1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "predict.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "ssa.h"
34 #include "optabs-tree.h"
35 #include "cgraph.h"
36 #include "dumpfile.h"
37 #include "alias.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tree-eh.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop.h"
47 #include "cfgloop.h"
48 #include "tree-scalar-evolution.h"
49 #include "tree-vectorizer.h"
50 #include "expr.h"
51 #include "builtins.h"
52 #include "tree-cfg.h"
53 #include "tree-hash-traits.h"
54 #include "vec-perm-indices.h"
55 #include "internal-fn.h"
56 #include "gimple-fold.h"
57
58 /* Return true if load- or store-lanes optab OPTAB is implemented for
59 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
60
61 static bool
vect_lanes_optab_supported_p(const char * name,convert_optab optab,tree vectype,unsigned HOST_WIDE_INT count)62 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
63 tree vectype, unsigned HOST_WIDE_INT count)
64 {
65 machine_mode mode, array_mode;
66 bool limit_p;
67
68 mode = TYPE_MODE (vectype);
69 if (!targetm.array_mode (mode, count).exists (&array_mode))
70 {
71 poly_uint64 bits = count * GET_MODE_BITSIZE (mode);
72 limit_p = !targetm.array_mode_supported_p (mode, count);
73 if (!int_mode_for_size (bits, limit_p).exists (&array_mode))
74 {
75 if (dump_enabled_p ())
76 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
77 "no array mode for %s[%wu]\n",
78 GET_MODE_NAME (mode), count);
79 return false;
80 }
81 }
82
83 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
84 {
85 if (dump_enabled_p ())
86 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
87 "cannot use %s<%s><%s>\n", name,
88 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
89 return false;
90 }
91
92 if (dump_enabled_p ())
93 dump_printf_loc (MSG_NOTE, vect_location,
94 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
95 GET_MODE_NAME (mode));
96
97 return true;
98 }
99
100
101 /* Return the smallest scalar part of STMT_INFO.
102 This is used to determine the vectype of the stmt. We generally set the
103 vectype according to the type of the result (lhs). For stmts whose
104 result-type is different than the type of the arguments (e.g., demotion,
105 promotion), vectype will be reset appropriately (later). Note that we have
106 to visit the smallest datatype in this function, because that determines the
107 VF. If the smallest datatype in the loop is present only as the rhs of a
108 promotion operation - we'd miss it.
109 Such a case, where a variable of this datatype does not appear in the lhs
110 anywhere in the loop, can only occur if it's an invariant: e.g.:
111 'int_x = (int) short_inv', which we'd expect to have been optimized away by
112 invariant motion. However, we cannot rely on invariant motion to always
113 take invariants out of the loop, and so in the case of promotion we also
114 have to check the rhs.
115 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
116 types. */
117
118 tree
vect_get_smallest_scalar_type(stmt_vec_info stmt_info,tree scalar_type)119 vect_get_smallest_scalar_type (stmt_vec_info stmt_info, tree scalar_type)
120 {
121 HOST_WIDE_INT lhs, rhs;
122
123 /* During the analysis phase, this function is called on arbitrary
124 statements that might not have scalar results. */
125 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (scalar_type)))
126 return scalar_type;
127
128 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
129
130 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
131 if (assign)
132 {
133 scalar_type = TREE_TYPE (gimple_assign_lhs (assign));
134 if (gimple_assign_cast_p (assign)
135 || gimple_assign_rhs_code (assign) == DOT_PROD_EXPR
136 || gimple_assign_rhs_code (assign) == WIDEN_SUM_EXPR
137 || gimple_assign_rhs_code (assign) == WIDEN_MULT_EXPR
138 || gimple_assign_rhs_code (assign) == WIDEN_LSHIFT_EXPR
139 || gimple_assign_rhs_code (assign) == WIDEN_PLUS_EXPR
140 || gimple_assign_rhs_code (assign) == WIDEN_MINUS_EXPR
141 || gimple_assign_rhs_code (assign) == FLOAT_EXPR)
142 {
143 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
144
145 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
146 if (rhs < lhs)
147 scalar_type = rhs_type;
148 }
149 }
150 else if (gcall *call = dyn_cast <gcall *> (stmt_info->stmt))
151 {
152 unsigned int i = 0;
153 if (gimple_call_internal_p (call))
154 {
155 internal_fn ifn = gimple_call_internal_fn (call);
156 if (internal_load_fn_p (ifn))
157 /* For loads the LHS type does the trick. */
158 i = ~0U;
159 else if (internal_store_fn_p (ifn))
160 {
161 /* For stores use the tyep of the stored value. */
162 i = internal_fn_stored_value_index (ifn);
163 scalar_type = TREE_TYPE (gimple_call_arg (call, i));
164 i = ~0U;
165 }
166 else if (internal_fn_mask_index (ifn) == 0)
167 i = 1;
168 }
169 if (i < gimple_call_num_args (call))
170 {
171 tree rhs_type = TREE_TYPE (gimple_call_arg (call, i));
172 if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (rhs_type)))
173 {
174 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
175 if (rhs < lhs)
176 scalar_type = rhs_type;
177 }
178 }
179 }
180
181 return scalar_type;
182 }
183
184
185 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
186 tested at run-time. Return TRUE if DDR was successfully inserted.
187 Return false if versioning is not supported. */
188
189 static opt_result
vect_mark_for_runtime_alias_test(ddr_p ddr,loop_vec_info loop_vinfo)190 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
191 {
192 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
193
194 if ((unsigned) param_vect_max_version_for_alias_checks == 0)
195 return opt_result::failure_at (vect_location,
196 "will not create alias checks, as"
197 " --param vect-max-version-for-alias-checks"
198 " == 0\n");
199
200 opt_result res
201 = runtime_alias_check_p (ddr, loop,
202 optimize_loop_nest_for_speed_p (loop));
203 if (!res)
204 return res;
205
206 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
207 return opt_result::success ();
208 }
209
210 /* Record that loop LOOP_VINFO needs to check that VALUE is nonzero. */
211
212 static void
vect_check_nonzero_value(loop_vec_info loop_vinfo,tree value)213 vect_check_nonzero_value (loop_vec_info loop_vinfo, tree value)
214 {
215 const vec<tree> &checks = LOOP_VINFO_CHECK_NONZERO (loop_vinfo);
216 for (unsigned int i = 0; i < checks.length(); ++i)
217 if (checks[i] == value)
218 return;
219
220 if (dump_enabled_p ())
221 dump_printf_loc (MSG_NOTE, vect_location,
222 "need run-time check that %T is nonzero\n",
223 value);
224 LOOP_VINFO_CHECK_NONZERO (loop_vinfo).safe_push (value);
225 }
226
227 /* Return true if we know that the order of vectorized DR_INFO_A and
228 vectorized DR_INFO_B will be the same as the order of DR_INFO_A and
229 DR_INFO_B. At least one of the accesses is a write. */
230
231 static bool
vect_preserves_scalar_order_p(dr_vec_info * dr_info_a,dr_vec_info * dr_info_b)232 vect_preserves_scalar_order_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b)
233 {
234 stmt_vec_info stmtinfo_a = dr_info_a->stmt;
235 stmt_vec_info stmtinfo_b = dr_info_b->stmt;
236
237 /* Single statements are always kept in their original order. */
238 if (!STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
239 && !STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
240 return true;
241
242 /* STMT_A and STMT_B belong to overlapping groups. All loads are
243 emitted at the position of the first scalar load.
244 Stores in a group are emitted at the position of the last scalar store.
245 Compute that position and check whether the resulting order matches
246 the current one. */
247 stmt_vec_info il_a = DR_GROUP_FIRST_ELEMENT (stmtinfo_a);
248 if (il_a)
249 {
250 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_a)))
251 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
252 s = DR_GROUP_NEXT_ELEMENT (s))
253 il_a = get_later_stmt (il_a, s);
254 else /* DR_IS_READ */
255 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_a); s;
256 s = DR_GROUP_NEXT_ELEMENT (s))
257 if (get_later_stmt (il_a, s) == il_a)
258 il_a = s;
259 }
260 else
261 il_a = stmtinfo_a;
262 stmt_vec_info il_b = DR_GROUP_FIRST_ELEMENT (stmtinfo_b);
263 if (il_b)
264 {
265 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmtinfo_b)))
266 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
267 s = DR_GROUP_NEXT_ELEMENT (s))
268 il_b = get_later_stmt (il_b, s);
269 else /* DR_IS_READ */
270 for (stmt_vec_info s = DR_GROUP_NEXT_ELEMENT (il_b); s;
271 s = DR_GROUP_NEXT_ELEMENT (s))
272 if (get_later_stmt (il_b, s) == il_b)
273 il_b = s;
274 }
275 else
276 il_b = stmtinfo_b;
277 bool a_after_b = (get_later_stmt (stmtinfo_a, stmtinfo_b) == stmtinfo_a);
278 return (get_later_stmt (il_a, il_b) == il_a) == a_after_b;
279 }
280
281 /* A subroutine of vect_analyze_data_ref_dependence. Handle
282 DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
283 distances. These distances are conservatively correct but they don't
284 reflect a guaranteed dependence.
285
286 Return true if this function does all the work necessary to avoid
287 an alias or false if the caller should use the dependence distances
288 to limit the vectorization factor in the usual way. LOOP_DEPTH is
289 the depth of the loop described by LOOP_VINFO and the other arguments
290 are as for vect_analyze_data_ref_dependence. */
291
292 static bool
vect_analyze_possibly_independent_ddr(data_dependence_relation * ddr,loop_vec_info loop_vinfo,int loop_depth,unsigned int * max_vf)293 vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
294 loop_vec_info loop_vinfo,
295 int loop_depth, unsigned int *max_vf)
296 {
297 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
298 for (lambda_vector &dist_v : DDR_DIST_VECTS (ddr))
299 {
300 int dist = dist_v[loop_depth];
301 if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
302 {
303 /* If the user asserted safelen >= DIST consecutive iterations
304 can be executed concurrently, assume independence.
305
306 ??? An alternative would be to add the alias check even
307 in this case, and vectorize the fallback loop with the
308 maximum VF set to safelen. However, if the user has
309 explicitly given a length, it's less likely that that
310 would be a win. */
311 if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
312 {
313 if ((unsigned int) loop->safelen < *max_vf)
314 *max_vf = loop->safelen;
315 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
316 continue;
317 }
318
319 /* For dependence distances of 2 or more, we have the option
320 of limiting VF or checking for an alias at runtime.
321 Prefer to check at runtime if we can, to avoid limiting
322 the VF unnecessarily when the bases are in fact independent.
323
324 Note that the alias checks will be removed if the VF ends up
325 being small enough. */
326 dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
327 dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
328 return (!STMT_VINFO_GATHER_SCATTER_P (dr_info_a->stmt)
329 && !STMT_VINFO_GATHER_SCATTER_P (dr_info_b->stmt)
330 && vect_mark_for_runtime_alias_test (ddr, loop_vinfo));
331 }
332 }
333 return true;
334 }
335
336
337 /* Function vect_analyze_data_ref_dependence.
338
339 FIXME: I needed to change the sense of the returned flag.
340
341 Return FALSE if there (might) exist a dependence between a memory-reference
342 DRA and a memory-reference DRB. When versioning for alias may check a
343 dependence at run-time, return TRUE. Adjust *MAX_VF according to
344 the data dependence. */
345
346 static opt_result
vect_analyze_data_ref_dependence(struct data_dependence_relation * ddr,loop_vec_info loop_vinfo,unsigned int * max_vf)347 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
348 loop_vec_info loop_vinfo,
349 unsigned int *max_vf)
350 {
351 unsigned int i;
352 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
353 struct data_reference *dra = DDR_A (ddr);
354 struct data_reference *drb = DDR_B (ddr);
355 dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (dra);
356 dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (drb);
357 stmt_vec_info stmtinfo_a = dr_info_a->stmt;
358 stmt_vec_info stmtinfo_b = dr_info_b->stmt;
359 lambda_vector dist_v;
360 unsigned int loop_depth;
361
362 /* If user asserted safelen consecutive iterations can be
363 executed concurrently, assume independence. */
364 auto apply_safelen = [&]()
365 {
366 if (loop->safelen >= 2)
367 {
368 if ((unsigned int) loop->safelen < *max_vf)
369 *max_vf = loop->safelen;
370 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
371 return true;
372 }
373 return false;
374 };
375
376 /* In loop analysis all data references should be vectorizable. */
377 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
378 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
379 gcc_unreachable ();
380
381 /* Independent data accesses. */
382 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
383 return opt_result::success ();
384
385 if (dra == drb
386 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
387 return opt_result::success ();
388
389 /* We do not have to consider dependences between accesses that belong
390 to the same group, unless the stride could be smaller than the
391 group size. */
392 if (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
393 && (DR_GROUP_FIRST_ELEMENT (stmtinfo_a)
394 == DR_GROUP_FIRST_ELEMENT (stmtinfo_b))
395 && !STMT_VINFO_STRIDED_P (stmtinfo_a))
396 return opt_result::success ();
397
398 /* Even if we have an anti-dependence then, as the vectorized loop covers at
399 least two scalar iterations, there is always also a true dependence.
400 As the vectorizer does not re-order loads and stores we can ignore
401 the anti-dependence if TBAA can disambiguate both DRs similar to the
402 case with known negative distance anti-dependences (positive
403 distance anti-dependences would violate TBAA constraints). */
404 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
405 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
406 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
407 get_alias_set (DR_REF (drb))))
408 return opt_result::success ();
409
410 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
411 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
412 {
413 if (apply_safelen ())
414 return opt_result::success ();
415
416 return opt_result::failure_at
417 (stmtinfo_a->stmt,
418 "possible alias involving gather/scatter between %T and %T\n",
419 DR_REF (dra), DR_REF (drb));
420 }
421
422 /* Unknown data dependence. */
423 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
424 {
425 if (apply_safelen ())
426 return opt_result::success ();
427
428 if (dump_enabled_p ())
429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
430 "versioning for alias required: "
431 "can't determine dependence between %T and %T\n",
432 DR_REF (dra), DR_REF (drb));
433
434 /* Add to list of ddrs that need to be tested at run-time. */
435 return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
436 }
437
438 /* Known data dependence. */
439 if (DDR_NUM_DIST_VECTS (ddr) == 0)
440 {
441 if (apply_safelen ())
442 return opt_result::success ();
443
444 if (dump_enabled_p ())
445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmtinfo_a->stmt,
446 "versioning for alias required: "
447 "bad dist vector for %T and %T\n",
448 DR_REF (dra), DR_REF (drb));
449 /* Add to list of ddrs that need to be tested at run-time. */
450 return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
451 }
452
453 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
454
455 if (DDR_COULD_BE_INDEPENDENT_P (ddr)
456 && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
457 loop_depth, max_vf))
458 return opt_result::success ();
459
460 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
461 {
462 int dist = dist_v[loop_depth];
463
464 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location,
466 "dependence distance = %d.\n", dist);
467
468 if (dist == 0)
469 {
470 if (dump_enabled_p ())
471 dump_printf_loc (MSG_NOTE, vect_location,
472 "dependence distance == 0 between %T and %T\n",
473 DR_REF (dra), DR_REF (drb));
474
475 /* When we perform grouped accesses and perform implicit CSE
476 by detecting equal accesses and doing disambiguation with
477 runtime alias tests like for
478 .. = a[i];
479 .. = a[i+1];
480 a[i] = ..;
481 a[i+1] = ..;
482 *p = ..;
483 .. = a[i];
484 .. = a[i+1];
485 where we will end up loading { a[i], a[i+1] } once, make
486 sure that inserting group loads before the first load and
487 stores after the last store will do the right thing.
488 Similar for groups like
489 a[i] = ...;
490 ... = a[i];
491 a[i+1] = ...;
492 where loads from the group interleave with the store. */
493 if (!vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
494 return opt_result::failure_at (stmtinfo_a->stmt,
495 "READ_WRITE dependence"
496 " in interleaving.\n");
497
498 if (loop->safelen < 2)
499 {
500 tree indicator = dr_zero_step_indicator (dra);
501 if (!indicator || integer_zerop (indicator))
502 return opt_result::failure_at (stmtinfo_a->stmt,
503 "access also has a zero step\n");
504 else if (TREE_CODE (indicator) != INTEGER_CST)
505 vect_check_nonzero_value (loop_vinfo, indicator);
506 }
507 continue;
508 }
509
510 if (dist > 0 && DDR_REVERSED_P (ddr))
511 {
512 /* If DDR_REVERSED_P the order of the data-refs in DDR was
513 reversed (to make distance vector positive), and the actual
514 distance is negative. */
515 if (dump_enabled_p ())
516 dump_printf_loc (MSG_NOTE, vect_location,
517 "dependence distance negative.\n");
518 /* When doing outer loop vectorization, we need to check if there is
519 a backward dependence at the inner loop level if the dependence
520 at the outer loop is reversed. See PR81740. */
521 if (nested_in_vect_loop_p (loop, stmtinfo_a)
522 || nested_in_vect_loop_p (loop, stmtinfo_b))
523 {
524 unsigned inner_depth = index_in_loop_nest (loop->inner->num,
525 DDR_LOOP_NEST (ddr));
526 if (dist_v[inner_depth] < 0)
527 return opt_result::failure_at (stmtinfo_a->stmt,
528 "not vectorized, dependence "
529 "between data-refs %T and %T\n",
530 DR_REF (dra), DR_REF (drb));
531 }
532 /* Record a negative dependence distance to later limit the
533 amount of stmt copying / unrolling we can perform.
534 Only need to handle read-after-write dependence. */
535 if (DR_IS_READ (drb)
536 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
537 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
538 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
539 continue;
540 }
541
542 unsigned int abs_dist = abs (dist);
543 if (abs_dist >= 2 && abs_dist < *max_vf)
544 {
545 /* The dependence distance requires reduction of the maximal
546 vectorization factor. */
547 *max_vf = abs_dist;
548 if (dump_enabled_p ())
549 dump_printf_loc (MSG_NOTE, vect_location,
550 "adjusting maximal vectorization factor to %i\n",
551 *max_vf);
552 }
553
554 if (abs_dist >= *max_vf)
555 {
556 /* Dependence distance does not create dependence, as far as
557 vectorization is concerned, in this case. */
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location,
560 "dependence distance >= VF.\n");
561 continue;
562 }
563
564 return opt_result::failure_at (stmtinfo_a->stmt,
565 "not vectorized, possible dependence "
566 "between data-refs %T and %T\n",
567 DR_REF (dra), DR_REF (drb));
568 }
569
570 return opt_result::success ();
571 }
572
573 /* Function vect_analyze_data_ref_dependences.
574
575 Examine all the data references in the loop, and make sure there do not
576 exist any data dependences between them. Set *MAX_VF according to
577 the maximum vectorization factor the data dependences allow. */
578
579 opt_result
vect_analyze_data_ref_dependences(loop_vec_info loop_vinfo,unsigned int * max_vf)580 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
581 unsigned int *max_vf)
582 {
583 unsigned int i;
584 struct data_dependence_relation *ddr;
585
586 DUMP_VECT_SCOPE ("vect_analyze_data_ref_dependences");
587
588 if (!LOOP_VINFO_DDRS (loop_vinfo).exists ())
589 {
590 LOOP_VINFO_DDRS (loop_vinfo)
591 .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
592 * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
593 /* We do not need read-read dependences. */
594 bool res = compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
595 &LOOP_VINFO_DDRS (loop_vinfo),
596 LOOP_VINFO_LOOP_NEST (loop_vinfo),
597 false);
598 gcc_assert (res);
599 }
600
601 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
602
603 /* For epilogues we either have no aliases or alias versioning
604 was applied to original loop. Therefore we may just get max_vf
605 using VF of original loop. */
606 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
607 *max_vf = LOOP_VINFO_ORIG_MAX_VECT_FACTOR (loop_vinfo);
608 else
609 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
610 {
611 opt_result res
612 = vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf);
613 if (!res)
614 return res;
615 }
616
617 return opt_result::success ();
618 }
619
620
621 /* Function vect_slp_analyze_data_ref_dependence.
622
623 Return TRUE if there (might) exist a dependence between a memory-reference
624 DRA and a memory-reference DRB for VINFO. When versioning for alias
625 may check a dependence at run-time, return FALSE. Adjust *MAX_VF
626 according to the data dependence. */
627
628 static bool
vect_slp_analyze_data_ref_dependence(vec_info * vinfo,struct data_dependence_relation * ddr)629 vect_slp_analyze_data_ref_dependence (vec_info *vinfo,
630 struct data_dependence_relation *ddr)
631 {
632 struct data_reference *dra = DDR_A (ddr);
633 struct data_reference *drb = DDR_B (ddr);
634 dr_vec_info *dr_info_a = vinfo->lookup_dr (dra);
635 dr_vec_info *dr_info_b = vinfo->lookup_dr (drb);
636
637 /* We need to check dependences of statements marked as unvectorizable
638 as well, they still can prohibit vectorization. */
639
640 /* Independent data accesses. */
641 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
642 return false;
643
644 if (dra == drb)
645 return false;
646
647 /* Read-read is OK. */
648 if (DR_IS_READ (dra) && DR_IS_READ (drb))
649 return false;
650
651 /* If dra and drb are part of the same interleaving chain consider
652 them independent. */
653 if (STMT_VINFO_GROUPED_ACCESS (dr_info_a->stmt)
654 && (DR_GROUP_FIRST_ELEMENT (dr_info_a->stmt)
655 == DR_GROUP_FIRST_ELEMENT (dr_info_b->stmt)))
656 return false;
657
658 /* Unknown data dependence. */
659 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
660 {
661 if (dump_enabled_p ())
662 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
663 "can't determine dependence between %T and %T\n",
664 DR_REF (dra), DR_REF (drb));
665 }
666 else if (dump_enabled_p ())
667 dump_printf_loc (MSG_NOTE, vect_location,
668 "determined dependence between %T and %T\n",
669 DR_REF (dra), DR_REF (drb));
670
671 return true;
672 }
673
674
675 /* Analyze dependences involved in the transform of SLP NODE. STORES
676 contain the vector of scalar stores of this instance if we are
677 disambiguating the loads. */
678
679 static bool
vect_slp_analyze_node_dependences(vec_info * vinfo,slp_tree node,vec<stmt_vec_info> stores,stmt_vec_info last_store_info)680 vect_slp_analyze_node_dependences (vec_info *vinfo, slp_tree node,
681 vec<stmt_vec_info> stores,
682 stmt_vec_info last_store_info)
683 {
684 /* This walks over all stmts involved in the SLP load/store done
685 in NODE verifying we can sink them up to the last stmt in the
686 group. */
687 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (node))))
688 {
689 stmt_vec_info last_access_info = vect_find_last_scalar_stmt_in_slp (node);
690 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
691 {
692 stmt_vec_info access_info
693 = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
694 if (access_info == last_access_info)
695 continue;
696 data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
697 ao_ref ref;
698 bool ref_initialized_p = false;
699 for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
700 gsi_stmt (gsi) != last_access_info->stmt; gsi_next (&gsi))
701 {
702 gimple *stmt = gsi_stmt (gsi);
703 if (! gimple_vuse (stmt))
704 continue;
705
706 /* If we couldn't record a (single) data reference for this
707 stmt we have to resort to the alias oracle. */
708 stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
709 data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
710 if (!dr_b)
711 {
712 /* We are moving a store - this means
713 we cannot use TBAA for disambiguation. */
714 if (!ref_initialized_p)
715 ao_ref_init (&ref, DR_REF (dr_a));
716 if (stmt_may_clobber_ref_p_1 (stmt, &ref, false)
717 || ref_maybe_used_by_stmt_p (stmt, &ref, false))
718 return false;
719 continue;
720 }
721
722 bool dependent = false;
723 /* If we run into a store of this same instance (we've just
724 marked those) then delay dependence checking until we run
725 into the last store because this is where it will have
726 been sunk to (and we verify if we can do that as well). */
727 if (gimple_visited_p (stmt))
728 {
729 if (stmt_info != last_store_info)
730 continue;
731
732 for (stmt_vec_info &store_info : stores)
733 {
734 data_reference *store_dr
735 = STMT_VINFO_DATA_REF (store_info);
736 ddr_p ddr = initialize_data_dependence_relation
737 (dr_a, store_dr, vNULL);
738 dependent
739 = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
740 free_dependence_relation (ddr);
741 if (dependent)
742 break;
743 }
744 }
745 else
746 {
747 ddr_p ddr = initialize_data_dependence_relation (dr_a,
748 dr_b, vNULL);
749 dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
750 free_dependence_relation (ddr);
751 }
752 if (dependent)
753 return false;
754 }
755 }
756 }
757 else /* DR_IS_READ */
758 {
759 stmt_vec_info first_access_info
760 = vect_find_first_scalar_stmt_in_slp (node);
761 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (node).length (); ++k)
762 {
763 stmt_vec_info access_info
764 = vect_orig_stmt (SLP_TREE_SCALAR_STMTS (node)[k]);
765 if (access_info == first_access_info)
766 continue;
767 data_reference *dr_a = STMT_VINFO_DATA_REF (access_info);
768 ao_ref ref;
769 bool ref_initialized_p = false;
770 for (gimple_stmt_iterator gsi = gsi_for_stmt (access_info->stmt);
771 gsi_stmt (gsi) != first_access_info->stmt; gsi_prev (&gsi))
772 {
773 gimple *stmt = gsi_stmt (gsi);
774 if (! gimple_vdef (stmt))
775 continue;
776
777 /* If we couldn't record a (single) data reference for this
778 stmt we have to resort to the alias oracle. */
779 stmt_vec_info stmt_info = vinfo->lookup_stmt (stmt);
780 data_reference *dr_b = STMT_VINFO_DATA_REF (stmt_info);
781
782 /* We are hoisting a load - this means we can use
783 TBAA for disambiguation. */
784 if (!ref_initialized_p)
785 ao_ref_init (&ref, DR_REF (dr_a));
786 if (stmt_may_clobber_ref_p_1 (stmt, &ref, true))
787 {
788 if (!dr_b)
789 return false;
790 /* Resort to dependence checking below. */
791 }
792 else
793 /* No dependence. */
794 continue;
795
796 bool dependent = false;
797 /* If we run into a store of this same instance (we've just
798 marked those) then delay dependence checking until we run
799 into the last store because this is where it will have
800 been sunk to (and we verify if we can do that as well). */
801 if (gimple_visited_p (stmt))
802 {
803 if (stmt_info != last_store_info)
804 continue;
805
806 for (stmt_vec_info &store_info : stores)
807 {
808 data_reference *store_dr
809 = STMT_VINFO_DATA_REF (store_info);
810 ddr_p ddr = initialize_data_dependence_relation
811 (dr_a, store_dr, vNULL);
812 dependent
813 = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
814 free_dependence_relation (ddr);
815 if (dependent)
816 break;
817 }
818 }
819 else
820 {
821 ddr_p ddr = initialize_data_dependence_relation (dr_a,
822 dr_b, vNULL);
823 dependent = vect_slp_analyze_data_ref_dependence (vinfo, ddr);
824 free_dependence_relation (ddr);
825 }
826 if (dependent)
827 return false;
828 }
829 }
830 }
831 return true;
832 }
833
834
835 /* Function vect_analyze_data_ref_dependences.
836
837 Examine all the data references in the basic-block, and make sure there
838 do not exist any data dependences between them. Set *MAX_VF according to
839 the maximum vectorization factor the data dependences allow. */
840
841 bool
vect_slp_analyze_instance_dependence(vec_info * vinfo,slp_instance instance)842 vect_slp_analyze_instance_dependence (vec_info *vinfo, slp_instance instance)
843 {
844 DUMP_VECT_SCOPE ("vect_slp_analyze_instance_dependence");
845
846 /* The stores of this instance are at the root of the SLP tree. */
847 slp_tree store = NULL;
848 if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store)
849 store = SLP_INSTANCE_TREE (instance);
850
851 /* Verify we can sink stores to the vectorized stmt insert location. */
852 stmt_vec_info last_store_info = NULL;
853 if (store)
854 {
855 if (! vect_slp_analyze_node_dependences (vinfo, store, vNULL, NULL))
856 return false;
857
858 /* Mark stores in this instance and remember the last one. */
859 last_store_info = vect_find_last_scalar_stmt_in_slp (store);
860 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
861 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, true);
862 }
863
864 bool res = true;
865
866 /* Verify we can sink loads to the vectorized stmt insert location,
867 special-casing stores of this instance. */
868 for (slp_tree &load : SLP_INSTANCE_LOADS (instance))
869 if (! vect_slp_analyze_node_dependences (vinfo, load,
870 store
871 ? SLP_TREE_SCALAR_STMTS (store)
872 : vNULL, last_store_info))
873 {
874 res = false;
875 break;
876 }
877
878 /* Unset the visited flag. */
879 if (store)
880 for (unsigned k = 0; k < SLP_TREE_SCALAR_STMTS (store).length (); ++k)
881 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k]->stmt, false);
882
883 return res;
884 }
885
886 /* Return the misalignment of DR_INFO accessed in VECTYPE with OFFSET
887 applied. */
888
889 int
dr_misalignment(dr_vec_info * dr_info,tree vectype,poly_int64 offset)890 dr_misalignment (dr_vec_info *dr_info, tree vectype, poly_int64 offset)
891 {
892 HOST_WIDE_INT diff = 0;
893 /* Alignment is only analyzed for the first element of a DR group,
894 use that but adjust misalignment by the offset of the access. */
895 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
896 {
897 dr_vec_info *first_dr
898 = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
899 /* vect_analyze_data_ref_accesses guarantees that DR_INIT are
900 INTEGER_CSTs and the first element in the group has the lowest
901 address. */
902 diff = (TREE_INT_CST_LOW (DR_INIT (dr_info->dr))
903 - TREE_INT_CST_LOW (DR_INIT (first_dr->dr)));
904 gcc_assert (diff >= 0);
905 dr_info = first_dr;
906 }
907
908 int misalign = dr_info->misalignment;
909 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
910 if (misalign == DR_MISALIGNMENT_UNKNOWN)
911 return misalign;
912
913 /* If the access is only aligned for a vector type with smaller alignment
914 requirement the access has unknown misalignment. */
915 if (maybe_lt (dr_info->target_alignment * BITS_PER_UNIT,
916 targetm.vectorize.preferred_vector_alignment (vectype)))
917 return DR_MISALIGNMENT_UNKNOWN;
918
919 /* Apply the offset from the DR group start and the externally supplied
920 offset which can for example result from a negative stride access. */
921 poly_int64 misalignment = misalign + diff + offset;
922
923 /* vect_compute_data_ref_alignment will have ensured that target_alignment
924 is constant and otherwise set misalign to DR_MISALIGNMENT_UNKNOWN. */
925 unsigned HOST_WIDE_INT target_alignment_c
926 = dr_info->target_alignment.to_constant ();
927 if (!known_misalignment (misalignment, target_alignment_c, &misalign))
928 return DR_MISALIGNMENT_UNKNOWN;
929 return misalign;
930 }
931
932 /* Record the base alignment guarantee given by DRB, which occurs
933 in STMT_INFO. */
934
935 static void
vect_record_base_alignment(vec_info * vinfo,stmt_vec_info stmt_info,innermost_loop_behavior * drb)936 vect_record_base_alignment (vec_info *vinfo, stmt_vec_info stmt_info,
937 innermost_loop_behavior *drb)
938 {
939 bool existed;
940 std::pair<stmt_vec_info, innermost_loop_behavior *> &entry
941 = vinfo->base_alignments.get_or_insert (drb->base_address, &existed);
942 if (!existed || entry.second->base_alignment < drb->base_alignment)
943 {
944 entry = std::make_pair (stmt_info, drb);
945 if (dump_enabled_p ())
946 dump_printf_loc (MSG_NOTE, vect_location,
947 "recording new base alignment for %T\n"
948 " alignment: %d\n"
949 " misalignment: %d\n"
950 " based on: %G",
951 drb->base_address,
952 drb->base_alignment,
953 drb->base_misalignment,
954 stmt_info->stmt);
955 }
956 }
957
958 /* If the region we're going to vectorize is reached, all unconditional
959 data references occur at least once. We can therefore pool the base
960 alignment guarantees from each unconditional reference. Do this by
961 going through all the data references in VINFO and checking whether
962 the containing statement makes the reference unconditionally. If so,
963 record the alignment of the base address in VINFO so that it can be
964 used for all other references with the same base. */
965
966 void
vect_record_base_alignments(vec_info * vinfo)967 vect_record_base_alignments (vec_info *vinfo)
968 {
969 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
970 class loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
971 for (data_reference *dr : vinfo->shared->datarefs)
972 {
973 dr_vec_info *dr_info = vinfo->lookup_dr (dr);
974 stmt_vec_info stmt_info = dr_info->stmt;
975 if (!DR_IS_CONDITIONAL_IN_STMT (dr)
976 && STMT_VINFO_VECTORIZABLE (stmt_info)
977 && !STMT_VINFO_GATHER_SCATTER_P (stmt_info))
978 {
979 vect_record_base_alignment (vinfo, stmt_info, &DR_INNERMOST (dr));
980
981 /* If DR is nested in the loop that is being vectorized, we can also
982 record the alignment of the base wrt the outer loop. */
983 if (loop && nested_in_vect_loop_p (loop, stmt_info))
984 vect_record_base_alignment
985 (vinfo, stmt_info, &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info));
986 }
987 }
988 }
989
990 /* Function vect_compute_data_ref_alignment
991
992 Compute the misalignment of the data reference DR_INFO when vectorizing
993 with VECTYPE.
