremented by the requested @var{until_count} value.
4877A possible implementation would be a busy loop for a certain number of spins
4878(possibly depending on the number of threads relative to the number of available
4879cores) followed by another waiting strategy such as a sleeping wait (possibly
4880with an increasing number of sleep time) or, if possible, a futex wait.
4881
4882The statement is an image-control statement but does not imply sync memory.
4883Still, all preceeding push communications of this image to the specified
4884remote image have to be completed before @code{event_wait} on the remote
4885image returns.
4886@end table
4887
4888
4889
4890@node _gfortran_caf_event_query
4891@subsection @code{_gfortran_caf_event_query} --- Query event count
4892@cindex Coarray, _gfortran_caf_event_query
4893
4894@table @asis
4895@item @emph{Description}:
4896Return the event count of the specified event variable.
4897
4898@item @emph{Syntax}:
4899@code{void _gfortran_caf_event_query (caf_token_t token, size_t index,
4900int image_index, int *count, int *stat)}
4901
4902@item @emph{Arguments}:
4903@multitable @columnfractions .15 .70
4904@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
4905@item @var{index} @tab intent(in)  Array index; first array index is 0.  For
4906scalars, it is always 0.
4907@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
4908positive number; zero indicates the current image when accessed noncoindexed.
4909@item @var{count} @tab intent(out)  The number of events currently posted to
4910the event variable.
4911@item @var{stat} @tab intent(out)  Stores the STAT=; may be NULL.
4912@end multitable
4913
4914@item @emph{NOTES}
4915The typical use is to check the local event variable to only call
4916@code{event_wait} when the data is available. However, a coindexed variable
4917is permitted; there is no ordering or synchronization implied.  It acts like
4918an atomic fetch of the value of the event variable.
4919@end table
4920
4921
4922
4923@node _gfortran_caf_sync_all
4924@subsection @code{_gfortran_caf_sync_all} --- All-image barrier
4925@cindex Coarray, _gfortran_caf_sync_all
4926
4927@table @asis
4928@item @emph{Description}:
4929Synchronization of all images in the current team; the program only continues
4930on a given image after this function has been called on all images of the
4931current team.  Additionally, it ensures that all pending data transfers of
4932previous segment have completed.
4933
4934@item @emph{Syntax}:
4935@code{void _gfortran_caf_sync_all (int *stat, char *errmsg, size_t errmsg_len)}
4936
4937@item @emph{Arguments}:
4938@multitable @columnfractions .15 .70
4939@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
4940@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
4941an error message; may be NULL.
4942@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4943@end multitable
4944@end table
4945
4946
4947
4948@node _gfortran_caf_sync_images
4949@subsection @code{_gfortran_caf_sync_images} --- Barrier for selected images
4950@cindex Coarray, _gfortran_caf_sync_images
4951
4952@table @asis
4953@item @emph{Description}:
4954Synchronization between the specified images; the program only continues on a
4955given image after this function has been called on all images specified for
4956that image. Note that one image can wait for all other images in the current
4957team (e.g. via @code{sync images(*)}) while those only wait for that specific
4958image.  Additionally, @code{sync images} ensures that all pending data
4959transfers of previous segments have completed.
4960
4961@item @emph{Syntax}:
4962@code{void _gfortran_caf_sync_images (int count, int images[], int *stat,
4963char *errmsg, size_t errmsg_len)}
4964
4965@item @emph{Arguments}:
4966@multitable @columnfractions .15 .70
4967@item @var{count} @tab intent(in)  The number of images which are provided in
4968the next argument.  For a zero-sized array, the value is zero.  For
4969@code{sync images (*)}, the value is @math{-1}.
4970@item @var{images} @tab intent(in)  An array with the images provided by the
4971user.  If @var{count} is zero, a NULL pointer is passed.
4972@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
4973@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
4974an error message; may be NULL.
4975@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4976@end multitable
4977@end table
4978
4979
4980
4981@node _gfortran_caf_sync_memory
4982@subsection @code{_gfortran_caf_sync_memory} --- Wait for completion of segment-memory operations
4983@cindex Coarray, _gfortran_caf_sync_memory
4984
4985@table @asis
4986@item @emph{Description}:
4987Acts as optimization barrier between different segments. It also ensures that
4988all pending memory operations of this image have been completed.
