1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2/frame.h"
31 #include "dwarf2/expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40
41 /* The m32c tdep structure. */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
49 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 const gdb_byte *buf);
52
53 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
54 readable_regcache *cache,
55 gdb_byte *buf);
56
57 struct m32c_reg
58 {
59 /* The name of this register. */
60 const char *name;
61
62 /* Its type. */
63 struct type *type;
64
65 /* The architecture this register belongs to. */
66 struct gdbarch *arch;
67
68 /* Its GDB register number. */
69 int num;
70
71 /* Its sim register number. */
72 int sim_num;
73
74 /* Its DWARF register number, or -1 if it doesn't have one. */
75 int dwarf_num;
76
77 /* Register group memberships. */
78 unsigned int general_p : 1;
79 unsigned int dma_p : 1;
80 unsigned int system_p : 1;
81 unsigned int save_restore_p : 1;
82
83 /* Functions to read its value from a regcache, and write its value
84 to a regcache. */
85 m32c_read_reg_t *read;
86 m32c_write_reg_t *write;
87
88 /* Data for READ and WRITE functions. The exact meaning depends on
89 the specific functions selected; see the comments for those
90 functions. */
91 struct m32c_reg *rx, *ry;
92 int n;
93 };
94
95
96 /* An overestimate of the number of raw and pseudoregisters we will
97 have. The exact answer depends on the variant of the architecture
98 at hand, but we can use this to declare statically allocated
99 arrays, and bump it up when needed. */
100 #define M32C_MAX_NUM_REGS (75)
101
102 /* The largest assigned DWARF register number. */
103 #define M32C_MAX_DWARF_REGNUM (40)
104
105
106 struct gdbarch_tdep
107 {
108 /* All the registers for this variant, indexed by GDB register
109 number, and the number of registers present. */
110 struct m32c_reg regs[M32C_MAX_NUM_REGS];
111
112 /* The number of valid registers. */
113 int num_regs;
114
115 /* Interesting registers. These are pointers into REGS. */
116 struct m32c_reg *pc, *flg;
117 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119 struct m32c_reg *sb, *fb, *sp;
120
121 /* A table indexed by DWARF register numbers, pointing into
122 REGS. */
123 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124
125 /* Types for this architecture. We can't use the builtin_type_foo
126 types, because they're not initialized when building a gdbarch
127 structure. */
128 struct type *voyd, *ptr_voyd, *func_voyd;
129 struct type *uint8, *uint16;
130 struct type *int8, *int16, *int32, *int64;
131
132 /* The types for data address and code address registers. */
133 struct type *data_addr_reg_type, *code_addr_reg_type;
134
135 /* The number of bytes a return address pushed by a 'jsr' instruction
136 occupies on the stack. */
137 int ret_addr_bytes;
138
139 /* The number of bytes an address register occupies on the stack
140 when saved by an 'enter' or 'pushm' instruction. */
141 int push_addr_bytes;
142 };
143
144
145 /* Types. */
146
147 static void
make_types(struct gdbarch * arch)148 make_types (struct gdbarch *arch)
149 {
150 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152 int data_addr_reg_bits, code_addr_reg_bits;
153 char type_name[50];
154
155 #if 0
156 /* This is used to clip CORE_ADDR values, so this value is
157 appropriate both on the m32c, where pointers are 32 bits long,
158 and on the m16c, where pointers are sixteen bits long, but there
159 may be code above the 64k boundary. */
160 set_gdbarch_addr_bit (arch, 24);
161 #else
162 /* GCC uses 32 bits for addrs in the dwarf info, even though
163 only 16/24 bits are used. Setting addr_bit to 24 causes
164 errors in reading the dwarf addresses. */
165 set_gdbarch_addr_bit (arch, 32);
166 #endif
167
168 set_gdbarch_int_bit (arch, 16);
169 switch (mach)
170 {
171 case bfd_mach_m16c:
172 data_addr_reg_bits = 16;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 16);
175 tdep->ret_addr_bytes = 3;
176 tdep->push_addr_bytes = 2;
177 break;
178
179 case bfd_mach_m32c:
180 data_addr_reg_bits = 24;
181 code_addr_reg_bits = 24;
182 set_gdbarch_ptr_bit (arch, 32);
183 tdep->ret_addr_bytes = 4;
184 tdep->push_addr_bytes = 4;
185 break;
186
187 default:
188 gdb_assert_not_reached ("unexpected mach");
189 }
190
191 /* The builtin_type_mumble variables are sometimes uninitialized when
192 this is called, so we avoid using them. */
193 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
194 tdep->ptr_voyd
195 = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
196 tdep->func_voyd = lookup_function_type (tdep->voyd);
197
198 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
199 gdbarch_bfd_arch_info (arch)->printable_name);
200 tdep->data_addr_reg_type
201 = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
202
203 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
204 gdbarch_bfd_arch_info (arch)->printable_name);
205 tdep->code_addr_reg_type
206 = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
207
208 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
209 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
210 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
211 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
212 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
213 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
214 }
215
216
217
218 /* Register set. */
219
220 static const char *
m32c_register_name(struct gdbarch * gdbarch,int num)221 m32c_register_name (struct gdbarch *gdbarch, int num)
222 {
223 return gdbarch_tdep (gdbarch)->regs[num].name;
224 }
225
226
227 static struct type *
m32c_register_type(struct gdbarch * arch,int reg_nr)228 m32c_register_type (struct gdbarch *arch, int reg_nr)
229 {
230 return gdbarch_tdep (arch)->regs[reg_nr].type;
231 }
232
233
234 static int
m32c_register_sim_regno(struct gdbarch * gdbarch,int reg_nr)235 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
236 {
237 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
238 }
239
240
241 static int
m32c_debug_info_reg_to_regnum(struct gdbarch * gdbarch,int reg_nr)242 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
246 && tdep->dwarf_regs[reg_nr])
247 return tdep->dwarf_regs[reg_nr]->num;
248 else
249 /* The DWARF CFI code expects to see -1 for invalid register
250 numbers. */
251 return -1;
252 }
253
254
255 static int
m32c_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)256 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
257 struct reggroup *group)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 struct m32c_reg *reg = &tdep->regs[regnum];
261
262 /* The anonymous raw registers aren't in any groups. */
263 if (! reg->name)
264 return 0;
265
266 if (group == all_reggroup)
267 return 1;
268
269 if (group == general_reggroup
270 && reg->general_p)
271 return 1;
272
273 if (group == m32c_dma_reggroup
274 && reg->dma_p)
275 return 1;
276
277 if (group == system_reggroup
278 && reg->system_p)
279 return 1;
280
281 /* Since the m32c DWARF register numbers refer to cooked registers, not
282 raw registers, and frame_pop depends on the save and restore groups
283 containing registers the DWARF CFI will actually mention, our save
284 and restore groups are cooked registers, not raw registers. (This is
285 why we can't use the default reggroup function.) */
286 if ((group == save_reggroup
287 || group == restore_reggroup)
288 && reg->save_restore_p)
289 return 1;
290
291 return 0;
292 }
293
294
295 /* Register move functions. We declare them here using
296 m32c_{read,write}_reg_t to check the types. */
297 static m32c_read_reg_t m32c_raw_read;
298 static m32c_read_reg_t m32c_banked_read;
299 static m32c_read_reg_t m32c_sb_read;
300 static m32c_read_reg_t m32c_part_read;
301 static m32c_read_reg_t m32c_cat_read;
302 static m32c_read_reg_t m32c_r3r2r1r0_read;
303
304 static m32c_write_reg_t m32c_raw_write;
305 static m32c_write_reg_t m32c_banked_write;
306 static m32c_write_reg_t m32c_sb_write;
307 static m32c_write_reg_t m32c_part_write;
308 static m32c_write_reg_t m32c_cat_write;
309 static m32c_write_reg_t m32c_r3r2r1r0_write;
310
311 /* Copy the value of the raw register REG from CACHE to BUF. */
312 static enum register_status
m32c_raw_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)313 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
314 {
315 return cache->raw_read (reg->num, buf);
316 }
317
318
319 /* Copy the value of the raw register REG from BUF to CACHE. */
320 static enum register_status
m32c_raw_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)321 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
322 const gdb_byte *buf)
323 {
324 cache->raw_write (reg->num, buf);
325
326 return REG_VALID;
327 }
328
329
330 /* Return the value of the 'flg' register in CACHE. */
331 static int
m32c_read_flg(readable_regcache * cache)332 m32c_read_flg (readable_regcache *cache)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
335 ULONGEST flg;
336
337 cache->raw_read (tdep->flg->num, &flg);
338 return flg & 0xffff;
339 }
340
341
342 /* Evaluate the real register number of a banked register. */
343 static struct m32c_reg *
m32c_banked_register(struct m32c_reg * reg,readable_regcache * cache)344 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
345 {
346 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
347 }
348
349
350 /* Move the value of a banked register from CACHE to BUF.
351 If the value of the 'flg' register in CACHE has any of the bits
352 masked in REG->n set, then read REG->ry. Otherwise, read
353 REG->rx. */
354 static enum register_status
m32c_banked_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)355 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
356 {
357 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
358 return cache->raw_read (bank_reg->num, buf);
359 }
360
361
362 /* Move the value of a banked register from BUF to CACHE.
363 If the value of the 'flg' register in CACHE has any of the bits
364 masked in REG->n set, then write REG->ry. Otherwise, write
365 REG->rx. */
366 static enum register_status
m32c_banked_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)367 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
368 const gdb_byte *buf)
369 {
370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371 cache->raw_write (bank_reg->num, buf);
372
373 return REG_VALID;
374 }
375
376
377 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
378 banked register; on bfd_mach_m16c, it's not. */
379 static enum register_status
m32c_sb_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)380 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
381 {
382 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
383 return m32c_raw_read (reg->rx, cache, buf);
384 else
385 return m32c_banked_read (reg, cache, buf);
386 }
387
388
389 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
390 banked register; on bfd_mach_m16c, it's not. */
391 static enum register_status
m32c_sb_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)392 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
393 {
394 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
395 m32c_raw_write (reg->rx, cache, buf);
396 else
397 m32c_banked_write (reg, cache, buf);
398
399 return REG_VALID;
400 }
401
402
403 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
404 and *LEN_P to the offset and length, in bytes, of the part REG
405 occupies in its underlying register. The offset is from the
406 lower-addressed end, regardless of the architecture's endianness.