994
995 Output:
996 1. initialized misalignment info for DR_INFO
997
998 FOR NOW: No analysis is actually performed. Misalignment is calculated
999 only for trivial cases. TODO. */
1000
1001 static void
vect_compute_data_ref_alignment(vec_info * vinfo,dr_vec_info * dr_info,tree vectype)1002 vect_compute_data_ref_alignment (vec_info *vinfo, dr_vec_info *dr_info,
1003 tree vectype)
1004 {
1005 stmt_vec_info stmt_info = dr_info->stmt;
1006 vec_base_alignments *base_alignments = &vinfo->base_alignments;
1007 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
1008 class loop *loop = NULL;
1009 tree ref = DR_REF (dr_info->dr);
1010
1011 if (dump_enabled_p ())
1012 dump_printf_loc (MSG_NOTE, vect_location,
1013 "vect_compute_data_ref_alignment:\n");
1014
1015 if (loop_vinfo)
1016 loop = LOOP_VINFO_LOOP (loop_vinfo);
1017
1018 /* Initialize misalignment to unknown. */
1019 SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
1020
1021 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
1022 return;
1023
1024 innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
1025 bool step_preserves_misalignment_p;
1026
1027 poly_uint64 vector_alignment
1028 = exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
1029 BITS_PER_UNIT);
1030 SET_DR_TARGET_ALIGNMENT (dr_info, vector_alignment);
1031
1032 /* If the main loop has peeled for alignment we have no way of knowing
1033 whether the data accesses in the epilogues are aligned. We can't at
1034 compile time answer the question whether we have entered the main loop or
1035 not. Fixes PR 92351. */
1036 if (loop_vinfo)
1037 {
1038 loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
1039 if (orig_loop_vinfo
1040 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (orig_loop_vinfo) != 0)
1041 return;
1042 }
1043
1044 unsigned HOST_WIDE_INT vect_align_c;
1045 if (!vector_alignment.is_constant (&vect_align_c))
1046 return;
1047
1048 /* No step for BB vectorization. */
1049 if (!loop)
1050 {
1051 gcc_assert (integer_zerop (drb->step));
1052 step_preserves_misalignment_p = true;
1053 }
1054
1055 /* In case the dataref is in an inner-loop of the loop that is being
1056 vectorized (LOOP), we use the base and misalignment information
1057 relative to the outer-loop (LOOP). This is ok only if the misalignment
1058 stays the same throughout the execution of the inner-loop, which is why
1059 we have to check that the stride of the dataref in the inner-loop evenly
1060 divides by the vector alignment. */
1061 else if (nested_in_vect_loop_p (loop, stmt_info))
1062 {
1063 step_preserves_misalignment_p
1064 = (DR_STEP_ALIGNMENT (dr_info->dr) % vect_align_c) == 0;
1065
1066 if (dump_enabled_p ())
1067 {
1068 if (step_preserves_misalignment_p)
1069 dump_printf_loc (MSG_NOTE, vect_location,
1070 "inner step divides the vector alignment.\n");
1071 else
1072 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1073 "inner step doesn't divide the vector"
1074 " alignment.\n");
1075 }
1076 }
1077
1078 /* Similarly we can only use base and misalignment information relative to
1079 an innermost loop if the misalignment stays the same throughout the
1080 execution of the loop. As above, this is the case if the stride of
1081 the dataref evenly divides by the alignment. */
1082 else
1083 {
1084 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1085 step_preserves_misalignment_p
1086 = multiple_p (DR_STEP_ALIGNMENT (dr_info->dr) * vf, vect_align_c);
1087
1088 if (!step_preserves_misalignment_p && dump_enabled_p ())
1089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1090 "step doesn't divide the vector alignment.\n");
1091 }
1092
1093 unsigned int base_alignment = drb->base_alignment;
1094 unsigned int base_misalignment = drb->base_misalignment;
1095
1096 /* Calculate the maximum of the pooled base address alignment and the
1097 alignment that we can compute for DR itself. */
1098 std::pair<stmt_vec_info, innermost_loop_behavior *> *entry
1099 = base_alignments->get (drb->base_address);
1100 if (entry
1101 && base_alignment < (*entry).second->base_alignment
1102 && (loop_vinfo
1103 || (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt_info->stmt),
1104 gimple_bb (entry->first->stmt))
1105 && (gimple_bb (stmt_info->stmt) != gimple_bb (entry->first->stmt)
1106 || (entry->first->dr_aux.group <= dr_info->group)))))
1107 {
1108 base_alignment = entry->second->base_alignment;
1109 base_misalignment = entry->second->base_misalignment;
1110 }
1111
1112 if (drb->offset_alignment < vect_align_c
1113 || !step_preserves_misalignment_p
1114 /* We need to know whether the step wrt the vectorized loop is
1115 negative when computing the starting misalignment below. */
1116 || TREE_CODE (drb->step) != INTEGER_CST)
1117 {
1118 if (dump_enabled_p ())
1119 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1120 "Unknown alignment for access: %T\n", ref);
1121 return;
1122 }
1123
1124 if (base_alignment < vect_align_c)
1125 {
1126 unsigned int max_alignment;
1127 tree base = get_base_for_alignment (drb->base_address, &max_alignment);
1128 if (max_alignment < vect_align_c
1129 || !vect_can_force_dr_alignment_p (base,
1130 vect_align_c * BITS_PER_UNIT))
1131 {
1132 if (dump_enabled_p ())
1133 dump_printf_loc (MSG_NOTE, vect_location,
1134 "can't force alignment of ref: %T\n", ref);
1135 return;
1136 }
1137
1138 /* Force the alignment of the decl.
1139 NOTE: This is the only change to the code we make during
1140 the analysis phase, before deciding to vectorize the loop. */
1141 if (dump_enabled_p ())
1142 dump_printf_loc (MSG_NOTE, vect_location,
1143 "force alignment of %T\n", ref);
1144
1145 dr_info->base_decl = base;
1146 dr_info->base_misaligned = true;
1147 base_misalignment = 0;
1148 }
1149 poly_int64 misalignment
1150 = base_misalignment + wi::to_poly_offset (drb->init).force_shwi ();
1151
1152 unsigned int const_misalignment;
1153 if (!known_misalignment (misalignment, vect_align_c, &const_misalignment))
1154 {
1155 if (dump_enabled_p ())
1156 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1157 "Non-constant misalignment for access: %T\n", ref);
1158 return;
1159 }
1160
1161 SET_DR_MISALIGNMENT (dr_info, const_misalignment);
1162
1163 if (dump_enabled_p ())
1164 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1165 "misalign = %d bytes of ref %T\n",
1166 const_misalignment, ref);
1167
1168 return;
1169 }
1170
1171 /* Return whether DR_INFO, which is related to DR_PEEL_INFO in
1172 that it only differs in DR_INIT, is aligned if DR_PEEL_INFO
1173 is made aligned via peeling. */
1174
1175 static bool
vect_dr_aligned_if_related_peeled_dr_is(dr_vec_info * dr_info,dr_vec_info * dr_peel_info)1176 vect_dr_aligned_if_related_peeled_dr_is (dr_vec_info *dr_info,
1177 dr_vec_info *dr_peel_info)
1178 {
1179 if (multiple_p (DR_TARGET_ALIGNMENT (dr_peel_info),
1180 DR_TARGET_ALIGNMENT (dr_info)))
1181 {
1182 poly_offset_int diff
1183 = (wi::to_poly_offset (DR_INIT (dr_peel_info->dr))
1184 - wi::to_poly_offset (DR_INIT (dr_info->dr)));
1185 if (known_eq (diff, 0)
1186 || multiple_p (diff, DR_TARGET_ALIGNMENT (dr_info)))
1187 return true;
1188 }
1189 return false;
1190 }
1191
1192 /* Return whether DR_INFO is aligned if DR_PEEL_INFO is made
1193 aligned via peeling. */
1194
1195 static bool
vect_dr_aligned_if_peeled_dr_is(dr_vec_info * dr_info,dr_vec_info * dr_peel_info)1196 vect_dr_aligned_if_peeled_dr_is (dr_vec_info *dr_info,
1197 dr_vec_info *dr_peel_info)
1198 {
1199 if (!operand_equal_p (DR_BASE_ADDRESS (dr_info->dr),
1200 DR_BASE_ADDRESS (dr_peel_info->dr), 0)
1201 || !operand_equal_p (DR_OFFSET (dr_info->dr),
1202 DR_OFFSET (dr_peel_info->dr), 0)
1203 || !operand_equal_p (DR_STEP (dr_info->dr),
1204 DR_STEP (dr_peel_info->dr), 0))
1205 return false;
1206
1207 return vect_dr_aligned_if_related_peeled_dr_is (dr_info, dr_peel_info);
1208 }
1209
1210 /* Compute the value for dr_info->misalign so that the access appears
1211 aligned. This is used by peeling to compensate for dr_misalignment
1212 applying the offset for negative step. */
1213
1214 int
vect_dr_misalign_for_aligned_access(dr_vec_info * dr_info)1215 vect_dr_misalign_for_aligned_access (dr_vec_info *dr_info)
1216 {
1217 if (tree_int_cst_sgn (DR_STEP (dr_info->dr)) >= 0)
1218 return 0;
1219
1220 tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
1221 poly_int64 misalignment
1222 = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
1223 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
1224
1225 unsigned HOST_WIDE_INT target_alignment_c;
1226 int misalign;
1227 if (!dr_info->target_alignment.is_constant (&target_alignment_c)
1228 || !known_misalignment (misalignment, target_alignment_c, &misalign))
1229 return DR_MISALIGNMENT_UNKNOWN;
1230 return misalign;
1231 }
1232
1233 /* Function vect_update_misalignment_for_peel.
1234 Sets DR_INFO's misalignment
1235 - to 0 if it has the same alignment as DR_PEEL_INFO,
1236 - to the misalignment computed using NPEEL if DR_INFO's salignment is known,
1237 - to -1 (unknown) otherwise.
1238
1239 DR_INFO - the data reference whose misalignment is to be adjusted.
1240 DR_PEEL_INFO - the data reference whose misalignment is being made
1241 zero in the vector loop by the peel.
1242 NPEEL - the number of iterations in the peel loop if the misalignment
1243 of DR_PEEL_INFO is known at compile time. */
1244
1245 static void
vect_update_misalignment_for_peel(dr_vec_info * dr_info,dr_vec_info * dr_peel_info,int npeel)1246 vect_update_misalignment_for_peel (dr_vec_info *dr_info,
1247 dr_vec_info *dr_peel_info, int npeel)
1248 {
1249 /* If dr_info is aligned of dr_peel_info is, then mark it so. */
1250 if (vect_dr_aligned_if_peeled_dr_is (dr_info, dr_peel_info))
1251 {
1252 SET_DR_MISALIGNMENT (dr_info,
1253 vect_dr_misalign_for_aligned_access (dr_peel_info));
1254 return;
1255 }
1256
1257 unsigned HOST_WIDE_INT alignment;
1258 if (DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment)
1259 && known_alignment_for_access_p (dr_info,
1260 STMT_VINFO_VECTYPE (dr_info->stmt))
1261 && known_alignment_for_access_p (dr_peel_info,
1262 STMT_VINFO_VECTYPE (dr_peel_info->stmt)))
1263 {
1264 int misal = dr_info->misalignment;
1265 misal += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
1266 misal &= alignment - 1;
1267 set_dr_misalignment (dr_info, misal);
1268 return;
1269 }
1270
1271 if (dump_enabled_p ())
1272 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment " \
1273 "to unknown (-1).\n");
1274 SET_DR_MISALIGNMENT (dr_info, DR_MISALIGNMENT_UNKNOWN);
1275 }
1276
1277 /* Return true if alignment is relevant for DR_INFO. */
1278
1279 static bool
vect_relevant_for_alignment_p(dr_vec_info * dr_info)1280 vect_relevant_for_alignment_p (dr_vec_info *dr_info)
1281 {
1282 stmt_vec_info stmt_info = dr_info->stmt;
1283
1284 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1285 return false;
1286
1287 /* For interleaving, only the alignment of the first access matters. */
1288 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1289 && DR_GROUP_FIRST_ELEMENT (stmt_info) != stmt_info)
1290 return false;
1291
1292 /* Scatter-gather and invariant accesses continue to address individual
1293 scalars, so vector-level alignment is irrelevant. */
1294 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info)
1295 || integer_zerop (DR_STEP (dr_info->dr)))
1296 return false;
1297
1298 /* Strided accesses perform only component accesses, alignment is
1299 irrelevant for them. */
1300 if (STMT_VINFO_STRIDED_P (stmt_info)
1301 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1302 return false;
1303
1304 return true;
1305 }
1306
1307 /* Given an memory reference EXP return whether its alignment is less
1308 than its size. */
1309
1310 static bool
not_size_aligned(tree exp)1311 not_size_aligned (tree exp)
1312 {
1313 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
1314 return true;
1315
1316 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
1317 > get_object_alignment (exp));
1318 }
1319
1320 /* Function vector_alignment_reachable_p
1321
1322 Return true if vector alignment for DR_INFO is reachable by peeling
1323 a few loop iterations. Return false otherwise. */
1324
1325 static bool
vector_alignment_reachable_p(dr_vec_info * dr_info)1326 vector_alignment_reachable_p (dr_vec_info *dr_info)
1327 {
1328 stmt_vec_info stmt_info = dr_info->stmt;
1329 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1330
1331 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1332 {
1333 /* For interleaved access we peel only if number of iterations in
1334 the prolog loop ({VF - misalignment}), is a multiple of the
1335 number of the interleaved accesses. */
1336 int elem_size, mis_in_elements;
1337
1338 /* FORNOW: handle only known alignment. */
1339 if (!known_alignment_for_access_p (dr_info, vectype))
1340 return false;
1341
1342 poly_uint64 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1343 poly_uint64 vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
1344 elem_size = vector_element_size (vector_size, nelements);
1345 mis_in_elements = dr_misalignment (dr_info, vectype) / elem_size;
1346
1347 if (!multiple_p (nelements - mis_in_elements, DR_GROUP_SIZE (stmt_info)))
1348 return false;
1349 }
1350
1351 /* If misalignment is known at the compile time then allow peeling
1352 only if natural alignment is reachable through peeling. */
1353 if (known_alignment_for_access_p (dr_info, vectype)
1354 && !aligned_access_p (dr_info, vectype))
1355 {
1356 HOST_WIDE_INT elmsize =
1357 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1358 if (dump_enabled_p ())
1359 {
1360 dump_printf_loc (MSG_NOTE, vect_location,
1361 "data size = %wd. misalignment = %d.\n", elmsize,
1362 dr_misalignment (dr_info, vectype));
1363 }
1364 if (dr_misalignment (dr_info, vectype) % elmsize)
1365 {
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1368 "data size does not divide the misalignment.\n");
1369 return false;
1370 }
1371 }
1372
1373 if (!known_alignment_for_access_p (dr_info, vectype))
1374 {
1375 tree type = TREE_TYPE (DR_REF (dr_info->dr));
1376 bool is_packed = not_size_aligned (DR_REF (dr_info->dr));
1377 if (dump_enabled_p ())
1378 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1379 "Unknown misalignment, %snaturally aligned\n",
1380 is_packed ? "not " : "");
1381 return targetm.vectorize.vector_alignment_reachable (type, is_packed);
1382 }
1383
1384 return true;
1385 }
1386
1387
1388 /* Calculate the cost of the memory access represented by DR_INFO. */
1389
1390 static void
vect_get_data_access_cost(vec_info * vinfo,dr_vec_info * dr_info,dr_alignment_support alignment_support_scheme,int misalignment,unsigned int * inside_cost,unsigned int * outside_cost,stmt_vector_for_cost * body_cost_vec,stmt_vector_for_cost * prologue_cost_vec)1391 vect_get_data_access_cost (vec_info *vinfo, dr_vec_info *dr_info,
1392 dr_alignment_support alignment_support_scheme,
1393 int misalignment,
1394 unsigned int *inside_cost,
1395 unsigned int *outside_cost,
1396 stmt_vector_for_cost *body_cost_vec,
1397 stmt_vector_for_cost *prologue_cost_vec)
1398 {
1399 stmt_vec_info stmt_info = dr_info->stmt;
1400 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
1401 int ncopies;
1402
1403 if (PURE_SLP_STMT (stmt_info))
1404 ncopies = 1;
1405 else
1406 ncopies = vect_get_num_copies (loop_vinfo, STMT_VINFO_VECTYPE (stmt_info));
1407
1408 if (DR_IS_READ (dr_info->dr))
1409 vect_get_load_cost (vinfo, stmt_info, ncopies, alignment_support_scheme,
1410 misalignment, true, inside_cost,
1411 outside_cost, prologue_cost_vec, body_cost_vec, false);
1412 else
1413 vect_get_store_cost (vinfo,stmt_info, ncopies, alignment_support_scheme,
1414 misalignment, inside_cost, body_cost_vec);
1415
1416 if (dump_enabled_p ())
1417 dump_printf_loc (MSG_NOTE, vect_location,
1418 "vect_get_data_access_cost: inside_cost = %d, "
1419 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1420 }
1421
1422
1423 typedef struct _vect_peel_info
1424 {
1425 dr_vec_info *dr_info;
1426 int npeel;
1427 unsigned int count;
1428 } *vect_peel_info;
1429
1430 typedef struct _vect_peel_extended_info
1431 {
1432 vec_info *vinfo;
1433 struct _vect_peel_info peel_info;
1434 unsigned int inside_cost;
1435 unsigned int outside_cost;
1436 } *vect_peel_extended_info;
1437
1438
1439 /* Peeling hashtable helpers. */
1440
1441 struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
1442 {
1443 static inline hashval_t hash (const _vect_peel_info *);
1444 static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
1445 };
1446
1447 inline hashval_t
hash(const _vect_peel_info * peel_info)1448 peel_info_hasher::hash (const _vect_peel_info *peel_info)
1449 {
1450 return (hashval_t) peel_info->npeel;
1451 }
1452
1453 inline bool
equal(const _vect_peel_info * a,const _vect_peel_info * b)1454 peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
1455 {
1456 return (a->npeel == b->npeel);
1457 }
1458
1459
1460 /* Insert DR_INFO into peeling hash table with NPEEL as key. */
1461
1462 static void
vect_peeling_hash_insert(hash_table<peel_info_hasher> * peeling_htab,loop_vec_info loop_vinfo,dr_vec_info * dr_info,int npeel,bool supportable_if_not_aligned)1463 vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
1464 loop_vec_info loop_vinfo, dr_vec_info *dr_info,
1465 int npeel, bool supportable_if_not_aligned)
1466 {
1467 struct _vect_peel_info elem, *slot;
1468 _vect_peel_info **new_slot;
1469
1470 elem.npeel = npeel;
1471 slot = peeling_htab->find (&elem);
1472 if (slot)
1473 slot->count++;
1474 else
1475 {
1476 slot = XNEW (struct _vect_peel_info);
1477 slot->npeel = npeel;
1478 slot->dr_info = dr_info;
1479 slot->count = 1;
1480 new_slot = peeling_htab->find_slot (slot, INSERT);
1481 *new_slot = slot;
1482 }
1483
1484 /* If this DR is not supported with unknown misalignment then bias
1485 this slot when the cost model is disabled. */
1486 if (!supportable_if_not_aligned
1487 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1488 slot->count += VECT_MAX_COST;
1489 }
1490
1491
1492 /* Traverse peeling hash table to find peeling option that aligns maximum
1493 number of data accesses. */
1494
1495 int
vect_peeling_hash_get_most_frequent(_vect_peel_info ** slot,_vect_peel_extended_info * max)1496 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1497 _vect_peel_extended_info *max)
1498 {
1499 vect_peel_info elem = *slot;
1500
1501 if (elem->count > max->peel_info.count
1502 || (elem->count == max->peel_info.count
1503 && max->peel_info.npeel > elem->npeel))
1504 {
1505 max->peel_info.npeel = elem->npeel;
1506 max->peel_info.count = elem->count;
1507 max->peel_info.dr_info = elem->dr_info;
1508 }
1509
1510 return 1;
1511 }
1512
1513 /* Get the costs of peeling NPEEL iterations for LOOP_VINFO, checking
1514 data access costs for all data refs. If UNKNOWN_MISALIGNMENT is true,
1515 npeel is computed at runtime but DR0_INFO's misalignment will be zero
1516 after peeling. */
1517
1518 static void
vect_get_peeling_costs_all_drs(loop_vec_info loop_vinfo,dr_vec_info * dr0_info,unsigned int * inside_cost,unsigned int * outside_cost,stmt_vector_for_cost * body_cost_vec,stmt_vector_for_cost * prologue_cost_vec,unsigned int npeel)1519 vect_get_peeling_costs_all_drs (loop_vec_info loop_vinfo,
1520 dr_vec_info *dr0_info,
1521 unsigned int *inside_cost,
1522 unsigned int *outside_cost,
1523 stmt_vector_for_cost *body_cost_vec,
1524 stmt_vector_for_cost *prologue_cost_vec,
1525 unsigned int npeel)
1526 {
1527 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1528
1529 bool dr0_alignment_known_p
1530 = (dr0_info
1531 && known_alignment_for_access_p (dr0_info,
1532 STMT_VINFO_VECTYPE (dr0_info->stmt)));
1533
1534 for (data_reference *dr : datarefs)
1535 {
1536 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1537 if (!vect_relevant_for_alignment_p (dr_info))
1538 continue;
1539
1540 tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
1541 dr_alignment_support alignment_support_scheme;
1542 int misalignment;
1543 unsigned HOST_WIDE_INT alignment;
1544
1545 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1546 size_zero_node) < 0;
1547 poly_int64 off = 0;
1548 if (negative)
1549 off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
1550 * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
1551
1552 if (npeel == 0)
1553 misalignment = dr_misalignment (dr_info, vectype, off);
1554 else if (dr_info == dr0_info
1555 || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
1556 misalignment = 0;
1557 else if (!dr0_alignment_known_p
1558 || !known_alignment_for_access_p (dr_info, vectype)
1559 || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
1560 misalignment = DR_MISALIGNMENT_UNKNOWN;
1561 else
1562 {
1563 misalignment = dr_misalignment (dr_info, vectype, off);
1564 misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
1565 misalignment &= alignment - 1;
1566 }
1567 alignment_support_scheme
1568 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
1569 misalignment);
1570
1571 vect_get_data_access_cost (loop_vinfo, dr_info,
1572 alignment_support_scheme, misalignment,
1573 inside_cost, outside_cost,
1574 body_cost_vec, prologue_cost_vec);
1575 }
1576 }
1577
1578 /* Traverse peeling hash table and calculate cost for each peeling option.
1579 Find the one with the lowest cost. */
1580
1581 int
vect_peeling_hash_get_lowest_cost(_vect_peel_info ** slot,_vect_peel_extended_info * min)1582 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1583 _vect_peel_extended_info *min)
1584 {
1585 vect_peel_info elem = *slot;
1586 int dummy;
1587 unsigned int inside_cost = 0, outside_cost = 0;
1588 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (min->vinfo);
1589 stmt_vector_for_cost prologue_cost_vec, body_cost_vec,
1590 epilogue_cost_vec;
1591
1592 prologue_cost_vec.create (2);
1593 body_cost_vec.create (2);
1594 epilogue_cost_vec.create (2);
1595
1596 vect_get_peeling_costs_all_drs (loop_vinfo, elem->dr_info, &inside_cost,
1597 &outside_cost, &body_cost_vec,
1598 &prologue_cost_vec, elem->npeel);
1599
1600 body_cost_vec.release ();
1601
1602 outside_cost += vect_get_known_peeling_cost
1603 (loop_vinfo, elem->npeel, &dummy,
1604 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1605 &prologue_cost_vec, &epilogue_cost_vec);
1606
1607 /* Prologue and epilogue costs are added to the target model later.
1608 These costs depend only on the scalar iteration cost, the
1609 number of peeling iterations finally chosen, and the number of
1610 misaligned statements. So discard the information found here. */
1611 prologue_cost_vec.release ();
1612 epilogue_cost_vec.release ();
1613
1614 if (inside_cost < min->inside_cost
1615 || (inside_cost == min->inside_cost
1616 && outside_cost < min->outside_cost))
1617 {
1618 min->inside_cost = inside_cost;
1619 min->outside_cost = outside_cost;
1620 min->peel_info.dr_info = elem->dr_info;
1621 min->peel_info.npeel = elem->npeel;
1622 min->peel_info.count = elem->count;
1623 }
1624
1625 return 1;
1626 }
1627
1628
1629 /* Choose best peeling option by traversing peeling hash table and either
1630 choosing an option with the lowest cost (if cost model is enabled) or the
1631 option that aligns as many accesses as possible. */
1632
1633 static struct _vect_peel_extended_info
vect_peeling_hash_choose_best_peeling(hash_table<peel_info_hasher> * peeling_htab,loop_vec_info loop_vinfo)1634 vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
1635 loop_vec_info loop_vinfo)
1636 {
1637 struct _vect_peel_extended_info res;
1638
1639 res.peel_info.dr_info = NULL;
1640 res.vinfo = loop_vinfo;
1641
1642 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1643 {
1644 res.inside_cost = INT_MAX;
1645 res.outside_cost = INT_MAX;
1646 peeling_htab->traverse <_vect_peel_extended_info *,
1647 vect_peeling_hash_get_lowest_cost> (&res);
1648 }
1649 else
1650 {
1651 res.peel_info.count = 0;
1652 peeling_htab->traverse <_vect_peel_extended_info *,
1653 vect_peeling_hash_get_most_frequent> (&res);
1654 res.inside_cost = 0;
1655 res.outside_cost = 0;
1656 }
1657
1658 return res;
1659 }
1660
1661 /* Return true if the new peeling NPEEL is supported. */
1662
1663 static bool
vect_peeling_supportable(loop_vec_info loop_vinfo,dr_vec_info * dr0_info,unsigned npeel)1664 vect_peeling_supportable (loop_vec_info loop_vinfo, dr_vec_info *dr0_info,
1665 unsigned npeel)
1666 {
1667 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1668 enum dr_alignment_support supportable_dr_alignment;
1669
1670 bool dr0_alignment_known_p
1671 = known_alignment_for_access_p (dr0_info,
1672 STMT_VINFO_VECTYPE (dr0_info->stmt));
1673
1674 /* Ensure that all data refs can be vectorized after the peel. */
1675 for (data_reference *dr : datarefs)
1676 {
1677 if (dr == dr0_info->dr)
1678 continue;
1679
1680 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1681 if (!vect_relevant_for_alignment_p (dr_info)
1682 || vect_dr_aligned_if_peeled_dr_is (dr_info, dr0_info))
1683 continue;
1684
1685 tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
1686 int misalignment;
1687 unsigned HOST_WIDE_INT alignment;
1688 if (!dr0_alignment_known_p
1689 || !known_alignment_for_access_p (dr_info, vectype)
1690 || !DR_TARGET_ALIGNMENT (dr_info).is_constant (&alignment))
1691 misalignment = DR_MISALIGNMENT_UNKNOWN;
1692 else
1693 {
1694 misalignment = dr_misalignment (dr_info, vectype);
1695 misalignment += npeel * TREE_INT_CST_LOW (DR_STEP (dr_info->dr));
1696 misalignment &= alignment - 1;
1697 }
1698 supportable_dr_alignment
1699 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
1700 misalignment);
1701 if (supportable_dr_alignment == dr_unaligned_unsupported)
1702 return false;
1703 }
1704
1705 return true;
1706 }
1707
1708 /* Compare two data-references DRA and DRB to group them into chunks
1709 with related alignment. */
1710
1711 static int
dr_align_group_sort_cmp(const void * dra_,const void * drb_)1712 dr_align_group_sort_cmp (const void *dra_, const void *drb_)
1713 {
1714 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
1715 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
1716 int cmp;
1717
1718 /* Stabilize sort. */
1719 if (dra == drb)
1720 return 0;
1721
1722 /* Ordering of DRs according to base. */
1723 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
1724 DR_BASE_ADDRESS (drb));
1725 if (cmp != 0)
1726 return cmp;
1727
1728 /* And according to DR_OFFSET. */
1729 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
1730 if (cmp != 0)
1731 return cmp;
1732
1733 /* And after step. */
1734 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
1735 if (cmp != 0)
1736 return cmp;
1737
1738 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
1739 cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
1740 if (cmp == 0)
1741 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
1742 return cmp;
1743 }
1744
1745 /* Function vect_enhance_data_refs_alignment
1746
1747 This pass will use loop versioning and loop peeling in order to enhance
1748 the alignment of data references in the loop.
1749
1750 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1751 original loop is to be vectorized. Any other loops that are created by
1752 the transformations performed in this pass - are not supposed to be
1753 vectorized. This restriction will be relaxed.
1754
1755 This pass will require a cost model to guide it whether to apply peeling
1756 or versioning or a combination of the two. For example, the scheme that
1757 intel uses when given a loop with several memory accesses, is as follows:
1758 choose one memory access ('p') which alignment you want to force by doing
1759 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1760 other accesses are not necessarily aligned, or (2) use loop versioning to
1761 generate one loop in which all accesses are aligned, and another loop in
1762 which only 'p' is necessarily aligned.
1763
1764 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1765 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1766 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1767
1768 Devising a cost model is the most critical aspect of this work. It will
1769 guide us on which access to peel for, whether to use loop versioning, how
1770 many versions to create, etc. The cost model will probably consist of
1771 generic considerations as well as target specific considerations (on
1772 powerpc for example, misaligned stores are more painful than misaligned
1773 loads).