4989
4990@item @emph{Syntax}:
4991@code{void _gfortran_caf_sync_memory (int *stat, char *errmsg, size_t errmsg_len)}
4992
4993@item @emph{Arguments}:
4994@multitable @columnfractions .15 .70
4995@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
4996@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
4997an error message; may be NULL.
4998@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
4999@end multitable
5000
5001@item @emph{NOTE} A simple implementation could be
5002@code{__asm__ __volatile__ ("":::"memory")} to prevent code movements.
5003@end table
5004
5005
5006
5007@node _gfortran_caf_error_stop
5008@subsection @code{_gfortran_caf_error_stop} --- Error termination with exit code
5009@cindex Coarray, _gfortran_caf_error_stop
5010
5011@table @asis
5012@item @emph{Description}:
5013Invoked for an @code{ERROR STOP} statement which has an integer argument.  The
5014function should terminate the program with the specified exit code.
5015
5016
5017@item @emph{Syntax}:
5018@code{void _gfortran_caf_error_stop (int error)}
5019
5020@item @emph{Arguments}:
5021@multitable @columnfractions .15 .70
5022@item @var{error} @tab intent(in)  The exit status to be used.
5023@end multitable
5024@end table
5025
5026
5027
5028@node _gfortran_caf_error_stop_str
5029@subsection @code{_gfortran_caf_error_stop_str} --- Error termination with string
5030@cindex Coarray, _gfortran_caf_error_stop_str
5031
5032@table @asis
5033@item @emph{Description}:
5034Invoked for an @code{ERROR STOP} statement which has a string as argument.  The
5035function should terminate the program with a nonzero-exit code.
5036
5037@item @emph{Syntax}:
5038@code{void _gfortran_caf_error_stop (const char *string, size_t len)}
5039
5040@item @emph{Arguments}:
5041@multitable @columnfractions .15 .70
5042@item @var{string} @tab intent(in)  the error message (not zero terminated)
5043@item @var{len} @tab intent(in)  the length of the string
5044@end multitable
5045@end table
5046
5047
5048
5049@node _gfortran_caf_fail_image
5050@subsection @code{_gfortran_caf_fail_image} --- Mark the image failed and end its execution
5051@cindex Coarray, _gfortran_caf_fail_image
5052
5053@table @asis
5054@item @emph{Description}:
5055Invoked for an @code{FAIL IMAGE} statement.  The function should terminate the
5056current image.
5057
5058@item @emph{Syntax}:
5059@code{void _gfortran_caf_fail_image ()}
5060
5061@item @emph{NOTES}
5062This function follows TS18508.
5063@end table
5064
5065
5066
5067@node _gfortran_caf_atomic_define
5068@subsection @code{_gfortran_caf_atomic_define} --- Atomic variable assignment
5069@cindex Coarray, _gfortran_caf_atomic_define
5070
5071@table @asis
5072@item @emph{Description}:
5073Assign atomically a value to an integer or logical variable.
5074
5075@item @emph{Syntax}:
5076@code{void _gfortran_caf_atomic_define (caf_token_t token, size_t offset,
5077int image_index, void *value, int *stat, int type, int kind)}
5078
5079@item @emph{Arguments}:
5080@multitable @columnfractions .15 .70
5081@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
5082@item @var{offset} @tab intent(in)  By which amount of bytes the actual data is
5083shifted compared to the base address of the coarray.
5084@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
5085positive number; zero indicates the current image when used noncoindexed.
5086@item @var{value} @tab intent(in)  the value to be assigned, passed by reference
5087@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5088@item @var{type} @tab intent(in)  The data type, i.e. @code{BT_INTEGER} (1) or
5089@code{BT_LOGICAL} (2).
5090@item @var{kind} @tab intent(in)  The kind value (only 4; always @code{int})
5091@end multitable
5092@end table
5093
5094
5095
5096@node _gfortran_caf_atomic_ref
5097@subsection @code{_gfortran_caf_atomic_ref} --- Atomic variable reference
5098@cindex Coarray, _gfortran_caf_atomic_ref
5099
5100@table @asis
5101@item @emph{Description}:
5102Reference atomically a value of a kind-4 integer or logical variable.
5103
5104@item @emph{Syntax}:
5105@code{void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
5106int image_index, void *value, int *stat, int type, int kind)}
5107
5108@item @emph{Arguments}:
5109@multitable @columnfractions .15 .70
5110@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
5111@item @var{offset} @tab intent(in)  By which amount of bytes the actual data is
5112shifted compared to the base address of the coarray.