407 (The M32C family is always little-endian, but let's keep those
408 assumptions out of here.) */
409 static void
m32c_find_part(struct m32c_reg * reg,int * offset_p,int * len_p)410 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
411 {
412 /* The length of the containing register, of which REG is one part. */
413 int containing_len = TYPE_LENGTH (reg->rx->type);
414
415 /* The length of one "element" in our imaginary array. */
416 int elt_len = TYPE_LENGTH (reg->type);
417
418 /* The offset of REG's "element" from the least significant end of
419 the containing register. */
420 int elt_offset = reg->n * elt_len;
421
422 /* If we extend off the end, trim the length of the element. */
423 if (elt_offset + elt_len > containing_len)
424 {
425 elt_len = containing_len - elt_offset;
426 /* We shouldn't be declaring partial registers that go off the
427 end of their containing registers. */
428 gdb_assert (elt_len > 0);
429 }
430
431 /* Flip the offset around if we're big-endian. */
432 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
433 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
434
435 *offset_p = elt_offset;
436 *len_p = elt_len;
437 }
438
439
440 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
441 to BUF. Treating the value of the register REG->rx as an array of
442 REG->type values, where higher indices refer to more significant
443 bits, read the value of the REG->n'th element. */
444 static enum register_status
m32c_part_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)445 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
446 {
447 int offset, len;
448
449 memset (buf, 0, TYPE_LENGTH (reg->type));
450 m32c_find_part (reg, &offset, &len);
451 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
452 }
453
454
455 /* Move the value of a banked register from BUF to CACHE.
456 Treating the value of the register REG->rx as an array of REG->type
457 values, where higher indices refer to more significant bits, write
458 the value of the REG->n'th element. */
459 static enum register_status
m32c_part_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)460 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
461 const gdb_byte *buf)
462 {
463 int offset, len;
464
465 m32c_find_part (reg, &offset, &len);
466 cache->cooked_write_part (reg->rx->num, offset, len, buf);
467
468 return REG_VALID;
469 }
470
471
472 /* Move the value of REG from CACHE to BUF. REG's value is the
473 concatenation of the values of the registers REG->rx and REG->ry,
474 with REG->rx contributing the more significant bits. */
475 static enum register_status
m32c_cat_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)476 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
477 {
478 int high_bytes = TYPE_LENGTH (reg->rx->type);
479 int low_bytes = TYPE_LENGTH (reg->ry->type);
480 enum register_status status;
481
482 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
483
484 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
485 {
486 status = cache->cooked_read (reg->rx->num, buf);
487 if (status == REG_VALID)
488 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
489 }
490 else
491 {
492 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
493 if (status == REG_VALID)
494 status = cache->cooked_read (reg->ry->num, buf);
495 }
496 return status;
497 }
498
499
500 /* Move the value of REG from CACHE to BUF. REG's value is the
501 concatenation of the values of the registers REG->rx and REG->ry,
502 with REG->rx contributing the more significant bits. */
503 static enum register_status
m32c_cat_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)504 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
505 const gdb_byte *buf)
506 {
507 int high_bytes = TYPE_LENGTH (reg->rx->type);
508 int low_bytes = TYPE_LENGTH (reg->ry->type);
509
510 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
511
512 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
513 {
514 cache->cooked_write (reg->rx->num, buf);
515 cache->cooked_write (reg->ry->num, buf + high_bytes);
516 }
517 else
518 {
519 cache->cooked_write (reg->rx->num, buf + low_bytes);
520 cache->cooked_write (reg->ry->num, buf);
521 }
522
523 return REG_VALID;
524 }
525
526
527 /* Copy the value of the raw register REG from CACHE to BUF. REG is
528 the concatenation (from most significant to least) of r3, r2, r1,
529 and r0. */
530 static enum register_status
m32c_r3r2r1r0_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)531 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
534 int len = TYPE_LENGTH (tdep->r0->type);
535 enum register_status status;
536
537 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
538 {
539 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
540 if (status == REG_VALID)
541 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
542 if (status == REG_VALID)
543 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
544 if (status == REG_VALID)
545 status = cache->cooked_read (tdep->r3->num, buf);
546 }
547 else
548 {
549 status = cache->cooked_read (tdep->r0->num, buf);
550 if (status == REG_VALID)
551 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
552 if (status == REG_VALID)
553 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
554 if (status == REG_VALID)
555 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
556 }
557
558 return status;
559 }
560
561
562 /* Copy the value of the raw register REG from BUF to CACHE. REG is
563 the concatenation (from most significant to least) of r3, r2, r1,
564 and r0. */
565 static enum register_status
m32c_r3r2r1r0_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)566 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
567 const gdb_byte *buf)
568 {
569 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570 int len = TYPE_LENGTH (tdep->r0->type);
571
572 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
573 {
574 cache->cooked_write (tdep->r0->num, buf + len * 3);
575 cache->cooked_write (tdep->r1->num, buf + len * 2);
576 cache->cooked_write (tdep->r2->num, buf + len * 1);
577 cache->cooked_write (tdep->r3->num, buf);
578 }
579 else
580 {
581 cache->cooked_write (tdep->r0->num, buf);
582 cache->cooked_write (tdep->r1->num, buf + len * 1);
583 cache->cooked_write (tdep->r2->num, buf + len * 2);
584 cache->cooked_write (tdep->r3->num, buf + len * 3);
585 }
586
587 return REG_VALID;
588 }
589
590
591 static enum register_status
m32c_pseudo_register_read(struct gdbarch * arch,readable_regcache * cache,int cookednum,gdb_byte * buf)592 m32c_pseudo_register_read (struct gdbarch *arch,
593 readable_regcache *cache,
594 int cookednum,
595 gdb_byte *buf)
596 {
597 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598 struct m32c_reg *reg;
599
600 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601 gdb_assert (arch == cache->arch ());
602 gdb_assert (arch == tdep->regs[cookednum].arch);
603 reg = &tdep->regs[cookednum];
604
605 return reg->read (reg, cache, buf);
606 }
607
608
609 static void
m32c_pseudo_register_write(struct gdbarch * arch,struct regcache * cache,int cookednum,const gdb_byte * buf)610 m32c_pseudo_register_write (struct gdbarch *arch,
611 struct regcache *cache,
612 int cookednum,
613 const gdb_byte *buf)
614 {
615 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
616 struct m32c_reg *reg;
617
618 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
619 gdb_assert (arch == cache->arch ());
620 gdb_assert (arch == tdep->regs[cookednum].arch);
621 reg = &tdep->regs[cookednum];
622
623 reg->write (reg, cache, buf);
624 }
625
626
627 /* Add a register with the given fields to the end of ARCH's table.
628 Return a pointer to the newly added register. */
629 static struct m32c_reg *
add_reg(struct gdbarch * arch,const char * name,struct type * type,int sim_num,m32c_read_reg_t * read,m32c_write_reg_t * write,struct m32c_reg * rx,struct m32c_reg * ry,int n)630 add_reg (struct gdbarch *arch,
631 const char *name,
632 struct type *type,
633 int sim_num,
634 m32c_read_reg_t *read,
635 m32c_write_reg_t *write,
636 struct m32c_reg *rx,
637 struct m32c_reg *ry,
638 int n)
639 {
640 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
641 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
642
643 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
644
645 r->name = name;
646 r->type = type;
647 r->arch = arch;
648 r->num = tdep->num_regs;
649 r->sim_num = sim_num;
650 r->dwarf_num = -1;
651 r->general_p = 0;
652 r->dma_p = 0;
653 r->system_p = 0;
654 r->save_restore_p = 0;
655 r->read = read;
656 r->write = write;
657 r->rx = rx;
658 r->ry = ry;
659 r->n = n;
660
661 tdep->num_regs++;
662
663 return r;
664 }
665
666
667 /* Record NUM as REG's DWARF register number. */
668 static void
set_dwarf_regnum(struct m32c_reg * reg,int num)669 set_dwarf_regnum (struct m32c_reg *reg, int num)
670 {
671 gdb_assert (num < M32C_MAX_NUM_REGS);
672
673 /* Update the reg->DWARF mapping. Only count the first number
674 assigned to this register. */
675 if (reg->dwarf_num == -1)
676 reg->dwarf_num = num;
677
678 /* Update the DWARF->reg mapping. */
679 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
680 }
681
682
683 /* Mark REG as a general-purpose register, and return it. */
684 static struct m32c_reg *
mark_general(struct m32c_reg * reg)685 mark_general (struct m32c_reg *reg)
686 {
687 reg->general_p = 1;
688 return reg;
689 }
690
691
692 /* Mark REG as a DMA register. */
693 static void
mark_dma(struct m32c_reg * reg)694 mark_dma (struct m32c_reg *reg)
695 {
696 reg->dma_p = 1;
697 }
698
699
700 /* Mark REG as a SYSTEM register, and return it. */
701 static struct m32c_reg *
mark_system(struct m32c_reg * reg)702 mark_system (struct m32c_reg *reg)
703 {
704 reg->system_p = 1;
705 return reg;
706 }
707
708
709 /* Mark REG as a save-restore register, and return it. */
710 static struct m32c_reg *
mark_save_restore(struct m32c_reg * reg)711 mark_save_restore (struct m32c_reg *reg)
712 {
713 reg->save_restore_p = 1;
714 return reg;
715 }
716
717
718 #define FLAGBIT_B 0x0010
719 #define FLAGBIT_U 0x0080
720
721 /* Handy macros for declaring registers. These all evaluate to
722 pointers to the register declared. Macros that define two
723 registers evaluate to a pointer to the first. */
724
725 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
726 #define R(name, type, sim_num) \
727 (add_reg (arch, (name), (type), (sim_num), \
728 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
729
730 /* The simulator register number for a raw register named NAME. */
731 #define SIM(name) (m32c_sim_reg_ ## name)
732
733 /* A raw unsigned 16-bit data register named NAME.
734 NAME should be an identifier, not a string. */
735 #define R16U(name) \
736 (R(#name, tdep->uint16, SIM (name)))
737
738 /* A raw data address register named NAME.