1774
1775 Here are the general steps involved in alignment enhancements:
1776
1777 -- original loop, before alignment analysis:
1778 for (i=0; i<N; i++){
1779 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1780 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1781 }
1782
1783 -- After vect_compute_data_refs_alignment:
1784 for (i=0; i<N; i++){
1785 x = q[i]; # DR_MISALIGNMENT(q) = 3
1786 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1787 }
1788
1789 -- Possibility 1: we do loop versioning:
1790 if (p is aligned) {
1791 for (i=0; i<N; i++){ # loop 1A
1792 x = q[i]; # DR_MISALIGNMENT(q) = 3
1793 p[i] = y; # DR_MISALIGNMENT(p) = 0
1794 }
1795 }
1796 else {
1797 for (i=0; i<N; i++){ # loop 1B
1798 x = q[i]; # DR_MISALIGNMENT(q) = 3
1799 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1800 }
1801 }
1802
1803 -- Possibility 2: we do loop peeling:
1804 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1805 x = q[i];
1806 p[i] = y;
1807 }
1808 for (i = 3; i < N; i++){ # loop 2A
1809 x = q[i]; # DR_MISALIGNMENT(q) = 0
1810 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1811 }
1812
1813 -- Possibility 3: combination of loop peeling and versioning:
1814 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1815 x = q[i];
1816 p[i] = y;
1817 }
1818 if (p is aligned) {
1819 for (i = 3; i<N; i++){ # loop 3A
1820 x = q[i]; # DR_MISALIGNMENT(q) = 0
1821 p[i] = y; # DR_MISALIGNMENT(p) = 0
1822 }
1823 }
1824 else {
1825 for (i = 3; i<N; i++){ # loop 3B
1826 x = q[i]; # DR_MISALIGNMENT(q) = 0
1827 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1828 }
1829 }
1830
1831 These loops are later passed to loop_transform to be vectorized. The
1832 vectorizer will use the alignment information to guide the transformation
1833 (whether to generate regular loads/stores, or with special handling for
1834 misalignment). */
1835
1836 opt_result
vect_enhance_data_refs_alignment(loop_vec_info loop_vinfo)1837 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1838 {
1839 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1840 dr_vec_info *first_store = NULL;
1841 dr_vec_info *dr0_info = NULL;
1842 struct data_reference *dr;
1843 unsigned int i;
1844 bool do_peeling = false;
1845 bool do_versioning = false;
1846 unsigned int npeel = 0;
1847 bool one_misalignment_known = false;
1848 bool one_misalignment_unknown = false;
1849 bool one_dr_unsupportable = false;
1850 dr_vec_info *unsupportable_dr_info = NULL;
1851 unsigned int dr0_same_align_drs = 0, first_store_same_align_drs = 0;
1852 hash_table<peel_info_hasher> peeling_htab (1);
1853
1854 DUMP_VECT_SCOPE ("vect_enhance_data_refs_alignment");
1855
1856 /* Reset data so we can safely be called multiple times. */
1857 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1858 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
1859
1860 if (LOOP_VINFO_DATAREFS (loop_vinfo).is_empty ())
1861 return opt_result::success ();
1862
1863 /* Sort the vector of datarefs so DRs that have the same or dependent
1864 alignment are next to each other. */
1865 auto_vec<data_reference_p> datarefs
1866 = LOOP_VINFO_DATAREFS (loop_vinfo).copy ();
1867 datarefs.qsort (dr_align_group_sort_cmp);
1868
1869 /* Compute the number of DRs that become aligned when we peel
1870 a dataref so it becomes aligned. */
1871 auto_vec<unsigned> n_same_align_refs (datarefs.length ());
1872 n_same_align_refs.quick_grow_cleared (datarefs.length ());
1873 unsigned i0;
1874 for (i0 = 0; i0 < datarefs.length (); ++i0)
1875 if (DR_BASE_ADDRESS (datarefs[i0]))
1876 break;
1877 for (i = i0 + 1; i <= datarefs.length (); ++i)
1878 {
1879 if (i == datarefs.length ()
1880 || !operand_equal_p (DR_BASE_ADDRESS (datarefs[i0]),
1881 DR_BASE_ADDRESS (datarefs[i]), 0)
1882 || !operand_equal_p (DR_OFFSET (datarefs[i0]),
1883 DR_OFFSET (datarefs[i]), 0)
1884 || !operand_equal_p (DR_STEP (datarefs[i0]),
1885 DR_STEP (datarefs[i]), 0))
1886 {
1887 /* The subgroup [i0, i-1] now only differs in DR_INIT and
1888 possibly DR_TARGET_ALIGNMENT. Still the whole subgroup
1889 will get known misalignment if we align one of the refs
1890 with the largest DR_TARGET_ALIGNMENT. */
1891 for (unsigned j = i0; j < i; ++j)
1892 {
1893 dr_vec_info *dr_infoj = loop_vinfo->lookup_dr (datarefs[j]);
1894 for (unsigned k = i0; k < i; ++k)
1895 {
1896 if (k == j)
1897 continue;
1898 dr_vec_info *dr_infok = loop_vinfo->lookup_dr (datarefs[k]);
1899 if (vect_dr_aligned_if_related_peeled_dr_is (dr_infok,
1900 dr_infoj))
1901 n_same_align_refs[j]++;
1902 }
1903 }
1904 i0 = i;
1905 }
1906 }
1907
1908 /* While cost model enhancements are expected in the future, the high level
1909 view of the code at this time is as follows:
1910
1911 A) If there is a misaligned access then see if peeling to align
1912 this access can make all data references satisfy
1913 vect_supportable_dr_alignment. If so, update data structures
1914 as needed and return true.
1915
1916 B) If peeling wasn't possible and there is a data reference with an
1917 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1918 then see if loop versioning checks can be used to make all data
1919 references satisfy vect_supportable_dr_alignment. If so, update
1920 data structures as needed and return true.
1921
1922 C) If neither peeling nor versioning were successful then return false if
1923 any data reference does not satisfy vect_supportable_dr_alignment.
1924
1925 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1926
1927 Note, Possibility 3 above (which is peeling and versioning together) is not
1928 being done at this time. */
1929
1930 /* (1) Peeling to force alignment. */
1931
1932 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1933 Considerations:
1934 + How many accesses will become aligned due to the peeling
1935 - How many accesses will become unaligned due to the peeling,
1936 and the cost of misaligned accesses.
1937 - The cost of peeling (the extra runtime checks, the increase
1938 in code size). */
1939
1940 FOR_EACH_VEC_ELT (datarefs, i, dr)
1941 {
1942 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1943 if (!vect_relevant_for_alignment_p (dr_info))
1944 continue;
1945
1946 stmt_vec_info stmt_info = dr_info->stmt;
1947 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1948 do_peeling = vector_alignment_reachable_p (dr_info);
1949 if (do_peeling)
1950 {
1951 if (known_alignment_for_access_p (dr_info, vectype))
1952 {
1953 unsigned int npeel_tmp = 0;
1954 bool negative = tree_int_cst_compare (DR_STEP (dr),
1955 size_zero_node) < 0;
1956
1957 /* If known_alignment_for_access_p then we have set
1958 DR_MISALIGNMENT which is only done if we know it at compiler
1959 time, so it is safe to assume target alignment is constant.
1960 */
1961 unsigned int target_align =
1962 DR_TARGET_ALIGNMENT (dr_info).to_constant ();
1963 unsigned HOST_WIDE_INT dr_size = vect_get_scalar_dr_size (dr_info);
1964 poly_int64 off = 0;
1965 if (negative)
1966 off = (TYPE_VECTOR_SUBPARTS (vectype) - 1) * -dr_size;
1967 unsigned int mis = dr_misalignment (dr_info, vectype, off);
1968 mis = negative ? mis : -mis;
1969 if (mis != 0)
1970 npeel_tmp = (mis & (target_align - 1)) / dr_size;
1971
1972 /* For multiple types, it is possible that the bigger type access
1973 will have more than one peeling option. E.g., a loop with two
1974 types: one of size (vector size / 4), and the other one of
1975 size (vector size / 8). Vectorization factor will 8. If both
1976 accesses are misaligned by 3, the first one needs one scalar
1977 iteration to be aligned, and the second one needs 5. But the
1978 first one will be aligned also by peeling 5 scalar
1979 iterations, and in that case both accesses will be aligned.
1980 Hence, except for the immediate peeling amount, we also want
1981 to try to add full vector size, while we don't exceed
1982 vectorization factor.
1983 We do this automatically for cost model, since we calculate
1984 cost for every peeling option. */
1985 poly_uint64 nscalars = npeel_tmp;
1986 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1987 {
1988 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1989 nscalars = (STMT_SLP_TYPE (stmt_info)
1990 ? vf * DR_GROUP_SIZE (stmt_info) : vf);
1991 }
1992
1993 /* Save info about DR in the hash table. Also include peeling
1994 amounts according to the explanation above. Indicate
1995 the alignment status when the ref is not aligned.
1996 ??? Rather than using unknown alignment here we should
1997 prune all entries from the peeling hashtable which cause
1998 DRs to be not supported. */
1999 bool supportable_if_not_aligned
2000 = vect_supportable_dr_alignment
2001 (loop_vinfo, dr_info, vectype, DR_MISALIGNMENT_UNKNOWN);
2002 while (known_le (npeel_tmp, nscalars))
2003 {
2004 vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
2005 dr_info, npeel_tmp,
2006 supportable_if_not_aligned);
2007 npeel_tmp += MAX (1, target_align / dr_size);
2008 }
2009
2010 one_misalignment_known = true;
2011 }
2012 else
2013 {
2014 /* If we don't know any misalignment values, we prefer
2015 peeling for data-ref that has the maximum number of data-refs
2016 with the same alignment, unless the target prefers to align
2017 stores over load. */
2018 unsigned same_align_drs = n_same_align_refs[i];
2019 if (!dr0_info
2020 || dr0_same_align_drs < same_align_drs)
2021 {
2022 dr0_same_align_drs = same_align_drs;
2023 dr0_info = dr_info;
2024 }
2025 /* For data-refs with the same number of related
2026 accesses prefer the one where the misalign
2027 computation will be invariant in the outermost loop. */
2028 else if (dr0_same_align_drs == same_align_drs)
2029 {
2030 class loop *ivloop0, *ivloop;
2031 ivloop0 = outermost_invariant_loop_for_expr
2032 (loop, DR_BASE_ADDRESS (dr0_info->dr));
2033 ivloop = outermost_invariant_loop_for_expr
2034 (loop, DR_BASE_ADDRESS (dr));
2035 if ((ivloop && !ivloop0)
2036 || (ivloop && ivloop0
2037 && flow_loop_nested_p (ivloop, ivloop0)))
2038 dr0_info = dr_info;
2039 }
2040
2041 one_misalignment_unknown = true;
2042
2043 /* Check for data refs with unsupportable alignment that
2044 can be peeled. */
2045 enum dr_alignment_support supportable_dr_alignment
2046 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
2047 DR_MISALIGNMENT_UNKNOWN);
2048 if (supportable_dr_alignment == dr_unaligned_unsupported)
2049 {
2050 one_dr_unsupportable = true;
2051 unsupportable_dr_info = dr_info;
2052 }
2053
2054 if (!first_store && DR_IS_WRITE (dr))
2055 {
2056 first_store = dr_info;
2057 first_store_same_align_drs = same_align_drs;
2058 }
2059 }
2060 }
2061 else
2062 {
2063 if (!aligned_access_p (dr_info, vectype))
2064 {
2065 if (dump_enabled_p ())
2066 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2067 "vector alignment may not be reachable\n");
2068 break;
2069 }
2070 }
2071 }
2072
2073 /* Check if we can possibly peel the loop. */
2074 if (!vect_can_advance_ivs_p (loop_vinfo)
2075 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
2076 || loop->inner)
2077 do_peeling = false;
2078
2079 struct _vect_peel_extended_info peel_for_known_alignment;
2080 struct _vect_peel_extended_info peel_for_unknown_alignment;
2081 struct _vect_peel_extended_info best_peel;
2082
2083 peel_for_unknown_alignment.inside_cost = INT_MAX;
2084 peel_for_unknown_alignment.outside_cost = INT_MAX;
2085 peel_for_unknown_alignment.peel_info.count = 0;
2086
2087 if (do_peeling
2088 && one_misalignment_unknown)
2089 {
2090 /* Check if the target requires to prefer stores over loads, i.e., if
2091 misaligned stores are more expensive than misaligned loads (taking
2092 drs with same alignment into account). */
2093 unsigned int load_inside_cost = 0;
2094 unsigned int load_outside_cost = 0;
2095 unsigned int store_inside_cost = 0;
2096 unsigned int store_outside_cost = 0;
2097 unsigned int estimated_npeels = vect_vf_for_cost (loop_vinfo) / 2;
2098
2099 stmt_vector_for_cost dummy;
2100 dummy.create (2);
2101 vect_get_peeling_costs_all_drs (loop_vinfo, dr0_info,
2102 &load_inside_cost,
2103 &load_outside_cost,
2104 &dummy, &dummy, estimated_npeels);
2105 dummy.release ();
2106
2107 if (first_store)
2108 {
2109 dummy.create (2);
2110 vect_get_peeling_costs_all_drs (loop_vinfo, first_store,
2111 &store_inside_cost,
2112 &store_outside_cost,
2113 &dummy, &dummy,
2114 estimated_npeels);
2115 dummy.release ();
2116 }
2117 else
2118 {
2119 store_inside_cost = INT_MAX;
2120 store_outside_cost = INT_MAX;
2121 }
2122
2123 if (load_inside_cost > store_inside_cost
2124 || (load_inside_cost == store_inside_cost
2125 && load_outside_cost > store_outside_cost))
2126 {
2127 dr0_info = first_store;
2128 dr0_same_align_drs = first_store_same_align_drs;
2129 peel_for_unknown_alignment.inside_cost = store_inside_cost;
2130 peel_for_unknown_alignment.outside_cost = store_outside_cost;
2131 }
2132 else
2133 {
2134 peel_for_unknown_alignment.inside_cost = load_inside_cost;
2135 peel_for_unknown_alignment.outside_cost = load_outside_cost;
2136 }
2137
2138 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2139 prologue_cost_vec.create (2);
2140 epilogue_cost_vec.create (2);
2141
2142 int dummy2;
2143 peel_for_unknown_alignment.outside_cost += vect_get_known_peeling_cost
2144 (loop_vinfo, estimated_npeels, &dummy2,
2145 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
2146 &prologue_cost_vec, &epilogue_cost_vec);
2147
2148 prologue_cost_vec.release ();
2149 epilogue_cost_vec.release ();
2150
2151 peel_for_unknown_alignment.peel_info.count = dr0_same_align_drs + 1;
2152 }
2153
2154 peel_for_unknown_alignment.peel_info.npeel = 0;
2155 peel_for_unknown_alignment.peel_info.dr_info = dr0_info;
2156
2157 best_peel = peel_for_unknown_alignment;
2158
2159 peel_for_known_alignment.inside_cost = INT_MAX;
2160 peel_for_known_alignment.outside_cost = INT_MAX;
2161 peel_for_known_alignment.peel_info.count = 0;
2162 peel_for_known_alignment.peel_info.dr_info = NULL;
2163
2164 if (do_peeling && one_misalignment_known)
2165 {
2166 /* Peeling is possible, but there is no data access that is not supported
2167 unless aligned. So we try to choose the best possible peeling from
2168 the hash table. */
2169 peel_for_known_alignment = vect_peeling_hash_choose_best_peeling
2170 (&peeling_htab, loop_vinfo);
2171 }
2172
2173 /* Compare costs of peeling for known and unknown alignment. */
2174 if (peel_for_known_alignment.peel_info.dr_info != NULL
2175 && peel_for_unknown_alignment.inside_cost
2176 >= peel_for_known_alignment.inside_cost)
2177 {
2178 best_peel = peel_for_known_alignment;
2179
2180 /* If the best peeling for known alignment has NPEEL == 0, perform no
2181 peeling at all except if there is an unsupportable dr that we can
2182 align. */
2183 if (best_peel.peel_info.npeel == 0 && !one_dr_unsupportable)
2184 do_peeling = false;
2185 }
2186
2187 /* If there is an unsupportable data ref, prefer this over all choices so far
2188 since we'd have to discard a chosen peeling except when it accidentally
2189 aligned the unsupportable data ref. */
2190 if (one_dr_unsupportable)
2191 dr0_info = unsupportable_dr_info;
2192 else if (do_peeling)
2193 {
2194 /* Calculate the penalty for no peeling, i.e. leaving everything as-is.
2195 TODO: Use nopeel_outside_cost or get rid of it? */
2196 unsigned nopeel_inside_cost = 0;
2197 unsigned nopeel_outside_cost = 0;
2198
2199 stmt_vector_for_cost dummy;
2200 dummy.create (2);
2201 vect_get_peeling_costs_all_drs (loop_vinfo, NULL, &nopeel_inside_cost,
2202 &nopeel_outside_cost, &dummy, &dummy, 0);
2203 dummy.release ();
2204
2205 /* Add epilogue costs. As we do not peel for alignment here, no prologue
2206 costs will be recorded. */
2207 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2208 prologue_cost_vec.create (2);
2209 epilogue_cost_vec.create (2);
2210
2211 int dummy2;
2212 nopeel_outside_cost += vect_get_known_peeling_cost
2213 (loop_vinfo, 0, &dummy2,
2214 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
2215 &prologue_cost_vec, &epilogue_cost_vec);
2216
2217 prologue_cost_vec.release ();
2218 epilogue_cost_vec.release ();
2219
2220 npeel = best_peel.peel_info.npeel;
2221 dr0_info = best_peel.peel_info.dr_info;
2222
2223 /* If no peeling is not more expensive than the best peeling we
2224 have so far, don't perform any peeling. */
2225 if (nopeel_inside_cost <= best_peel.inside_cost)
2226 do_peeling = false;
2227 }
2228
2229 if (do_peeling)
2230 {
2231 stmt_vec_info stmt_info = dr0_info->stmt;
2232 if (known_alignment_for_access_p (dr0_info,
2233 STMT_VINFO_VECTYPE (stmt_info)))
2234 {
2235 bool negative = tree_int_cst_compare (DR_STEP (dr0_info->dr),
2236 size_zero_node) < 0;
2237 if (!npeel)
2238 {
2239 /* Since it's known at compile time, compute the number of
2240 iterations in the peeled loop (the peeling factor) for use in
2241 updating DR_MISALIGNMENT values. The peeling factor is the
2242 vectorization factor minus the misalignment as an element
2243 count. */
2244 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2245 poly_int64 off = 0;
2246 if (negative)
2247 off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
2248 * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
2249 unsigned int mis
2250 = dr_misalignment (dr0_info, vectype, off);
2251 mis = negative ? mis : -mis;
2252 /* If known_alignment_for_access_p then we have set
2253 DR_MISALIGNMENT which is only done if we know it at compiler
2254 time, so it is safe to assume target alignment is constant.
2255 */
2256 unsigned int target_align =
2257 DR_TARGET_ALIGNMENT (dr0_info).to_constant ();
2258 npeel = ((mis & (target_align - 1))
2259 / vect_get_scalar_dr_size (dr0_info));
2260 }
2261
2262 /* For interleaved data access every iteration accesses all the
2263 members of the group, therefore we divide the number of iterations
2264 by the group size. */
2265 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
2266 npeel /= DR_GROUP_SIZE (stmt_info);
2267
2268 if (dump_enabled_p ())
2269 dump_printf_loc (MSG_NOTE, vect_location,
2270 "Try peeling by %d\n", npeel);
2271 }
2272
2273 /* Ensure that all datarefs can be vectorized after the peel. */
2274 if (!vect_peeling_supportable (loop_vinfo, dr0_info, npeel))
2275 do_peeling = false;
2276
2277 /* Check if all datarefs are supportable and log. */
2278 if (do_peeling
2279 && npeel == 0
2280 && known_alignment_for_access_p (dr0_info,
2281 STMT_VINFO_VECTYPE (stmt_info)))
2282 return opt_result::success ();
2283
2284 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
2285 if (do_peeling)
2286 {
2287 unsigned max_allowed_peel
2288 = param_vect_max_peeling_for_alignment;
2289 if (loop_cost_model (loop) <= VECT_COST_MODEL_CHEAP)
2290 max_allowed_peel = 0;
2291 if (max_allowed_peel != (unsigned)-1)
2292 {
2293 unsigned max_peel = npeel;
2294 if (max_peel == 0)
2295 {
2296 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr0_info);
2297 unsigned HOST_WIDE_INT target_align_c;
2298 if (target_align.is_constant (&target_align_c))
2299 max_peel =
2300 target_align_c / vect_get_scalar_dr_size (dr0_info) - 1;
2301 else
2302 {
2303 do_peeling = false;
2304 if (dump_enabled_p ())
2305 dump_printf_loc (MSG_NOTE, vect_location,
2306 "Disable peeling, max peels set and vector"
2307 " alignment unknown\n");
2308 }
2309 }
2310 if (max_peel > max_allowed_peel)
2311 {
2312 do_peeling = false;
2313 if (dump_enabled_p ())
2314 dump_printf_loc (MSG_NOTE, vect_location,
2315 "Disable peeling, max peels reached: %d\n", max_peel);
2316 }
2317 }
2318 }
2319
2320 /* Cost model #2 - if peeling may result in a remaining loop not
2321 iterating enough to be vectorized then do not peel. Since this
2322 is a cost heuristic rather than a correctness decision, use the
2323 most likely runtime value for variable vectorization factors. */
2324 if (do_peeling
2325 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2326 {
2327 unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
2328 unsigned int max_peel = npeel == 0 ? assumed_vf - 1 : npeel;
2329 if ((unsigned HOST_WIDE_INT) LOOP_VINFO_INT_NITERS (loop_vinfo)
2330 < assumed_vf + max_peel)
2331 do_peeling = false;
2332 }
2333
2334 if (do_peeling)
2335 {
2336 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
2337 If the misalignment of DR_i is identical to that of dr0 then set
2338 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
2339 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
2340 by the peeling factor times the element size of DR_i (MOD the
2341 vectorization factor times the size). Otherwise, the
2342 misalignment of DR_i must be set to unknown. */
2343 FOR_EACH_VEC_ELT (datarefs, i, dr)
2344 if (dr != dr0_info->dr)
2345 {
2346 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2347 if (!vect_relevant_for_alignment_p (dr_info))
2348 continue;
2349
2350 vect_update_misalignment_for_peel (dr_info, dr0_info, npeel);
2351 }
2352
2353 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0_info;
2354 if (npeel)
2355 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
2356 else
2357 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = -1;
2358 SET_DR_MISALIGNMENT (dr0_info,
2359 vect_dr_misalign_for_aligned_access (dr0_info));
2360 if (dump_enabled_p ())
2361 {
2362 dump_printf_loc (MSG_NOTE, vect_location,
2363 "Alignment of access forced using peeling.\n");
2364 dump_printf_loc (MSG_NOTE, vect_location,
2365 "Peeling for alignment will be applied.\n");
2366 }
2367
2368 /* The inside-loop cost will be accounted for in vectorizable_load
2369 and vectorizable_store correctly with adjusted alignments.
2370 Drop the body_cst_vec on the floor here. */
2371 return opt_result::success ();
2372 }
2373 }
2374
2375 /* (2) Versioning to force alignment. */
2376
2377 /* Try versioning if:
2378 1) optimize loop for speed and the cost-model is not cheap
2379 2) there is at least one unsupported misaligned data ref with an unknown
2380 misalignment, and
2381 3) all misaligned data refs with a known misalignment are supported, and
2382 4) the number of runtime alignment checks is within reason. */
2383
2384 do_versioning
2385 = (optimize_loop_nest_for_speed_p (loop)
2386 && !loop->inner /* FORNOW */
2387 && loop_cost_model (loop) > VECT_COST_MODEL_CHEAP);
2388
2389 if (do_versioning)
2390 {
2391 FOR_EACH_VEC_ELT (datarefs, i, dr)
2392 {
2393 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2394 if (!vect_relevant_for_alignment_p (dr_info))
2395 continue;
2396
2397 stmt_vec_info stmt_info = dr_info->stmt;
2398 if (STMT_VINFO_STRIDED_P (stmt_info))
2399 {
2400 do_versioning = false;
2401 break;
2402 }
2403
2404 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2405 bool negative = tree_int_cst_compare (DR_STEP (dr),
2406 size_zero_node) < 0;
2407 poly_int64 off = 0;
2408 if (negative)
2409 off = ((TYPE_VECTOR_SUBPARTS (vectype) - 1)
2410 * -TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))));
2411 int misalignment;
2412 if ((misalignment = dr_misalignment (dr_info, vectype, off)) == 0)
2413 continue;
2414
2415 enum dr_alignment_support supportable_dr_alignment
2416 = vect_supportable_dr_alignment (loop_vinfo, dr_info, vectype,
2417 misalignment);
2418 if (supportable_dr_alignment == dr_unaligned_unsupported)
2419 {
2420 if (misalignment != DR_MISALIGNMENT_UNKNOWN
2421 || (LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2422 >= (unsigned) param_vect_max_version_for_alignment_checks))
2423 {
2424 do_versioning = false;
2425 break;
2426 }
2427
2428 /* At present we don't support versioning for alignment
2429 with variable VF, since there's no guarantee that the
2430 VF is a power of two. We could relax this if we added
2431 a way of enforcing a power-of-two size. */
2432 unsigned HOST_WIDE_INT size;
2433 if (!GET_MODE_SIZE (TYPE_MODE (vectype)).is_constant (&size))
2434 {
2435 do_versioning = false;
2436 break;
2437 }
2438
2439 /* Forcing alignment in the first iteration is no good if
2440 we don't keep it across iterations. For now, just disable
2441 versioning in this case.
2442 ?? We could actually unroll the loop to achieve the required
2443 overall step alignment, and forcing the alignment could be
2444 done by doing some iterations of the non-vectorized loop. */
2445 if (!multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2446 * DR_STEP_ALIGNMENT (dr),
2447 DR_TARGET_ALIGNMENT (dr_info)))
2448 {
2449 do_versioning = false;
2450 break;
2451 }
2452
2453 /* The rightmost bits of an aligned address must be zeros.
2454 Construct the mask needed for this test. For example,
2455 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2456 mask must be 15 = 0xf. */
2457 int mask = size - 1;
2458
2459 /* FORNOW: use the same mask to test all potentially unaligned
2460 references in the loop. */
2461 if (LOOP_VINFO_PTR_MASK (loop_vinfo)
2462 && LOOP_VINFO_PTR_MASK (loop_vinfo) != mask)
2463 {
2464 do_versioning = false;
2465 break;
2466 }
2467
2468 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2469 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (stmt_info);
2470 }
2471 }
2472
2473 /* Versioning requires at least one misaligned data reference. */
2474 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2475 do_versioning = false;
2476 else if (!do_versioning)
2477 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2478 }
2479
2480 if (do_versioning)
2481 {
2482 const vec<stmt_vec_info> &may_misalign_stmts
2483 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2484 stmt_vec_info stmt_info;
2485
2486 /* It can now be assumed that the data references in the statements
2487 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2488 of the loop being vectorized. */
2489 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
2490 {
2491 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
2492 SET_DR_MISALIGNMENT (dr_info,
2493 vect_dr_misalign_for_aligned_access (dr_info));
2494 if (dump_enabled_p ())
2495 dump_printf_loc (MSG_NOTE, vect_location,
2496 "Alignment of access forced using versioning.\n");
2497 }
2498
2499 if (dump_enabled_p ())
2500 dump_printf_loc (MSG_NOTE, vect_location,
2501 "Versioning for alignment will be applied.\n");
2502
2503 /* Peeling and versioning can't be done together at this time. */
2504 gcc_assert (! (do_peeling && do_versioning));
2505
2506 return opt_result::success ();
2507 }
2508
2509 /* This point is reached if neither peeling nor versioning is being done. */
2510 gcc_assert (! (do_peeling || do_versioning));
2511
2512 return opt_result::success ();
2513 }
2514
2515
2516 /* Function vect_analyze_data_refs_alignment
2517
2518 Analyze the alignment of the data-references in the loop.
2519 Return FALSE if a data reference is found that cannot be vectorized. */
2520
2521 opt_result
vect_analyze_data_refs_alignment(loop_vec_info loop_vinfo)2522 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
2523 {
2524 DUMP_VECT_SCOPE ("vect_analyze_data_refs_alignment");
2525
2526 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2527 struct data_reference *dr;
2528 unsigned int i;
2529
2530 vect_record_base_alignments (loop_vinfo);
2531 FOR_EACH_VEC_ELT (datarefs, i, dr)
2532 {
2533 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
2534 if (STMT_VINFO_VECTORIZABLE (dr_info->stmt))
2535 {
2536 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt)
2537 && DR_GROUP_FIRST_ELEMENT (dr_info->stmt) != dr_info->stmt)
2538 continue;
2539 vect_compute_data_ref_alignment (loop_vinfo, dr_info,
2540 STMT_VINFO_VECTYPE (dr_info->stmt));
2541 }
2542 }
2543
2544 return opt_result::success ();
2545 }
2546
2547
2548 /* Analyze alignment of DRs of stmts in NODE. */
2549
2550 static bool
vect_slp_analyze_node_alignment(vec_info * vinfo,slp_tree node)2551 vect_slp_analyze_node_alignment (vec_info *vinfo, slp_tree node)
2552 {
2553 /* Alignment is maintained in the first element of the group. */
2554 stmt_vec_info first_stmt_info = SLP_TREE_SCALAR_STMTS (node)[0];
2555 first_stmt_info = DR_GROUP_FIRST_ELEMENT (first_stmt_info);
2556 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_stmt_info);
2557 tree vectype = SLP_TREE_VECTYPE (node);
2558 poly_uint64 vector_alignment
2559 = exact_div (targetm.vectorize.preferred_vector_alignment (vectype),
2560 BITS_PER_UNIT);
2561 if (dr_info->misalignment == DR_MISALIGNMENT_UNINITIALIZED)
2562 vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
2563 /* Re-analyze alignment when we're facing a vectorization with a bigger
2564 alignment requirement. */
2565 else if (known_lt (dr_info->target_alignment, vector_alignment))
2566 {
2567 poly_uint64 old_target_alignment = dr_info->target_alignment;
2568 int old_misalignment = dr_info->misalignment;
2569 vect_compute_data_ref_alignment (vinfo, dr_info, SLP_TREE_VECTYPE (node));
2570 /* But keep knowledge about a smaller alignment. */
2571 if (old_misalignment != DR_MISALIGNMENT_UNKNOWN
2572 && dr_info->misalignment == DR_MISALIGNMENT_UNKNOWN)
2573 {
2574 dr_info->target_alignment = old_target_alignment;
2575 dr_info->misalignment = old_misalignment;
2576 }
2577 }
2578 /* When we ever face unordered target alignments the first one wins in terms
2579 of analyzing and the other will become unknown in dr_misalignment. */
2580 return true;
2581 }
2582
2583 /* Function vect_slp_analyze_instance_alignment
2584
2585 Analyze the alignment of the data-references in the SLP instance.
2586 Return FALSE if a data reference is found that cannot be vectorized. */
2587
2588 bool
vect_slp_analyze_instance_alignment(vec_info * vinfo,slp_instance instance)2589 vect_slp_analyze_instance_alignment (vec_info *vinfo,
2590 slp_instance instance)
2591 {
2592 DUMP_VECT_SCOPE ("vect_slp_analyze_instance_alignment");
2593
2594 slp_tree node;
2595 unsigned i;
2596 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
2597 if (! vect_slp_analyze_node_alignment (vinfo, node))
2598 return false;
2599
2600 if (SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
2601 && ! vect_slp_analyze_node_alignment
2602 (vinfo, SLP_INSTANCE_TREE (instance)))
2603 return false;
2604
2605 return true;
2606 }
2607
2608
2609 /* Analyze groups of accesses: check that DR_INFO belongs to a group of
2610 accesses of legal size, step, etc. Detect gaps, single element
2611 interleaving, and other special cases. Set grouped access info.