5113@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
5114positive number; zero indicates the current image when used noncoindexed.
5115@item @var{value} @tab intent(out)  The variable assigned the atomically
5116referenced variable.
5117@item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5118@item @var{type} @tab the data type, i.e. @code{BT_INTEGER} (1) or
5119@code{BT_LOGICAL} (2).
5120@item @var{kind} @tab The kind value (only 4; always @code{int})
5121@end multitable
5122@end table
5123
5124
5125
5126@node _gfortran_caf_atomic_cas
5127@subsection @code{_gfortran_caf_atomic_cas} --- Atomic compare and swap
5128@cindex Coarray, _gfortran_caf_atomic_cas
5129
5130@table @asis
5131@item @emph{Description}:
5132Atomic compare and swap of a kind-4 integer or logical variable. Assigns
5133atomically the specified value to the atomic variable, if the latter has
5134the value specified by the passed condition value.
5135
5136@item @emph{Syntax}:
5137@code{void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
5138int image_index, void *old, void *compare, void *new_val, int *stat,
5139int type, int kind)}
5140
5141@item @emph{Arguments}:
5142@multitable @columnfractions .15 .70
5143@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
5144@item @var{offset} @tab intent(in)  By which amount of bytes the actual data is
5145shifted compared to the base address of the coarray.
5146@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
5147positive number; zero indicates the current image when used noncoindexed.
5148@item @var{old} @tab intent(out)  The value which the atomic variable had
5149just before the cas operation.
5150@item @var{compare} @tab intent(in)  The value used for comparision.
5151@item @var{new_val} @tab intent(in)  The new value for the atomic variable,
5152assigned to the atomic variable, if @code{compare} equals the value of the
5153atomic variable.
5154@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5155@item @var{type} @tab intent(in)  the data type, i.e. @code{BT_INTEGER} (1) or
5156@code{BT_LOGICAL} (2).
5157@item @var{kind} @tab intent(in)  The kind value (only 4; always @code{int})
5158@end multitable
5159@end table
5160
5161
5162
5163@node _gfortran_caf_atomic_op
5164@subsection @code{_gfortran_caf_atomic_op} --- Atomic operation
5165@cindex Coarray, _gfortran_caf_atomic_op
5166
5167@table @asis
5168@item @emph{Description}:
5169Apply an operation atomically to an atomic integer or logical variable.
5170After the operation, @var{old} contains the value just before the operation,
5171which, respectively, adds (GFC_CAF_ATOMIC_ADD) atomically the @code{value} to
5172the atomic integer variable or does a bitwise AND, OR or exclusive OR
5173between the atomic variable and @var{value}; the result is then stored in the
5174atomic variable.
5175
5176@item @emph{Syntax}:
5177@code{void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t offset,
5178int image_index, void *value, void *old, int *stat, int type, int kind)}
5179
5180@item @emph{Arguments}:
5181@multitable @columnfractions .15 .70
5182@item @var{op} @tab intent(in)  the operation to be performed; possible values
5183@code{GFC_CAF_ATOMIC_ADD} (1), @code{GFC_CAF_ATOMIC_AND} (2),
5184@code{GFC_CAF_ATOMIC_OR} (3), @code{GFC_CAF_ATOMIC_XOR} (4).
5185@item @var{token} @tab intent(in)  An opaque pointer identifying the coarray.
5186@item @var{offset} @tab intent(in)  By which amount of bytes the actual data is
5187shifted compared to the base address of the coarray.
5188@item @var{image_index} @tab intent(in)  The ID of the remote image; must be a
5189positive number; zero indicates the current image when used noncoindexed.
5190@item @var{old} @tab intent(out)  The value which the atomic variable had
5191just before the atomic operation.
5192@item @var{val} @tab intent(in)  The new value for the atomic variable,
5193assigned to the atomic variable, if @code{compare} equals the value of the
5194atomic variable.
5195@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5196@item @var{type} @tab intent(in)  the data type, i.e. @code{BT_INTEGER} (1) or
5197@code{BT_LOGICAL} (2)
5198@item @var{kind} @tab intent(in)  the kind value (only 4; always @code{int})
5199@end multitable
5200@end table
5201
5202
5203
5204
5205@node _gfortran_caf_co_broadcast
5206@subsection @code{_gfortran_caf_co_broadcast} --- Sending data to all images
5207@cindex Coarray, _gfortran_caf_co_broadcast
5208
5209@table @asis
5210@item @emph{Description}:
5211Distribute a value from a given image to all other images in the team. Has to
5212be called collectively.