739 NAME should be an identifier, not a string. */
740 #define RA(name) \
741 (R(#name, tdep->data_addr_reg_type, SIM (name)))
742
743 /* A raw code address register named NAME. NAME should
744 be an identifier, not a string. */
745 #define RC(name) \
746 (R(#name, tdep->code_addr_reg_type, SIM (name)))
747
748 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
749 NAME should be an identifier, not a string. */
750 #define RP(name, type) \
751 (R(#name "0", (type), SIM (name ## 0)), \
752 R(#name "1", (type), SIM (name ## 1)) - 1)
753
754 /* A raw banked general-purpose data register named NAME.
755 NAME should be an identifier, not a string. */
756 #define RBD(name) \
757 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
758 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
759
760 /* A raw banked data address register named NAME.
761 NAME should be an identifier, not a string. */
762 #define RBA(name) \
763 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
764 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
765
766 /* A cooked register named NAME referring to a raw banked register
767 from the bank selected by the current value of FLG. RAW_PAIR
768 should be a pointer to the first register in the banked pair.
769 NAME must be an identifier, not a string. */
770 #define CB(name, raw_pair) \
771 (add_reg (arch, #name, (raw_pair)->type, 0, \
772 m32c_banked_read, m32c_banked_write, \
773 (raw_pair), (raw_pair + 1), FLAGBIT_B))
774
775 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
776 access the top and bottom halves of the register pointed to by
777 NAME. NAME should be an identifier. */
778 #define CHL(name, type) \
779 (add_reg (arch, #name "h", (type), 0, \
780 m32c_part_read, m32c_part_write, name, NULL, 1), \
781 add_reg (arch, #name "l", (type), 0, \
782 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
783
784 /* A register constructed by concatenating the two registers HIGH and
785 LOW, whose name is HIGHLOW and whose type is TYPE. */
786 #define CCAT(high, low, type) \
787 (add_reg (arch, #high #low, (type), 0, \
788 m32c_cat_read, m32c_cat_write, (high), (low), 0))
789
790 /* Abbreviations for marking register group membership. */
791 #define G(reg) (mark_general (reg))
792 #define S(reg) (mark_system (reg))
793 #define DMA(reg) (mark_dma (reg))
794
795
796 /* Construct the register set for ARCH. */
797 static void
make_regs(struct gdbarch * arch)798 make_regs (struct gdbarch *arch)
799 {
800 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
801 int mach = gdbarch_bfd_arch_info (arch)->mach;
802 int num_raw_regs;
803 int num_cooked_regs;
804
805 struct m32c_reg *r0;
806 struct m32c_reg *r1;
807 struct m32c_reg *r2;
808 struct m32c_reg *r3;
809 struct m32c_reg *a0;
810 struct m32c_reg *a1;
811 struct m32c_reg *fb;
812 struct m32c_reg *sb;
813 struct m32c_reg *sp;
814 struct m32c_reg *r0hl;
815 struct m32c_reg *r1hl;
816 struct m32c_reg *r2r0;
817 struct m32c_reg *r3r1;
818 struct m32c_reg *r3r1r2r0;
819 struct m32c_reg *r3r2r1r0;
820 struct m32c_reg *a1a0;
821
822 struct m32c_reg *raw_r0_pair = RBD (r0);
823 struct m32c_reg *raw_r1_pair = RBD (r1);
824 struct m32c_reg *raw_r2_pair = RBD (r2);
825 struct m32c_reg *raw_r3_pair = RBD (r3);
826 struct m32c_reg *raw_a0_pair = RBA (a0);
827 struct m32c_reg *raw_a1_pair = RBA (a1);
828 struct m32c_reg *raw_fb_pair = RBA (fb);
829
830 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
831 We always declare both raw registers, and deal with the distinction
832 in the pseudoregister. */
833 struct m32c_reg *raw_sb_pair = RBA (sb);
834
835 struct m32c_reg *usp = S (RA (usp));
836 struct m32c_reg *isp = S (RA (isp));
837 struct m32c_reg *intb = S (RC (intb));
838 struct m32c_reg *pc = G (RC (pc));
839 struct m32c_reg *flg = G (R16U (flg));
840
841 if (mach == bfd_mach_m32c)
842 {
843 S (R16U (svf));
844 S (RC (svp));
845 S (RC (vct));
846
847 DMA (RP (dmd, tdep->uint8));
848 DMA (RP (dct, tdep->uint16));
849 DMA (RP (drc, tdep->uint16));
850 DMA (RP (dma, tdep->data_addr_reg_type));
851 DMA (RP (dsa, tdep->data_addr_reg_type));
852 DMA (RP (dra, tdep->data_addr_reg_type));
853 }
854
855 num_raw_regs = tdep->num_regs;
856
857 r0 = G (CB (r0, raw_r0_pair));
858 r1 = G (CB (r1, raw_r1_pair));
859 r2 = G (CB (r2, raw_r2_pair));
860 r3 = G (CB (r3, raw_r3_pair));
861 a0 = G (CB (a0, raw_a0_pair));
862 a1 = G (CB (a1, raw_a1_pair));
863 fb = G (CB (fb, raw_fb_pair));
864
865 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
866 Specify custom read/write functions that do the right thing. */
867 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
868 m32c_sb_read, m32c_sb_write,
869 raw_sb_pair, raw_sb_pair + 1, 0));
870
871 /* The current sp is either usp or isp, depending on the value of
872 the FLG register's U bit. */
873 sp = G (add_reg (arch, "sp", usp->type, 0,
874 m32c_banked_read, m32c_banked_write,
875 isp, usp, FLAGBIT_U));
876
877 r0hl = CHL (r0, tdep->int8);
878 r1hl = CHL (r1, tdep->int8);
879 CHL (r2, tdep->int8);
880 CHL (r3, tdep->int8);
881 CHL (intb, tdep->int16);
882
883 r2r0 = CCAT (r2, r0, tdep->int32);
884 r3r1 = CCAT (r3, r1, tdep->int32);
885 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
886
887 r3r2r1r0
888 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
889 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
890
891 if (mach == bfd_mach_m16c)
892 a1a0 = CCAT (a1, a0, tdep->int32);
893 else
894 a1a0 = NULL;
895
896 num_cooked_regs = tdep->num_regs - num_raw_regs;
897
898 tdep->pc = pc;
899 tdep->flg = flg;
900 tdep->r0 = r0;
901 tdep->r1 = r1;
902 tdep->r2 = r2;
903 tdep->r3 = r3;
904 tdep->r2r0 = r2r0;
905 tdep->r3r2r1r0 = r3r2r1r0;
906 tdep->r3r1r2r0 = r3r1r2r0;
907 tdep->a0 = a0;
908 tdep->a1 = a1;
909 tdep->sb = sb;
910 tdep->fb = fb;
911 tdep->sp = sp;
912
913 /* Set up the DWARF register table. */
914 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
915 set_dwarf_regnum (r0hl + 1, 0x01);
916 set_dwarf_regnum (r0hl + 0, 0x02);
917 set_dwarf_regnum (r1hl + 1, 0x03);
918 set_dwarf_regnum (r1hl + 0, 0x04);
919 set_dwarf_regnum (r0, 0x05);
920 set_dwarf_regnum (r1, 0x06);
921 set_dwarf_regnum (r2, 0x07);
922 set_dwarf_regnum (r3, 0x08);
923 set_dwarf_regnum (a0, 0x09);
924 set_dwarf_regnum (a1, 0x0a);
925 set_dwarf_regnum (fb, 0x0b);
926 set_dwarf_regnum (sp, 0x0c);
927 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
928 set_dwarf_regnum (sb, 0x13);
929 set_dwarf_regnum (r2r0, 0x15);
930 set_dwarf_regnum (r3r1, 0x16);
931 if (a1a0)
932 set_dwarf_regnum (a1a0, 0x17);
933
934 /* Enumerate the save/restore register group.
935
936 The regcache_save and regcache_restore functions apply their read
937 function to each register in this group.
938
939 Since frame_pop supplies frame_unwind_register as its read
940 function, the registers meaningful to the Dwarf unwinder need to
941 be in this group.
942
943 On the other hand, when we make inferior calls, save_inferior_status
944 and restore_inferior_status use them to preserve the current register
945 values across the inferior call. For this, you'd kind of like to
946 preserve all the raw registers, to protect the interrupted code from
947 any sort of bank switching the callee might have done. But we handle
948 those cases so badly anyway --- for example, it matters whether we
949 restore FLG before or after we restore the general-purpose registers,
950 but there's no way to express that --- that it isn't worth worrying
951 about.
952
953 We omit control registers like inthl: if you call a function that
954 changes those, it's probably because you wanted that change to be
955 visible to the interrupted code. */
956 mark_save_restore (r0);
957 mark_save_restore (r1);
958 mark_save_restore (r2);
959 mark_save_restore (r3);
960 mark_save_restore (a0);
961 mark_save_restore (a1);
962 mark_save_restore (sb);
963 mark_save_restore (fb);
964 mark_save_restore (sp);
965 mark_save_restore (pc);
966 mark_save_restore (flg);
967
968 set_gdbarch_num_regs (arch, num_raw_regs);
969 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
970 set_gdbarch_pc_regnum (arch, pc->num);
971 set_gdbarch_sp_regnum (arch, sp->num);
972 set_gdbarch_register_name (arch, m32c_register_name);
973 set_gdbarch_register_type (arch, m32c_register_type);
974 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
975 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
976 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
977 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
978 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
979 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
980
981 reggroup_add (arch, general_reggroup);
982 reggroup_add (arch, all_reggroup);
983 reggroup_add (arch, save_reggroup);
984 reggroup_add (arch, restore_reggroup);
985 reggroup_add (arch, system_reggroup);
986 reggroup_add (arch, m32c_dma_reggroup);
987 }
988
989
990
991 /* Breakpoints. */
992 constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
993
994 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
995
996
997 /* Prologue analysis. */
998
999 enum m32c_prologue_kind
1000 {
1001 /* This function uses a frame pointer. */
1002 prologue_with_frame_ptr,
1003
1004 /* This function has no frame pointer. */
1005 prologue_sans_frame_ptr,
1006
1007 /* This function sets up the stack, so its frame is the first
1008 frame on the stack. */
1009 prologue_first_frame
1010 };
1011
1012 struct m32c_prologue
1013 {
1014 /* For consistency with the DWARF 2 .debug_frame info generated by
1015 GCC, a frame's CFA is the address immediately after the saved
1016 return address. */
1017
1018 /* The architecture for which we generated this prologue info. */
1019 struct gdbarch *arch;
1020
1021 enum m32c_prologue_kind kind;
1022
1023 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1024 CFA to where the frame pointer points. This is always zero or
1025 negative. */
1026 LONGEST frame_ptr_offset;
1027
1028 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1029 the stack pointer --- always zero or negative.