2612 Collect groups of strided stores for further use in SLP analysis.
2613 Worker for vect_analyze_group_access. */
2614
2615 static bool
vect_analyze_group_access_1(vec_info * vinfo,dr_vec_info * dr_info)2616 vect_analyze_group_access_1 (vec_info *vinfo, dr_vec_info *dr_info)
2617 {
2618 data_reference *dr = dr_info->dr;
2619 tree step = DR_STEP (dr);
2620 tree scalar_type = TREE_TYPE (DR_REF (dr));
2621 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2622 stmt_vec_info stmt_info = dr_info->stmt;
2623 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
2624 bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
2625 HOST_WIDE_INT dr_step = -1;
2626 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2627 bool slp_impossible = false;
2628
2629 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2630 size of the interleaving group (including gaps). */
2631 if (tree_fits_shwi_p (step))
2632 {
2633 dr_step = tree_to_shwi (step);
2634 /* Check that STEP is a multiple of type size. Otherwise there is
2635 a non-element-sized gap at the end of the group which we
2636 cannot represent in DR_GROUP_GAP or DR_GROUP_SIZE.
2637 ??? As we can handle non-constant step fine here we should
2638 simply remove uses of DR_GROUP_GAP between the last and first
2639 element and instead rely on DR_STEP. DR_GROUP_SIZE then would
2640 simply not include that gap. */
2641 if ((dr_step % type_size) != 0)
2642 {
2643 if (dump_enabled_p ())
2644 dump_printf_loc (MSG_NOTE, vect_location,
2645 "Step %T is not a multiple of the element size"
2646 " for %T\n",
2647 step, DR_REF (dr));
2648 return false;
2649 }
2650 groupsize = absu_hwi (dr_step) / type_size;
2651 }
2652 else
2653 groupsize = 0;
2654
2655 /* Not consecutive access is possible only if it is a part of interleaving. */
2656 if (!DR_GROUP_FIRST_ELEMENT (stmt_info))
2657 {
2658 /* Check if it this DR is a part of interleaving, and is a single
2659 element of the group that is accessed in the loop. */
2660
2661 /* Gaps are supported only for loads. STEP must be a multiple of the type
2662 size. */
2663 if (DR_IS_READ (dr)
2664 && (dr_step % type_size) == 0
2665 && groupsize > 0
2666 /* This could be UINT_MAX but as we are generating code in a very
2667 inefficient way we have to cap earlier.
2668 See PR91403 for example. */
2669 && groupsize <= 4096)
2670 {
2671 DR_GROUP_FIRST_ELEMENT (stmt_info) = stmt_info;
2672 DR_GROUP_SIZE (stmt_info) = groupsize;
2673 DR_GROUP_GAP (stmt_info) = groupsize - 1;
2674 if (dump_enabled_p ())
2675 dump_printf_loc (MSG_NOTE, vect_location,
2676 "Detected single element interleaving %T"
2677 " step %T\n",
2678 DR_REF (dr), step);
2679
2680 return true;
2681 }
2682
2683 if (dump_enabled_p ())
2684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2685 "not consecutive access %G", stmt_info->stmt);
2686
2687 if (bb_vinfo)
2688 {
2689 /* Mark the statement as unvectorizable. */
2690 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
2691 return true;
2692 }
2693
2694 if (dump_enabled_p ())
2695 dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
2696 STMT_VINFO_STRIDED_P (stmt_info) = true;
2697 return true;
2698 }
2699
2700 if (DR_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info)
2701 {
2702 /* First stmt in the interleaving chain. Check the chain. */
2703 stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
2704 struct data_reference *data_ref = dr;
2705 unsigned int count = 1;
2706 tree prev_init = DR_INIT (data_ref);
2707 HOST_WIDE_INT diff, gaps = 0;
2708
2709 /* By construction, all group members have INTEGER_CST DR_INITs. */
2710 while (next)
2711 {
2712 /* We never have the same DR multiple times. */
2713 gcc_assert (tree_int_cst_compare (DR_INIT (data_ref),
2714 DR_INIT (STMT_VINFO_DATA_REF (next))) != 0);
2715
2716 data_ref = STMT_VINFO_DATA_REF (next);
2717
2718 /* All group members have the same STEP by construction. */
2719 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2720
2721 /* Check that the distance between two accesses is equal to the type
2722 size. Otherwise, we have gaps. */
2723 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2724 - TREE_INT_CST_LOW (prev_init)) / type_size;
2725 if (diff < 1 || diff > UINT_MAX)
2726 {
2727 /* For artificial testcases with array accesses with large
2728 constant indices we can run into overflow issues which
2729 can end up fooling the groupsize constraint below so
2730 check the individual gaps (which are represented as
2731 unsigned int) as well. */
2732 if (dump_enabled_p ())
2733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2734 "interleaved access with gap larger "
2735 "than representable\n");
2736 return false;
2737 }
2738 if (diff != 1)
2739 {
2740 /* FORNOW: SLP of accesses with gaps is not supported. */
2741 slp_impossible = true;
2742 if (DR_IS_WRITE (data_ref))
2743 {
2744 if (dump_enabled_p ())
2745 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2746 "interleaved store with gaps\n");
2747 return false;
2748 }
2749
2750 gaps += diff - 1;
2751 }
2752
2753 last_accessed_element += diff;
2754
2755 /* Store the gap from the previous member of the group. If there is no
2756 gap in the access, DR_GROUP_GAP is always 1. */
2757 DR_GROUP_GAP (next) = diff;
2758
2759 prev_init = DR_INIT (data_ref);
2760 next = DR_GROUP_NEXT_ELEMENT (next);
2761 /* Count the number of data-refs in the chain. */
2762 count++;
2763 }
2764
2765 if (groupsize == 0)
2766 groupsize = count + gaps;
2767
2768 /* This could be UINT_MAX but as we are generating code in a very
2769 inefficient way we have to cap earlier. See PR78699 for example. */
2770 if (groupsize > 4096)
2771 {
2772 if (dump_enabled_p ())
2773 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2774 "group is too large\n");
2775 return false;
2776 }
2777
2778 /* Check that the size of the interleaving is equal to count for stores,
2779 i.e., that there are no gaps. */
2780 if (groupsize != count
2781 && !DR_IS_READ (dr))
2782 {
2783 groupsize = count;
2784 STMT_VINFO_STRIDED_P (stmt_info) = true;
2785 }
2786
2787 /* If there is a gap after the last load in the group it is the
2788 difference between the groupsize and the last accessed
2789 element.
2790 When there is no gap, this difference should be 0. */
2791 DR_GROUP_GAP (stmt_info) = groupsize - last_accessed_element;
2792
2793 DR_GROUP_SIZE (stmt_info) = groupsize;
2794 if (dump_enabled_p ())
2795 {
2796 dump_printf_loc (MSG_NOTE, vect_location,
2797 "Detected interleaving ");
2798 if (DR_IS_READ (dr))
2799 dump_printf (MSG_NOTE, "load ");
2800 else if (STMT_VINFO_STRIDED_P (stmt_info))
2801 dump_printf (MSG_NOTE, "strided store ");
2802 else
2803 dump_printf (MSG_NOTE, "store ");
2804 dump_printf (MSG_NOTE, "of size %u\n",
2805 (unsigned)groupsize);
2806 dump_printf_loc (MSG_NOTE, vect_location, "\t%G", stmt_info->stmt);
2807 next = DR_GROUP_NEXT_ELEMENT (stmt_info);
2808 while (next)
2809 {
2810 if (DR_GROUP_GAP (next) != 1)
2811 dump_printf_loc (MSG_NOTE, vect_location,
2812 "\t<gap of %d elements>\n",
2813 DR_GROUP_GAP (next) - 1);
2814 dump_printf_loc (MSG_NOTE, vect_location, "\t%G", next->stmt);
2815 next = DR_GROUP_NEXT_ELEMENT (next);
2816 }
2817 if (DR_GROUP_GAP (stmt_info) != 0)
2818 dump_printf_loc (MSG_NOTE, vect_location,
2819 "\t<gap of %d elements>\n",
2820 DR_GROUP_GAP (stmt_info));
2821 }
2822
2823 /* SLP: create an SLP data structure for every interleaving group of
2824 stores for further analysis in vect_analyse_slp. */
2825 if (DR_IS_WRITE (dr) && !slp_impossible)
2826 {
2827 if (loop_vinfo)
2828 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt_info);
2829 if (bb_vinfo)
2830 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt_info);
2831 }
2832 }
2833
2834 return true;
2835 }
2836
2837 /* Analyze groups of accesses: check that DR_INFO belongs to a group of
2838 accesses of legal size, step, etc. Detect gaps, single element
2839 interleaving, and other special cases. Set grouped access info.
2840 Collect groups of strided stores for further use in SLP analysis. */
2841
2842 static bool
vect_analyze_group_access(vec_info * vinfo,dr_vec_info * dr_info)2843 vect_analyze_group_access (vec_info *vinfo, dr_vec_info *dr_info)
2844 {
2845 if (!vect_analyze_group_access_1 (vinfo, dr_info))
2846 {
2847 /* Dissolve the group if present. */
2848 stmt_vec_info stmt_info = DR_GROUP_FIRST_ELEMENT (dr_info->stmt);
2849 while (stmt_info)
2850 {
2851 stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (stmt_info);
2852 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2853 DR_GROUP_NEXT_ELEMENT (stmt_info) = NULL;
2854 stmt_info = next;
2855 }
2856 return false;
2857 }
2858 return true;
2859 }
2860
2861 /* Analyze the access pattern of the data-reference DR_INFO.
2862 In case of non-consecutive accesses call vect_analyze_group_access() to
2863 analyze groups of accesses. */
2864
2865 static bool
vect_analyze_data_ref_access(vec_info * vinfo,dr_vec_info * dr_info)2866 vect_analyze_data_ref_access (vec_info *vinfo, dr_vec_info *dr_info)
2867 {
2868 data_reference *dr = dr_info->dr;
2869 tree step = DR_STEP (dr);
2870 tree scalar_type = TREE_TYPE (DR_REF (dr));
2871 stmt_vec_info stmt_info = dr_info->stmt;
2872 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
2873 class loop *loop = NULL;
2874
2875 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
2876 return true;
2877
2878 if (loop_vinfo)
2879 loop = LOOP_VINFO_LOOP (loop_vinfo);
2880
2881 if (loop_vinfo && !step)
2882 {
2883 if (dump_enabled_p ())
2884 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2885 "bad data-ref access in loop\n");
2886 return false;
2887 }
2888
2889 /* Allow loads with zero step in inner-loop vectorization. */
2890 if (loop_vinfo && integer_zerop (step))
2891 {
2892 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2893 if (!nested_in_vect_loop_p (loop, stmt_info))
2894 return DR_IS_READ (dr);
2895 /* Allow references with zero step for outer loops marked
2896 with pragma omp simd only - it guarantees absence of
2897 loop-carried dependencies between inner loop iterations. */
2898 if (loop->safelen < 2)
2899 {
2900 if (dump_enabled_p ())
2901 dump_printf_loc (MSG_NOTE, vect_location,
2902 "zero step in inner loop of nest\n");
2903 return false;
2904 }
2905 }
2906
2907 if (loop && nested_in_vect_loop_p (loop, stmt_info))
2908 {
2909 /* Interleaved accesses are not yet supported within outer-loop
2910 vectorization for references in the inner-loop. */
2911 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2912
2913 /* For the rest of the analysis we use the outer-loop step. */
2914 step = STMT_VINFO_DR_STEP (stmt_info);
2915 if (integer_zerop (step))
2916 {
2917 if (dump_enabled_p ())
2918 dump_printf_loc (MSG_NOTE, vect_location,
2919 "zero step in outer loop.\n");
2920 return DR_IS_READ (dr);
2921 }
2922 }
2923
2924 /* Consecutive? */
2925 if (TREE_CODE (step) == INTEGER_CST)
2926 {
2927 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2928 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2929 || (dr_step < 0
2930 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2931 {
2932 /* Mark that it is not interleaving. */
2933 DR_GROUP_FIRST_ELEMENT (stmt_info) = NULL;
2934 return true;
2935 }
2936 }
2937
2938 if (loop && nested_in_vect_loop_p (loop, stmt_info))
2939 {
2940 if (dump_enabled_p ())
2941 dump_printf_loc (MSG_NOTE, vect_location,
2942 "grouped access in outer loop.\n");
2943 return false;
2944 }
2945
2946
2947 /* Assume this is a DR handled by non-constant strided load case. */
2948 if (TREE_CODE (step) != INTEGER_CST)
2949 return (STMT_VINFO_STRIDED_P (stmt_info)
2950 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2951 || vect_analyze_group_access (vinfo, dr_info)));
2952
2953 /* Not consecutive access - check if it's a part of interleaving group. */
2954 return vect_analyze_group_access (vinfo, dr_info);
2955 }
2956
2957 /* Compare two data-references DRA and DRB to group them into chunks
2958 suitable for grouping. */
2959
2960 static int
dr_group_sort_cmp(const void * dra_,const void * drb_)2961 dr_group_sort_cmp (const void *dra_, const void *drb_)
2962 {
2963 dr_vec_info *dra_info = *(dr_vec_info **)const_cast<void *>(dra_);
2964 dr_vec_info *drb_info = *(dr_vec_info **)const_cast<void *>(drb_);
2965 data_reference_p dra = dra_info->dr;
2966 data_reference_p drb = drb_info->dr;
2967 int cmp;
2968
2969 /* Stabilize sort. */
2970 if (dra == drb)
2971 return 0;
2972
2973 /* Different group IDs lead never belong to the same group. */
2974 if (dra_info->group != drb_info->group)
2975 return dra_info->group < drb_info->group ? -1 : 1;
2976
2977 /* Ordering of DRs according to base. */
2978 cmp = data_ref_compare_tree (DR_BASE_ADDRESS (dra),
2979 DR_BASE_ADDRESS (drb));
2980 if (cmp != 0)
2981 return cmp;
2982
2983 /* And according to DR_OFFSET. */
2984 cmp = data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2985 if (cmp != 0)
2986 return cmp;
2987
2988 /* Put reads before writes. */
2989 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2990 return DR_IS_READ (dra) ? -1 : 1;
2991
2992 /* Then sort after access size. */
2993 cmp = data_ref_compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2994 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2995 if (cmp != 0)
2996 return cmp;
2997
2998 /* And after step. */
2999 cmp = data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb));
3000 if (cmp != 0)
3001 return cmp;
3002
3003 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
3004 cmp = data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb));
3005 if (cmp == 0)
3006 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
3007 return cmp;
3008 }
3009
3010 /* If OP is the result of a conversion, return the unconverted value,
3011 otherwise return null. */
3012
3013 static tree
strip_conversion(tree op)3014 strip_conversion (tree op)
3015 {
3016 if (TREE_CODE (op) != SSA_NAME)
3017 return NULL_TREE;
3018 gimple *stmt = SSA_NAME_DEF_STMT (op);
3019 if (!is_gimple_assign (stmt)
3020 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
3021 return NULL_TREE;
3022 return gimple_assign_rhs1 (stmt);
3023 }
3024
3025 /* Return true if vectorizable_* routines can handle statements STMT1_INFO
3026 and STMT2_INFO being in a single group. When ALLOW_SLP_P, masked loads can
3027 be grouped in SLP mode. */
3028
3029 static bool
can_group_stmts_p(stmt_vec_info stmt1_info,stmt_vec_info stmt2_info,bool allow_slp_p)3030 can_group_stmts_p (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info,
3031 bool allow_slp_p)
3032 {
3033 if (gimple_assign_single_p (stmt1_info->stmt))
3034 return gimple_assign_single_p (stmt2_info->stmt);
3035
3036 gcall *call1 = dyn_cast <gcall *> (stmt1_info->stmt);
3037 if (call1 && gimple_call_internal_p (call1))
3038 {
3039 /* Check for two masked loads or two masked stores. */
3040 gcall *call2 = dyn_cast <gcall *> (stmt2_info->stmt);
3041 if (!call2 || !gimple_call_internal_p (call2))
3042 return false;
3043 internal_fn ifn = gimple_call_internal_fn (call1);
3044 if (ifn != IFN_MASK_LOAD && ifn != IFN_MASK_STORE)
3045 return false;
3046 if (ifn != gimple_call_internal_fn (call2))
3047 return false;
3048
3049 /* Check that the masks are the same. Cope with casts of masks,
3050 like those created by build_mask_conversion. */
3051 tree mask1 = gimple_call_arg (call1, 2);
3052 tree mask2 = gimple_call_arg (call2, 2);
3053 if (!operand_equal_p (mask1, mask2, 0)
3054 && (ifn == IFN_MASK_STORE || !allow_slp_p))
3055 {
3056 mask1 = strip_conversion (mask1);
3057 if (!mask1)
3058 return false;
3059 mask2 = strip_conversion (mask2);
3060 if (!mask2)
3061 return false;
3062 if (!operand_equal_p (mask1, mask2, 0))
3063 return false;
3064 }
3065 return true;
3066 }
3067
3068 return false;
3069 }
3070
3071 /* Function vect_analyze_data_ref_accesses.
3072
3073 Analyze the access pattern of all the data references in the loop.
3074
3075 FORNOW: the only access pattern that is considered vectorizable is a
3076 simple step 1 (consecutive) access.
3077
3078 FORNOW: handle only arrays and pointer accesses. */
3079
3080 opt_result
vect_analyze_data_ref_accesses(vec_info * vinfo,vec<int> * dataref_groups)3081 vect_analyze_data_ref_accesses (vec_info *vinfo,
3082 vec<int> *dataref_groups)
3083 {
3084 unsigned int i;
3085 vec<data_reference_p> datarefs = vinfo->shared->datarefs;
3086
3087 DUMP_VECT_SCOPE ("vect_analyze_data_ref_accesses");
3088
3089 if (datarefs.is_empty ())
3090 return opt_result::success ();
3091
3092 /* Sort the array of datarefs to make building the interleaving chains
3093 linear. Don't modify the original vector's order, it is needed for
3094 determining what dependencies are reversed. */
3095 vec<dr_vec_info *> datarefs_copy;
3096 datarefs_copy.create (datarefs.length ());
3097 for (unsigned i = 0; i < datarefs.length (); i++)
3098 {
3099 dr_vec_info *dr_info = vinfo->lookup_dr (datarefs[i]);
3100 /* If the caller computed DR grouping use that, otherwise group by
3101 basic blocks. */
3102 if (dataref_groups)
3103 dr_info->group = (*dataref_groups)[i];
3104 else
3105 dr_info->group = gimple_bb (DR_STMT (datarefs[i]))->index;
3106 datarefs_copy.quick_push (dr_info);
3107 }
3108 datarefs_copy.qsort (dr_group_sort_cmp);
3109 hash_set<stmt_vec_info> to_fixup;
3110
3111 /* Build the interleaving chains. */
3112 for (i = 0; i < datarefs_copy.length () - 1;)
3113 {
3114 dr_vec_info *dr_info_a = datarefs_copy[i];
3115 data_reference_p dra = dr_info_a->dr;
3116 int dra_group_id = dr_info_a->group;
3117 stmt_vec_info stmtinfo_a = dr_info_a->stmt;
3118 stmt_vec_info lastinfo = NULL;
3119 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
3120 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a))
3121 {
3122 ++i;
3123 continue;
3124 }
3125 for (i = i + 1; i < datarefs_copy.length (); ++i)
3126 {
3127 dr_vec_info *dr_info_b = datarefs_copy[i];
3128 data_reference_p drb = dr_info_b->dr;
3129 int drb_group_id = dr_info_b->group;
3130 stmt_vec_info stmtinfo_b = dr_info_b->stmt;
3131 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_b)
3132 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
3133 break;
3134
3135 /* ??? Imperfect sorting (non-compatible types, non-modulo
3136 accesses, same accesses) can lead to a group to be artificially
3137 split here as we don't just skip over those. If it really
3138 matters we can push those to a worklist and re-iterate
3139 over them. The we can just skip ahead to the next DR here. */
3140
3141 /* DRs in a different DR group should not be put into the same
3142 interleaving group. */
3143 if (dra_group_id != drb_group_id)
3144 break;
3145
3146 /* Check that the data-refs have same first location (except init)
3147 and they are both either store or load (not load and store,
3148 not masked loads or stores). */
3149 if (DR_IS_READ (dra) != DR_IS_READ (drb)
3150 || data_ref_compare_tree (DR_BASE_ADDRESS (dra),
3151 DR_BASE_ADDRESS (drb)) != 0
3152 || data_ref_compare_tree (DR_OFFSET (dra), DR_OFFSET (drb)) != 0
3153 || !can_group_stmts_p (stmtinfo_a, stmtinfo_b, true))
3154 break;
3155
3156 /* Check that the data-refs have the same constant size. */
3157 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
3158 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
3159 if (!tree_fits_uhwi_p (sza)
3160 || !tree_fits_uhwi_p (szb)
3161 || !tree_int_cst_equal (sza, szb))
3162 break;
3163
3164 /* Check that the data-refs have the same step. */
3165 if (data_ref_compare_tree (DR_STEP (dra), DR_STEP (drb)) != 0)
3166 break;
3167
3168 /* Check the types are compatible.
3169 ??? We don't distinguish this during sorting. */
3170 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
3171 TREE_TYPE (DR_REF (drb))))
3172 break;
3173
3174 /* Check that the DR_INITs are compile-time constants. */
3175 if (!tree_fits_shwi_p (DR_INIT (dra))
3176 || !tree_fits_shwi_p (DR_INIT (drb)))
3177 break;
3178
3179 /* Different .GOMP_SIMD_LANE calls still give the same lane,
3180 just hold extra information. */
3181 if (STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_a)
3182 && STMT_VINFO_SIMD_LANE_ACCESS_P (stmtinfo_b)
3183 && data_ref_compare_tree (DR_INIT (dra), DR_INIT (drb)) == 0)
3184 break;
3185
3186 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
3187 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
3188 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
3189 HOST_WIDE_INT init_prev
3190 = TREE_INT_CST_LOW (DR_INIT (datarefs_copy[i-1]->dr));
3191 gcc_assert (init_a <= init_b
3192 && init_a <= init_prev
3193 && init_prev <= init_b);
3194
3195 /* Do not place the same access in the interleaving chain twice. */
3196 if (init_b == init_prev)
3197 {
3198 gcc_assert (gimple_uid (DR_STMT (datarefs_copy[i-1]->dr))
3199 < gimple_uid (DR_STMT (drb)));
3200 /* Simply link in duplicates and fix up the chain below. */
3201 }
3202 else
3203 {
3204 /* If init_b == init_a + the size of the type * k, we have an
3205 interleaving, and DRA is accessed before DRB. */
3206 unsigned HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
3207 if (type_size_a == 0
3208 || (((unsigned HOST_WIDE_INT)init_b - init_a)
3209 % type_size_a != 0))
3210 break;
3211
3212 /* If we have a store, the accesses are adjacent. This splits
3213 groups into chunks we support (we don't support vectorization
3214 of stores with gaps). */
3215 if (!DR_IS_READ (dra)
3216 && (((unsigned HOST_WIDE_INT)init_b - init_prev)
3217 != type_size_a))
3218 break;
3219
3220 /* If the step (if not zero or non-constant) is smaller than the
3221 difference between data-refs' inits this splits groups into
3222 suitable sizes. */
3223 if (tree_fits_shwi_p (DR_STEP (dra)))
3224 {
3225 unsigned HOST_WIDE_INT step
3226 = absu_hwi (tree_to_shwi (DR_STEP (dra)));
3227 if (step != 0
3228 && step <= ((unsigned HOST_WIDE_INT)init_b - init_a))
3229 break;
3230 }
3231 }
3232
3233 if (dump_enabled_p ())
3234 dump_printf_loc (MSG_NOTE, vect_location,
3235 DR_IS_READ (dra)
3236 ? "Detected interleaving load %T and %T\n"
3237 : "Detected interleaving store %T and %T\n",
3238 DR_REF (dra), DR_REF (drb));
3239
3240 /* Link the found element into the group list. */
3241 if (!DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
3242 {
3243 DR_GROUP_FIRST_ELEMENT (stmtinfo_a) = stmtinfo_a;
3244 lastinfo = stmtinfo_a;
3245 }
3246 DR_GROUP_FIRST_ELEMENT (stmtinfo_b) = stmtinfo_a;
3247 DR_GROUP_NEXT_ELEMENT (lastinfo) = stmtinfo_b;
3248 lastinfo = stmtinfo_b;
3249
3250 STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a)
3251 = !can_group_stmts_p (stmtinfo_a, stmtinfo_b, false);
3252
3253 if (dump_enabled_p () && STMT_VINFO_SLP_VECT_ONLY (stmtinfo_a))
3254 dump_printf_loc (MSG_NOTE, vect_location,
3255 "Load suitable for SLP vectorization only.\n");
3256
3257 if (init_b == init_prev
3258 && !to_fixup.add (DR_GROUP_FIRST_ELEMENT (stmtinfo_a))
3259 && dump_enabled_p ())
3260 dump_printf_loc (MSG_NOTE, vect_location,
3261 "Queuing group with duplicate access for fixup\n");
3262 }
3263 }
3264
3265 /* Fixup groups with duplicate entries by splitting it. */
3266 while (1)
3267 {
3268 hash_set<stmt_vec_info>::iterator it = to_fixup.begin ();
3269 if (!(it != to_fixup.end ()))
3270 break;
3271 stmt_vec_info grp = *it;
3272 to_fixup.remove (grp);
3273
3274 /* Find the earliest duplicate group member. */
3275 unsigned first_duplicate = -1u;
3276 stmt_vec_info next, g = grp;
3277 while ((next = DR_GROUP_NEXT_ELEMENT (g)))
3278 {
3279 if (tree_int_cst_equal (DR_INIT (STMT_VINFO_DR_INFO (next)->dr),
3280 DR_INIT (STMT_VINFO_DR_INFO (g)->dr))
3281 && gimple_uid (STMT_VINFO_STMT (next)) < first_duplicate)
3282 first_duplicate = gimple_uid (STMT_VINFO_STMT (next));
3283 g = next;
3284 }
3285 if (first_duplicate == -1U)
3286 continue;
3287
3288 /* Then move all stmts after the first duplicate to a new group.
3289 Note this is a heuristic but one with the property that *it
3290 is fixed up completely. */
3291 g = grp;
3292 stmt_vec_info newgroup = NULL, ng = grp;
3293 while ((next = DR_GROUP_NEXT_ELEMENT (g)))
3294 {
3295 if (gimple_uid (STMT_VINFO_STMT (next)) >= first_duplicate)
3296 {
3297 DR_GROUP_NEXT_ELEMENT (g) = DR_GROUP_NEXT_ELEMENT (next);
3298 if (!newgroup)
3299 newgroup = next;
3300 else
3301 DR_GROUP_NEXT_ELEMENT (ng) = next;
3302 ng = next;
3303 DR_GROUP_FIRST_ELEMENT (ng) = newgroup;
3304 }
3305 else
3306 g = DR_GROUP_NEXT_ELEMENT (g);
3307 }
3308 DR_GROUP_NEXT_ELEMENT (ng) = NULL;
3309
3310 /* Fixup the new group which still may contain duplicates. */
3311 to_fixup.add (newgroup);
3312 }
3313
3314 dr_vec_info *dr_info;
3315 FOR_EACH_VEC_ELT (datarefs_copy, i, dr_info)
3316 {
3317 if (STMT_VINFO_VECTORIZABLE (dr_info->stmt)
3318 && !vect_analyze_data_ref_access (vinfo, dr_info))
3319 {
3320 if (dump_enabled_p ())
3321 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3322 "not vectorized: complicated access pattern.\n");
3323
3324 if (is_a <bb_vec_info> (vinfo))
3325 {
3326 /* Mark the statement as not vectorizable. */
3327 STMT_VINFO_VECTORIZABLE (dr_info->stmt) = false;
3328 continue;
3329 }
3330 else
3331 {
3332 datarefs_copy.release ();
3333 return opt_result::failure_at (dr_info->stmt->stmt,
3334 "not vectorized:"
3335 " complicated access pattern.\n");
3336 }
3337 }
3338 }
3339
3340 datarefs_copy.release ();
3341 return opt_result::success ();
3342 }
3343
3344 /* Function vect_vfa_segment_size.
3345
3346 Input:
3347 DR_INFO: The data reference.
3348 LENGTH_FACTOR: segment length to consider.
3349
3350 Return a value suitable for the dr_with_seg_len::seg_len field.
3351 This is the "distance travelled" by the pointer from the first
3352 iteration in the segment to the last. Note that it does not include
3353 the size of the access; in effect it only describes the first byte. */
3354
3355 static tree
vect_vfa_segment_size(dr_vec_info * dr_info,tree length_factor)3356 vect_vfa_segment_size (dr_vec_info *dr_info, tree length_factor)
3357 {
3358 length_factor = size_binop (MINUS_EXPR,
3359 fold_convert (sizetype, length_factor),
3360 size_one_node);
3361 return size_binop (MULT_EXPR, fold_convert (sizetype, DR_STEP (dr_info->dr)),
3362 length_factor);
3363 }
3364
3365 /* Return a value that, when added to abs (vect_vfa_segment_size (DR_INFO)),
3366 gives the worst-case number of bytes covered by the segment. */
3367
3368 static unsigned HOST_WIDE_INT
vect_vfa_access_size(vec_info * vinfo,dr_vec_info * dr_info)3369 vect_vfa_access_size (vec_info *vinfo, dr_vec_info *dr_info)
3370 {
3371 stmt_vec_info stmt_vinfo = dr_info->stmt;
3372 tree ref_type = TREE_TYPE (DR_REF (dr_info->dr));
3373 unsigned HOST_WIDE_INT ref_size = tree_to_uhwi (TYPE_SIZE_UNIT (ref_type));
3374 unsigned HOST_WIDE_INT access_size = ref_size;
3375 if (DR_GROUP_FIRST_ELEMENT (stmt_vinfo))
3376 {
3377 gcc_assert (DR_GROUP_FIRST_ELEMENT (stmt_vinfo) == stmt_vinfo);
3378 access_size *= DR_GROUP_SIZE (stmt_vinfo) - DR_GROUP_GAP (stmt_vinfo);
3379 }
3380 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3381 int misalignment;
3382 if (STMT_VINFO_VEC_STMTS (stmt_vinfo).exists ()
3383 && ((misalignment = dr_misalignment (dr_info, vectype)), true)
3384 && (vect_supportable_dr_alignment (vinfo, dr_info, vectype, misalignment)
3385 == dr_explicit_realign_optimized))
3386 {
3387 /* We might access a full vector's worth. */
3388 access_size += tree_to_uhwi (TYPE_SIZE_UNIT (vectype)) - ref_size;
3389 }
3390 return access_size;
3391 }
3392
3393 /* Get the minimum alignment for all the scalar accesses that DR_INFO
3394 describes. */
3395
3396 static unsigned int
vect_vfa_align(dr_vec_info * dr_info)3397 vect_vfa_align (dr_vec_info *dr_info)
3398 {
3399 return dr_alignment (dr_info->dr);
3400 }
3401
3402 /* Function vect_no_alias_p.
