xref: /netbsd/external/gpl3/gdb.old/dist/gold/tilegx.cc (revision 56bb7041)
1 // tilegx.cc -- tilegx target support for gold.
2 
3 // Copyright (C) 2012-2020 Free Software Foundation, Inc.
4 // Written by Jiong Wang (jiwang@tilera.com)
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "tilegx.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "gc.h"
42 #include "icf.h"
43 
44 // the first got entry reserved
45 const int32_t TILEGX_GOT_RESERVE_COUNT = 1;
46 
47 // the first two .got.plt entry reserved
48 const int32_t TILEGX_GOTPLT_RESERVE_COUNT = 2;
49 
50 // 1. for both 64/32 bit mode, the instruction bundle is always 64bit.
51 // 2. thus .plt section should always be aligned to 64 bit.
52 const int32_t TILEGX_INST_BUNDLE_SIZE = 64;
53 
54 namespace
55 {
56 
57 using namespace gold;
58 
59 // A class to handle the PLT data.
60 // This is an abstract base class that handles most of the linker details
61 // but does not know the actual contents of PLT entries.  The derived
62 // classes below fill in those details.
63 
64 template<int size, bool big_endian>
65 class Output_data_plt_tilegx : public Output_section_data
66 {
67  public:
68   typedef Output_data_reloc<elfcpp::SHT_RELA, true,size, big_endian>
69     Reloc_section;
70 
Output_data_plt_tilegx(Layout * layout,uint64_t addralign,Output_data_got<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)71   Output_data_plt_tilegx(Layout* layout, uint64_t addralign,
72                          Output_data_got<size, big_endian>* got,
73                          Output_data_space* got_plt,
74                          Output_data_space* got_irelative)
75     : Output_section_data(addralign), layout_(layout),
76       irelative_rel_(NULL), got_(got), got_plt_(got_plt),
77       got_irelative_(got_irelative), count_(0),
78       irelative_count_(0), free_list_()
79   { this->init(layout); }
80 
Output_data_plt_tilegx(Layout * layout,uint64_t plt_entry_size,Output_data_got<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative,unsigned int plt_count)81   Output_data_plt_tilegx(Layout* layout, uint64_t plt_entry_size,
82                          Output_data_got<size, big_endian>* got,
83                          Output_data_space* got_plt,
84                          Output_data_space* got_irelative,
85                          unsigned int plt_count)
86     : Output_section_data((plt_count + 1) * plt_entry_size,
87                           TILEGX_INST_BUNDLE_SIZE, false),
88       layout_(layout), irelative_rel_(NULL), got_(got),
89       got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
90       irelative_count_(0), free_list_()
91   {
92     this->init(layout);
93 
94     // Initialize the free list and reserve the first entry.
95     this->free_list_.init((plt_count + 1) * plt_entry_size, false);
96     this->free_list_.remove(0, plt_entry_size);
97   }
98 
99   // Initialize the PLT section.
100   void
101   init(Layout* layout);
102 
103   // Add an entry to the PLT.
104   void
105   add_entry(Symbol_table*, Layout*, Symbol* gsym);
106 
107   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
108   unsigned int
109   add_local_ifunc_entry(Symbol_table*, Layout*,
110     Sized_relobj_file<size, big_endian>*, unsigned int);
111 
112   // Add the relocation for a PLT entry.
113   void
114   add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
115 
116   // Return the .rela.plt section data.
117   Reloc_section*
rela_plt()118   rela_plt()
119   { return this->rel_; }
120 
121   // Return where the IRELATIVE relocations should go in the PLT
122   // relocations.
123   Reloc_section*
124   rela_irelative(Symbol_table*, Layout*);
125 
126   // Return whether we created a section for IRELATIVE relocations.
127   bool
has_irelative_section() const128   has_irelative_section() const
129   { return this->irelative_rel_ != NULL; }
130 
131   // Return the number of PLT entries.
132   unsigned int
entry_count() const133   entry_count() const
134   { return this->count_ + this->irelative_count_; }
135 
136   // Return the offset of the first non-reserved PLT entry.
137   unsigned int
first_plt_entry_offset()138   first_plt_entry_offset()
139   { return this->get_plt_entry_size(); }
140 
141   // Return the size of a PLT entry.
142   unsigned int
get_plt_entry_size() const143   get_plt_entry_size() const
144   { return plt_entry_size; }
145 
146   // Reserve a slot in the PLT for an existing symbol in an incremental update.
147   void
reserve_slot(unsigned int plt_index)148   reserve_slot(unsigned int plt_index)
149   {
150     this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
151                             (plt_index + 2) * this->get_plt_entry_size());
152   }
153 
154   // Return the PLT address to use for a global symbol.