1030
1031 Calling this a "size" is a bit misleading, but given that the
1032 stack grows downwards, using offsets for everything keeps one
1033 from going completely sign-crazy: you never change anything's
1034 sign for an ADD instruction; always change the second operand's
1035 sign for a SUB instruction; and everything takes care of
1036 itself.
1037
1038 Functions that use alloca don't have a constant frame size. But
1039 they always have frame pointers, so we must use that to find the
1040 CFA (and perhaps to unwind the stack pointer). */
1041 LONGEST frame_size;
1042
1043 /* The address of the first instruction at which the frame has been
1044 set up and the arguments are where the debug info says they are
1045 --- as best as we can tell. */
1046 CORE_ADDR prologue_end;
1047
1048 /* reg_offset[R] is the offset from the CFA at which register R is
1049 saved, or 1 if register R has not been saved. (Real values are
1050 always zero or negative.) */
1051 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1052 };
1053
1054
1055 /* The longest I've seen, anyway. */
1056 #define M32C_MAX_INSN_LEN (9)
1057
1058 /* Processor state, for the prologue analyzer. */
1059 struct m32c_pv_state
1060 {
1061 struct gdbarch *arch;
1062 pv_t r0, r1, r2, r3;
1063 pv_t a0, a1;
1064 pv_t sb, fb, sp;
1065 pv_t pc;
1066 struct pv_area *stack;
1067
1068 /* Bytes from the current PC, the address they were read from,
1069 and the address of the next unconsumed byte. */
1070 gdb_byte insn[M32C_MAX_INSN_LEN];
1071 CORE_ADDR scan_pc, next_addr;
1072 };
1073
1074
1075 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1076 all went well, or non-zero if simulating the action would trash our
1077 state. */
1078 static int
m32c_pv_push(struct m32c_pv_state * state,pv_t value,int size)1079 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1080 {
1081 if (state->stack->store_would_trash (state->sp))
1082 return 1;
1083
1084 state->sp = pv_add_constant (state->sp, -size);
1085 state->stack->store (state->sp, size, value);
1086
1087 return 0;
1088 }
1089
1090
1091 enum srcdest_kind
1092 {
1093 srcdest_reg,
1094 srcdest_partial_reg,
1095 srcdest_mem
1096 };
1097
1098 /* A source or destination location for an m16c or m32c
1099 instruction. */
1100 struct srcdest
1101 {
1102 /* If srcdest_reg, the location is a register pointed to by REG.
1103 If srcdest_partial_reg, the location is part of a register pointed
1104 to by REG. We don't try to handle this too well.
1105 If srcdest_mem, the location is memory whose address is ADDR. */
1106 enum srcdest_kind kind;
1107 pv_t *reg, addr;
1108 };
1109
1110
1111 /* Return the SIZE-byte value at LOC in STATE. */
1112 static pv_t
m32c_srcdest_fetch(struct m32c_pv_state * state,struct srcdest loc,int size)1113 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1114 {
1115 if (loc.kind == srcdest_mem)
1116 return state->stack->fetch (loc.addr, size);
1117 else if (loc.kind == srcdest_partial_reg)
1118 return pv_unknown ();
1119 else
1120 return *loc.reg;
1121 }
1122
1123
1124 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1125 all went well, or non-zero if simulating the store would trash our
1126 state. */
1127 static int
m32c_srcdest_store(struct m32c_pv_state * state,struct srcdest loc,pv_t value,int size)1128 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1129 pv_t value, int size)
1130 {
1131 if (loc.kind == srcdest_mem)
1132 {
1133 if (state->stack->store_would_trash (loc.addr))
1134 return 1;
1135 state->stack->store (loc.addr, size, value);
1136 }
1137 else if (loc.kind == srcdest_partial_reg)
1138 *loc.reg = pv_unknown ();
1139 else
1140 *loc.reg = value;
1141
1142 return 0;
1143 }
1144
1145
1146 static int
m32c_sign_ext(int v,int bits)1147 m32c_sign_ext (int v, int bits)
1148 {
1149 int mask = 1 << (bits - 1);
1150 return (v ^ mask) - mask;
1151 }
1152
1153 static unsigned int
m32c_next_byte(struct m32c_pv_state * st)1154 m32c_next_byte (struct m32c_pv_state *st)
1155 {
1156 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1157 return st->insn[st->next_addr++ - st->scan_pc];
1158 }
1159
1160 static int
m32c_udisp8(struct m32c_pv_state * st)1161 m32c_udisp8 (struct m32c_pv_state *st)
1162 {
1163 return m32c_next_byte (st);
1164 }
1165
1166
1167 static int
m32c_sdisp8(struct m32c_pv_state * st)1168 m32c_sdisp8 (struct m32c_pv_state *st)
1169 {
1170 return m32c_sign_ext (m32c_next_byte (st), 8);
1171 }
1172
1173
1174 static int
m32c_udisp16(struct m32c_pv_state * st)1175 m32c_udisp16 (struct m32c_pv_state *st)
1176 {
1177 int low = m32c_next_byte (st);
1178 int high = m32c_next_byte (st);
1179
1180 return low + (high << 8);
1181 }
1182
1183
1184 static int
m32c_sdisp16(struct m32c_pv_state * st)1185 m32c_sdisp16 (struct m32c_pv_state *st)
1186 {
1187 int low = m32c_next_byte (st);
1188 int high = m32c_next_byte (st);
1189
1190 return m32c_sign_ext (low + (high << 8), 16);
1191 }
1192
1193
1194 static int
m32c_udisp24(struct m32c_pv_state * st)1195 m32c_udisp24 (struct m32c_pv_state *st)
1196 {
1197 int low = m32c_next_byte (st);
1198 int mid = m32c_next_byte (st);
1199 int high = m32c_next_byte (st);
1200
1201 return low + (mid << 8) + (high << 16);
1202 }
1203
1204
1205 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1206 static int
m32c_get_src23(unsigned char * i)1207 m32c_get_src23 (unsigned char *i)
1208 {
1209 return (((i[0] & 0x70) >> 2)
1210 | ((i[1] & 0x30) >> 4));
1211 }
1212
1213
1214 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1215 static int
m32c_get_dest23(unsigned char * i)1216 m32c_get_dest23 (unsigned char *i)
1217 {
1218 return (((i[0] & 0x0e) << 1)
1219 | ((i[1] & 0xc0) >> 6));
1220 }
1221
1222
1223 static struct srcdest
m32c_decode_srcdest4(struct m32c_pv_state * st,int code,int size)1224 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1225 int code, int size)
1226 {
1227 struct srcdest sd;
1228
1229 if (code < 6)
1230 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1231 else
1232 sd.kind = srcdest_mem;
1233
1234 sd.addr = pv_unknown ();
1235 sd.reg = 0;
1236
1237 switch (code)
1238 {
1239 case 0x0: sd.reg = &st->r0; break;
1240 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1241 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1242 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1243
1244 case 0x4: sd.reg = &st->a0; break;
1245 case 0x5: sd.reg = &st->a1; break;
1246
1247 case 0x6: sd.addr = st->a0; break;
1248 case 0x7: sd.addr = st->a1; break;
1249
1250 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1251 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1252 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1253 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1254
1255 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1256 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1257 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1258 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1259
1260 default:
1261 gdb_assert_not_reached ("unexpected srcdest4");
1262 }
1263
1264 return sd;
1265 }
1266
1267
1268 static struct srcdest
m32c_decode_sd23(struct m32c_pv_state * st,int code,int size,int ind)1269 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1270 {
1271 struct srcdest sd;
1272
1273 sd.addr = pv_unknown ();
1274 sd.reg = 0;
1275
1276 switch (code)
1277 {
1278 case 0x12:
1279 case 0x13:
1280 case 0x10:
1281 case 0x11:
1282 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1283 break;
1284
1285 case 0x02:
1286 case 0x03:
1287 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1288 break;
1289
1290 default:
1291 sd.kind = srcdest_mem;
1292 break;
1293
1294 }
1295
1296 switch (code)
1297 {
1298 case 0x12: sd.reg = &st->r0; break;
1299 case 0x13: sd.reg = &st->r1; break;
1300 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1301 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1302 case 0x02: sd.reg = &st->a0; break;
1303 case 0x03: sd.reg = &st->a1; break;
1304
1305 case 0x00: sd.addr = st->a0; break;
1306 case 0x01: sd.addr = st->a1; break;
1307 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1308 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1309 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1310 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1311 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1312 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1313 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1314 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1315 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1316 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1317 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1318 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1319 default:
1320 gdb_assert_not_reached ("unexpected sd23");
1321 }
1322
1323 if (ind)
1324 {
1325 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1326 sd.kind = srcdest_mem;
1327 }
1328
1329 return sd;
1330 }
1331
1332
1333 /* The r16c and r32c machines have instructions with similar
1334 semantics, but completely different machine language encodings. So
1335 we break out the semantics into their own functions, and leave
1336 machine-specific decoding in m32c_analyze_prologue.