3403
3404 Given data references A and B with equal base and offset, see whether
3405 the alias relation can be decided at compilation time. Return 1 if
3406 it can and the references alias, 0 if it can and the references do
3407 not alias, and -1 if we cannot decide at compile time. SEGMENT_LENGTH_A,
3408 SEGMENT_LENGTH_B, ACCESS_SIZE_A and ACCESS_SIZE_B are the equivalent
3409 of dr_with_seg_len::{seg_len,access_size} for A and B. */
3410
3411 static int
vect_compile_time_alias(dr_vec_info * a,dr_vec_info * b,tree segment_length_a,tree segment_length_b,unsigned HOST_WIDE_INT access_size_a,unsigned HOST_WIDE_INT access_size_b)3412 vect_compile_time_alias (dr_vec_info *a, dr_vec_info *b,
3413 tree segment_length_a, tree segment_length_b,
3414 unsigned HOST_WIDE_INT access_size_a,
3415 unsigned HOST_WIDE_INT access_size_b)
3416 {
3417 poly_offset_int offset_a = wi::to_poly_offset (DR_INIT (a->dr));
3418 poly_offset_int offset_b = wi::to_poly_offset (DR_INIT (b->dr));
3419 poly_uint64 const_length_a;
3420 poly_uint64 const_length_b;
3421
3422 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
3423 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
3424 [a, a+12) */
3425 if (tree_int_cst_compare (DR_STEP (a->dr), size_zero_node) < 0)
3426 {
3427 const_length_a = (-wi::to_poly_wide (segment_length_a)).force_uhwi ();
3428 offset_a -= const_length_a;
3429 }
3430 else
3431 const_length_a = tree_to_poly_uint64 (segment_length_a);
3432 if (tree_int_cst_compare (DR_STEP (b->dr), size_zero_node) < 0)
3433 {
3434 const_length_b = (-wi::to_poly_wide (segment_length_b)).force_uhwi ();
3435 offset_b -= const_length_b;
3436 }
3437 else
3438 const_length_b = tree_to_poly_uint64 (segment_length_b);
3439
3440 const_length_a += access_size_a;
3441 const_length_b += access_size_b;
3442
3443 if (ranges_known_overlap_p (offset_a, const_length_a,
3444 offset_b, const_length_b))
3445 return 1;
3446
3447 if (!ranges_maybe_overlap_p (offset_a, const_length_a,
3448 offset_b, const_length_b))
3449 return 0;
3450
3451 return -1;
3452 }
3453
3454 /* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
3455 in DDR is >= VF. */
3456
3457 static bool
dependence_distance_ge_vf(data_dependence_relation * ddr,unsigned int loop_depth,poly_uint64 vf)3458 dependence_distance_ge_vf (data_dependence_relation *ddr,
3459 unsigned int loop_depth, poly_uint64 vf)
3460 {
3461 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
3462 || DDR_NUM_DIST_VECTS (ddr) == 0)
3463 return false;
3464
3465 /* If the dependence is exact, we should have limited the VF instead. */
3466 gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
3467
3468 unsigned int i;
3469 lambda_vector dist_v;
3470 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3471 {
3472 HOST_WIDE_INT dist = dist_v[loop_depth];
3473 if (dist != 0
3474 && !(dist > 0 && DDR_REVERSED_P (ddr))
3475 && maybe_lt ((unsigned HOST_WIDE_INT) abs_hwi (dist), vf))
3476 return false;
3477 }
3478
3479 if (dump_enabled_p ())
3480 dump_printf_loc (MSG_NOTE, vect_location,
3481 "dependence distance between %T and %T is >= VF\n",
3482 DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
3483
3484 return true;
3485 }
3486
3487 /* Dump LOWER_BOUND using flags DUMP_KIND. Dumps are known to be enabled. */
3488
3489 static void
dump_lower_bound(dump_flags_t dump_kind,const vec_lower_bound & lower_bound)3490 dump_lower_bound (dump_flags_t dump_kind, const vec_lower_bound &lower_bound)
3491 {
3492 dump_printf (dump_kind, "%s (%T) >= ",
3493 lower_bound.unsigned_p ? "unsigned" : "abs",
3494 lower_bound.expr);
3495 dump_dec (dump_kind, lower_bound.min_value);
3496 }
3497
3498 /* Record that the vectorized loop requires the vec_lower_bound described
3499 by EXPR, UNSIGNED_P and MIN_VALUE. */
3500
3501 static void
vect_check_lower_bound(loop_vec_info loop_vinfo,tree expr,bool unsigned_p,poly_uint64 min_value)3502 vect_check_lower_bound (loop_vec_info loop_vinfo, tree expr, bool unsigned_p,
3503 poly_uint64 min_value)
3504 {
3505 vec<vec_lower_bound> &lower_bounds
3506 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3507 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3508 if (operand_equal_p (lower_bounds[i].expr, expr, 0))
3509 {
3510 unsigned_p &= lower_bounds[i].unsigned_p;
3511 min_value = upper_bound (lower_bounds[i].min_value, min_value);
3512 if (lower_bounds[i].unsigned_p != unsigned_p
3513 || maybe_lt (lower_bounds[i].min_value, min_value))
3514 {
3515 lower_bounds[i].unsigned_p = unsigned_p;
3516 lower_bounds[i].min_value = min_value;
3517 if (dump_enabled_p ())
3518 {
3519 dump_printf_loc (MSG_NOTE, vect_location,
3520 "updating run-time check to ");
3521 dump_lower_bound (MSG_NOTE, lower_bounds[i]);
3522 dump_printf (MSG_NOTE, "\n");
3523 }
3524 }
3525 return;
3526 }
3527
3528 vec_lower_bound lower_bound (expr, unsigned_p, min_value);
3529 if (dump_enabled_p ())
3530 {
3531 dump_printf_loc (MSG_NOTE, vect_location, "need a run-time check that ");
3532 dump_lower_bound (MSG_NOTE, lower_bound);
3533 dump_printf (MSG_NOTE, "\n");
3534 }
3535 LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).safe_push (lower_bound);
3536 }
3537
3538 /* Return true if it's unlikely that the step of the vectorized form of DR_INFO
3539 will span fewer than GAP bytes. */
3540
3541 static bool
vect_small_gap_p(loop_vec_info loop_vinfo,dr_vec_info * dr_info,poly_int64 gap)3542 vect_small_gap_p (loop_vec_info loop_vinfo, dr_vec_info *dr_info,
3543 poly_int64 gap)
3544 {
3545 stmt_vec_info stmt_info = dr_info->stmt;
3546 HOST_WIDE_INT count
3547 = estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
3548 if (DR_GROUP_FIRST_ELEMENT (stmt_info))
3549 count *= DR_GROUP_SIZE (DR_GROUP_FIRST_ELEMENT (stmt_info));
3550 return (estimated_poly_value (gap)
3551 <= count * vect_get_scalar_dr_size (dr_info));
3552 }
3553
3554 /* Return true if we know that there is no alias between DR_INFO_A and
3555 DR_INFO_B when abs (DR_STEP (DR_INFO_A->dr)) >= N for some N.
3556 When returning true, set *LOWER_BOUND_OUT to this N. */
3557
3558 static bool
vectorizable_with_step_bound_p(dr_vec_info * dr_info_a,dr_vec_info * dr_info_b,poly_uint64 * lower_bound_out)3559 vectorizable_with_step_bound_p (dr_vec_info *dr_info_a, dr_vec_info *dr_info_b,
3560 poly_uint64 *lower_bound_out)
3561 {
3562 /* Check that there is a constant gap of known sign between DR_A
3563 and DR_B. */
3564 data_reference *dr_a = dr_info_a->dr;
3565 data_reference *dr_b = dr_info_b->dr;
3566 poly_int64 init_a, init_b;
3567 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b), 0)
3568 || !operand_equal_p (DR_OFFSET (dr_a), DR_OFFSET (dr_b), 0)
3569 || !operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0)
3570 || !poly_int_tree_p (DR_INIT (dr_a), &init_a)
3571 || !poly_int_tree_p (DR_INIT (dr_b), &init_b)
3572 || !ordered_p (init_a, init_b))
3573 return false;
3574
3575 /* Sort DR_A and DR_B by the address they access. */
3576 if (maybe_lt (init_b, init_a))
3577 {
3578 std::swap (init_a, init_b);
3579 std::swap (dr_info_a, dr_info_b);
3580 std::swap (dr_a, dr_b);
3581 }
3582
3583 /* If the two accesses could be dependent within a scalar iteration,
3584 make sure that we'd retain their order. */
3585 if (maybe_gt (init_a + vect_get_scalar_dr_size (dr_info_a), init_b)
3586 && !vect_preserves_scalar_order_p (dr_info_a, dr_info_b))
3587 return false;
3588
3589 /* There is no alias if abs (DR_STEP) is greater than or equal to
3590 the bytes spanned by the combination of the two accesses. */
3591 *lower_bound_out = init_b + vect_get_scalar_dr_size (dr_info_b) - init_a;
3592 return true;
3593 }
3594
3595 /* Function vect_prune_runtime_alias_test_list.
3596
3597 Prune a list of ddrs to be tested at run-time by versioning for alias.
3598 Merge several alias checks into one if possible.
3599 Return FALSE if resulting list of ddrs is longer then allowed by
3600 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
3601
3602 opt_result
vect_prune_runtime_alias_test_list(loop_vec_info loop_vinfo)3603 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
3604 {
3605 typedef pair_hash <tree_operand_hash, tree_operand_hash> tree_pair_hash;
3606 hash_set <tree_pair_hash> compared_objects;
3607
3608 const vec<ddr_p> &may_alias_ddrs = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
3609 vec<dr_with_seg_len_pair_t> &comp_alias_ddrs
3610 = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3611 const vec<vec_object_pair> &check_unequal_addrs
3612 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3613 poly_uint64 vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3614 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
3615
3616 ddr_p ddr;
3617 unsigned int i;
3618 tree length_factor;
3619
3620 DUMP_VECT_SCOPE ("vect_prune_runtime_alias_test_list");
3621
3622 /* Step values are irrelevant for aliasing if the number of vector
3623 iterations is equal to the number of scalar iterations (which can
3624 happen for fully-SLP loops). */
3625 bool vf_one_p = known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1U);
3626
3627 if (!vf_one_p)
3628 {
3629 /* Convert the checks for nonzero steps into bound tests. */
3630 tree value;
3631 FOR_EACH_VEC_ELT (LOOP_VINFO_CHECK_NONZERO (loop_vinfo), i, value)
3632 vect_check_lower_bound (loop_vinfo, value, true, 1);
3633 }
3634
3635 if (may_alias_ddrs.is_empty ())
3636 return opt_result::success ();
3637
3638 comp_alias_ddrs.create (may_alias_ddrs.length ());
3639
3640 unsigned int loop_depth
3641 = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
3642 LOOP_VINFO_LOOP_NEST (loop_vinfo));
3643
3644 /* First, we collect all data ref pairs for aliasing checks. */
3645 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
3646 {
3647 poly_uint64 lower_bound;
3648 tree segment_length_a, segment_length_b;
3649 unsigned HOST_WIDE_INT access_size_a, access_size_b;
3650 unsigned int align_a, align_b;
3651
3652 /* Ignore the alias if the VF we chose ended up being no greater
3653 than the dependence distance. */
3654 if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
3655 continue;
3656
3657 if (DDR_OBJECT_A (ddr))
3658 {
3659 vec_object_pair new_pair (DDR_OBJECT_A (ddr), DDR_OBJECT_B (ddr));
3660 if (!compared_objects.add (new_pair))
3661 {
3662 if (dump_enabled_p ())
3663 dump_printf_loc (MSG_NOTE, vect_location,
3664 "checking that %T and %T"
3665 " have different addresses\n",
3666 new_pair.first, new_pair.second);
3667 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).safe_push (new_pair);
3668 }
3669 continue;
3670 }
3671
3672 dr_vec_info *dr_info_a = loop_vinfo->lookup_dr (DDR_A (ddr));
3673 stmt_vec_info stmt_info_a = dr_info_a->stmt;
3674
3675 dr_vec_info *dr_info_b = loop_vinfo->lookup_dr (DDR_B (ddr));
3676 stmt_vec_info stmt_info_b = dr_info_b->stmt;
3677
3678 bool preserves_scalar_order_p
3679 = vect_preserves_scalar_order_p (dr_info_a, dr_info_b);
3680 bool ignore_step_p
3681 = (vf_one_p
3682 && (preserves_scalar_order_p
3683 || operand_equal_p (DR_STEP (dr_info_a->dr),
3684 DR_STEP (dr_info_b->dr))));
3685
3686 /* Skip the pair if inter-iteration dependencies are irrelevant
3687 and intra-iteration dependencies are guaranteed to be honored. */
3688 if (ignore_step_p
3689 && (preserves_scalar_order_p
3690 || vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
3691 &lower_bound)))
3692 {
3693 if (dump_enabled_p ())
3694 dump_printf_loc (MSG_NOTE, vect_location,
3695 "no need for alias check between "
3696 "%T and %T when VF is 1\n",
3697 DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
3698 continue;
3699 }
3700
3701 /* See whether we can handle the alias using a bounds check on
3702 the step, and whether that's likely to be the best approach.
3703 (It might not be, for example, if the minimum step is much larger
3704 than the number of bytes handled by one vector iteration.) */
3705 if (!ignore_step_p
3706 && TREE_CODE (DR_STEP (dr_info_a->dr)) != INTEGER_CST
3707 && vectorizable_with_step_bound_p (dr_info_a, dr_info_b,
3708 &lower_bound)
3709 && (vect_small_gap_p (loop_vinfo, dr_info_a, lower_bound)
3710 || vect_small_gap_p (loop_vinfo, dr_info_b, lower_bound)))
3711 {
3712 bool unsigned_p = dr_known_forward_stride_p (dr_info_a->dr);
3713 if (dump_enabled_p ())
3714 {
3715 dump_printf_loc (MSG_NOTE, vect_location, "no alias between "
3716 "%T and %T when the step %T is outside ",
3717 DR_REF (dr_info_a->dr),
3718 DR_REF (dr_info_b->dr),
3719 DR_STEP (dr_info_a->dr));
3720 if (unsigned_p)
3721 dump_printf (MSG_NOTE, "[0");
3722 else
3723 {
3724 dump_printf (MSG_NOTE, "(");
3725 dump_dec (MSG_NOTE, poly_int64 (-lower_bound));
3726 }
3727 dump_printf (MSG_NOTE, ", ");
3728 dump_dec (MSG_NOTE, lower_bound);
3729 dump_printf (MSG_NOTE, ")\n");
3730 }
3731 vect_check_lower_bound (loop_vinfo, DR_STEP (dr_info_a->dr),
3732 unsigned_p, lower_bound);
3733 continue;
3734 }
3735
3736 stmt_vec_info dr_group_first_a = DR_GROUP_FIRST_ELEMENT (stmt_info_a);
3737 if (dr_group_first_a)
3738 {
3739 stmt_info_a = dr_group_first_a;
3740 dr_info_a = STMT_VINFO_DR_INFO (stmt_info_a);
3741 }
3742
3743 stmt_vec_info dr_group_first_b = DR_GROUP_FIRST_ELEMENT (stmt_info_b);
3744 if (dr_group_first_b)
3745 {
3746 stmt_info_b = dr_group_first_b;
3747 dr_info_b = STMT_VINFO_DR_INFO (stmt_info_b);
3748 }
3749
3750 if (ignore_step_p)
3751 {
3752 segment_length_a = size_zero_node;
3753 segment_length_b = size_zero_node;
3754 }
3755 else
3756 {
3757 if (!operand_equal_p (DR_STEP (dr_info_a->dr),
3758 DR_STEP (dr_info_b->dr), 0))
3759 length_factor = scalar_loop_iters;
3760 else
3761 length_factor = size_int (vect_factor);
3762 segment_length_a = vect_vfa_segment_size (dr_info_a, length_factor);
3763 segment_length_b = vect_vfa_segment_size (dr_info_b, length_factor);
3764 }
3765 access_size_a = vect_vfa_access_size (loop_vinfo, dr_info_a);
3766 access_size_b = vect_vfa_access_size (loop_vinfo, dr_info_b);
3767 align_a = vect_vfa_align (dr_info_a);
3768 align_b = vect_vfa_align (dr_info_b);
3769
3770 /* See whether the alias is known at compilation time. */
3771 if (operand_equal_p (DR_BASE_ADDRESS (dr_info_a->dr),
3772 DR_BASE_ADDRESS (dr_info_b->dr), 0)
3773 && operand_equal_p (DR_OFFSET (dr_info_a->dr),
3774 DR_OFFSET (dr_info_b->dr), 0)
3775 && TREE_CODE (DR_STEP (dr_info_a->dr)) == INTEGER_CST
3776 && TREE_CODE (DR_STEP (dr_info_b->dr)) == INTEGER_CST
3777 && poly_int_tree_p (segment_length_a)
3778 && poly_int_tree_p (segment_length_b))
3779 {
3780 int res = vect_compile_time_alias (dr_info_a, dr_info_b,
3781 segment_length_a,
3782 segment_length_b,
3783 access_size_a,
3784 access_size_b);
3785 if (res >= 0 && dump_enabled_p ())
3786 {
3787 dump_printf_loc (MSG_NOTE, vect_location,
3788 "can tell at compile time that %T and %T",
3789 DR_REF (dr_info_a->dr), DR_REF (dr_info_b->dr));
3790 if (res == 0)
3791 dump_printf (MSG_NOTE, " do not alias\n");
3792 else
3793 dump_printf (MSG_NOTE, " alias\n");
3794 }
3795
3796 if (res == 0)
3797 continue;
3798
3799 if (res == 1)
3800 return opt_result::failure_at (stmt_info_b->stmt,
3801 "not vectorized:"
3802 " compilation time alias: %G%G",
3803 stmt_info_a->stmt,
3804 stmt_info_b->stmt);
3805 }
3806
3807 dr_with_seg_len dr_a (dr_info_a->dr, segment_length_a,
3808 access_size_a, align_a);
3809 dr_with_seg_len dr_b (dr_info_b->dr, segment_length_b,
3810 access_size_b, align_b);
3811 /* Canonicalize the order to be the one that's needed for accurate
3812 RAW, WAR and WAW flags, in cases where the data references are
3813 well-ordered. The order doesn't really matter otherwise,
3814 but we might as well be consistent. */
3815 if (get_later_stmt (stmt_info_a, stmt_info_b) == stmt_info_a)
3816 std::swap (dr_a, dr_b);
3817
3818 dr_with_seg_len_pair_t dr_with_seg_len_pair
3819 (dr_a, dr_b, (preserves_scalar_order_p
3820 ? dr_with_seg_len_pair_t::WELL_ORDERED
3821 : dr_with_seg_len_pair_t::REORDERED));
3822
3823 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
3824 }
3825
3826 prune_runtime_alias_test_list (&comp_alias_ddrs, vect_factor);
3827
3828 unsigned int count = (comp_alias_ddrs.length ()
3829 + check_unequal_addrs.length ());
3830
3831 if (count
3832 && (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo))
3833 == VECT_COST_MODEL_VERY_CHEAP))
3834 return opt_result::failure_at
3835 (vect_location, "would need a runtime alias check\n");
3836
3837 if (dump_enabled_p ())
3838 dump_printf_loc (MSG_NOTE, vect_location,
3839 "improved number of alias checks from %d to %d\n",
3840 may_alias_ddrs.length (), count);
3841 unsigned limit = param_vect_max_version_for_alias_checks;
3842 if (loop_cost_model (LOOP_VINFO_LOOP (loop_vinfo)) == VECT_COST_MODEL_CHEAP)
3843 limit = param_vect_max_version_for_alias_checks * 6 / 10;
3844 if (count > limit)
3845 return opt_result::failure_at
3846 (vect_location,
3847 "number of versioning for alias run-time tests exceeds %d "
3848 "(--param vect-max-version-for-alias-checks)\n", limit);
3849
3850 return opt_result::success ();
3851 }
3852
3853 /* Check whether we can use an internal function for a gather load
3854 or scatter store. READ_P is true for loads and false for stores.
3855 MASKED_P is true if the load or store is conditional. MEMORY_TYPE is
3856 the type of the memory elements being loaded or stored. OFFSET_TYPE
3857 is the type of the offset that is being applied to the invariant
3858 base address. SCALE is the amount by which the offset should
3859 be multiplied *after* it has been converted to address width.
3860
3861 Return true if the function is supported, storing the function id in
3862 *IFN_OUT and the vector type for the offset in *OFFSET_VECTYPE_OUT. */
3863
3864 bool
vect_gather_scatter_fn_p(vec_info * vinfo,bool read_p,bool masked_p,tree vectype,tree memory_type,tree offset_type,int scale,internal_fn * ifn_out,tree * offset_vectype_out)3865 vect_gather_scatter_fn_p (vec_info *vinfo, bool read_p, bool masked_p,
3866 tree vectype, tree memory_type, tree offset_type,
3867 int scale, internal_fn *ifn_out,
3868 tree *offset_vectype_out)
3869 {
3870 unsigned int memory_bits = tree_to_uhwi (TYPE_SIZE (memory_type));
3871 unsigned int element_bits = vector_element_bits (vectype);
3872 if (element_bits != memory_bits)
3873 /* For now the vector elements must be the same width as the
3874 memory elements. */
3875 return false;
3876
3877 /* Work out which function we need. */
3878 internal_fn ifn, alt_ifn;
3879 if (read_p)
3880 {
3881 ifn = masked_p ? IFN_MASK_GATHER_LOAD : IFN_GATHER_LOAD;
3882 alt_ifn = IFN_MASK_GATHER_LOAD;
3883 }
3884 else
3885 {
3886 ifn = masked_p ? IFN_MASK_SCATTER_STORE : IFN_SCATTER_STORE;
3887 alt_ifn = IFN_MASK_SCATTER_STORE;
3888 }
3889
3890 for (;;)
3891 {
3892 tree offset_vectype = get_vectype_for_scalar_type (vinfo, offset_type);
3893 if (!offset_vectype)
3894 return false;
3895
3896 /* Test whether the target supports this combination. */
3897 if (internal_gather_scatter_fn_supported_p (ifn, vectype, memory_type,
3898 offset_vectype, scale))
3899 {
3900 *ifn_out = ifn;
3901 *offset_vectype_out = offset_vectype;
3902 return true;
3903 }
3904 else if (!masked_p
3905 && internal_gather_scatter_fn_supported_p (alt_ifn, vectype,
3906 memory_type,
3907 offset_vectype,
3908 scale))
3909 {
3910 *ifn_out = alt_ifn;
3911 *offset_vectype_out = offset_vectype;
3912 return true;
3913 }
3914
3915 if (TYPE_PRECISION (offset_type) >= POINTER_SIZE
3916 && TYPE_PRECISION (offset_type) >= element_bits)
3917 return false;
3918
3919 offset_type = build_nonstandard_integer_type
3920 (TYPE_PRECISION (offset_type) * 2, TYPE_UNSIGNED (offset_type));
3921 }
3922 }
3923
3924 /* STMT_INFO is a call to an internal gather load or scatter store function.
3925 Describe the operation in INFO. */
3926
3927 static void
vect_describe_gather_scatter_call(stmt_vec_info stmt_info,gather_scatter_info * info)3928 vect_describe_gather_scatter_call (stmt_vec_info stmt_info,
3929 gather_scatter_info *info)
3930 {
3931 gcall *call = as_a <gcall *> (stmt_info->stmt);
3932 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3933 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3934
3935 info->ifn = gimple_call_internal_fn (call);
3936 info->decl = NULL_TREE;
3937 info->base = gimple_call_arg (call, 0);
3938 info->offset = gimple_call_arg (call, 1);
3939 info->offset_dt = vect_unknown_def_type;
3940 info->offset_vectype = NULL_TREE;
3941 info->scale = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
3942 info->element_type = TREE_TYPE (vectype);
3943 info->memory_type = TREE_TYPE (DR_REF (dr));
3944 }
3945
3946 /* Return true if a non-affine read or write in STMT_INFO is suitable for a
3947 gather load or scatter store. Describe the operation in *INFO if so. */
3948
3949 bool
vect_check_gather_scatter(stmt_vec_info stmt_info,loop_vec_info loop_vinfo,gather_scatter_info * info)3950 vect_check_gather_scatter (stmt_vec_info stmt_info, loop_vec_info loop_vinfo,
3951 gather_scatter_info *info)
3952 {
3953 HOST_WIDE_INT scale = 1;
3954 poly_int64 pbitpos, pbitsize;
3955 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3956 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3957 tree offtype = NULL_TREE;
3958 tree decl = NULL_TREE, base, off;
3959 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3960 tree memory_type = TREE_TYPE (DR_REF (dr));
3961 machine_mode pmode;
3962 int punsignedp, reversep, pvolatilep = 0;
3963 internal_fn ifn;
3964 tree offset_vectype;
3965 bool masked_p = false;
3966
3967 /* See whether this is already a call to a gather/scatter internal function.
3968 If not, see whether it's a masked load or store. */
3969 gcall *call = dyn_cast <gcall *> (stmt_info->stmt);
3970 if (call && gimple_call_internal_p (call))
3971 {
3972 ifn = gimple_call_internal_fn (call);
3973 if (internal_gather_scatter_fn_p (ifn))
3974 {
3975 vect_describe_gather_scatter_call (stmt_info, info);
3976 return true;
3977 }
3978 masked_p = (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE);
3979 }
3980
3981 /* True if we should aim to use internal functions rather than
3982 built-in functions. */
3983 bool use_ifn_p = (DR_IS_READ (dr)
3984 ? supports_vec_gather_load_p (TYPE_MODE (vectype))
3985 : supports_vec_scatter_store_p (TYPE_MODE (vectype)));
3986
3987 base = DR_REF (dr);
3988 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3989 see if we can use the def stmt of the address. */
3990 if (masked_p
3991 && TREE_CODE (base) == MEM_REF
3992 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3993 && integer_zerop (TREE_OPERAND (base, 1))
3994 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3995 {
3996 gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3997 if (is_gimple_assign (def_stmt)
3998 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3999 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
4000 }
4001
4002 /* The gather and scatter builtins need address of the form
4003 loop_invariant + vector * {1, 2, 4, 8}
4004 or
4005 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
4006 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
4007 of loop invariants/SSA_NAMEs defined in the loop, with casts,
4008 multiplications and additions in it. To get a vector, we need
4009 a single SSA_NAME that will be defined in the loop and will
4010 contain everything that is not loop invariant and that can be
4011 vectorized. The following code attempts to find such a preexistng
4012 SSA_NAME OFF and put the loop invariants into a tree BASE
4013 that can be gimplified before the loop. */
4014 base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
4015 &punsignedp, &reversep, &pvolatilep);
4016 if (reversep)
4017 return false;
4018
4019 poly_int64 pbytepos = exact_div (pbitpos, BITS_PER_UNIT);
4020
4021 if (TREE_CODE (base) == MEM_REF)
4022 {
4023 if (!integer_zerop (TREE_OPERAND (base, 1)))
4024 {
4025 if (off == NULL_TREE)
4026 off = wide_int_to_tree (sizetype, mem_ref_offset (base));
4027 else
4028 off = size_binop (PLUS_EXPR, off,
4029 fold_convert (sizetype, TREE_OPERAND (base, 1)));
4030 }
4031 base = TREE_OPERAND (base, 0);
4032 }
4033 else
4034 base = build_fold_addr_expr (base);
4035
4036 if (off == NULL_TREE)
4037 off = size_zero_node;
4038
4039 /* If base is not loop invariant, either off is 0, then we start with just
4040 the constant offset in the loop invariant BASE and continue with base
4041 as OFF, otherwise give up.