5213
5214@item @emph{Syntax}:
5215@code{void _gfortran_caf_co_broadcast (gfc_descriptor_t *a,
5216int source_image, int *stat, char *errmsg, size_t errmsg_len)}
5217
5218@item @emph{Arguments}:
5219@multitable @columnfractions .15 .70
5220@item @var{a} @tab intent(inout)  An array descriptor with the data to be
5221broadcasted (on @var{source_image}) or to be received (other images).
5222@item @var{source_image} @tab intent(in)  The ID of the image from which the
5223data should be broadcasted.
5224@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5225@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
5226an error message; may be NULL.
5227@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg.
5228@end multitable
5229@end table
5230
5231
5232
5233@node _gfortran_caf_co_max
5234@subsection @code{_gfortran_caf_co_max} --- Collective maximum reduction
5235@cindex Coarray, _gfortran_caf_co_max
5236
5237@table @asis
5238@item @emph{Description}:
5239Calculates for each array element of the variable @var{a} the maximum
5240value for that element in the current team; if @var{result_image} has the
5241value 0, the result shall be stored on all images, otherwise, only on the
5242specified image. This function operates on numeric values and character
5243strings.
5244
5245@item @emph{Syntax}:
5246@code{void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
5247int *stat, char *errmsg, int a_len, size_t errmsg_len)}
5248
5249@item @emph{Arguments}:
5250@multitable @columnfractions .15 .70
5251@item @var{a} @tab intent(inout)  An array descriptor for the data to be
5252processed.  On the destination image(s) the result overwrites the old content.
5253@item @var{result_image} @tab intent(in)  The ID of the image to which the
5254reduced value should be copied to; if zero, it has to be copied to all images.
5255@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5256@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
5257an error message; may be NULL.
5258@item @var{a_len} @tab intent(in)  the string length of argument @var{a}
5259@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
5260@end multitable
5261
5262@item @emph{NOTES}
5263If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5264all images except of the specified one become undefined; hence, the library may
5265make use of this.
5266@end table
5267
5268
5269
5270@node _gfortran_caf_co_min
5271@subsection @code{_gfortran_caf_co_min} --- Collective minimum reduction
5272@cindex Coarray, _gfortran_caf_co_min
5273
5274@table @asis
5275@item @emph{Description}:
5276Calculates for each array element of the variable @var{a} the minimum
5277value for that element in the current team; if @var{result_image} has the
5278value 0, the result shall be stored on all images, otherwise, only on the
5279specified image. This function operates on numeric values and character
5280strings.
5281
5282@item @emph{Syntax}:
5283@code{void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
5284int *stat, char *errmsg, int a_len, size_t errmsg_len)}
5285
5286@item @emph{Arguments}:
5287@multitable @columnfractions .15 .70
5288@item @var{a} @tab intent(inout)  An array descriptor for the data to be
5289processed.  On the destination image(s) the result overwrites the old content.
5290@item @var{result_image} @tab intent(in)  The ID of the image to which the
5291reduced value should be copied to; if zero, it has to be copied to all images.
5292@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5293@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
5294an error message; may be NULL.
5295@item @var{a_len} @tab intent(in)  the string length of argument @var{a}
5296@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
5297@end multitable
5298
5299@item @emph{NOTES}
5300If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5301all images except of the specified one become undefined; hence, the library may
5302make use of this.
5303@end table
5304
5305
5306
5307@node _gfortran_caf_co_sum
5308@subsection @code{_gfortran_caf_co_sum} --- Collective summing reduction
5309@cindex Coarray, _gfortran_caf_co_sum
5310
5311@table @asis
5312@item @emph{Description}:
5313Calculates for each array element of the variable @var{a} the sum of all
5314values for that element in the current team; if @var{result_image} has the
5315value 0, the result shall be stored on all images, otherwise, only on the
5316specified image.  This function operates on numeric values only.
5317
5318@item @emph{Syntax}:
5319@code{void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
5320int *stat, char *errmsg, size_t errmsg_len)}
5321
5322@item @emph{Arguments}:
5323@multitable @columnfractions .15 .70
5324@item @var{a} @tab intent(inout)  An array descriptor with the data to be
5325processed.  On the destination image(s) the result overwrites the old content.