1337
1338 The following functions all expect their arguments already decoded,
1339 and they all return zero if analysis should continue past this
1340 instruction, or non-zero if analysis should stop. */
1341
1342
1343 /* Simulate an 'enter SIZE' instruction in STATE. */
1344 static int
m32c_pv_enter(struct m32c_pv_state * state,int size)1345 m32c_pv_enter (struct m32c_pv_state *state, int size)
1346 {
1347 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1348
1349 /* If simulating this store would require us to forget
1350 everything we know about the stack frame in the name of
1351 accuracy, it would be better to just quit now. */
1352 if (state->stack->store_would_trash (state->sp))
1353 return 1;
1354
1355 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1356 return 1;
1357 state->fb = state->sp;
1358 state->sp = pv_add_constant (state->sp, -size);
1359
1360 return 0;
1361 }
1362
1363
1364 static int
m32c_pv_pushm_one(struct m32c_pv_state * state,pv_t reg,int bit,int src,int size)1365 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1366 int bit, int src, int size)
1367 {
1368 if (bit & src)
1369 {
1370 if (m32c_pv_push (state, reg, size))
1371 return 1;
1372 }
1373
1374 return 0;
1375 }
1376
1377
1378 /* Simulate a 'pushm SRC' instruction in STATE. */
1379 static int
m32c_pv_pushm(struct m32c_pv_state * state,int src)1380 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1381 {
1382 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1383
1384 /* The bits in SRC indicating which registers to save are:
1385 r0 r1 r2 r3 a0 a1 sb fb */
1386 return
1387 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1388 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1389 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1390 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1391 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1392 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1393 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1394 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1395 }
1396
1397 /* Return non-zero if VALUE is the first incoming argument register. */
1398
1399 static int
m32c_is_1st_arg_reg(struct m32c_pv_state * state,pv_t value)1400 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1401 {
1402 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1403 return (value.kind == pvk_register
1404 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1405 ? (value.reg == tdep->r1->num)
1406 : (value.reg == tdep->r0->num))
1407 && value.k == 0);
1408 }
1409
1410 /* Return non-zero if VALUE is an incoming argument register. */
1411
1412 static int
m32c_is_arg_reg(struct m32c_pv_state * state,pv_t value)1413 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1414 {
1415 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1416 return (value.kind == pvk_register
1417 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1418 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1419 : (value.reg == tdep->r0->num))
1420 && value.k == 0);
1421 }
1422
1423 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1424 argument register to its stack slot in STATE. Such instructions
1425 should be included in the prologue, if possible.
1426
1427 The store is a spill if:
1428 - the value being stored is the original value of an argument register;
1429 - the value has not already been stored somewhere in STACK; and
1430 - LOC is a stack slot (e.g., a memory location whose address is
1431 relative to the original value of the SP). */
1432
1433 static int
m32c_is_arg_spill(struct m32c_pv_state * st,struct srcdest loc,pv_t value)1434 m32c_is_arg_spill (struct m32c_pv_state *st,
1435 struct srcdest loc,
1436 pv_t value)
1437 {
1438 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1439
1440 return (m32c_is_arg_reg (st, value)
1441 && loc.kind == srcdest_mem
1442 && pv_is_register (loc.addr, tdep->sp->num)
1443 && ! st->stack->find_reg (st->arch, value.reg, 0));
1444 }
1445
1446 /* Return non-zero if a store of VALUE to LOC is probably
1447 copying the struct return address into an address register
1448 for immediate use. This is basically a "spill" into the
1449 address register, instead of onto the stack.
1450
1451 The prerequisites are:
1452 - value being stored is original value of the FIRST arg register;
1453 - value has not already been stored on stack; and
1454 - LOC is an address register (a0 or a1). */
1455
1456 static int
m32c_is_struct_return(struct m32c_pv_state * st,struct srcdest loc,pv_t value)1457 m32c_is_struct_return (struct m32c_pv_state *st,
1458 struct srcdest loc,
1459 pv_t value)
1460 {
1461 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1462
1463 return (m32c_is_1st_arg_reg (st, value)
1464 && !st->stack->find_reg (st->arch, value.reg, 0)
1465 && loc.kind == srcdest_reg
1466 && (pv_is_register (*loc.reg, tdep->a0->num)
1467 || pv_is_register (*loc.reg, tdep->a1->num)));
1468 }
1469
1470 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1471 was a register save:
1472 - all the named registers should have their original values, and
1473 - the stack pointer should be at a constant offset from the
1474 original stack pointer. */
1475 static int
m32c_pushm_is_reg_save(struct m32c_pv_state * st,int src)1476 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1477 {
1478 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1479 /* The bits in SRC indicating which registers to save are:
1480 r0 r1 r2 r3 a0 a1 sb fb */
1481 return
1482 (pv_is_register (st->sp, tdep->sp->num)
1483 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1484 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1485 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1486 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1487 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1488 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1489 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1490 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1491 }
1492
1493
1494 /* Function for finding saved registers in a 'struct pv_area'; we pass
1495 this to pv_area::scan.
1496
1497 If VALUE is a saved register, ADDR says it was saved at a constant
1498 offset from the frame base, and SIZE indicates that the whole
1499 register was saved, record its offset in RESULT_UNTYPED. */
1500 static void
check_for_saved(void * prologue_untyped,pv_t addr,CORE_ADDR size,pv_t value)1501 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1502 {
1503 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1504 struct gdbarch *arch = prologue->arch;
1505 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1506
1507 /* Is this the unchanged value of some register being saved on the
1508 stack? */
1509 if (value.kind == pvk_register
1510 && value.k == 0
1511 && pv_is_register (addr, tdep->sp->num))
1512 {
1513 /* Some registers require special handling: they're saved as a
1514 larger value than the register itself. */
1515 CORE_ADDR saved_size = register_size (arch, value.reg);
1516
1517 if (value.reg == tdep->pc->num)
1518 saved_size = tdep->ret_addr_bytes;
1519 else if (register_type (arch, value.reg)
1520 == tdep->data_addr_reg_type)
1521 saved_size = tdep->push_addr_bytes;
1522
1523 if (size == saved_size)
1524 {
1525 /* Find which end of the saved value corresponds to our
1526 register. */
1527 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1528 prologue->reg_offset[value.reg]
1529 = (addr.k + saved_size - register_size (arch, value.reg));
1530 else
1531 prologue->reg_offset[value.reg] = addr.k;
1532 }
1533 }
1534 }
1535
1536
1537 /* Analyze the function prologue for ARCH at START, going no further
1538 than LIMIT, and place a description of what we found in
1539 PROLOGUE. */
1540 static void
m32c_analyze_prologue(struct gdbarch * arch,CORE_ADDR start,CORE_ADDR limit,struct m32c_prologue * prologue)1541 m32c_analyze_prologue (struct gdbarch *arch,
1542 CORE_ADDR start, CORE_ADDR limit,
1543 struct m32c_prologue *prologue)
1544 {
1545 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1546 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1547 CORE_ADDR after_last_frame_related_insn;
1548 struct m32c_pv_state st;
1549
1550 st.arch = arch;
1551 st.r0 = pv_register (tdep->r0->num, 0);
1552 st.r1 = pv_register (tdep->r1->num, 0);
1553 st.r2 = pv_register (tdep->r2->num, 0);
1554 st.r3 = pv_register (tdep->r3->num, 0);
1555 st.a0 = pv_register (tdep->a0->num, 0);
1556 st.a1 = pv_register (tdep->a1->num, 0);
1557 st.sb = pv_register (tdep->sb->num, 0);
1558 st.fb = pv_register (tdep->fb->num, 0);
1559 st.sp = pv_register (tdep->sp->num, 0);
1560 st.pc = pv_register (tdep->pc->num, 0);
1561 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1562 st.stack = &stack;
1563
1564 /* Record that the call instruction has saved the return address on
1565 the stack. */
1566 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1567
1568 memset (prologue, 0, sizeof (*prologue));
1569 prologue->arch = arch;
1570 {
1571 int i;
1572 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1573 prologue->reg_offset[i] = 1;
1574 }
1575
1576 st.scan_pc = after_last_frame_related_insn = start;
1577
1578 while (st.scan_pc < limit)
1579 {
1580 pv_t pre_insn_fb = st.fb;
1581 pv_t pre_insn_sp = st.sp;
1582
1583 /* In theory we could get in trouble by trying to read ahead
1584 here, when we only know we're expecting one byte. In
1585 practice I doubt anyone will care, and it makes the rest of
1586 the code easier. */
1587 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1588 /* If we can't fetch the instruction from memory, stop here
1589 and hope for the best. */
1590 break;
1591 st.next_addr = st.scan_pc;
1592
1593 /* The assembly instructions are written as they appear in the
1594 section of the processor manuals that describe the
1595 instruction encodings.
1596
1597 When a single assembly language instruction has several
1598 different machine-language encodings, the manual
1599 distinguishes them by a number in parens, before the
1600 mnemonic. Those numbers are included, as well.
1601
1602 The srcdest decoding instructions have the same names as the
1603 analogous functions in the simulator. */
1604 if (mach == bfd_mach_m16c)
1605 {
1606 /* (1) ENTER #imm8 */
1607 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1608 {
1609 if (m32c_pv_enter (&st, st.insn[2]))
1610 break;
1611 st.next_addr += 3;
1612 }
1613 /* (1) PUSHM src */
1614 else if (st.insn[0] == 0xec)
1615 {
1616 int src = st.insn[1];
1617 if (m32c_pv_pushm (&st, src))
1618 break;
1619 st.next_addr += 2;
1620
1621 if (m32c_pushm_is_reg_save (&st, src))
1622 after_last_frame_related_insn = st.next_addr;
1623 }
1624
1625 /* (6) MOV.size:G src, dest */
1626 else if ((st.insn[0] & 0xfe) == 0x72)
1627 {
1628 int size = (st.insn[0] & 0x01) ? 2 : 1;
1629 struct srcdest src;
1630 struct srcdest dest;
1631 pv_t src_value;
1632 st.next_addr += 2;
1633
1634 src
1635 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1636 dest
1637 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1638 src_value = m32c_srcdest_fetch (&st, src, size);
1639
1640 if (m32c_is_arg_spill (&st, dest, src_value))
1641 after_last_frame_related_insn = st.next_addr;
1642 else if (m32c_is_struct_return (&st, dest, src_value))
1643 after_last_frame_related_insn = st.next_addr;
1644
1645 if (m32c_srcdest_store (&st, dest, src_value, size))
1646 break;
1647 }
1648
1649 /* (1) LDC #IMM16, sp */
1650 else if (st.insn[0] == 0xeb
1651 && st.insn[1] == 0x50)
1652 {
1653 st.next_addr += 2;
1654 st.sp = pv_constant (m32c_udisp16 (&st));
1655 }
1656
1657 else
1658 /* We've hit some instruction we don't know how to simulate.