4042 We could handle that case by gimplifying the addition of base + off
4043 into some SSA_NAME and use that as off, but for now punt. */
4044 if (!expr_invariant_in_loop_p (loop, base))
4045 {
4046 if (!integer_zerop (off))
4047 return false;
4048 off = base;
4049 base = size_int (pbytepos);
4050 }
4051 /* Otherwise put base + constant offset into the loop invariant BASE
4052 and continue with OFF. */
4053 else
4054 {
4055 base = fold_convert (sizetype, base);
4056 base = size_binop (PLUS_EXPR, base, size_int (pbytepos));
4057 }
4058
4059 /* OFF at this point may be either a SSA_NAME or some tree expression
4060 from get_inner_reference. Try to peel off loop invariants from it
4061 into BASE as long as possible. */
4062 STRIP_NOPS (off);
4063 while (offtype == NULL_TREE)
4064 {
4065 enum tree_code code;
4066 tree op0, op1, add = NULL_TREE;
4067
4068 if (TREE_CODE (off) == SSA_NAME)
4069 {
4070 gimple *def_stmt = SSA_NAME_DEF_STMT (off);
4071
4072 if (expr_invariant_in_loop_p (loop, off))
4073 return false;
4074
4075 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
4076 break;
4077
4078 op0 = gimple_assign_rhs1 (def_stmt);
4079 code = gimple_assign_rhs_code (def_stmt);
4080 op1 = gimple_assign_rhs2 (def_stmt);
4081 }
4082 else
4083 {
4084 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
4085 return false;
4086 code = TREE_CODE (off);
4087 extract_ops_from_tree (off, &code, &op0, &op1);
4088 }
4089 switch (code)
4090 {
4091 case POINTER_PLUS_EXPR:
4092 case PLUS_EXPR:
4093 if (expr_invariant_in_loop_p (loop, op0))
4094 {
4095 add = op0;
4096 off = op1;
4097 do_add:
4098 add = fold_convert (sizetype, add);
4099 if (scale != 1)
4100 add = size_binop (MULT_EXPR, add, size_int (scale));
4101 base = size_binop (PLUS_EXPR, base, add);
4102 continue;
4103 }
4104 if (expr_invariant_in_loop_p (loop, op1))
4105 {
4106 add = op1;
4107 off = op0;
4108 goto do_add;
4109 }
4110 break;
4111 case MINUS_EXPR:
4112 if (expr_invariant_in_loop_p (loop, op1))
4113 {
4114 add = fold_convert (sizetype, op1);
4115 add = size_binop (MINUS_EXPR, size_zero_node, add);
4116 off = op0;
4117 goto do_add;
4118 }
4119 break;
4120 case MULT_EXPR:
4121 if (scale == 1 && tree_fits_shwi_p (op1))
4122 {
4123 int new_scale = tree_to_shwi (op1);
4124 /* Only treat this as a scaling operation if the target
4125 supports it for at least some offset type. */
4126 if (use_ifn_p
4127 && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
4128 masked_p, vectype, memory_type,
4129 signed_char_type_node,
4130 new_scale, &ifn,
4131 &offset_vectype)
4132 && !vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
4133 masked_p, vectype, memory_type,
4134 unsigned_char_type_node,
4135 new_scale, &ifn,
4136 &offset_vectype))
4137 break;
4138 scale = new_scale;
4139 off = op0;
4140 continue;
4141 }
4142 break;
4143 case SSA_NAME:
4144 off = op0;
4145 continue;
4146 CASE_CONVERT:
4147 if (!POINTER_TYPE_P (TREE_TYPE (op0))
4148 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
4149 break;
4150
4151 /* Don't include the conversion if the target is happy with
4152 the current offset type. */
4153 if (use_ifn_p
4154 && !POINTER_TYPE_P (TREE_TYPE (off))
4155 && vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr),
4156 masked_p, vectype, memory_type,
4157 TREE_TYPE (off), scale, &ifn,
4158 &offset_vectype))
4159 break;
4160
4161 if (TYPE_PRECISION (TREE_TYPE (op0))
4162 == TYPE_PRECISION (TREE_TYPE (off)))
4163 {
4164 off = op0;
4165 continue;
4166 }
4167
4168 /* Include the conversion if it is widening and we're using
4169 the IFN path or the target can handle the converted from
4170 offset or the current size is not already the same as the
4171 data vector element size. */
4172 if ((TYPE_PRECISION (TREE_TYPE (op0))
4173 < TYPE_PRECISION (TREE_TYPE (off)))
4174 && (use_ifn_p
4175 || (DR_IS_READ (dr)
4176 ? (targetm.vectorize.builtin_gather
4177 && targetm.vectorize.builtin_gather (vectype,
4178 TREE_TYPE (op0),
4179 scale))
4180 : (targetm.vectorize.builtin_scatter
4181 && targetm.vectorize.builtin_scatter (vectype,
4182 TREE_TYPE (op0),
4183 scale)))
4184 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (off)),
4185 TYPE_SIZE (TREE_TYPE (vectype)), 0)))
4186 {
4187 off = op0;
4188 offtype = TREE_TYPE (off);
4189 STRIP_NOPS (off);
4190 continue;
4191 }
4192 break;
4193 default:
4194 break;
4195 }
4196 break;
4197 }
4198
4199 /* If at the end OFF still isn't a SSA_NAME or isn't
4200 defined in the loop, punt. */
4201 if (TREE_CODE (off) != SSA_NAME
4202 || expr_invariant_in_loop_p (loop, off))
4203 return false;
4204
4205 if (offtype == NULL_TREE)
4206 offtype = TREE_TYPE (off);
4207
4208 if (use_ifn_p)
4209 {
4210 if (!vect_gather_scatter_fn_p (loop_vinfo, DR_IS_READ (dr), masked_p,
4211 vectype, memory_type, offtype, scale,
4212 &ifn, &offset_vectype))
4213 ifn = IFN_LAST;
4214 decl = NULL_TREE;
4215 }
4216 else
4217 {
4218 if (DR_IS_READ (dr))
4219 {
4220 if (targetm.vectorize.builtin_gather)
4221 decl = targetm.vectorize.builtin_gather (vectype, offtype, scale);
4222 }
4223 else
4224 {
4225 if (targetm.vectorize.builtin_scatter)
4226 decl = targetm.vectorize.builtin_scatter (vectype, offtype, scale);
4227 }
4228 ifn = IFN_LAST;
4229 /* The offset vector type will be read from DECL when needed. */
4230 offset_vectype = NULL_TREE;
4231 }
4232
4233 info->ifn = ifn;
4234 info->decl = decl;
4235 info->base = base;
4236 info->offset = off;
4237 info->offset_dt = vect_unknown_def_type;
4238 info->offset_vectype = offset_vectype;
4239 info->scale = scale;
4240 info->element_type = TREE_TYPE (vectype);
4241 info->memory_type = memory_type;
4242 return true;
4243 }
4244
4245 /* Find the data references in STMT, analyze them with respect to LOOP and
4246 append them to DATAREFS. Return false if datarefs in this stmt cannot
4247 be handled. */
4248
4249 opt_result
vect_find_stmt_data_reference(loop_p loop,gimple * stmt,vec<data_reference_p> * datarefs,vec<int> * dataref_groups,int group_id)4250 vect_find_stmt_data_reference (loop_p loop, gimple *stmt,
4251 vec<data_reference_p> *datarefs,
4252 vec<int> *dataref_groups, int group_id)
4253 {
4254 /* We can ignore clobbers for dataref analysis - they are removed during
4255 loop vectorization and BB vectorization checks dependences with a
4256 stmt walk. */
4257 if (gimple_clobber_p (stmt))
4258 return opt_result::success ();
4259
4260 if (gimple_has_volatile_ops (stmt))
4261 return opt_result::failure_at (stmt, "not vectorized: volatile type: %G",
4262 stmt);
4263
4264 if (stmt_can_throw_internal (cfun, stmt))
4265 return opt_result::failure_at (stmt,
4266 "not vectorized:"
4267 " statement can throw an exception: %G",
4268 stmt);
4269
4270 auto_vec<data_reference_p, 2> refs;
4271 opt_result res = find_data_references_in_stmt (loop, stmt, &refs);
4272 if (!res)
4273 return res;
4274
4275 if (refs.is_empty ())
4276 return opt_result::success ();
4277
4278 if (refs.length () > 1)
4279 {
4280 while (!refs.is_empty ())
4281 free_data_ref (refs.pop ());
4282 return opt_result::failure_at (stmt,
4283 "not vectorized: more than one "
4284 "data ref in stmt: %G", stmt);
4285 }
4286
4287 data_reference_p dr = refs.pop ();
4288 if (gcall *call = dyn_cast <gcall *> (stmt))
4289 if (!gimple_call_internal_p (call)
4290 || (gimple_call_internal_fn (call) != IFN_MASK_LOAD
4291 && gimple_call_internal_fn (call) != IFN_MASK_STORE))
4292 {
4293 free_data_ref (dr);
4294 return opt_result::failure_at (stmt,
4295 "not vectorized: dr in a call %G", stmt);
4296 }
4297
4298 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
4299 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
4300 {
4301 free_data_ref (dr);
4302 return opt_result::failure_at (stmt,
4303 "not vectorized:"
4304 " statement is bitfield access %G", stmt);
4305 }
4306
4307 if (DR_BASE_ADDRESS (dr)
4308 && TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
4309 {
4310 free_data_ref (dr);
4311 return opt_result::failure_at (stmt,
4312 "not vectorized:"
4313 " base addr of dr is a constant\n");
4314 }
4315
4316 /* Check whether this may be a SIMD lane access and adjust the
4317 DR to make it easier for us to handle it. */
4318 if (loop
4319 && loop->simduid
4320 && (!DR_BASE_ADDRESS (dr)
4321 || !DR_OFFSET (dr)
4322 || !DR_INIT (dr)
4323 || !DR_STEP (dr)))
4324 {
4325 struct data_reference *newdr
4326 = create_data_ref (NULL, loop_containing_stmt (stmt), DR_REF (dr), stmt,
4327 DR_IS_READ (dr), DR_IS_CONDITIONAL_IN_STMT (dr));
4328 if (DR_BASE_ADDRESS (newdr)
4329 && DR_OFFSET (newdr)
4330 && DR_INIT (newdr)
4331 && DR_STEP (newdr)
4332 && TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
4333 && integer_zerop (DR_STEP (newdr)))
4334 {
4335 tree base_address = DR_BASE_ADDRESS (newdr);
4336 tree off = DR_OFFSET (newdr);
4337 tree step = ssize_int (1);
4338 if (integer_zerop (off)
4339 && TREE_CODE (base_address) == POINTER_PLUS_EXPR)
4340 {
4341 off = TREE_OPERAND (base_address, 1);
4342 base_address = TREE_OPERAND (base_address, 0);
4343 }
4344 STRIP_NOPS (off);
4345 if (TREE_CODE (off) == MULT_EXPR
4346 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
4347 {
4348 step = TREE_OPERAND (off, 1);
4349 off = TREE_OPERAND (off, 0);
4350 STRIP_NOPS (off);
4351 }
4352 if (CONVERT_EXPR_P (off)
4353 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off, 0)))
4354 < TYPE_PRECISION (TREE_TYPE (off))))
4355 off = TREE_OPERAND (off, 0);
4356 if (TREE_CODE (off) == SSA_NAME)
4357 {
4358 gimple *def = SSA_NAME_DEF_STMT (off);
4359 /* Look through widening conversion. */
4360 if (is_gimple_assign (def)
4361 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
4362 {
4363 tree rhs1 = gimple_assign_rhs1 (def);
4364 if (TREE_CODE (rhs1) == SSA_NAME
4365 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
4366 && (TYPE_PRECISION (TREE_TYPE (off))
4367 > TYPE_PRECISION (TREE_TYPE (rhs1))))
4368 def = SSA_NAME_DEF_STMT (rhs1);
4369 }
4370 if (is_gimple_call (def)
4371 && gimple_call_internal_p (def)
4372 && (gimple_call_internal_fn (def) == IFN_GOMP_SIMD_LANE))
4373 {
4374 tree arg = gimple_call_arg (def, 0);
4375 tree reft = TREE_TYPE (DR_REF (newdr));
4376 gcc_assert (TREE_CODE (arg) == SSA_NAME);
4377 arg = SSA_NAME_VAR (arg);
4378 if (arg == loop->simduid
4379 /* For now. */
4380 && tree_int_cst_equal (TYPE_SIZE_UNIT (reft), step))
4381 {
4382 DR_BASE_ADDRESS (newdr) = base_address;
4383 DR_OFFSET (newdr) = ssize_int (0);
4384 DR_STEP (newdr) = step;
4385 DR_OFFSET_ALIGNMENT (newdr) = BIGGEST_ALIGNMENT;
4386 DR_STEP_ALIGNMENT (newdr) = highest_pow2_factor (step);
4387 /* Mark as simd-lane access. */
4388 tree arg2 = gimple_call_arg (def, 1);
4389 newdr->aux = (void *) (-1 - tree_to_uhwi (arg2));
4390 free_data_ref (dr);
4391 datarefs->safe_push (newdr);
4392 if (dataref_groups)
4393 dataref_groups->safe_push (group_id);
4394 return opt_result::success ();
4395 }
4396 }
4397 }
4398 }
4399 free_data_ref (newdr);
4400 }
4401
4402 datarefs->safe_push (dr);
4403 if (dataref_groups)
4404 dataref_groups->safe_push (group_id);
4405 return opt_result::success ();
4406 }
4407
4408 /* Function vect_analyze_data_refs.
4409
4410 Find all the data references in the loop or basic block.
4411
4412 The general structure of the analysis of data refs in the vectorizer is as
4413 follows:
4414 1- vect_analyze_data_refs(loop/bb): call
4415 compute_data_dependences_for_loop/bb to find and analyze all data-refs
4416 in the loop/bb and their dependences.
4417 2- vect_analyze_dependences(): apply dependence testing using ddrs.
4418 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4419 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
4420
4421 */
4422
4423 opt_result
vect_analyze_data_refs(vec_info * vinfo,poly_uint64 * min_vf,bool * fatal)4424 vect_analyze_data_refs (vec_info *vinfo, poly_uint64 *min_vf, bool *fatal)
4425 {
4426 class loop *loop = NULL;
4427 unsigned int i;
4428 struct data_reference *dr;
4429 tree scalar_type;
4430
4431 DUMP_VECT_SCOPE ("vect_analyze_data_refs");
4432
4433 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
4434 loop = LOOP_VINFO_LOOP (loop_vinfo);
4435
4436 /* Go through the data-refs, check that the analysis succeeded. Update
4437 pointer from stmt_vec_info struct to DR and vectype. */
4438
4439 vec<data_reference_p> datarefs = vinfo->shared->datarefs;
4440 FOR_EACH_VEC_ELT (datarefs, i, dr)
4441 {
4442 enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
4443 poly_uint64 vf;
4444
4445 gcc_assert (DR_REF (dr));
4446 stmt_vec_info stmt_info = vinfo->lookup_stmt (DR_STMT (dr));
4447 gcc_assert (!stmt_info->dr_aux.dr);
4448 stmt_info->dr_aux.dr = dr;
4449 stmt_info->dr_aux.stmt = stmt_info;
4450
4451 /* Check that analysis of the data-ref succeeded. */
4452 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
4453 || !DR_STEP (dr))
4454 {
4455 bool maybe_gather
4456 = DR_IS_READ (dr)
4457 && !TREE_THIS_VOLATILE (DR_REF (dr));
4458 bool maybe_scatter
4459 = DR_IS_WRITE (dr)
4460 && !TREE_THIS_VOLATILE (DR_REF (dr))
4461 && (targetm.vectorize.builtin_scatter != NULL
4462 || supports_vec_scatter_store_p ());
4463
4464 /* If target supports vector gather loads or scatter stores,
4465 see if they can't be used. */
4466 if (is_a <loop_vec_info> (vinfo)
4467 && !nested_in_vect_loop_p (loop, stmt_info))
4468 {
4469 if (maybe_gather || maybe_scatter)
4470 {
4471 if (maybe_gather)
4472 gatherscatter = GATHER;
4473 else
4474 gatherscatter = SCATTER;
4475 }
4476 }
4477
4478 if (gatherscatter == SG_NONE)
4479 {
4480 if (dump_enabled_p ())
4481 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4482 "not vectorized: data ref analysis "
4483 "failed %G", stmt_info->stmt);
4484 if (is_a <bb_vec_info> (vinfo))
4485 {
4486 /* In BB vectorization the ref can still participate
4487 in dependence analysis, we just can't vectorize it. */
4488 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4489 continue;
4490 }
4491 return opt_result::failure_at (stmt_info->stmt,
4492 "not vectorized:"
4493 " data ref analysis failed: %G",
4494 stmt_info->stmt);
4495 }
4496 }
4497
4498 /* See if this was detected as SIMD lane access. */
4499 if (dr->aux == (void *)-1
4500 || dr->aux == (void *)-2
4501 || dr->aux == (void *)-3
4502 || dr->aux == (void *)-4)
4503 {
4504 if (nested_in_vect_loop_p (loop, stmt_info))
4505 return opt_result::failure_at (stmt_info->stmt,
4506 "not vectorized:"
4507 " data ref analysis failed: %G",
4508 stmt_info->stmt);
4509 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info)
4510 = -(uintptr_t) dr->aux;
4511 }
4512
4513 tree base = get_base_address (DR_REF (dr));
4514 if (base && VAR_P (base) && DECL_NONALIASED (base))
4515 {
4516 if (dump_enabled_p ())
4517 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4518 "not vectorized: base object not addressable "
4519 "for stmt: %G", stmt_info->stmt);
4520 if (is_a <bb_vec_info> (vinfo))
4521 {
4522 /* In BB vectorization the ref can still participate
4523 in dependence analysis, we just can't vectorize it. */
4524 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4525 continue;
4526 }
4527 return opt_result::failure_at (stmt_info->stmt,
4528 "not vectorized: base object not"
4529 " addressable for stmt: %G",
4530 stmt_info->stmt);
4531 }
4532
4533 if (is_a <loop_vec_info> (vinfo)
4534 && DR_STEP (dr)
4535 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
4536 {
4537 if (nested_in_vect_loop_p (loop, stmt_info))
4538 return opt_result::failure_at (stmt_info->stmt,
4539 "not vectorized: "
4540 "not suitable for strided load %G",
4541 stmt_info->stmt);
4542 STMT_VINFO_STRIDED_P (stmt_info) = true;
4543 }
4544
4545 /* Update DR field in stmt_vec_info struct. */
4546
4547 /* If the dataref is in an inner-loop of the loop that is considered for
4548 for vectorization, we also want to analyze the access relative to
4549 the outer-loop (DR contains information only relative to the
4550 inner-most enclosing loop). We do that by building a reference to the
4551 first location accessed by the inner-loop, and analyze it relative to
4552 the outer-loop. */
4553 if (loop && nested_in_vect_loop_p (loop, stmt_info))
4554 {
4555 /* Build a reference to the first location accessed by the
4556 inner loop: *(BASE + INIT + OFFSET). By construction,
4557 this address must be invariant in the inner loop, so we
4558 can consider it as being used in the outer loop. */
4559 tree base = unshare_expr (DR_BASE_ADDRESS (dr));
4560 tree offset = unshare_expr (DR_OFFSET (dr));
4561 tree init = unshare_expr (DR_INIT (dr));
4562 tree init_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset),
4563 init, offset);
4564 tree init_addr = fold_build_pointer_plus (base, init_offset);
4565 tree init_ref = build_fold_indirect_ref (init_addr);
4566
4567 if (dump_enabled_p ())
4568 dump_printf_loc (MSG_NOTE, vect_location,
4569 "analyze in outer loop: %T\n", init_ref);
4570
4571 opt_result res
4572 = dr_analyze_innermost (&STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info),
4573 init_ref, loop, stmt_info->stmt);
4574 if (!res)
4575 /* dr_analyze_innermost already explained the failure. */
4576 return res;
4577
4578 if (dump_enabled_p ())
4579 dump_printf_loc (MSG_NOTE, vect_location,
4580 "\touter base_address: %T\n"
4581 "\touter offset from base address: %T\n"
4582 "\touter constant offset from base address: %T\n"
4583 "\touter step: %T\n"
4584 "\touter base alignment: %d\n\n"
4585 "\touter base misalignment: %d\n"
4586 "\touter offset alignment: %d\n"
4587 "\touter step alignment: %d\n",
4588 STMT_VINFO_DR_BASE_ADDRESS (stmt_info),
4589 STMT_VINFO_DR_OFFSET (stmt_info),
4590 STMT_VINFO_DR_INIT (stmt_info),
4591 STMT_VINFO_DR_STEP (stmt_info),
4592 STMT_VINFO_DR_BASE_ALIGNMENT (stmt_info),
4593 STMT_VINFO_DR_BASE_MISALIGNMENT (stmt_info),
4594 STMT_VINFO_DR_OFFSET_ALIGNMENT (stmt_info),
4595 STMT_VINFO_DR_STEP_ALIGNMENT (stmt_info));
4596 }
4597
4598 /* Set vectype for STMT. */
4599 scalar_type = TREE_TYPE (DR_REF (dr));
4600 tree vectype = get_vectype_for_scalar_type (vinfo, scalar_type);
4601 if (!vectype)
4602 {
4603 if (dump_enabled_p ())
4604 {
4605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4606 "not vectorized: no vectype for stmt: %G",
4607 stmt_info->stmt);
4608 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
4609 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
4610 scalar_type);
4611 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4612 }
4613
4614 if (is_a <bb_vec_info> (vinfo))
4615 {
4616 /* No vector type is fine, the ref can still participate
4617 in dependence analysis, we just can't vectorize it. */
4618 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
4619 continue;
4620 }
4621 if (fatal)
4622 *fatal = false;
4623 return opt_result::failure_at (stmt_info->stmt,
4624 "not vectorized:"
4625 " no vectype for stmt: %G"
4626 " scalar_type: %T\n",
4627 stmt_info->stmt, scalar_type);
4628 }
4629 else
4630 {
4631 if (dump_enabled_p ())
4632 dump_printf_loc (MSG_NOTE, vect_location,
4633 "got vectype for stmt: %G%T\n",
4634 stmt_info->stmt, vectype);
4635 }
4636
4637 /* Adjust the minimal vectorization factor according to the
4638 vector type. */
4639 vf = TYPE_VECTOR_SUBPARTS (vectype);
4640 *min_vf = upper_bound (*min_vf, vf);
4641
4642 /* Leave the BB vectorizer to pick the vector type later, based on
4643 the final dataref group size and SLP node size. */
4644 if (is_a <loop_vec_info> (vinfo))
4645 STMT_VINFO_VECTYPE (stmt_info) = vectype;
4646
4647 if (gatherscatter != SG_NONE)
4648 {
4649 gather_scatter_info gs_info;
4650 if (!vect_check_gather_scatter (stmt_info,
4651 as_a <loop_vec_info> (vinfo),
4652 &gs_info)
4653 || !get_vectype_for_scalar_type (vinfo,
4654 TREE_TYPE (gs_info.offset)))
4655 {
4656 if (fatal)
4657 *fatal = false;
4658 return opt_result::failure_at
4659 (stmt_info->stmt,
4660 (gatherscatter == GATHER)
4661 ? "not vectorized: not suitable for gather load %G"
4662 : "not vectorized: not suitable for scatter store %G",
4663 stmt_info->stmt);
4664 }
4665 STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
4666 }
4667 }
4668
4669 /* We used to stop processing and prune the list here. Verify we no
4670 longer need to. */
4671 gcc_assert (i == datarefs.length ());
4672
4673 return opt_result::success ();
4674 }
4675
4676
4677 /* Function vect_get_new_vect_var.
4678
4679 Returns a name for a new variable. The current naming scheme appends the
4680 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
4681 the name of vectorizer generated variables, and appends that to NAME if
4682 provided. */
4683
4684 tree
vect_get_new_vect_var(tree type,enum vect_var_kind var_kind,const char * name)4685 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
4686 {
4687 const char *prefix;
4688 tree new_vect_var;
4689
4690 switch (var_kind)
4691 {
4692 case vect_simple_var:
4693 prefix = "vect";
4694 break;
4695 case vect_scalar_var:
4696 prefix = "stmp";
4697 break;
4698 case vect_mask_var:
4699 prefix = "mask";
4700 break;
4701 case vect_pointer_var:
4702 prefix = "vectp";
4703 break;
4704 default:
4705 gcc_unreachable ();
4706 }
4707
4708 if (name)
4709 {
4710 char* tmp = concat (prefix, "_", name, NULL);
4711 new_vect_var = create_tmp_reg (type, tmp);
4712 free (tmp);
4713 }
4714 else
4715 new_vect_var = create_tmp_reg (type, prefix);
4716
4717 return new_vect_var;
4718 }
4719
4720 /* Like vect_get_new_vect_var but return an SSA name. */
4721
4722 tree
vect_get_new_ssa_name(tree type,enum vect_var_kind var_kind,const char * name)4723 vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
4724 {
4725 const char *prefix;
4726 tree new_vect_var;
4727
4728 switch (var_kind)
4729 {
4730 case vect_simple_var:
4731 prefix = "vect";
4732 break;
4733 case vect_scalar_var:
4734 prefix = "stmp";
4735 break;
4736 case vect_pointer_var:
4737 prefix = "vectp";
4738 break;
4739 default:
4740 gcc_unreachable ();
4741 }
4742
4743 if (name)
4744 {
4745 char* tmp = concat (prefix, "_", name, NULL);
4746 new_vect_var = make_temp_ssa_name (type, NULL, tmp);
4747 free (tmp);
4748 }
4749 else
4750 new_vect_var = make_temp_ssa_name (type, NULL, prefix);
4751
4752 return new_vect_var;
4753 }
4754
4755 /* Duplicate points-to info on NAME from DR_INFO. */
4756
4757 static void
vect_duplicate_ssa_name_ptr_info(tree name,dr_vec_info * dr_info)4758 vect_duplicate_ssa_name_ptr_info (tree name, dr_vec_info *dr_info)
4759 {
4760 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr_info->dr));
4761 /* DR_PTR_INFO is for a base SSA name, not including constant or
4762 variable offsets in the ref so its alignment info does not apply. */
4763 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
4764 }
4765
4766 /* Function vect_create_addr_base_for_vector_ref.
4767
4768 Create an expression that computes the address of the first memory location
4769 that will be accessed for a data reference.
4770
4771 Input:
4772 STMT_INFO: The statement containing the data reference.
4773 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
4774 OFFSET: Optional. If supplied, it is be added to the initial address.
4775 LOOP: Specify relative to which loop-nest should the address be computed.
4776 For example, when the dataref is in an inner-loop nested in an
4777 outer-loop that is now being vectorized, LOOP can be either the
4778 outer-loop, or the inner-loop. The first memory location accessed
4779 by the following dataref ('in' points to short):
4780
4781 for (i=0; i<N; i++)
4782 for (j=0; j<M; j++)
4783 s += in[i+j]
4784
4785 is as follows:
4786 if LOOP=i_loop: &in (relative to i_loop)
4787 if LOOP=j_loop: &in+i*2B (relative to j_loop)
4788
4789 Output:
4790 1. Return an SSA_NAME whose value is the address of the memory location of
4791 the first vector of the data reference.
4792 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
4793 these statement(s) which define the returned SSA_NAME.
4794
4795 FORNOW: We are only handling array accesses with step 1. */
4796
4797 tree
vect_create_addr_base_for_vector_ref(vec_info * vinfo,stmt_vec_info stmt_info,gimple_seq * new_stmt_list,tree offset)4798 vect_create_addr_base_for_vector_ref (vec_info *vinfo, stmt_vec_info stmt_info,
4799 gimple_seq *new_stmt_list,
4800 tree offset)
4801 {
4802 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
4803 struct data_reference *dr = dr_info->dr;
4804 const char *base_name;
4805 tree addr_base;
4806 tree dest;
4807 gimple_seq seq = NULL;
4808 tree vect_ptr_type;
4809 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
4810 innermost_loop_behavior *drb = vect_dr_behavior (vinfo, dr_info);
4811
4812 tree data_ref_base = unshare_expr (drb->base_address);
4813 tree base_offset = unshare_expr (get_dr_vinfo_offset (vinfo, dr_info, true));
4814 tree init = unshare_expr (drb->init);
4815
4816 if (loop_vinfo)
4817 base_name = get_name (data_ref_base);
4818 else
4819 {
4820 base_offset = ssize_int (0);
4821 init = ssize_int (0);
4822 base_name = get_name (DR_REF (dr));
4823 }
4824
4825 /* Create base_offset */
4826 base_offset = size_binop (PLUS_EXPR,
4827 fold_convert (sizetype, base_offset),
4828 fold_convert (sizetype, init));
4829
4830 if (offset)
4831 {
4832 offset = fold_convert (sizetype, offset);
4833 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4834 base_offset, offset);
4835 }
4836
4837 /* base + base_offset */
4838 if (loop_vinfo)
4839 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
4840 else
4841 addr_base = build1 (ADDR_EXPR,
4842 build_pointer_type (TREE_TYPE (DR_REF (dr))),
4843 /* Strip zero offset components since we don't need
4844 them and they can confuse late diagnostics if
4845 we CSE them wrongly. See PR106904 for example. */
4846 unshare_expr (strip_zero_offset_components
4847 (DR_REF (dr))));
4848
4849 vect_ptr_type = build_pointer_type (TREE_TYPE (DR_REF (dr)));
4850 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
4851 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
4852 gimple_seq_add_seq (new_stmt_list, seq);
4853
4854 if (DR_PTR_INFO (dr)
4855 && TREE_CODE (addr_base) == SSA_NAME
4856 /* We should only duplicate pointer info to newly created SSA names. */
4857 && SSA_NAME_VAR (addr_base) == dest)
4858 {
4859 gcc_assert (!SSA_NAME_PTR_INFO (addr_base));
4860 vect_duplicate_ssa_name_ptr_info (addr_base, dr_info);
4861 }
4862
4863 if (dump_enabled_p ())
4864 dump_printf_loc (MSG_NOTE, vect_location, "created %T\n", addr_base);
4865
4866 return addr_base;
4867 }
4868
4869
4870 /* Function vect_create_data_ref_ptr.
4871
4872 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4873 location accessed in the loop by STMT_INFO, along with the def-use update
4874 chain to appropriately advance the pointer through the loop iterations.
4875 Also set aliasing information for the pointer. This pointer is used by
4876 the callers to this function to create a memory reference expression for
4877 vector load/store access.
4878
4879 Input:
4880 1. STMT_INFO: a stmt that references memory. Expected to be of the form
4881 GIMPLE_ASSIGN <name, data-ref> or
4882 GIMPLE_ASSIGN <data-ref, name>.
4883 2. AGGR_TYPE: the type of the reference, which should be either a vector
4884 or an array.
4885 3. AT_LOOP: the loop where the vector memref is to be created.
4886 4. OFFSET (optional): a byte offset to be added to the initial address
4887 accessed by the data-ref in STMT_INFO.
4888 5. BSI: location where the new stmts are to be placed if there is no loop
4889 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4890 pointing to the initial address.
4891 8. IV_STEP (optional, defaults to NULL): the amount that should be added
4892 to the IV during each iteration of the loop. NULL says to move
4893 by one copy of AGGR_TYPE up or down, depending on the step of the
4894 data reference.
4895
4896 Output:
4897 1. Declare a new ptr to vector_type, and have it point to the base of the
4898 data reference (initial addressed accessed by the data reference).
4899 For example, for vector of type V8HI, the following code is generated:
4900
4901 v8hi *ap;
4902 ap = (v8hi *)initial_address;
4903
4904 if OFFSET is not supplied:
4905 initial_address = &a[init];
4906 if OFFSET is supplied:
4907 initial_address = &a[init] + OFFSET;
4908 if BYTE_OFFSET is supplied:
4909 initial_address = &a[init] + BYTE_OFFSET;
4910
4911 Return the initial_address in INITIAL_ADDRESS.
4912
4913 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4914 update the pointer in each iteration of the loop.
4915
4916 Return the increment stmt that updates the pointer in PTR_INCR.
4917
4918 3. Return the pointer. */
4919
4920 tree
vect_create_data_ref_ptr(vec_info * vinfo,stmt_vec_info stmt_info,tree aggr_type,class loop * at_loop,tree offset,tree * initial_address,gimple_stmt_iterator * gsi,gimple ** ptr_incr,bool only_init,tree iv_step)4921 vect_create_data_ref_ptr (vec_info *vinfo, stmt_vec_info stmt_info,
4922 tree aggr_type, class loop *at_loop, tree offset,
4923 tree *initial_address, gimple_stmt_iterator *gsi,
4924 gimple **ptr_incr, bool only_init,
4925 tree iv_step)
4926 {
4927 const char *base_name;
4928 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
4929 class loop *loop = NULL;
4930 bool nested_in_vect_loop = false;
4931 class loop *containing_loop = NULL;
4932 tree aggr_ptr_type;
4933 tree aggr_ptr;
4934 tree new_temp;
4935 gimple_seq new_stmt_list = NULL;
4936 edge pe = NULL;
4937 basic_block new_bb;
4938 tree aggr_ptr_init;
4939 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
4940 struct data_reference *dr = dr_info->dr;
4941 tree aptr;
4942 gimple_stmt_iterator incr_gsi;
4943 bool insert_after;
4944 tree indx_before_incr, indx_after_incr;
4945 gimple *incr;
4946 bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (vinfo);
4947
4948 gcc_assert (iv_step != NULL_TREE
4949 || TREE_CODE (aggr_type) == ARRAY_TYPE
4950 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4951
4952 if (loop_vinfo)
4953 {
4954 loop = LOOP_VINFO_LOOP (loop_vinfo);
4955 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
4956 containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
4957 pe = loop_preheader_edge (loop);
4958 }
4959 else
4960 {
4961 gcc_assert (bb_vinfo);
4962 only_init = true;
4963 *ptr_incr = NULL;
4964 }
4965
4966 /* Create an expression for the first address accessed by this load
4967 in LOOP. */
4968 base_name = get_name (DR_BASE_ADDRESS (dr));
4969
4970 if (dump_enabled_p ())
4971 {
4972 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4973 dump_printf_loc (MSG_NOTE, vect_location,
4974 "create %s-pointer variable to type: %T",
4975 get_tree_code_name (TREE_CODE (aggr_type)),
4976 aggr_type);
4977 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4978 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4979 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4980 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4981 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4982 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4983 else
4984 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4985 dump_printf (MSG_NOTE, "%T\n", DR_BASE_OBJECT (dr));
4986 }
4987
4988 /* (1) Create the new aggregate-pointer variable.
4989 Vector and array types inherit the alias set of their component
4990 type by default so we need to use a ref-all pointer if the data
4991 reference does not conflict with the created aggregated data
4992 reference because it is not addressable. */
4993 bool need_ref_all = false;
4994 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4995 get_alias_set (DR_REF (dr))))
4996 need_ref_all = true;
4997 /* Likewise for any of the data references in the stmt group. */
4998 else if (DR_GROUP_SIZE (stmt_info) > 1)
4999 {
5000 stmt_vec_info sinfo = DR_GROUP_FIRST_ELEMENT (stmt_info);
5001 do
5002 {
5003 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
5004 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
5005 get_alias_set (DR_REF (sdr))))
5006 {
5007 need_ref_all = true;
5008 break;
5009 }
5010 sinfo = DR_GROUP_NEXT_ELEMENT (sinfo);
5011 }
5012 while (sinfo);
5013 }
5014 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
5015 need_ref_all);
5016 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
5017
5018
5019 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
5020 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
5021 def-use update cycles for the pointer: one relative to the outer-loop
5022 (LOOP), which is what steps (3) and (4) below do. The other is relative
5023 to the inner-loop (which is the inner-most loop containing the dataref),
5024 and this is done be step (5) below.