155   uint64_t
156   address_for_global(const Symbol*);
157 
158   // Return the PLT address to use for a local symbol.
159   uint64_t
160   address_for_local(const Relobj*, unsigned int symndx);
161 
162  protected:
163   // Fill in the first PLT entry.
164   void
165   fill_first_plt_entry(unsigned char*);
166 
167   // Fill in a normal PLT entry.  Returns the offset into the entry that
168   // should be the initial GOT slot value.
169   void
170   fill_plt_entry(unsigned char*,
171                  typename elfcpp::Elf_types<size>::Elf_Addr,
172                  unsigned int,
173                  typename elfcpp::Elf_types<size>::Elf_Addr,
174                  unsigned int, unsigned int);
175 
176   void
177   do_adjust_output_section(Output_section* os);
178 
179   // Write to a map file.
180   void
do_print_to_mapfile(Mapfile * mapfile) const181   do_print_to_mapfile(Mapfile* mapfile) const
182   { mapfile->print_output_data(this, _("** PLT")); }
183 
184  private:
185   // Set the final size.
186   void
187   set_final_data_size();
188 
189   // Write out the PLT data.
190   void
191   do_write(Output_file*);
192 
193   // A pointer to the Layout class, so that we can find the .dynamic
194   // section when we write out the GOT PLT section.
195   Layout* layout_;
196   // The reloc section.
197   Reloc_section* rel_;
198   // The IRELATIVE relocs, if necessary.  These must follow the
199   // regular PLT relocations.
200   Reloc_section* irelative_rel_;
201   // The .got section.
202   Output_data_got<size, big_endian>* got_;
203   // The .got.plt section.
204   Output_data_space* got_plt_;
205   // The part of the .got.plt section used for IRELATIVE relocs.
206   Output_data_space* got_irelative_;
207   // The number of PLT entries.
208   unsigned int count_;
209   // Number of PLT entries with R_TILEGX_IRELATIVE relocs.  These
210   // follow the regular PLT entries.
211   unsigned int irelative_count_;
212   // List of available regions within the section, for incremental
213   // update links.
214   Free_list free_list_;
215   // The size of an entry in the PLT.
216   static const int plt_entry_size = 40;
217   // The first entry in the PLT.
218   static const unsigned char first_plt_entry[plt_entry_size];
219   // Other entries in the PLT for an executable.
220   static const unsigned char plt_entry[plt_entry_size];
221 };
222 
223 // The tilegx target class.
224 // See the ABI at
225 //   http://www.tilera.com/scm
226 // TLS info comes from
227 //   http://people.redhat.com/drepper/tls.pdf
228 
229 template<int size, bool big_endian>
230 class Target_tilegx : public Sized_target<size, big_endian>
231 {
232  public:
233   // TileGX use RELA
234   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
235     Reloc_section;
236 
Target_tilegx(const Target::Target_info * info=& tilegx_info)237   Target_tilegx(const Target::Target_info* info = &tilegx_info)
238     : Sized_target<size, big_endian>(info),
239       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
240       global_offset_table_(NULL), tilegx_dynamic_(NULL), rela_dyn_(NULL),
241       rela_irelative_(NULL), copy_relocs_(elfcpp::R_TILEGX_COPY),
242       got_mod_index_offset_(-1U),
243       tls_get_addr_sym_defined_(false)
244   { }
245 
246   // Scan the relocations to look for symbol adjustments.
247   void
248   gc_process_relocs(Symbol_table* symtab,
249                     Layout* layout,
250                     Sized_relobj_file<size, big_endian>* object,
251                     unsigned int data_shndx,
252                     unsigned int sh_type,
253                     const unsigned char* prelocs,
254                     size_t reloc_count,
255                     Output_section* output_section,
256                     bool needs_special_offset_handling,
257                     size_t local_symbol_count,
258                     const unsigned char* plocal_symbols);
259 
260   // Scan the relocations to look for symbol adjustments.
261   void
262   scan_relocs(Symbol_table* symtab,
263               Layout* layout,
264               Sized_relobj_file<size, big_endian>* object,
265               unsigned int data_shndx,
266               unsigned int sh_type,
267               const unsigned char* prelocs,
268               size_t reloc_count,
269               Output_section* output_section,
270               bool needs_special_offset_handling,
271               size_t local_symbol_count,
272               const unsigned char* plocal_symbols);
273 
274   // Finalize the sections.
275   void
276   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
277 
278   // Return the value to use for a dynamic which requires special
279   // treatment.
280   uint64_t
281   do_dynsym_value(const Symbol*) const;
282 
283   // Relocate a section.