1659 Strictly speaking, we should set every value we're
1660 tracking to "unknown". But we'll be optimistic, assume
1661 that we have enough information already, and stop
1662 analysis here. */
1663 break;
1664 }
1665 else
1666 {
1667 int src_indirect = 0;
1668 int dest_indirect = 0;
1669 int i = 0;
1670
1671 gdb_assert (mach == bfd_mach_m32c);
1672
1673 /* Check for prefix bytes indicating indirect addressing. */
1674 if (st.insn[0] == 0x41)
1675 {
1676 src_indirect = 1;
1677 i++;
1678 }
1679 else if (st.insn[0] == 0x09)
1680 {
1681 dest_indirect = 1;
1682 i++;
1683 }
1684 else if (st.insn[0] == 0x49)
1685 {
1686 src_indirect = dest_indirect = 1;
1687 i++;
1688 }
1689
1690 /* (1) ENTER #imm8 */
1691 if (st.insn[i] == 0xec)
1692 {
1693 if (m32c_pv_enter (&st, st.insn[i + 1]))
1694 break;
1695 st.next_addr += 2;
1696 }
1697
1698 /* (1) PUSHM src */
1699 else if (st.insn[i] == 0x8f)
1700 {
1701 int src = st.insn[i + 1];
1702 if (m32c_pv_pushm (&st, src))
1703 break;
1704 st.next_addr += 2;
1705
1706 if (m32c_pushm_is_reg_save (&st, src))
1707 after_last_frame_related_insn = st.next_addr;
1708 }
1709
1710 /* (7) MOV.size:G src, dest */
1711 else if ((st.insn[i] & 0x80) == 0x80
1712 && (st.insn[i + 1] & 0x0f) == 0x0b
1713 && m32c_get_src23 (&st.insn[i]) < 20
1714 && m32c_get_dest23 (&st.insn[i]) < 20)
1715 {
1716 struct srcdest src;
1717 struct srcdest dest;
1718 pv_t src_value;
1719 int bw = st.insn[i] & 0x01;
1720 int size = bw ? 2 : 1;
1721 st.next_addr += 2;
1722
1723 src
1724 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1725 size, src_indirect);
1726 dest
1727 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1728 size, dest_indirect);
1729 src_value = m32c_srcdest_fetch (&st, src, size);
1730
1731 if (m32c_is_arg_spill (&st, dest, src_value))
1732 after_last_frame_related_insn = st.next_addr;
1733
1734 if (m32c_srcdest_store (&st, dest, src_value, size))
1735 break;
1736 }
1737 /* (2) LDC #IMM24, sp */
1738 else if (st.insn[i] == 0xd5
1739 && st.insn[i + 1] == 0x29)
1740 {
1741 st.next_addr += 2;
1742 st.sp = pv_constant (m32c_udisp24 (&st));
1743 }
1744 else
1745 /* We've hit some instruction we don't know how to simulate.
1746 Strictly speaking, we should set every value we're
1747 tracking to "unknown". But we'll be optimistic, assume
1748 that we have enough information already, and stop
1749 analysis here. */
1750 break;
1751 }
1752
1753 /* If this instruction changed the FB or decreased the SP (i.e.,
1754 allocated more stack space), then this may be a good place to
1755 declare the prologue finished. However, there are some
1756 exceptions:
1757
1758 - If the instruction just changed the FB back to its original
1759 value, then that's probably a restore instruction. The
1760 prologue should definitely end before that.
1761
1762 - If the instruction increased the value of the SP (that is,
1763 shrunk the frame), then it's probably part of a frame
1764 teardown sequence, and the prologue should end before
1765 that. */
1766
1767 if (! pv_is_identical (st.fb, pre_insn_fb))
1768 {
1769 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1770 after_last_frame_related_insn = st.next_addr;
1771 }
1772 else if (! pv_is_identical (st.sp, pre_insn_sp))
1773 {
1774 /* The comparison of the constants looks odd, there, because
1775 .k is unsigned. All it really means is that the SP is
1776 lower than it was before the instruction. */
1777 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1778 && pv_is_register (st.sp, tdep->sp->num)
1779 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1780 after_last_frame_related_insn = st.next_addr;
1781 }
1782
1783 st.scan_pc = st.next_addr;
1784 }
1785
1786 /* Did we load a constant value into the stack pointer? */
1787 if (pv_is_constant (st.sp))
1788 prologue->kind = prologue_first_frame;
1789
1790 /* Alternatively, did we initialize the frame pointer? Remember
1791 that the CFA is the address after the return address. */
1792 if (pv_is_register (st.fb, tdep->sp->num))
1793 {
1794 prologue->kind = prologue_with_frame_ptr;
1795 prologue->frame_ptr_offset = st.fb.k;
1796 }
1797
1798 /* Is the frame size a known constant? Remember that frame_size is
1799 actually the offset from the CFA to the SP (i.e., a negative
1800 value). */
1801 else if (pv_is_register (st.sp, tdep->sp->num))
1802 {
1803 prologue->kind = prologue_sans_frame_ptr;
1804 prologue->frame_size = st.sp.k;
1805 }
1806
1807 /* We haven't been able to make sense of this function's frame. Treat
1808 it as the first frame. */
1809 else
1810 prologue->kind = prologue_first_frame;
1811
1812 /* Record where all the registers were saved. */
1813 st.stack->scan (check_for_saved, (void *) prologue);
1814
1815 prologue->prologue_end = after_last_frame_related_insn;
1816 }
1817
1818
1819 static CORE_ADDR
m32c_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR ip)1820 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1821 {
1822 const char *name;
1823 CORE_ADDR func_addr, func_end, sal_end;
1824 struct m32c_prologue p;
1825
1826 /* Try to find the extent of the function that contains IP. */
1827 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1828 return ip;
1829
1830 /* Find end by prologue analysis. */
1831 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1832 /* Find end by line info. */
1833 sal_end = skip_prologue_using_sal (gdbarch, ip);
1834 /* Return whichever is lower. */
1835 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1836 return sal_end;
1837 else
1838 return p.prologue_end;
1839 }
1840
1841
1842
1843 /* Stack unwinding. */
1844
1845 static struct m32c_prologue *
m32c_analyze_frame_prologue(struct frame_info * this_frame,void ** this_prologue_cache)1846 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1847 void **this_prologue_cache)
1848 {
1849 if (! *this_prologue_cache)
1850 {
1851 CORE_ADDR func_start = get_frame_func (this_frame);
1852 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1853
1854 /* If we couldn't find any function containing the PC, then
1855 just initialize the prologue cache, but don't do anything. */
1856 if (! func_start)
1857 stop_addr = func_start;
1858
1859 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1860 m32c_analyze_prologue (get_frame_arch (this_frame),
1861 func_start, stop_addr,
1862 (struct m32c_prologue *) *this_prologue_cache);
1863 }
1864
1865 return (struct m32c_prologue *) *this_prologue_cache;
1866 }
1867
1868
1869 static CORE_ADDR
m32c_frame_base(struct frame_info * this_frame,void ** this_prologue_cache)1870 m32c_frame_base (struct frame_info *this_frame,
1871 void **this_prologue_cache)
1872 {
1873 struct m32c_prologue *p
1874 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1875 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1876
1877 /* In functions that use alloca, the distance between the stack
1878 pointer and the frame base varies dynamically, so we can't use
1879 the SP plus static information like prologue analysis to find the
1880 frame base. However, such functions must have a frame pointer,
1881 to be able to restore the SP on exit. So whenever we do have a
1882 frame pointer, use that to find the base. */
1883 switch (p->kind)
1884 {
1885 case prologue_with_frame_ptr:
1886 {
1887 CORE_ADDR fb
1888 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1889 return fb - p->frame_ptr_offset;
1890 }
1891
1892 case prologue_sans_frame_ptr:
1893 {
1894 CORE_ADDR sp
1895 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1896 return sp - p->frame_size;
1897 }
1898
1899 case prologue_first_frame:
1900 return 0;
1901
1902 default:
1903 gdb_assert_not_reached ("unexpected prologue kind");
1904 }
1905 }
1906
1907
1908 static void
m32c_this_id(struct frame_info * this_frame,void ** this_prologue_cache,struct frame_id * this_id)1909 m32c_this_id (struct frame_info *this_frame,
1910 void **this_prologue_cache,
1911 struct frame_id *this_id)
1912 {
1913 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1914
1915 if (base)
1916 *this_id = frame_id_build (base, get_frame_func (this_frame));
1917 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1918 }
1919
1920
1921 static struct value *
m32c_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)1922 m32c_prev_register (struct frame_info *this_frame,
1923 void **this_prologue_cache, int regnum)
1924 {
1925 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1926 struct m32c_prologue *p
1927 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1928 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1929
1930 if (regnum == tdep->sp->num)
1931 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1932
1933 /* If prologue analysis says we saved this register somewhere,
1934 return a description of the stack slot holding it. */
1935 if (p->reg_offset[regnum] != 1)
1936 return frame_unwind_got_memory (this_frame, regnum,
1937 frame_base + p->reg_offset[regnum]);
1938
1939 /* Otherwise, presume we haven't changed the value of this
1940 register, and get it from the next frame. */
1941 return frame_unwind_got_register (this_frame, regnum, regnum);
1942 }
1943
1944
1945 static const struct frame_unwind m32c_unwind = {
1946 NORMAL_FRAME,
1947 default_frame_unwind_stop_reason,
1948 m32c_this_id,
1949 m32c_prev_register,
1950 NULL,
1951 default_frame_sniffer
1952 };
1953
1954
1955 /* Inferior calls. */
1956
1957 /* The calling conventions, according to GCC:
1958
1959 r8c, m16c
1960 ---------
1961 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1962 HImode), (2) is named, and (3) is an integer or pointer type (no
1963 structs, floats, etc). Otherwise, it's passed on the stack.
1964
1965 Second arg may be passed in r2, same restrictions (but not QImode),
1966 even if the first arg is passed on the stack.
1967
1968 Third and further args are passed on the stack. No padding is
1969 used, stack "alignment" is 8 bits.