5025
5026 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
5027 inner-most loop, and so steps (3),(4) work the same, and step (5) is
5028 redundant. Steps (3),(4) create the following:
5029
5030 vp0 = &base_addr;
5031 LOOP: vp1 = phi(vp0,vp2)
5032 ...
5033 ...
5034 vp2 = vp1 + step
5035 goto LOOP
5036
5037 If there is an inner-loop nested in loop, then step (5) will also be
5038 applied, and an additional update in the inner-loop will be created:
5039
5040 vp0 = &base_addr;
5041 LOOP: vp1 = phi(vp0,vp2)
5042 ...
5043 inner: vp3 = phi(vp1,vp4)
5044 vp4 = vp3 + inner_step
5045 if () goto inner
5046 ...
5047 vp2 = vp1 + step
5048 if () goto LOOP */
5049
5050 /* (2) Calculate the initial address of the aggregate-pointer, and set
5051 the aggregate-pointer to point to it before the loop. */
5052
5053 /* Create: (&(base[init_val]+offset) in the loop preheader. */
5054
5055 new_temp = vect_create_addr_base_for_vector_ref (vinfo,
5056 stmt_info, &new_stmt_list,
5057 offset);
5058 if (new_stmt_list)
5059 {
5060 if (pe)
5061 {
5062 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
5063 gcc_assert (!new_bb);
5064 }
5065 else
5066 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
5067 }
5068
5069 *initial_address = new_temp;
5070 aggr_ptr_init = new_temp;
5071
5072 /* (3) Handle the updating of the aggregate-pointer inside the loop.
5073 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
5074 inner-loop nested in LOOP (during outer-loop vectorization). */
5075
5076 /* No update in loop is required. */
5077 if (only_init && (!loop_vinfo || at_loop == loop))
5078 aptr = aggr_ptr_init;
5079 else
5080 {
5081 /* Accesses to invariant addresses should be handled specially
5082 by the caller. */
5083 tree step = vect_dr_behavior (vinfo, dr_info)->step;
5084 gcc_assert (!integer_zerop (step));
5085
5086 if (iv_step == NULL_TREE)
5087 {
5088 /* The step of the aggregate pointer is the type size,
5089 negated for downward accesses. */
5090 iv_step = TYPE_SIZE_UNIT (aggr_type);
5091 if (tree_int_cst_sgn (step) == -1)
5092 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
5093 }
5094
5095 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
5096
5097 create_iv (aggr_ptr_init,
5098 fold_convert (aggr_ptr_type, iv_step),
5099 aggr_ptr, loop, &incr_gsi, insert_after,
5100 &indx_before_incr, &indx_after_incr);
5101 incr = gsi_stmt (incr_gsi);
5102
5103 /* Copy the points-to information if it exists. */
5104 if (DR_PTR_INFO (dr))
5105 {
5106 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
5107 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
5108 }
5109 if (ptr_incr)
5110 *ptr_incr = incr;
5111
5112 aptr = indx_before_incr;
5113 }
5114
5115 if (!nested_in_vect_loop || only_init)
5116 return aptr;
5117
5118
5119 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
5120 nested in LOOP, if exists. */
5121
5122 gcc_assert (nested_in_vect_loop);
5123 if (!only_init)
5124 {
5125 standard_iv_increment_position (containing_loop, &incr_gsi,
5126 &insert_after);
5127 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
5128 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
5129 &indx_after_incr);
5130 incr = gsi_stmt (incr_gsi);
5131
5132 /* Copy the points-to information if it exists. */
5133 if (DR_PTR_INFO (dr))
5134 {
5135 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr_info);
5136 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr_info);
5137 }
5138 if (ptr_incr)
5139 *ptr_incr = incr;
5140
5141 return indx_before_incr;
5142 }
5143 else
5144 gcc_unreachable ();
5145 }
5146
5147
5148 /* Function bump_vector_ptr
5149
5150 Increment a pointer (to a vector type) by vector-size. If requested,
5151 i.e. if PTR-INCR is given, then also connect the new increment stmt
5152 to the existing def-use update-chain of the pointer, by modifying
5153 the PTR_INCR as illustrated below:
5154
5155 The pointer def-use update-chain before this function:
5156 DATAREF_PTR = phi (p_0, p_2)
5157 ....
5158 PTR_INCR: p_2 = DATAREF_PTR + step
5159
5160 The pointer def-use update-chain after this function:
5161 DATAREF_PTR = phi (p_0, p_2)
5162 ....
5163 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
5164 ....
5165 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
5166
5167 Input:
5168 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
5169 in the loop.
5170 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
5171 the loop. The increment amount across iterations is expected
5172 to be vector_size.
5173 BSI - location where the new update stmt is to be placed.
5174 STMT_INFO - the original scalar memory-access stmt that is being vectorized.
5175 BUMP - optional. The offset by which to bump the pointer. If not given,
5176 the offset is assumed to be vector_size.
5177
5178 Output: Return NEW_DATAREF_PTR as illustrated above.
5179
5180 */
5181
5182 tree
bump_vector_ptr(vec_info * vinfo,tree dataref_ptr,gimple * ptr_incr,gimple_stmt_iterator * gsi,stmt_vec_info stmt_info,tree bump)5183 bump_vector_ptr (vec_info *vinfo,
5184 tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
5185 stmt_vec_info stmt_info, tree bump)
5186 {
5187 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
5188 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5189 tree update = TYPE_SIZE_UNIT (vectype);
5190 gimple *incr_stmt;
5191 ssa_op_iter iter;
5192 use_operand_p use_p;
5193 tree new_dataref_ptr;
5194
5195 if (bump)
5196 update = bump;
5197
5198 if (TREE_CODE (dataref_ptr) == SSA_NAME)
5199 new_dataref_ptr = copy_ssa_name (dataref_ptr);
5200 else
5201 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
5202 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
5203 dataref_ptr, update);
5204 vect_finish_stmt_generation (vinfo, stmt_info, incr_stmt, gsi);
5205 /* Fold the increment, avoiding excessive chains use-def chains of
5206 those, leading to compile-time issues for passes until the next
5207 forwprop pass which would do this as well. */
5208 gimple_stmt_iterator fold_gsi = gsi_for_stmt (incr_stmt);
5209 if (fold_stmt (&fold_gsi, follow_all_ssa_edges))
5210 {
5211 incr_stmt = gsi_stmt (fold_gsi);
5212 update_stmt (incr_stmt);
5213 }
5214
5215 /* Copy the points-to information if it exists. */
5216 if (DR_PTR_INFO (dr))
5217 {
5218 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
5219 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
5220 }
5221
5222 if (!ptr_incr)
5223 return new_dataref_ptr;
5224
5225 /* Update the vector-pointer's cross-iteration increment. */
5226 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
5227 {
5228 tree use = USE_FROM_PTR (use_p);
5229
5230 if (use == dataref_ptr)
5231 SET_USE (use_p, new_dataref_ptr);
5232 else
5233 gcc_assert (operand_equal_p (use, update, 0));
5234 }
5235
5236 return new_dataref_ptr;
5237 }
5238
5239
5240 /* Copy memory reference info such as base/clique from the SRC reference
5241 to the DEST MEM_REF. */
5242
5243 void
vect_copy_ref_info(tree dest,tree src)5244 vect_copy_ref_info (tree dest, tree src)
5245 {
5246 if (TREE_CODE (dest) != MEM_REF)
5247 return;
5248
5249 tree src_base = src;
5250 while (handled_component_p (src_base))
5251 src_base = TREE_OPERAND (src_base, 0);
5252 if (TREE_CODE (src_base) != MEM_REF
5253 && TREE_CODE (src_base) != TARGET_MEM_REF)
5254 return;
5255
5256 MR_DEPENDENCE_CLIQUE (dest) = MR_DEPENDENCE_CLIQUE (src_base);
5257 MR_DEPENDENCE_BASE (dest) = MR_DEPENDENCE_BASE (src_base);
5258 }
5259
5260
5261 /* Function vect_create_destination_var.
5262
5263 Create a new temporary of type VECTYPE. */
5264
5265 tree
vect_create_destination_var(tree scalar_dest,tree vectype)5266 vect_create_destination_var (tree scalar_dest, tree vectype)
5267 {
5268 tree vec_dest;
5269 const char *name;
5270 char *new_name;
5271 tree type;
5272 enum vect_var_kind kind;
5273
5274 kind = vectype
5275 ? VECTOR_BOOLEAN_TYPE_P (vectype)
5276 ? vect_mask_var
5277 : vect_simple_var
5278 : vect_scalar_var;
5279 type = vectype ? vectype : TREE_TYPE (scalar_dest);
5280
5281 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
5282
5283 name = get_name (scalar_dest);
5284 if (name)
5285 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
5286 else
5287 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
5288 vec_dest = vect_get_new_vect_var (type, kind, new_name);
5289 free (new_name);
5290
5291 return vec_dest;
5292 }
5293
5294 /* Function vect_grouped_store_supported.
5295
5296 Returns TRUE if interleave high and interleave low permutations
5297 are supported, and FALSE otherwise. */
5298
5299 bool
vect_grouped_store_supported(tree vectype,unsigned HOST_WIDE_INT count)5300 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
5301 {
5302 machine_mode mode = TYPE_MODE (vectype);
5303
5304 /* vect_permute_store_chain requires the group size to be equal to 3 or
5305 be a power of two. */
5306 if (count != 3 && exact_log2 (count) == -1)
5307 {
5308 if (dump_enabled_p ())
5309 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5310 "the size of the group of accesses"
5311 " is not a power of 2 or not eqaul to 3\n");
5312 return false;
5313 }
5314
5315 /* Check that the permutation is supported. */
5316 if (VECTOR_MODE_P (mode))
5317 {
5318 unsigned int i;
5319 if (count == 3)
5320 {
5321 unsigned int j0 = 0, j1 = 0, j2 = 0;
5322 unsigned int i, j;
5323
5324 unsigned int nelt;
5325 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5326 {
5327 if (dump_enabled_p ())
5328 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5329 "cannot handle groups of 3 stores for"
5330 " variable-length vectors\n");
5331 return false;
5332 }
5333
5334 vec_perm_builder sel (nelt, nelt, 1);
5335 sel.quick_grow (nelt);
5336 vec_perm_indices indices;
5337 for (j = 0; j < 3; j++)
5338 {
5339 int nelt0 = ((3 - j) * nelt) % 3;
5340 int nelt1 = ((3 - j) * nelt + 1) % 3;
5341 int nelt2 = ((3 - j) * nelt + 2) % 3;
5342 for (i = 0; i < nelt; i++)
5343 {
5344 if (3 * i + nelt0 < nelt)
5345 sel[3 * i + nelt0] = j0++;
5346 if (3 * i + nelt1 < nelt)
5347 sel[3 * i + nelt1] = nelt + j1++;
5348 if (3 * i + nelt2 < nelt)
5349 sel[3 * i + nelt2] = 0;
5350 }
5351 indices.new_vector (sel, 2, nelt);
5352 if (!can_vec_perm_const_p (mode, indices))
5353 {
5354 if (dump_enabled_p ())
5355 dump_printf (MSG_MISSED_OPTIMIZATION,
5356 "permutation op not supported by target.\n");
5357 return false;
5358 }
5359
5360 for (i = 0; i < nelt; i++)
5361 {
5362 if (3 * i + nelt0 < nelt)
5363 sel[3 * i + nelt0] = 3 * i + nelt0;
5364 if (3 * i + nelt1 < nelt)
5365 sel[3 * i + nelt1] = 3 * i + nelt1;
5366 if (3 * i + nelt2 < nelt)
5367 sel[3 * i + nelt2] = nelt + j2++;
5368 }
5369 indices.new_vector (sel, 2, nelt);
5370 if (!can_vec_perm_const_p (mode, indices))
5371 {
5372 if (dump_enabled_p ())
5373 dump_printf (MSG_MISSED_OPTIMIZATION,
5374 "permutation op not supported by target.\n");
5375 return false;
5376 }
5377 }
5378 return true;
5379 }
5380 else
5381 {
5382 /* If length is not equal to 3 then only power of 2 is supported. */
5383 gcc_assert (pow2p_hwi (count));
5384 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5385
5386 /* The encoding has 2 interleaved stepped patterns. */
5387 vec_perm_builder sel (nelt, 2, 3);
5388 sel.quick_grow (6);
5389 for (i = 0; i < 3; i++)
5390 {
5391 sel[i * 2] = i;
5392 sel[i * 2 + 1] = i + nelt;
5393 }
5394 vec_perm_indices indices (sel, 2, nelt);
5395 if (can_vec_perm_const_p (mode, indices))
5396 {
5397 for (i = 0; i < 6; i++)
5398 sel[i] += exact_div (nelt, 2);
5399 indices.new_vector (sel, 2, nelt);
5400 if (can_vec_perm_const_p (mode, indices))
5401 return true;
5402 }
5403 }
5404 }
5405
5406 if (dump_enabled_p ())
5407 dump_printf (MSG_MISSED_OPTIMIZATION,
5408 "permutation op not supported by target.\n");
5409 return false;
5410 }
5411
5412
5413 /* Return TRUE if vec_{mask_}store_lanes is available for COUNT vectors of
5414 type VECTYPE. MASKED_P says whether the masked form is needed. */
5415
5416 bool
vect_store_lanes_supported(tree vectype,unsigned HOST_WIDE_INT count,bool masked_p)5417 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
5418 bool masked_p)
5419 {
5420 if (masked_p)
5421 return vect_lanes_optab_supported_p ("vec_mask_store_lanes",
5422 vec_mask_store_lanes_optab,
5423 vectype, count);
5424 else
5425 return vect_lanes_optab_supported_p ("vec_store_lanes",
5426 vec_store_lanes_optab,
5427 vectype, count);
5428 }
5429
5430
5431 /* Function vect_permute_store_chain.
5432
5433 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
5434 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
5435 the data correctly for the stores. Return the final references for stores
5436 in RESULT_CHAIN.
5437
5438 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5439 The input is 4 vectors each containing 8 elements. We assign a number to
5440 each element, the input sequence is:
5441
5442 1st vec: 0 1 2 3 4 5 6 7
5443 2nd vec: 8 9 10 11 12 13 14 15
5444 3rd vec: 16 17 18 19 20 21 22 23
5445 4th vec: 24 25 26 27 28 29 30 31
5446
5447 The output sequence should be:
5448
5449 1st vec: 0 8 16 24 1 9 17 25
5450 2nd vec: 2 10 18 26 3 11 19 27
5451 3rd vec: 4 12 20 28 5 13 21 30
5452 4th vec: 6 14 22 30 7 15 23 31
5453
5454 i.e., we interleave the contents of the four vectors in their order.
5455
5456 We use interleave_high/low instructions to create such output. The input of
5457 each interleave_high/low operation is two vectors:
5458 1st vec 2nd vec
5459 0 1 2 3 4 5 6 7
5460 the even elements of the result vector are obtained left-to-right from the
5461 high/low elements of the first vector. The odd elements of the result are
5462 obtained left-to-right from the high/low elements of the second vector.
5463 The output of interleave_high will be: 0 4 1 5
5464 and of interleave_low: 2 6 3 7
5465
5466
5467 The permutation is done in log LENGTH stages. In each stage interleave_high
5468 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
5469 where the first argument is taken from the first half of DR_CHAIN and the
5470 second argument from it's second half.
5471 In our example,
5472
5473 I1: interleave_high (1st vec, 3rd vec)
5474 I2: interleave_low (1st vec, 3rd vec)
5475 I3: interleave_high (2nd vec, 4th vec)
5476 I4: interleave_low (2nd vec, 4th vec)
5477
5478 The output for the first stage is:
5479
5480 I1: 0 16 1 17 2 18 3 19
5481 I2: 4 20 5 21 6 22 7 23
5482 I3: 8 24 9 25 10 26 11 27
5483 I4: 12 28 13 29 14 30 15 31
5484
5485 The output of the second stage, i.e. the final result is:
5486
5487 I1: 0 8 16 24 1 9 17 25
5488 I2: 2 10 18 26 3 11 19 27
5489 I3: 4 12 20 28 5 13 21 30
5490 I4: 6 14 22 30 7 15 23 31. */
5491
5492 void
vect_permute_store_chain(vec_info * vinfo,vec<tree> & dr_chain,unsigned int length,stmt_vec_info stmt_info,gimple_stmt_iterator * gsi,vec<tree> * result_chain)5493 vect_permute_store_chain (vec_info *vinfo, vec<tree> &dr_chain,
5494 unsigned int length,
5495 stmt_vec_info stmt_info,
5496 gimple_stmt_iterator *gsi,
5497 vec<tree> *result_chain)
5498 {
5499 tree vect1, vect2, high, low;
5500 gimple *perm_stmt;
5501 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5502 tree perm_mask_low, perm_mask_high;
5503 tree data_ref;
5504 tree perm3_mask_low, perm3_mask_high;
5505 unsigned int i, j, n, log_length = exact_log2 (length);
5506
5507 result_chain->quick_grow (length);
5508 memcpy (result_chain->address (), dr_chain.address (),
5509 length * sizeof (tree));
5510
5511 if (length == 3)
5512 {
5513 /* vect_grouped_store_supported ensures that this is constant. */
5514 unsigned int nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
5515 unsigned int j0 = 0, j1 = 0, j2 = 0;
5516
5517 vec_perm_builder sel (nelt, nelt, 1);
5518 sel.quick_grow (nelt);
5519 vec_perm_indices indices;
5520 for (j = 0; j < 3; j++)
5521 {
5522 int nelt0 = ((3 - j) * nelt) % 3;
5523 int nelt1 = ((3 - j) * nelt + 1) % 3;
5524 int nelt2 = ((3 - j) * nelt + 2) % 3;
5525
5526 for (i = 0; i < nelt; i++)
5527 {
5528 if (3 * i + nelt0 < nelt)
5529 sel[3 * i + nelt0] = j0++;
5530 if (3 * i + nelt1 < nelt)
5531 sel[3 * i + nelt1] = nelt + j1++;
5532 if (3 * i + nelt2 < nelt)
5533 sel[3 * i + nelt2] = 0;
5534 }
5535 indices.new_vector (sel, 2, nelt);
5536 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5537
5538 for (i = 0; i < nelt; i++)
5539 {
5540 if (3 * i + nelt0 < nelt)
5541 sel[3 * i + nelt0] = 3 * i + nelt0;
5542 if (3 * i + nelt1 < nelt)
5543 sel[3 * i + nelt1] = 3 * i + nelt1;
5544 if (3 * i + nelt2 < nelt)
5545 sel[3 * i + nelt2] = nelt + j2++;
5546 }
5547 indices.new_vector (sel, 2, nelt);
5548 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5549
5550 vect1 = dr_chain[0];
5551 vect2 = dr_chain[1];
5552
5553 /* Create interleaving stmt:
5554 low = VEC_PERM_EXPR <vect1, vect2,
5555 {j, nelt, *, j + 1, nelt + j + 1, *,
5556 j + 2, nelt + j + 2, *, ...}> */
5557 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5558 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5559 vect2, perm3_mask_low);
5560 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5561
5562 vect1 = data_ref;
5563 vect2 = dr_chain[2];
5564 /* Create interleaving stmt:
5565 low = VEC_PERM_EXPR <vect1, vect2,
5566 {0, 1, nelt + j, 3, 4, nelt + j + 1,
5567 6, 7, nelt + j + 2, ...}> */
5568 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5569 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
5570 vect2, perm3_mask_high);
5571 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5572 (*result_chain)[j] = data_ref;
5573 }
5574 }
5575 else
5576 {
5577 /* If length is not equal to 3 then only power of 2 is supported. */
5578 gcc_assert (pow2p_hwi (length));
5579
5580 /* The encoding has 2 interleaved stepped patterns. */
5581 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
5582 vec_perm_builder sel (nelt, 2, 3);
5583 sel.quick_grow (6);
5584 for (i = 0; i < 3; i++)
5585 {
5586 sel[i * 2] = i;
5587 sel[i * 2 + 1] = i + nelt;
5588 }
5589 vec_perm_indices indices (sel, 2, nelt);
5590 perm_mask_high = vect_gen_perm_mask_checked (vectype, indices);
5591
5592 for (i = 0; i < 6; i++)
5593 sel[i] += exact_div (nelt, 2);
5594 indices.new_vector (sel, 2, nelt);
5595 perm_mask_low = vect_gen_perm_mask_checked (vectype, indices);
5596
5597 for (i = 0, n = log_length; i < n; i++)
5598 {
5599 for (j = 0; j < length/2; j++)
5600 {
5601 vect1 = dr_chain[j];
5602 vect2 = dr_chain[j+length/2];
5603
5604 /* Create interleaving stmt:
5605 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
5606 ...}> */
5607 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
5608 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
5609 vect2, perm_mask_high);
5610 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5611 (*result_chain)[2*j] = high;
5612
5613 /* Create interleaving stmt:
5614 low = VEC_PERM_EXPR <vect1, vect2,
5615 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
5616 ...}> */
5617 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
5618 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
5619 vect2, perm_mask_low);
5620 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
5621 (*result_chain)[2*j+1] = low;
5622 }
5623 memcpy (dr_chain.address (), result_chain->address (),
5624 length * sizeof (tree));
5625 }
5626 }
5627 }
5628
5629 /* Function vect_setup_realignment
5630
5631 This function is called when vectorizing an unaligned load using
5632 the dr_explicit_realign[_optimized] scheme.
5633 This function generates the following code at the loop prolog:
5634
5635 p = initial_addr;
5636 x msq_init = *(floor(p)); # prolog load
5637 realignment_token = call target_builtin;
5638 loop:
5639 x msq = phi (msq_init, ---)
5640
5641 The stmts marked with x are generated only for the case of
5642 dr_explicit_realign_optimized.
5643
5644 The code above sets up a new (vector) pointer, pointing to the first
5645 location accessed by STMT_INFO, and a "floor-aligned" load using that
5646 pointer. It also generates code to compute the "realignment-token"
5647 (if the relevant target hook was defined), and creates a phi-node at the
5648 loop-header bb whose arguments are the result of the prolog-load (created
5649 by this function) and the result of a load that takes place in the loop
5650 (to be created by the caller to this function).
5651
5652 For the case of dr_explicit_realign_optimized:
5653 The caller to this function uses the phi-result (msq) to create the
5654 realignment code inside the loop, and sets up the missing phi argument,
5655 as follows:
5656 loop:
5657 msq = phi (msq_init, lsq)
5658 lsq = *(floor(p')); # load in loop
5659 result = realign_load (msq, lsq, realignment_token);
5660
5661 For the case of dr_explicit_realign:
5662 loop:
5663 msq = *(floor(p)); # load in loop
5664 p' = p + (VS-1);
5665 lsq = *(floor(p')); # load in loop
5666 result = realign_load (msq, lsq, realignment_token);
5667
5668 Input:
5669 STMT_INFO - (scalar) load stmt to be vectorized. This load accesses
5670 a memory location that may be unaligned.
5671 BSI - place where new code is to be inserted.
5672 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
5673 is used.
5674
5675 Output:
5676 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
5677 target hook, if defined.
5678 Return value - the result of the loop-header phi node. */
5679
5680 tree
vect_setup_realignment(vec_info * vinfo,stmt_vec_info stmt_info,gimple_stmt_iterator * gsi,tree * realignment_token,enum dr_alignment_support alignment_support_scheme,tree init_addr,class loop ** at_loop)5681 vect_setup_realignment (vec_info *vinfo, stmt_vec_info stmt_info,
5682 gimple_stmt_iterator *gsi, tree *realignment_token,
5683 enum dr_alignment_support alignment_support_scheme,
5684 tree init_addr,
5685 class loop **at_loop)
5686 {
5687 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5688 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
5689 dr_vec_info *dr_info = STMT_VINFO_DR_INFO (stmt_info);
5690 struct data_reference *dr = dr_info->dr;
5691 class loop *loop = NULL;
5692 edge pe = NULL;
5693 tree scalar_dest = gimple_assign_lhs (stmt_info->stmt);
5694 tree vec_dest;
5695 gimple *inc;
5696 tree ptr;
5697 tree data_ref;
5698 basic_block new_bb;
5699 tree msq_init = NULL_TREE;
5700 tree new_temp;
5701 gphi *phi_stmt;
5702 tree msq = NULL_TREE;
5703 gimple_seq stmts = NULL;
5704 bool compute_in_loop = false;
5705 bool nested_in_vect_loop = false;
5706 class loop *containing_loop = (gimple_bb (stmt_info->stmt))->loop_father;
5707 class loop *loop_for_initial_load = NULL;
5708
5709 if (loop_vinfo)
5710 {
5711 loop = LOOP_VINFO_LOOP (loop_vinfo);
5712 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt_info);
5713 }
5714
5715 gcc_assert (alignment_support_scheme == dr_explicit_realign
5716 || alignment_support_scheme == dr_explicit_realign_optimized);
5717
5718 /* We need to generate three things:
5719 1. the misalignment computation
5720 2. the extra vector load (for the optimized realignment scheme).
5721 3. the phi node for the two vectors from which the realignment is
5722 done (for the optimized realignment scheme). */
5723
5724 /* 1. Determine where to generate the misalignment computation.
5725
5726 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
5727 calculation will be generated by this function, outside the loop (in the
5728 preheader). Otherwise, INIT_ADDR had already been computed for us by the
5729 caller, inside the loop.
5730
5731 Background: If the misalignment remains fixed throughout the iterations of
5732 the loop, then both realignment schemes are applicable, and also the
5733 misalignment computation can be done outside LOOP. This is because we are
5734 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
5735 are a multiple of VS (the Vector Size), and therefore the misalignment in
5736 different vectorized LOOP iterations is always the same.
5737 The problem arises only if the memory access is in an inner-loop nested
5738 inside LOOP, which is now being vectorized using outer-loop vectorization.
5739 This is the only case when the misalignment of the memory access may not
5740 remain fixed throughout the iterations of the inner-loop (as explained in
5741 detail in vect_supportable_dr_alignment). In this case, not only is the
5742 optimized realignment scheme not applicable, but also the misalignment
5743 computation (and generation of the realignment token that is passed to
5744 REALIGN_LOAD) have to be done inside the loop.
5745
5746 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
5747 or not, which in turn determines if the misalignment is computed inside
5748 the inner-loop, or outside LOOP. */
5749
5750 if (init_addr != NULL_TREE || !loop_vinfo)
5751 {
5752 compute_in_loop = true;
5753 gcc_assert (alignment_support_scheme == dr_explicit_realign);
5754 }
5755
5756
5757 /* 2. Determine where to generate the extra vector load.
5758
5759 For the optimized realignment scheme, instead of generating two vector
5760 loads in each iteration, we generate a single extra vector load in the
5761 preheader of the loop, and in each iteration reuse the result of the
5762 vector load from the previous iteration. In case the memory access is in
5763 an inner-loop nested inside LOOP, which is now being vectorized using
5764 outer-loop vectorization, we need to determine whether this initial vector
5765 load should be generated at the preheader of the inner-loop, or can be
5766 generated at the preheader of LOOP. If the memory access has no evolution
5767 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
5768 to be generated inside LOOP (in the preheader of the inner-loop). */
5769
5770 if (nested_in_vect_loop)
5771 {
5772 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
5773 bool invariant_in_outerloop =
5774 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
5775 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
5776 }
5777 else
5778 loop_for_initial_load = loop;
5779 if (at_loop)
5780 *at_loop = loop_for_initial_load;
5781
5782 if (loop_for_initial_load)
5783 pe = loop_preheader_edge (loop_for_initial_load);
5784
5785 /* 3. For the case of the optimized realignment, create the first vector
5786 load at the loop preheader. */
5787
5788 if (alignment_support_scheme == dr_explicit_realign_optimized)
5789 {
5790 /* Create msq_init = *(floor(p1)) in the loop preheader */
5791 gassign *new_stmt;
5792
5793 gcc_assert (!compute_in_loop);
5794 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5795 ptr = vect_create_data_ref_ptr (vinfo, stmt_info, vectype,
5796 loop_for_initial_load, NULL_TREE,
5797 &init_addr, NULL, &inc, true);
5798 if (TREE_CODE (ptr) == SSA_NAME)
5799 new_temp = copy_ssa_name (ptr);
5800 else
5801 new_temp = make_ssa_name (TREE_TYPE (ptr));
5802 poly_uint64 align = DR_TARGET_ALIGNMENT (dr_info);
5803 tree type = TREE_TYPE (ptr);
5804 new_stmt = gimple_build_assign
5805 (new_temp, BIT_AND_EXPR, ptr,
5806 fold_build2 (MINUS_EXPR, type,
5807 build_int_cst (type, 0),
5808 build_int_cst (type, align)));
5809 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5810 gcc_assert (!new_bb);
5811 data_ref
5812 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
5813 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
5814 vect_copy_ref_info (data_ref, DR_REF (dr));
5815 new_stmt = gimple_build_assign (vec_dest, data_ref);
5816 new_temp = make_ssa_name (vec_dest, new_stmt);
5817 gimple_assign_set_lhs (new_stmt, new_temp);
5818 if (pe)
5819 {
5820 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5821 gcc_assert (!new_bb);
5822 }
5823 else
5824 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5825
5826 msq_init = gimple_assign_lhs (new_stmt);
5827 }
5828
5829 /* 4. Create realignment token using a target builtin, if available.
5830 It is done either inside the containing loop, or before LOOP (as
5831 determined above). */
5832
5833 if (targetm.vectorize.builtin_mask_for_load)
5834 {
5835 gcall *new_stmt;
5836 tree builtin_decl;
5837
5838 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
5839 if (!init_addr)
5840 {
5841 /* Generate the INIT_ADDR computation outside LOOP. */
5842 init_addr = vect_create_addr_base_for_vector_ref (vinfo,
5843 stmt_info, &stmts,
5844 NULL_TREE);
5845 if (loop)
5846 {
5847 pe = loop_preheader_edge (loop);
5848 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
5849 gcc_assert (!new_bb);
5850 }
5851 else
5852 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5853 }
5854
5855 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
5856 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
5857 vec_dest =
5858 vect_create_destination_var (scalar_dest,
5859 gimple_call_return_type (new_stmt));
5860 new_temp = make_ssa_name (vec_dest, new_stmt);
5861 gimple_call_set_lhs (new_stmt, new_temp);
5862
5863 if (compute_in_loop)
5864 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5865 else
5866 {
5867 /* Generate the misalignment computation outside LOOP. */
5868 pe = loop_preheader_edge (loop);
5869 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5870 gcc_assert (!new_bb);
5871 }
5872
5873 *realignment_token = gimple_call_lhs (new_stmt);
5874
5875 /* The result of the CALL_EXPR to this builtin is determined from
5876 the value of the parameter and no global variables are touched
5877 which makes the builtin a "const" function. Requiring the
5878 builtin to have the "const" attribute makes it unnecessary
5879 to call mark_call_clobbered. */
5880 gcc_assert (TREE_READONLY (builtin_decl));
5881 }
5882
5883 if (alignment_support_scheme == dr_explicit_realign)
5884 return msq;
5885
5886 gcc_assert (!compute_in_loop);
5887 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
5888
5889
5890 /* 5. Create msq = phi <msq_init, lsq> in loop */
5891
5892 pe = loop_preheader_edge (containing_loop);
5893 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5894 msq = make_ssa_name (vec_dest);
5895 phi_stmt = create_phi_node (msq, containing_loop->header);
5896 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
5897
5898 return msq;
5899 }
5900
5901
5902 /* Function vect_grouped_load_supported.