5326@item @var{result_image} @tab intent(in)  The ID of the image to which the
5327reduced value should be copied to; if zero, it has to be copied to all images.
5328@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5329@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
5330an error message; may be NULL.
5331@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
5332@end multitable
5333
5334@item @emph{NOTES}
5335If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5336all images except of the specified one become undefined; hence, the library may
5337make use of this.
5338@end table
5339
5340
5341
5342@node _gfortran_caf_co_reduce
5343@subsection @code{_gfortran_caf_co_reduce} --- Generic collective reduction
5344@cindex Coarray, _gfortran_caf_co_reduce
5345
5346@table @asis
5347@item @emph{Description}:
5348Calculates for each array element of the variable @var{a} the reduction
5349value for that element in the current team; if @var{result_image} has the
5350value 0, the result shall be stored on all images, otherwise, only on the
5351specified image.  The @var{opr} is a pure function doing a mathematically
5352commutative and associative operation.
5353
5354The @var{opr_flags} denote the following; the values are bitwise ored.
5355@code{GFC_CAF_BYREF} (1) if the result should be returned
5356by reference; @code{GFC_CAF_HIDDENLEN} (2) whether the result and argument
5357string lengths shall be specified as hidden arguments;
5358@code{GFC_CAF_ARG_VALUE} (4) whether the arguments shall be passed by value,
5359@code{GFC_CAF_ARG_DESC} (8) whether the arguments shall be passed by descriptor.
5360
5361
5362@item @emph{Syntax}:
5363@code{void _gfortran_caf_co_reduce (gfc_descriptor_t *a,
5364void * (*opr) (void *, void *), int opr_flags, int result_image,
5365int *stat, char *errmsg, int a_len, size_t errmsg_len)}
5366
5367@item @emph{Arguments}:
5368@multitable @columnfractions .15 .70
5369@item @var{a} @tab intent(inout)  An array descriptor with the data to be
5370processed.  On the destination image(s) the result overwrites the old content.
5371@item @var{opr} @tab intent(in)  Function pointer to the reduction function
5372@item @var{opr_flags} @tab intent(in)  Flags regarding the reduction function
5373@item @var{result_image} @tab intent(in)  The ID of the image to which the
5374reduced value should be copied to; if zero, it has to be copied to all images.
5375@item @var{stat} @tab intent(out)  Stores the status STAT= and may be NULL.
5376@item @var{errmsg} @tab intent(out)  When an error occurs, this will be set to
5377an error message; may be NULL.
5378@item @var{a_len} @tab intent(in)  the string length of argument @var{a}
5379@item @var{errmsg_len} @tab intent(in)  the buffer size of errmsg
5380@end multitable
5381
5382@item @emph{NOTES}
5383If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5384all images except of the specified one become undefined; hence, the library may
5385make use of this.
5386
5387For character arguments, the result is passed as first argument, followed
5388by the result string length, next come the two string arguments, followed
5389by the two hidden string length arguments.  With C binding, there are no hidden
5390arguments and by-reference passing and either only a single character is passed
5391or an array descriptor.
5392@end table
5393
5394
5395@c Intrinsic Procedures
5396@c ---------------------------------------------------------------------
5397
5398@include intrinsic.texi
5399
5400
5401@tex
5402\blankpart
5403@end tex
5404
5405@c ---------------------------------------------------------------------
5406@c Contributing
5407@c ---------------------------------------------------------------------
5408
5409@node Contributing
5410@unnumbered Contributing
5411@cindex Contributing
5412
5413Free software is only possible if people contribute to efforts
5414to create it.
5415We're always in need of more people helping out with ideas
5416and comments, writing documentation and contributing code.
5417
5418If you want to contribute to GNU Fortran,
5419have a look at the long lists of projects you can take on.
5420Some of these projects are small,
5421some of them are large;
5422some are completely orthogonal to the rest of what is
5423happening on GNU Fortran,
5424but others are ``mainstream'' projects in need of enthusiastic hackers.
5425All of these projects are important!
5426We will eventually get around to the things here,
5427but they are also things doable by someone who is willing and able.
5428
5429@menu
5430* Contributors::
5431* Projects::
5432@end menu
5433
5434
5435@node Contributors
5436@section Contributors to GNU Fortran
5437@cindex Contributors
5438@cindex Credits
5439@cindex Authors
5440
5441Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
5442also the initiator of the whole project.  Thanks Andy!