1970
1971 m32cm, m32c
1972 -----------
1973
1974 First arg may be passed in r0l or r0, same restrictions as above.
1975
1976 Second and further args are passed on the stack. Padding is used
1977 after QImode parameters (i.e. lower-addressed byte is the value,
1978 higher-addressed byte is the padding), stack "alignment" is 16
1979 bits. */
1980
1981
1982 /* Return true if TYPE is a type that can be passed in registers. (We
1983 ignore the size, and pay attention only to the type code;
1984 acceptable sizes depends on which register is being considered to
1985 hold it.) */
1986 static int
m32c_reg_arg_type(struct type * type)1987 m32c_reg_arg_type (struct type *type)
1988 {
1989 enum type_code code = type->code ();
1990
1991 return (code == TYPE_CODE_INT
1992 || code == TYPE_CODE_ENUM
1993 || code == TYPE_CODE_PTR
1994 || TYPE_IS_REFERENCE (type)
1995 || code == TYPE_CODE_BOOL
1996 || code == TYPE_CODE_CHAR);
1997 }
1998
1999
2000 static CORE_ADDR
m32c_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)2001 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2002 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2003 struct value **args, CORE_ADDR sp,
2004 function_call_return_method return_method,
2005 CORE_ADDR struct_addr)
2006 {
2007 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2009 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2010 CORE_ADDR cfa;
2011 int i;
2012
2013 /* The number of arguments given in this function's prototype, or
2014 zero if it has a non-prototyped function type. The m32c ABI
2015 passes arguments mentioned in the prototype differently from
2016 those in the ellipsis of a varargs function, or from those passed
2017 to a non-prototyped function. */
2018 int num_prototyped_args = 0;
2019
2020 {
2021 struct type *func_type = value_type (function);
2022
2023 /* Dereference function pointer types. */
2024 if (func_type->code () == TYPE_CODE_PTR)
2025 func_type = TYPE_TARGET_TYPE (func_type);
2026
2027 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2028 func_type->code () == TYPE_CODE_METHOD);
2029
2030 #if 0
2031 /* The ABI description in gcc/config/m32c/m32c.abi says that
2032 we need to handle prototyped and non-prototyped functions
2033 separately, but the code in GCC doesn't actually do so. */
2034 if (TYPE_PROTOTYPED (func_type))
2035 #endif
2036 num_prototyped_args = func_type->num_fields ();
2037 }
2038
2039 /* First, if the function returns an aggregate by value, push a
2040 pointer to a buffer for it. This doesn't affect the way
2041 subsequent arguments are allocated to registers. */
2042 if (return_method == return_method_struct)
2043 {
2044 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2045 sp -= ptr_len;
2046 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2047 }
2048
2049 /* Push the arguments. */
2050 for (i = nargs - 1; i >= 0; i--)
2051 {
2052 struct value *arg = args[i];
2053 const gdb_byte *arg_bits = value_contents (arg);
2054 struct type *arg_type = value_type (arg);
2055 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2056
2057 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2058 if (i == 0
2059 && arg_size <= 2
2060 && i < num_prototyped_args
2061 && m32c_reg_arg_type (arg_type))
2062 {
2063 /* Extract and re-store as an integer as a terse way to make
2064 sure it ends up in the least significant end of r1. (GDB
2065 should avoid assuming endianness, even on uni-endian
2066 processors.) */
2067 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2068 byte_order);
2069 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2070 regcache_cooked_write_unsigned (regcache, reg->num, u);
2071 }
2072
2073 /* Can it go in r2? */
2074 else if (mach == bfd_mach_m16c
2075 && i == 1
2076 && arg_size == 2
2077 && i < num_prototyped_args
2078 && m32c_reg_arg_type (arg_type))
2079 regcache->cooked_write (tdep->r2->num, arg_bits);
2080
2081 /* Everything else goes on the stack. */
2082 else
2083 {
2084 sp -= arg_size;
2085
2086 /* Align the stack. */
2087 if (mach == bfd_mach_m32c)
2088 sp &= ~1;
2089
2090 write_memory (sp, arg_bits, arg_size);
2091 }
2092 }
2093
2094 /* This is the CFA we use to identify the dummy frame. */
2095 cfa = sp;
2096
2097 /* Push the return address. */
2098 sp -= tdep->ret_addr_bytes;
2099 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2100 bp_addr);
2101
2102 /* Update the stack pointer. */
2103 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2104
2105 /* We need to borrow an odd trick from the i386 target here.
2106
2107 The value we return from this function gets used as the stack
2108 address (the CFA) for the dummy frame's ID. The obvious thing is
2109 to return the new TOS. However, that points at the return
2110 address, saved on the stack, which is inconsistent with the CFA's
2111 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2112 .debug_frame info uses the address immediately after the saved
2113 return address. So you end up with a dummy frame whose CFA
2114 points at the return address, but the frame for the function
2115 being called has a CFA pointing after the return address: the
2116 younger CFA is *greater than* the older CFA. The sanity checks
2117 in frame.c don't like that.
2118
2119 So we try to be consistent with the CFA's used by DWARF 2.
2120 Having a dummy frame and a real frame with the *same* CFA is
2121 tolerable. */
2122 return cfa;
2123 }
2124
2125
2126
2127 /* Return values. */
2128
2129 /* Return value conventions, according to GCC:
2130
2131 r8c, m16c
2132 ---------
2133
2134 QImode in r0l
2135 HImode in r0
2136 SImode in r2r0
2137 near pointer in r0
2138 far pointer in r2r0
2139
2140 Aggregate values (regardless of size) are returned by pushing a
2141 pointer to a temporary area on the stack after the args are pushed.
2142 The function fills in this area with the value. Note that this
2143 pointer on the stack does not affect how register arguments, if any,
2144 are configured.
2145
2146 m32cm, m32c
2147 -----------
2148 Same. */
2149
2150 /* Return non-zero if values of type TYPE are returned by storing them
2151 in a buffer whose address is passed on the stack, ahead of the
2152 other arguments. */
2153 static int
m32c_return_by_passed_buf(struct type * type)2154 m32c_return_by_passed_buf (struct type *type)
2155 {
2156 enum type_code code = type->code ();
2157
2158 return (code == TYPE_CODE_STRUCT
2159 || code == TYPE_CODE_UNION);
2160 }
2161
2162 static enum return_value_convention
m32c_return_value(struct gdbarch * gdbarch,struct value * function,struct type * valtype,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)2163 m32c_return_value (struct gdbarch *gdbarch,
2164 struct value *function,
2165 struct type *valtype,
2166 struct regcache *regcache,
2167 gdb_byte *readbuf,
2168 const gdb_byte *writebuf)
2169 {
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2172 enum return_value_convention conv;
2173 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2174
2175 if (m32c_return_by_passed_buf (valtype))
2176 conv = RETURN_VALUE_STRUCT_CONVENTION;
2177 else
2178 conv = RETURN_VALUE_REGISTER_CONVENTION;
2179
2180 if (readbuf)
2181 {
2182 /* We should never be called to find values being returned by
2183 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2184 unless we made the call ourselves. */
2185 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2186
2187 gdb_assert (valtype_len <= 8);
2188
2189 /* Anything that fits in r0 is returned there. */
2190 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2191 {
2192 ULONGEST u;
2193 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2194 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2195 }
2196 else
2197 {
2198 /* Everything else is passed in mem0, using as many bytes as
2199 needed. This is not what the Renesas tools do, but it's
2200 what GCC does at the moment. */
2201 struct bound_minimal_symbol mem0
2202 = lookup_minimal_symbol ("mem0", NULL, NULL);
2203
2204 if (! mem0.minsym)
2205 error (_("The return value is stored in memory at 'mem0', "
2206 "but GDB cannot find\n"
2207 "its address."));
2208 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2209 }
2210 }
2211
2212 if (writebuf)
2213 {
2214 /* We should never be called to store values to be returned
2215 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2216 finding the buffer, unless we made the call ourselves. */
2217 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2218
2219 gdb_assert (valtype_len <= 8);
2220
2221 /* Anything that fits in r0 is returned there. */
2222 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2223 {
2224 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2225 byte_order);
2226 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2227 }
2228 else
2229 {
2230 /* Everything else is passed in mem0, using as many bytes as
2231 needed. This is not what the Renesas tools do, but it's
2232 what GCC does at the moment. */
2233 struct bound_minimal_symbol mem0
2234 = lookup_minimal_symbol ("mem0", NULL, NULL);
2235
2236 if (! mem0.minsym)
2237 error (_("The return value is stored in memory at 'mem0', "
2238 "but GDB cannot find\n"
2239 " its address."));
2240 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2241 }
2242 }
2243
2244 return conv;
2245 }
2246
2247
2248
2249 /* Trampolines. */
2250
2251 /* The m16c and m32c use a trampoline function for indirect function
2252 calls. An indirect call looks like this:
2253
2254 ... push arguments ...
2255 ... push target function address ...
2256 jsr.a m32c_jsri16
2257
2258 The code for m32c_jsri16 looks like this:
2259
2260 m32c_jsri16:
2261
2262 # Save return address.
2263 pop.w m32c_jsri_ret
2264 pop.b m32c_jsri_ret+2
2265
2266 # Store target function address.
2267 pop.w m32c_jsri_addr
2268
2269 # Re-push return address.
2270 push.b m32c_jsri_ret+2
2271 push.w m32c_jsri_ret
2272
2273 # Call the target function.
2274 jmpi.a m32c_jsri_addr
2275
2276 Without further information, GDB will treat calls to m32c_jsri16
2277 like calls to any other function. Since m32c_jsri16 doesn't have
2278 debugging information, that normally means that GDB sets a step-
2279 resume breakpoint and lets the program continue --- which is not
2280 what the user wanted. (Giving the trampoline debugging info
2281 doesn't help: the user expects the program to stop in the function
2282 their program is calling, not in some trampoline code they've never
2283 seen before.)
2284
2285 The gdbarch_skip_trampoline_code method tells GDB how to step
2286 through such trampoline functions transparently to the user. When
2287 given the address of a trampoline function's first instruction,
2288 gdbarch_skip_trampoline_code should return the address of the first
2289 instruction of the function really being called. If GDB decides it
2290 wants to step into that function, it will set a breakpoint there
2291 and silently continue to it.
2292
2293 We recognize the trampoline by name, and extract the target address
2294 directly from the stack. This isn't great, but recognizing by its
2295 code sequence seems more fragile. */
2296
2297 static CORE_ADDR
m32c_skip_trampoline_code(struct frame_info * frame,CORE_ADDR stop_pc)2298 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2299 {
2300 struct gdbarch *gdbarch = get_frame_arch (frame);
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2303
2304 /* It would be nicer to simply look up the addresses of known
2305 trampolines once, and then compare stop_pc with them. However,
2306 we'd need to ensure that that cached address got invalidated when
2307 someone loaded a new executable, and I'm not quite sure of the
2308 best way to do that. find_pc_partial_function does do some
2309 caching, so we'll see how this goes. */
2310 const char *name;
2311 CORE_ADDR start, end;
2312
2313 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2314 {
2315 /* Are we stopped at the beginning of the trampoline function? */
2316 if (strcmp (name, "m32c_jsri16") == 0
2317 && stop_pc == start)
2318 {
2319 /* Get the stack pointer. The return address is at the top,
2320 and the target function's address is just below that. We
2321 know it's a two-byte address, since the trampoline is
2322 m32c_jsri*16*. */
2323 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2324 CORE_ADDR target
2325 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2326 2, byte_order);
2327
2328 /* What we have now is the address of a jump instruction.