5903
5904 COUNT is the size of the load group (the number of statements plus the
5905 number of gaps). SINGLE_ELEMENT_P is true if there is actually
5906 only one statement, with a gap of COUNT - 1.
5907
5908 Returns true if a suitable permute exists. */
5909
5910 bool
vect_grouped_load_supported(tree vectype,bool single_element_p,unsigned HOST_WIDE_INT count)5911 vect_grouped_load_supported (tree vectype, bool single_element_p,
5912 unsigned HOST_WIDE_INT count)
5913 {
5914 machine_mode mode = TYPE_MODE (vectype);
5915
5916 /* If this is single-element interleaving with an element distance
5917 that leaves unused vector loads around punt - we at least create
5918 very sub-optimal code in that case (and blow up memory,
5919 see PR65518). */
5920 if (single_element_p && maybe_gt (count, TYPE_VECTOR_SUBPARTS (vectype)))
5921 {
5922 if (dump_enabled_p ())
5923 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5924 "single-element interleaving not supported "
5925 "for not adjacent vector loads\n");
5926 return false;
5927 }
5928
5929 /* vect_permute_load_chain requires the group size to be equal to 3 or
5930 be a power of two. */
5931 if (count != 3 && exact_log2 (count) == -1)
5932 {
5933 if (dump_enabled_p ())
5934 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5935 "the size of the group of accesses"
5936 " is not a power of 2 or not equal to 3\n");
5937 return false;
5938 }
5939
5940 /* Check that the permutation is supported. */
5941 if (VECTOR_MODE_P (mode))
5942 {
5943 unsigned int i, j;
5944 if (count == 3)
5945 {
5946 unsigned int nelt;
5947 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5948 {
5949 if (dump_enabled_p ())
5950 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5951 "cannot handle groups of 3 loads for"
5952 " variable-length vectors\n");
5953 return false;
5954 }
5955
5956 vec_perm_builder sel (nelt, nelt, 1);
5957 sel.quick_grow (nelt);
5958 vec_perm_indices indices;
5959 unsigned int k;
5960 for (k = 0; k < 3; k++)
5961 {
5962 for (i = 0; i < nelt; i++)
5963 if (3 * i + k < 2 * nelt)
5964 sel[i] = 3 * i + k;
5965 else
5966 sel[i] = 0;
5967 indices.new_vector (sel, 2, nelt);
5968 if (!can_vec_perm_const_p (mode, indices))
5969 {
5970 if (dump_enabled_p ())
5971 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5972 "shuffle of 3 loads is not supported by"
5973 " target\n");
5974 return false;
5975 }
5976 for (i = 0, j = 0; i < nelt; i++)
5977 if (3 * i + k < 2 * nelt)
5978 sel[i] = i;
5979 else
5980 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5981 indices.new_vector (sel, 2, nelt);
5982 if (!can_vec_perm_const_p (mode, indices))
5983 {
5984 if (dump_enabled_p ())
5985 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5986 "shuffle of 3 loads is not supported by"
5987 " target\n");
5988 return false;
5989 }
5990 }
5991 return true;
5992 }
5993 else
5994 {
5995 /* If length is not equal to 3 then only power of 2 is supported. */
5996 gcc_assert (pow2p_hwi (count));
5997 poly_uint64 nelt = GET_MODE_NUNITS (mode);
5998
5999 /* The encoding has a single stepped pattern. */
6000 vec_perm_builder sel (nelt, 1, 3);
6001 sel.quick_grow (3);
6002 for (i = 0; i < 3; i++)
6003 sel[i] = i * 2;
6004 vec_perm_indices indices (sel, 2, nelt);
6005 if (can_vec_perm_const_p (mode, indices))
6006 {
6007 for (i = 0; i < 3; i++)
6008 sel[i] = i * 2 + 1;
6009 indices.new_vector (sel, 2, nelt);
6010 if (can_vec_perm_const_p (mode, indices))
6011 return true;
6012 }
6013 }
6014 }
6015
6016 if (dump_enabled_p ())
6017 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6018 "extract even/odd not supported by target\n");
6019 return false;
6020 }
6021
6022 /* Return TRUE if vec_{masked_}load_lanes is available for COUNT vectors of
6023 type VECTYPE. MASKED_P says whether the masked form is needed. */
6024
6025 bool
vect_load_lanes_supported(tree vectype,unsigned HOST_WIDE_INT count,bool masked_p)6026 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count,
6027 bool masked_p)
6028 {
6029 if (masked_p)
6030 return vect_lanes_optab_supported_p ("vec_mask_load_lanes",
6031 vec_mask_load_lanes_optab,
6032 vectype, count);
6033 else
6034 return vect_lanes_optab_supported_p ("vec_load_lanes",
6035 vec_load_lanes_optab,
6036 vectype, count);
6037 }
6038
6039 /* Function vect_permute_load_chain.
6040
6041 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
6042 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
6043 the input data correctly. Return the final references for loads in
6044 RESULT_CHAIN.
6045
6046 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
6047 The input is 4 vectors each containing 8 elements. We assign a number to each
6048 element, the input sequence is:
6049
6050 1st vec: 0 1 2 3 4 5 6 7
6051 2nd vec: 8 9 10 11 12 13 14 15
6052 3rd vec: 16 17 18 19 20 21 22 23
6053 4th vec: 24 25 26 27 28 29 30 31
6054
6055 The output sequence should be:
6056
6057 1st vec: 0 4 8 12 16 20 24 28
6058 2nd vec: 1 5 9 13 17 21 25 29
6059 3rd vec: 2 6 10 14 18 22 26 30
6060 4th vec: 3 7 11 15 19 23 27 31
6061
6062 i.e., the first output vector should contain the first elements of each
6063 interleaving group, etc.
6064
6065 We use extract_even/odd instructions to create such output. The input of
6066 each extract_even/odd operation is two vectors
6067 1st vec 2nd vec
6068 0 1 2 3 4 5 6 7
6069
6070 and the output is the vector of extracted even/odd elements. The output of
6071 extract_even will be: 0 2 4 6
6072 and of extract_odd: 1 3 5 7
6073
6074
6075 The permutation is done in log LENGTH stages. In each stage extract_even
6076 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
6077 their order. In our example,
6078
6079 E1: extract_even (1st vec, 2nd vec)
6080 E2: extract_odd (1st vec, 2nd vec)
6081 E3: extract_even (3rd vec, 4th vec)
6082 E4: extract_odd (3rd vec, 4th vec)
6083
6084 The output for the first stage will be:
6085
6086 E1: 0 2 4 6 8 10 12 14
6087 E2: 1 3 5 7 9 11 13 15
6088 E3: 16 18 20 22 24 26 28 30
6089 E4: 17 19 21 23 25 27 29 31
6090
6091 In order to proceed and create the correct sequence for the next stage (or
6092 for the correct output, if the second stage is the last one, as in our
6093 example), we first put the output of extract_even operation and then the
6094 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
6095 The input for the second stage is:
6096
6097 1st vec (E1): 0 2 4 6 8 10 12 14
6098 2nd vec (E3): 16 18 20 22 24 26 28 30
6099 3rd vec (E2): 1 3 5 7 9 11 13 15
6100 4th vec (E4): 17 19 21 23 25 27 29 31
6101
6102 The output of the second stage:
6103
6104 E1: 0 4 8 12 16 20 24 28
6105 E2: 2 6 10 14 18 22 26 30
6106 E3: 1 5 9 13 17 21 25 29
6107 E4: 3 7 11 15 19 23 27 31
6108
6109 And RESULT_CHAIN after reordering:
6110
6111 1st vec (E1): 0 4 8 12 16 20 24 28
6112 2nd vec (E3): 1 5 9 13 17 21 25 29
6113 3rd vec (E2): 2 6 10 14 18 22 26 30
6114 4th vec (E4): 3 7 11 15 19 23 27 31. */
6115
6116 static void
vect_permute_load_chain(vec_info * vinfo,vec<tree> dr_chain,unsigned int length,stmt_vec_info stmt_info,gimple_stmt_iterator * gsi,vec<tree> * result_chain)6117 vect_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
6118 unsigned int length,
6119 stmt_vec_info stmt_info,
6120 gimple_stmt_iterator *gsi,
6121 vec<tree> *result_chain)
6122 {
6123 tree data_ref, first_vect, second_vect;
6124 tree perm_mask_even, perm_mask_odd;
6125 tree perm3_mask_low, perm3_mask_high;
6126 gimple *perm_stmt;
6127 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6128 unsigned int i, j, log_length = exact_log2 (length);
6129
6130 result_chain->quick_grow (length);
6131 memcpy (result_chain->address (), dr_chain.address (),
6132 length * sizeof (tree));
6133
6134 if (length == 3)
6135 {
6136 /* vect_grouped_load_supported ensures that this is constant. */
6137 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
6138 unsigned int k;
6139
6140 vec_perm_builder sel (nelt, nelt, 1);
6141 sel.quick_grow (nelt);
6142 vec_perm_indices indices;
6143 for (k = 0; k < 3; k++)
6144 {
6145 for (i = 0; i < nelt; i++)
6146 if (3 * i + k < 2 * nelt)
6147 sel[i] = 3 * i + k;
6148 else
6149 sel[i] = 0;
6150 indices.new_vector (sel, 2, nelt);
6151 perm3_mask_low = vect_gen_perm_mask_checked (vectype, indices);
6152
6153 for (i = 0, j = 0; i < nelt; i++)
6154 if (3 * i + k < 2 * nelt)
6155 sel[i] = i;
6156 else
6157 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
6158 indices.new_vector (sel, 2, nelt);
6159 perm3_mask_high = vect_gen_perm_mask_checked (vectype, indices);
6160
6161 first_vect = dr_chain[0];
6162 second_vect = dr_chain[1];
6163
6164 /* Create interleaving stmt (low part of):
6165 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
6166 ...}> */
6167 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
6168 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
6169 second_vect, perm3_mask_low);
6170 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6171
6172 /* Create interleaving stmt (high part of):
6173 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
6174 ...}> */
6175 first_vect = data_ref;
6176 second_vect = dr_chain[2];
6177 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
6178 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
6179 second_vect, perm3_mask_high);
6180 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6181 (*result_chain)[k] = data_ref;
6182 }
6183 }
6184 else
6185 {
6186 /* If length is not equal to 3 then only power of 2 is supported. */
6187 gcc_assert (pow2p_hwi (length));
6188
6189 /* The encoding has a single stepped pattern. */
6190 poly_uint64 nelt = TYPE_VECTOR_SUBPARTS (vectype);
6191 vec_perm_builder sel (nelt, 1, 3);
6192 sel.quick_grow (3);
6193 for (i = 0; i < 3; ++i)
6194 sel[i] = i * 2;
6195 vec_perm_indices indices (sel, 2, nelt);
6196 perm_mask_even = vect_gen_perm_mask_checked (vectype, indices);
6197
6198 for (i = 0; i < 3; ++i)
6199 sel[i] = i * 2 + 1;
6200 indices.new_vector (sel, 2, nelt);
6201 perm_mask_odd = vect_gen_perm_mask_checked (vectype, indices);
6202
6203 for (i = 0; i < log_length; i++)
6204 {
6205 for (j = 0; j < length; j += 2)
6206 {
6207 first_vect = dr_chain[j];
6208 second_vect = dr_chain[j+1];
6209
6210 /* data_ref = permute_even (first_data_ref, second_data_ref); */
6211 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
6212 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6213 first_vect, second_vect,
6214 perm_mask_even);
6215 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6216 (*result_chain)[j/2] = data_ref;
6217
6218 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
6219 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
6220 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6221 first_vect, second_vect,
6222 perm_mask_odd);
6223 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6224 (*result_chain)[j/2+length/2] = data_ref;
6225 }
6226 memcpy (dr_chain.address (), result_chain->address (),
6227 length * sizeof (tree));
6228 }
6229 }
6230 }
6231
6232 /* Function vect_shift_permute_load_chain.
6233
6234 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
6235 sequence of stmts to reorder the input data accordingly.
6236 Return the final references for loads in RESULT_CHAIN.
6237 Return true if successed, false otherwise.
6238
6239 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
6240 The input is 3 vectors each containing 8 elements. We assign a
6241 number to each element, the input sequence is:
6242
6243 1st vec: 0 1 2 3 4 5 6 7
6244 2nd vec: 8 9 10 11 12 13 14 15
6245 3rd vec: 16 17 18 19 20 21 22 23
6246
6247 The output sequence should be:
6248
6249 1st vec: 0 3 6 9 12 15 18 21
6250 2nd vec: 1 4 7 10 13 16 19 22
6251 3rd vec: 2 5 8 11 14 17 20 23
6252
6253 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
6254
6255 First we shuffle all 3 vectors to get correct elements order:
6256
6257 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
6258 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
6259 3rd vec: (16 19 22) (17 20 23) (18 21)
6260
6261 Next we unite and shift vector 3 times:
6262
6263 1st step:
6264 shift right by 6 the concatenation of:
6265 "1st vec" and "2nd vec"
6266 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
6267 "2nd vec" and "3rd vec"
6268 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
6269 "3rd vec" and "1st vec"
6270 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
6271 | New vectors |
6272
6273 So that now new vectors are:
6274
6275 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
6276 2nd vec: (10 13) (16 19 22) (17 20 23)
6277 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
6278
6279 2nd step:
6280 shift right by 5 the concatenation of:
6281 "1st vec" and "3rd vec"
6282 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
6283 "2nd vec" and "1st vec"
6284 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
6285 "3rd vec" and "2nd vec"
6286 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
6287 | New vectors |
6288
6289 So that now new vectors are:
6290
6291 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
6292 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
6293 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
6294
6295 3rd step:
6296 shift right by 5 the concatenation of:
6297 "1st vec" and "1st vec"
6298 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
6299 shift right by 3 the concatenation of:
6300 "2nd vec" and "2nd vec"
6301 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
6302 | New vectors |
6303
6304 So that now all vectors are READY:
6305 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
6306 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
6307 3rd vec: ( 1 4 7) (10 13) (16 19 22)
6308
6309 This algorithm is faster than one in vect_permute_load_chain if:
6310 1. "shift of a concatination" is faster than general permutation.
6311 This is usually so.
6312 2. The TARGET machine can't execute vector instructions in parallel.
6313 This is because each step of the algorithm depends on previous.
6314 The algorithm in vect_permute_load_chain is much more parallel.
6315
6316 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
6317 */
6318
6319 static bool
vect_shift_permute_load_chain(vec_info * vinfo,vec<tree> dr_chain,unsigned int length,stmt_vec_info stmt_info,gimple_stmt_iterator * gsi,vec<tree> * result_chain)6320 vect_shift_permute_load_chain (vec_info *vinfo, vec<tree> dr_chain,
6321 unsigned int length,
6322 stmt_vec_info stmt_info,
6323 gimple_stmt_iterator *gsi,
6324 vec<tree> *result_chain)
6325 {
6326 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
6327 tree perm2_mask1, perm2_mask2, perm3_mask;
6328 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
6329 gimple *perm_stmt;
6330
6331 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6332 unsigned int i;
6333 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
6334
6335 unsigned HOST_WIDE_INT nelt, vf;
6336 if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nelt)
6337 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
6338 /* Not supported for variable-length vectors. */
6339 return false;
6340
6341 vec_perm_builder sel (nelt, nelt, 1);
6342 sel.quick_grow (nelt);
6343
6344 result_chain->quick_grow (length);
6345 memcpy (result_chain->address (), dr_chain.address (),
6346 length * sizeof (tree));
6347
6348 if (pow2p_hwi (length) && vf > 4)
6349 {
6350 unsigned int j, log_length = exact_log2 (length);
6351 for (i = 0; i < nelt / 2; ++i)
6352 sel[i] = i * 2;
6353 for (i = 0; i < nelt / 2; ++i)
6354 sel[nelt / 2 + i] = i * 2 + 1;
6355 vec_perm_indices indices (sel, 2, nelt);
6356 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6357 {
6358 if (dump_enabled_p ())
6359 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6360 "shuffle of 2 fields structure is not \
6361 supported by target\n");
6362 return false;
6363 }
6364 perm2_mask1 = vect_gen_perm_mask_checked (vectype, indices);
6365
6366 for (i = 0; i < nelt / 2; ++i)
6367 sel[i] = i * 2 + 1;
6368 for (i = 0; i < nelt / 2; ++i)
6369 sel[nelt / 2 + i] = i * 2;
6370 indices.new_vector (sel, 2, nelt);
6371 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6372 {
6373 if (dump_enabled_p ())
6374 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6375 "shuffle of 2 fields structure is not \
6376 supported by target\n");
6377 return false;
6378 }
6379 perm2_mask2 = vect_gen_perm_mask_checked (vectype, indices);
6380
6381 /* Generating permutation constant to shift all elements.
6382 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
6383 for (i = 0; i < nelt; i++)
6384 sel[i] = nelt / 2 + i;
6385 indices.new_vector (sel, 2, nelt);
6386 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6387 {
6388 if (dump_enabled_p ())
6389 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6390 "shift permutation is not supported by target\n");
6391 return false;
6392 }
6393 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6394
6395 /* Generating permutation constant to select vector from 2.
6396 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
6397 for (i = 0; i < nelt / 2; i++)
6398 sel[i] = i;
6399 for (i = nelt / 2; i < nelt; i++)
6400 sel[i] = nelt + i;
6401 indices.new_vector (sel, 2, nelt);
6402 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6403 {
6404 if (dump_enabled_p ())
6405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6406 "select is not supported by target\n");
6407 return false;
6408 }
6409 select_mask = vect_gen_perm_mask_checked (vectype, indices);
6410
6411 for (i = 0; i < log_length; i++)
6412 {
6413 for (j = 0; j < length; j += 2)
6414 {
6415 first_vect = dr_chain[j];
6416 second_vect = dr_chain[j + 1];
6417
6418 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6419 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6420 first_vect, first_vect,
6421 perm2_mask1);
6422 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6423 vect[0] = data_ref;
6424
6425 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
6426 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6427 second_vect, second_vect,
6428 perm2_mask2);
6429 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6430 vect[1] = data_ref;
6431
6432 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
6433 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6434 vect[0], vect[1], shift1_mask);
6435 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6436 (*result_chain)[j/2 + length/2] = data_ref;
6437
6438 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
6439 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6440 vect[0], vect[1], select_mask);
6441 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6442 (*result_chain)[j/2] = data_ref;
6443 }
6444 memcpy (dr_chain.address (), result_chain->address (),
6445 length * sizeof (tree));
6446 }
6447 return true;
6448 }
6449 if (length == 3 && vf > 2)
6450 {
6451 unsigned int k = 0, l = 0;
6452
6453 /* Generating permutation constant to get all elements in rigth order.
6454 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
6455 for (i = 0; i < nelt; i++)
6456 {
6457 if (3 * k + (l % 3) >= nelt)
6458 {
6459 k = 0;
6460 l += (3 - (nelt % 3));
6461 }
6462 sel[i] = 3 * k + (l % 3);
6463 k++;
6464 }
6465 vec_perm_indices indices (sel, 2, nelt);
6466 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6467 {
6468 if (dump_enabled_p ())
6469 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6470 "shuffle of 3 fields structure is not \
6471 supported by target\n");
6472 return false;
6473 }
6474 perm3_mask = vect_gen_perm_mask_checked (vectype, indices);
6475
6476 /* Generating permutation constant to shift all elements.
6477 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
6478 for (i = 0; i < nelt; i++)
6479 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
6480 indices.new_vector (sel, 2, nelt);
6481 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6482 {
6483 if (dump_enabled_p ())
6484 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6485 "shift permutation is not supported by target\n");
6486 return false;
6487 }
6488 shift1_mask = vect_gen_perm_mask_checked (vectype, indices);
6489
6490 /* Generating permutation constant to shift all elements.
6491 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6492 for (i = 0; i < nelt; i++)
6493 sel[i] = 2 * (nelt / 3) + 1 + i;
6494 indices.new_vector (sel, 2, nelt);
6495 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6496 {
6497 if (dump_enabled_p ())
6498 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6499 "shift permutation is not supported by target\n");
6500 return false;
6501 }
6502 shift2_mask = vect_gen_perm_mask_checked (vectype, indices);
6503
6504 /* Generating permutation constant to shift all elements.
6505 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
6506 for (i = 0; i < nelt; i++)
6507 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
6508 indices.new_vector (sel, 2, nelt);
6509 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6510 {
6511 if (dump_enabled_p ())
6512 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6513 "shift permutation is not supported by target\n");
6514 return false;
6515 }
6516 shift3_mask = vect_gen_perm_mask_checked (vectype, indices);
6517
6518 /* Generating permutation constant to shift all elements.
6519 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
6520 for (i = 0; i < nelt; i++)
6521 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
6522 indices.new_vector (sel, 2, nelt);
6523 if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
6524 {
6525 if (dump_enabled_p ())
6526 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6527 "shift permutation is not supported by target\n");
6528 return false;
6529 }
6530 shift4_mask = vect_gen_perm_mask_checked (vectype, indices);
6531
6532 for (k = 0; k < 3; k++)
6533 {
6534 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
6535 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6536 dr_chain[k], dr_chain[k],
6537 perm3_mask);
6538 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6539 vect[k] = data_ref;
6540 }
6541
6542 for (k = 0; k < 3; k++)
6543 {
6544 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
6545 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6546 vect[k % 3], vect[(k + 1) % 3],
6547 shift1_mask);
6548 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6549 vect_shift[k] = data_ref;
6550 }
6551
6552 for (k = 0; k < 3; k++)
6553 {
6554 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
6555 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
6556 vect_shift[(4 - k) % 3],
6557 vect_shift[(3 - k) % 3],
6558 shift2_mask);
6559 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6560 vect[k] = data_ref;
6561 }
6562
6563 (*result_chain)[3 - (nelt % 3)] = vect[2];
6564
6565 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
6566 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
6567 vect[0], shift3_mask);
6568 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6569 (*result_chain)[nelt % 3] = data_ref;
6570
6571 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
6572 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
6573 vect[1], shift4_mask);
6574 vect_finish_stmt_generation (vinfo, stmt_info, perm_stmt, gsi);
6575 (*result_chain)[0] = data_ref;
6576 return true;
6577 }
6578 return false;
6579 }
6580
6581 /* Function vect_transform_grouped_load.
6582
6583 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
6584 to perform their permutation and ascribe the result vectorized statements to
6585 the scalar statements.
6586 */
6587
6588 void
vect_transform_grouped_load(vec_info * vinfo,stmt_vec_info stmt_info,vec<tree> dr_chain,int size,gimple_stmt_iterator * gsi)6589 vect_transform_grouped_load (vec_info *vinfo, stmt_vec_info stmt_info,
6590 vec<tree> dr_chain,
6591 int size, gimple_stmt_iterator *gsi)
6592 {
6593 machine_mode mode;
6594 vec<tree> result_chain = vNULL;
6595
6596 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
6597 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
6598 vectors, that are ready for vector computation. */
6599 result_chain.create (size);
6600
6601 /* If reassociation width for vector type is 2 or greater target machine can
6602 execute 2 or more vector instructions in parallel. Otherwise try to
6603 get chain for loads group using vect_shift_permute_load_chain. */
6604 mode = TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info));
6605 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
6606 || pow2p_hwi (size)
6607 || !vect_shift_permute_load_chain (vinfo, dr_chain, size, stmt_info,
6608 gsi, &result_chain))
6609 vect_permute_load_chain (vinfo, dr_chain,
6610 size, stmt_info, gsi, &result_chain);
6611 vect_record_grouped_load_vectors (vinfo, stmt_info, result_chain);
6612 result_chain.release ();
6613 }
6614
6615 /* RESULT_CHAIN contains the output of a group of grouped loads that were
6616 generated as part of the vectorization of STMT_INFO. Assign the statement
6617 for each vector to the associated scalar statement. */
6618
6619 void
vect_record_grouped_load_vectors(vec_info *,stmt_vec_info stmt_info,vec<tree> result_chain)6620 vect_record_grouped_load_vectors (vec_info *, stmt_vec_info stmt_info,
6621 vec<tree> result_chain)
6622 {
6623 stmt_vec_info first_stmt_info = DR_GROUP_FIRST_ELEMENT (stmt_info);
6624 unsigned int i, gap_count;
6625 tree tmp_data_ref;
6626
6627 /* Put a permuted data-ref in the VECTORIZED_STMT field.
6628 Since we scan the chain starting from it's first node, their order
6629 corresponds the order of data-refs in RESULT_CHAIN. */
6630 stmt_vec_info next_stmt_info = first_stmt_info;
6631 gap_count = 1;
6632 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
6633 {
6634 if (!next_stmt_info)
6635 break;
6636
6637 /* Skip the gaps. Loads created for the gaps will be removed by dead
6638 code elimination pass later. No need to check for the first stmt in
6639 the group, since it always exists.
6640 DR_GROUP_GAP is the number of steps in elements from the previous
6641 access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
6642 correspond to the gaps. */
6643 if (next_stmt_info != first_stmt_info
6644 && gap_count < DR_GROUP_GAP (next_stmt_info))
6645 {
6646 gap_count++;
6647 continue;
6648 }
6649
6650 /* ??? The following needs cleanup after the removal of
6651 DR_GROUP_SAME_DR_STMT. */
6652 if (next_stmt_info)
6653 {
6654 gimple *new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
6655 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
6656 copies, and we put the new vector statement last. */
6657 STMT_VINFO_VEC_STMTS (next_stmt_info).safe_push (new_stmt);
6658
6659 next_stmt_info = DR_GROUP_NEXT_ELEMENT (next_stmt_info);
6660 gap_count = 1;
6661 }
6662 }
6663 }
6664
6665 /* Function vect_force_dr_alignment_p.
6666
6667 Returns whether the alignment of a DECL can be forced to be aligned
6668 on ALIGNMENT bit boundary. */
6669
6670 bool
vect_can_force_dr_alignment_p(const_tree decl,poly_uint64 alignment)6671 vect_can_force_dr_alignment_p (const_tree decl, poly_uint64 alignment)
6672 {
6673 if (!VAR_P (decl))
6674 return false;
6675
6676 if (decl_in_symtab_p (decl)
6677 && !symtab_node::get (decl)->can_increase_alignment_p ())
6678 return false;
6679
6680 if (TREE_STATIC (decl))
6681 return (known_le (alignment,
6682 (unsigned HOST_WIDE_INT) MAX_OFILE_ALIGNMENT));
6683 else
6684 return (known_le (alignment, (unsigned HOST_WIDE_INT) MAX_STACK_ALIGNMENT));
6685 }
6686
6687 /* Return whether the data reference DR_INFO is supported with respect to its
6688 alignment.
6689 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
6690 it is aligned, i.e., check if it is possible to vectorize it with different
6691 alignment. */
6692
6693 enum dr_alignment_support
vect_supportable_dr_alignment(vec_info * vinfo,dr_vec_info * dr_info,tree vectype,int misalignment)6694 vect_supportable_dr_alignment (vec_info *vinfo, dr_vec_info *dr_info,
6695 tree vectype, int misalignment)
6696 {
6697 data_reference *dr = dr_info->dr;
6698 stmt_vec_info stmt_info = dr_info->stmt;
6699 machine_mode mode = TYPE_MODE (vectype);
6700 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
6701 class loop *vect_loop = NULL;
6702 bool nested_in_vect_loop = false;
6703
6704 if (misalignment == 0)
6705 return dr_aligned;
6706
6707 /* For now assume all conditional loads/stores support unaligned
6708 access without any special code. */
6709 if (gcall *stmt = dyn_cast <gcall *> (stmt_info->stmt))
6710 if (gimple_call_internal_p (stmt)
6711 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
6712 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
6713 return dr_unaligned_supported;
6714
6715 if (loop_vinfo)
6716 {
6717 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
6718 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt_info);
6719 }
6720
6721 /* Possibly unaligned access. */
6722
6723 /* We can choose between using the implicit realignment scheme (generating
6724 a misaligned_move stmt) and the explicit realignment scheme (generating
6725 aligned loads with a REALIGN_LOAD). There are two variants to the
6726 explicit realignment scheme: optimized, and unoptimized.
6727 We can optimize the realignment only if the step between consecutive
6728 vector loads is equal to the vector size. Since the vector memory
6729 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
6730 is guaranteed that the misalignment amount remains the same throughout the
6731 execution of the vectorized loop. Therefore, we can create the
6732 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
6733 at the loop preheader.
6734
6735 However, in the case of outer-loop vectorization, when vectorizing a
6736 memory access in the inner-loop nested within the LOOP that is now being
6737 vectorized, while it is guaranteed that the misalignment of the
6738 vectorized memory access will remain the same in different outer-loop
6739 iterations, it is *not* guaranteed that is will remain the same throughout
6740 the execution of the inner-loop. This is because the inner-loop advances
6741 with the original scalar step (and not in steps of VS). If the inner-loop
6742 step happens to be a multiple of VS, then the misalignment remains fixed
6743 and we can use the optimized realignment scheme. For example:
6744
6745 for (i=0; i<N; i++)
6746 for (j=0; j<M; j++)
6747 s += a[i+j];
6748
6749 When vectorizing the i-loop in the above example, the step between
6750 consecutive vector loads is 1, and so the misalignment does not remain
6751 fixed across the execution of the inner-loop, and the realignment cannot
6752 be optimized (as illustrated in the following pseudo vectorized loop):
6753
6754 for (i=0; i<N; i+=4)
6755 for (j=0; j<M; j++){
6756 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
6757 // when j is {0,1,2,3,4,5,6,7,...} respectively.
6758 // (assuming that we start from an aligned address).
6759 }
6760
6761 We therefore have to use the unoptimized realignment scheme:
6762
6763 for (i=0; i<N; i+=4)
6764 for (j=k; j<M; j+=4)
6765 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
6766 // that the misalignment of the initial address is
6767 // 0).
6768
6769 The loop can then be vectorized as follows:
6770
6771 for (k=0; k<4; k++){
6772 rt = get_realignment_token (&vp[k]);
6773 for (i=0; i<N; i+=4){
6774 v1 = vp[i+k];
6775 for (j=k; j<M; j+=4){
6776 v2 = vp[i+j+VS-1];
6777 va = REALIGN_LOAD <v1,v2,rt>;
6778 vs += va;
6779 v1 = v2;
6780 }
6781 }
6782 } */
6783
6784 if (DR_IS_READ (dr))
6785 {
6786 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
6787 && (!targetm.vectorize.builtin_mask_for_load
6788 || targetm.vectorize.builtin_mask_for_load ()))
6789 {
6790 /* If we are doing SLP then the accesses need not have the
6791 same alignment, instead it depends on the SLP group size. */
6792 if (loop_vinfo
6793 && STMT_SLP_TYPE (stmt_info)
6794 && !multiple_p (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6795 * (DR_GROUP_SIZE
6796 (DR_GROUP_FIRST_ELEMENT (stmt_info))),
6797 TYPE_VECTOR_SUBPARTS (vectype)))
6798 ;
6799 else if (!loop_vinfo
6800 || (nested_in_vect_loop
6801 && maybe_ne (TREE_INT_CST_LOW (DR_STEP (dr)),
6802 GET_MODE_SIZE (TYPE_MODE (vectype)))))
6803 return dr_explicit_realign;
6804 else
6805 return dr_explicit_realign_optimized;
6806 }
6807 }
6808
6809 bool is_packed = false;
6810 tree type = TREE_TYPE (DR_REF (dr));
6811 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
6812 is_packed = not_size_aligned (DR_REF (dr));
6813 if (targetm.vectorize.support_vector_misalignment (mode, type, misalignment,
6814 is_packed))
6815 return dr_unaligned_supported;
6816
6817 /* Unsupported. */
6818 return dr_unaligned_unsupported;
6819 }
6820