5443Most of the interface with GCC was written by @emph{Paul Brook}.
5444
5445The following individuals have contributed code and/or
5446ideas and significant help to the GNU Fortran project
5447(in alphabetical order):
5448
5449@itemize @minus
5450@item Janne Blomqvist
5451@item Steven Bosscher
5452@item Paul Brook
5453@item Tobias Burnus
5454@item Fran@,{c}ois-Xavier Coudert
5455@item Bud Davis
5456@item Jerry DeLisle
5457@item Erik Edelmann
5458@item Bernhard Fischer
5459@item Daniel Franke
5460@item Richard Guenther
5461@item Richard Henderson
5462@item Katherine Holcomb
5463@item Jakub Jelinek
5464@item Niels Kristian Bech Jensen
5465@item Steven Johnson
5466@item Steven G. Kargl
5467@item Thomas Koenig
5468@item Asher Langton
5469@item H. J. Lu
5470@item Toon Moene
5471@item Brooks Moses
5472@item Andrew Pinski
5473@item Tim Prince
5474@item Christopher D. Rickett
5475@item Richard Sandiford
5476@item Tobias Schl@"uter
5477@item Roger Sayle
5478@item Paul Thomas
5479@item Andy Vaught
5480@item Feng Wang
5481@item Janus Weil
5482@item Daniel Kraft
5483@end itemize
5484
5485The following people have contributed bug reports,
5486smaller or larger patches,
5487and much needed feedback and encouragement for the
5488GNU Fortran project:
5489
5490@itemize @minus
5491@item Bill Clodius
5492@item Dominique d'Humi@`eres
5493@item Kate Hedstrom
5494@item Erik Schnetter
5495@item Gerhard Steinmetz
5496@item Joost VandeVondele
5497@end itemize
5498
5499Many other individuals have helped debug,
5500test and improve the GNU Fortran compiler over the past few years,
5501and we welcome you to do the same!
5502If you already have done so,
5503and you would like to see your name listed in the
5504list above, please contact us.
5505
5506
5507@node Projects
5508@section Projects
5509
5510@table @emph
5511
5512@item Help build the test suite
5513Solicit more code for donation to the test suite: the more extensive the
5514testsuite, the smaller the risk of breaking things in the future! We can
5515keep code private on request.
5516
5517@item Bug hunting/squishing
5518Find bugs and write more test cases! Test cases are especially very
5519welcome, because it allows us to concentrate on fixing bugs instead of
5520isolating them.  Going through the bugzilla database at
5521@url{https://gcc.gnu.org/@/bugzilla/} to reduce testcases posted there and
5522add more information (for example, for which version does the testcase
5523work, for which versions does it fail?) is also very helpful.
5524
5525@item Missing features
5526For a larger project, consider working on the missing features required for
5527Fortran language standards compliance (@pxref{Standards}), or contributing
5528to the implementation of extensions such as OpenMP (@pxref{OpenMP}) or
5529OpenACC (@pxref{OpenACC}) that are under active development.  Again,
5530contributing test cases for these features is useful too!
5531
5532@end table
5533
5534
5535@c ---------------------------------------------------------------------
5536@c GNU General Public License
5537@c ---------------------------------------------------------------------
5538
5539@include gpl_v3.texi
5540
5541
5542
5543@c ---------------------------------------------------------------------
5544@c GNU Free Documentation License
5545@c ---------------------------------------------------------------------
5546
5547@include fdl.texi
5548
5549
5550
5551@c ---------------------------------------------------------------------
5552@c Funding Free Software
5553@c ---------------------------------------------------------------------
5554
5555@include funding.texi
5556
5557@c ---------------------------------------------------------------------
5558@c Indices
5559@c ---------------------------------------------------------------------
5560
5561@node Option Index
5562@unnumbered Option Index
5563@command{gfortran}'s command line options are indexed here without any
5564initial @samp{-} or @samp{--}.  Where an option has both positive and
5565negative forms (such as -foption and -fno-option), relevant entries in
5566the manual are indexed under the most appropriate form; it may sometimes
5567be useful to look up both forms.
5568@printindex op
5569
5570@node Keyword Index
5571@unnumbered Keyword Index
5572@printindex cp
5573
5574@bye
5575