2329 What we need is the destination of that jump.
2330 The opcode is 1 byte, and the destination is the next 3 bytes. */
2331
2332 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2333 return target;
2334 }
2335 }
2336
2337 return 0;
2338 }
2339
2340
2341 /* Address/pointer conversions. */
2342
2343 /* On the m16c, there is a 24-bit address space, but only a very few
2344 instructions can generate addresses larger than 0xffff: jumps,
2345 jumps to subroutines, and the lde/std (load/store extended)
2346 instructions.
2347
2348 Since GCC can only support one size of pointer, we can't have
2349 distinct 'near' and 'far' pointer types; we have to pick one size
2350 for everything. If we wanted to use 24-bit pointers, then GCC
2351 would have to use lde and ste for all memory references, which
2352 would be terrible for performance and code size. So the GNU
2353 toolchain uses 16-bit pointers for everything, and gives up the
2354 ability to have pointers point outside the first 64k of memory.
2355
2356 However, as a special hack, we let the linker place functions at
2357 addresses above 0xffff, as long as it also places a trampoline in
2358 the low 64k for every function whose address is taken. Each
2359 trampoline consists of a single jmp.a instruction that jumps to the
2360 function's real entry point. Pointers to functions can be 16 bits
2361 long, even though the functions themselves are at higher addresses:
2362 the pointers refer to the trampolines, not the functions.
2363
2364 This complicates things for GDB, however: given the address of a
2365 function (from debug info or linker symbols, say) which could be
2366 anywhere in the 24-bit address space, how can we find an
2367 appropriate 16-bit value to use as a pointer to it?
2368
2369 If the linker has not generated a trampoline for the function,
2370 we're out of luck. Well, I guess we could malloc some space and
2371 write a jmp.a instruction to it, but I'm not going to get into that
2372 at the moment.
2373
2374 If the linker has generated a trampoline for the function, then it
2375 also emitted a symbol for the trampoline: if the function's linker
2376 symbol is named NAME, then the function's trampoline's linker
2377 symbol is named NAME.plt.
2378
2379 So, given a code address:
2380 - We try to find a linker symbol at that address.
2381 - If we find such a symbol named NAME, we look for a linker symbol
2382 named NAME.plt.
2383 - If we find such a symbol, we assume it is a trampoline, and use
2384 its address as the pointer value.
2385
2386 And, given a function pointer:
2387 - We try to find a linker symbol at that address named NAME.plt.
2388 - If we find such a symbol, we look for a linker symbol named NAME.
2389 - If we find that, we provide that as the function's address.
2390 - If any of the above steps fail, we return the original address
2391 unchanged; it might really be a function in the low 64k.
2392
2393 See? You *knew* there was a reason you wanted to be a computer
2394 programmer! :) */
2395
2396 static void
m32c_m16c_address_to_pointer(struct gdbarch * gdbarch,struct type * type,gdb_byte * buf,CORE_ADDR addr)2397 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2398 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2399 {
2400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2401 enum type_code target_code;
2402 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2403
2404 target_code = TYPE_TARGET_TYPE (type)->code ();
2405
2406 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2407 {
2408 const char *func_name;
2409 char *tramp_name;
2410 struct bound_minimal_symbol tramp_msym;
2411
2412 /* Try to find a linker symbol at this address. */
2413 struct bound_minimal_symbol func_msym
2414 = lookup_minimal_symbol_by_pc (addr);
2415
2416 if (! func_msym.minsym)
2417 error (_("Cannot convert code address %s to function pointer:\n"
2418 "couldn't find a symbol at that address, to find trampoline."),
2419 paddress (gdbarch, addr));
2420
2421 func_name = func_msym.minsym->linkage_name ();
2422 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2423 strcpy (tramp_name, func_name);
2424 strcat (tramp_name, ".plt");
2425
2426 /* Try to find a linker symbol for the trampoline. */
2427 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2428
2429 /* We've either got another copy of the name now, or don't need
2430 the name any more. */
2431 xfree (tramp_name);
2432
2433 if (! tramp_msym.minsym)
2434 {
2435 CORE_ADDR ptrval;
2436
2437 /* No PLT entry found. Mask off the upper bits of the address
2438 to make a pointer. As noted in the warning to the user
2439 below, this value might be useful if converted back into
2440 an address by GDB, but will otherwise, almost certainly,
2441 be garbage.
2442
2443 Using this masked result does seem to be useful
2444 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2445 PASSes. These results appear to be correct as well.
2446
2447 We print a warning here so that the user can make a
2448 determination about whether the result is useful or not. */
2449 ptrval = addr & 0xffff;
2450
2451 warning (_("Cannot convert code address %s to function pointer:\n"
2452 "couldn't find trampoline named '%s.plt'.\n"
2453 "Returning pointer value %s instead; this may produce\n"
2454 "a useful result if converted back into an address by GDB,\n"
2455 "but will most likely not be useful otherwise."),
2456 paddress (gdbarch, addr), func_name,
2457 paddress (gdbarch, ptrval));
2458
2459 addr = ptrval;
2460
2461 }
2462 else
2463 {
2464 /* The trampoline's address is our pointer. */
2465 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2466 }
2467 }
2468
2469 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2470 }
2471
2472
2473 static CORE_ADDR
m32c_m16c_pointer_to_address(struct gdbarch * gdbarch,struct type * type,const gdb_byte * buf)2474 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2475 struct type *type, const gdb_byte *buf)
2476 {
2477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2478 CORE_ADDR ptr;
2479 enum type_code target_code;
2480
2481 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2482
2483 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2484
2485 target_code = TYPE_TARGET_TYPE (type)->code ();
2486
2487 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2488 {
2489 /* See if there is a minimal symbol at that address whose name is
2490 "NAME.plt". */
2491 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2492
2493 if (ptr_msym.minsym)
2494 {
2495 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2496 int len = strlen (ptr_msym_name);
2497
2498 if (len > 4
2499 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2500 {
2501 struct bound_minimal_symbol func_msym;
2502 /* We have a .plt symbol; try to find the symbol for the
2503 corresponding function.
2504
2505 Since the trampoline contains a jump instruction, we
2506 could also just extract the jump's target address. I
2507 don't see much advantage one way or the other. */
2508 char *func_name = (char *) xmalloc (len - 4 + 1);
2509 memcpy (func_name, ptr_msym_name, len - 4);
2510 func_name[len - 4] = '\0';
2511 func_msym
2512 = lookup_minimal_symbol (func_name, NULL, NULL);
2513
2514 /* If we do have such a symbol, return its value as the
2515 function's true address. */
2516 if (func_msym.minsym)
2517 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2518 }
2519 }
2520 else
2521 {
2522 int aspace;
2523
2524 for (aspace = 1; aspace <= 15; aspace++)
2525 {
2526 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2527
2528 if (ptr_msym.minsym)
2529 ptr |= aspace << 16;
2530 }
2531 }
2532 }
2533
2534 return ptr;
2535 }
2536
2537 static void
m32c_virtual_frame_pointer(struct gdbarch * gdbarch,CORE_ADDR pc,int * frame_regnum,LONGEST * frame_offset)2538 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2539 int *frame_regnum,
2540 LONGEST *frame_offset)
2541 {
2542 const char *name;
2543 CORE_ADDR func_addr, func_end;
2544 struct m32c_prologue p;
2545
2546 struct regcache *regcache = get_current_regcache ();
2547 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2548
2549 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2550 internal_error (__FILE__, __LINE__,
2551 _("No virtual frame pointer available"));
2552
2553 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2554 switch (p.kind)
2555 {
2556 case prologue_with_frame_ptr:
2557 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2558 *frame_offset = p.frame_ptr_offset;
2559 break;
2560 case prologue_sans_frame_ptr:
2561 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2562 *frame_offset = p.frame_size;
2563 break;
2564 default:
2565 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2566 *frame_offset = 0;
2567 break;
2568 }
2569 /* Sanity check */
2570 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2571 internal_error (__FILE__, __LINE__,
2572 _("No virtual frame pointer available"));
2573 }
2574
2575
2576 /* Initialization. */
2577
2578 static struct gdbarch *
m32c_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)2579 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2580 {
2581 struct gdbarch *gdbarch;
2582 struct gdbarch_tdep *tdep;
2583 unsigned long mach = info.bfd_arch_info->mach;
2584
2585 /* Find a candidate among the list of architectures we've created
2586 already. */
2587 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2588 arches != NULL;
2589 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2590 return arches->gdbarch;
2591
2592 tdep = XCNEW (struct gdbarch_tdep);
2593 gdbarch = gdbarch_alloc (&info, tdep);
2594
2595 /* Essential types. */
2596 make_types (gdbarch);
2597
2598 /* Address/pointer conversions. */
2599 if (mach == bfd_mach_m16c)
2600 {
2601 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2602 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2603 }
2604
2605 /* Register set. */
2606 make_regs (gdbarch);
2607
2608 /* Breakpoints. */
2609 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2610 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2611
2612 /* Prologue analysis and unwinding. */
2613 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2614 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2615 #if 0
2616 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2617 They may be in the dwarf2 cfi code in GDB, or they may be in
2618 the debug info emitted by the upstream toolchain. I don't
2619 know which, but I do know that the prologue analyzer works better.
2620 MVS 04/13/06 */
2621 dwarf2_append_sniffers (gdbarch);
2622 #endif
2623 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2624
2625 /* Inferior calls. */
2626 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2627 set_gdbarch_return_value (gdbarch, m32c_return_value);
2628
2629 /* Trampolines. */
2630 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2631
2632 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2633
2634 /* m32c function boundary addresses are not necessarily even.
2635 Therefore, the `vbit', which indicates a pointer to a virtual
2636 member function, is stored in the delta field, rather than as
2637 the low bit of a function pointer address.
2638
2639 In order to verify this, see the definition of
2640 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2641 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2642 set_gdbarch_vbit_in_delta (gdbarch, 1);
2643
2644 return gdbarch;
2645 }
2646
2647 void _initialize_m32c_tdep ();
2648 void
_initialize_m32c_tdep()2649 _initialize_m32c_tdep ()
2650 {
2651 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2652
2653 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2654 }
2655