284   void
285   relocate_section(const Relocate_info<size, big_endian>*,
286                    unsigned int sh_type,
287                    const unsigned char* prelocs,
288                    size_t reloc_count,
289                    Output_section* output_section,
290                    bool needs_special_offset_handling,
291                    unsigned char* view,
292                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
293                    section_size_type view_size,
294                    const Reloc_symbol_changes*);
295 
296   // Scan the relocs during a relocatable link.
297   void
298   scan_relocatable_relocs(Symbol_table* symtab,
299                           Layout* layout,
300                           Sized_relobj_file<size, big_endian>* object,
301                           unsigned int data_shndx,
302                           unsigned int sh_type,
303                           const unsigned char* prelocs,
304                           size_t reloc_count,
305                           Output_section* output_section,
306                           bool needs_special_offset_handling,
307                           size_t local_symbol_count,
308                           const unsigned char* plocal_symbols,
309                           Relocatable_relocs*);
310 
311   // Scan the relocs for --emit-relocs.
312   void
313   emit_relocs_scan(Symbol_table* symtab,
314 		   Layout* layout,
315 		   Sized_relobj_file<size, big_endian>* object,
316 		   unsigned int data_shndx,
317 		   unsigned int sh_type,
318 		   const unsigned char* prelocs,
319 		   size_t reloc_count,
320 		   Output_section* output_section,
321 		   bool needs_special_offset_handling,
322 		   size_t local_symbol_count,
323 		   const unsigned char* plocal_syms,
324 		   Relocatable_relocs* rr);
325 
326   // Relocate a section during a relocatable link.
327   void
328   relocate_relocs(
329       const Relocate_info<size, big_endian>*,
330       unsigned int sh_type,
331       const unsigned char* prelocs,
332       size_t reloc_count,
333       Output_section* output_section,
334       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
335       unsigned char* view,
336       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
337       section_size_type view_size,
338       unsigned char* reloc_view,
339       section_size_type reloc_view_size);
340 
341   // Return whether SYM is defined by the ABI.
342   bool
do_is_defined_by_abi(const Symbol * sym) const343   do_is_defined_by_abi(const Symbol* sym) const
344   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
345 
346   // define tilegx specific symbols
347   virtual void
348   do_define_standard_symbols(Symbol_table*, Layout*);
349 
350   // Return the PLT section.
351   uint64_t
do_plt_address_for_global(const Symbol * gsym) const352   do_plt_address_for_global(const Symbol* gsym) const
353   { return this->plt_section()->address_for_global(gsym); }
354 
355   uint64_t
do_plt_address_for_local(const Relobj * relobj,unsigned int symndx) const356   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
357   { return this->plt_section()->address_for_local(relobj, symndx); }
358 
359   // This function should be defined in targets that can use relocation
360   // types to determine (implemented in local_reloc_may_be_function_pointer
361   // and global_reloc_may_be_function_pointer)
362   // if a function's pointer is taken.  ICF uses this in safe mode to only
363   // fold those functions whose pointer is defintely not taken.  For tilegx
364   // pie binaries, safe ICF cannot be done by looking at relocation types.
365   bool
do_can_check_for_function_pointers() const366   do_can_check_for_function_pointers() const
367   { return true; }
368 
369   // Return the base for a DW_EH_PE_datarel encoding.
370   uint64_t
371   do_ehframe_datarel_base() const;
372 
373   // Return whether there is a GOT section.
374   bool
has_got_section() const375   has_got_section() const
376   { return this->got_ != NULL; }
377 
378   // Return the size of the GOT section.
379   section_size_type
got_size() const380   got_size() const
381   {
382     gold_assert(this->got_ != NULL);
383     return this->got_->data_size();
384   }
385 
386   // Return the number of entries in the GOT.
387   unsigned int
got_entry_count() const388   got_entry_count() const
389   {
390     if (this->got_ == NULL)
391       return 0;
392     return this->got_size() / (size / 8);
393   }
394 
395   // Return the number of entries in the PLT.
396   unsigned int
397   plt_entry_count() const;
398 
399   // Return the offset of the first non-reserved PLT entry.
400   unsigned int
401   first_plt_entry_offset() const;
402 
403   // Return the size of each PLT entry.
404   unsigned int
405   plt_entry_size() const;
406 
407   // Create the GOT section for an incremental update.
408   Output_data_got_base*
409   init_got_plt_for_update(Symbol_table* symtab,
410                           Layout* layout,
411                           unsigned int got_count,
412                           unsigned int plt_count);
413 
414   // Reserve a GOT entry for a local symbol, and regenerate any
415   // necessary dynamic relocations.
416   void
417   reserve_local_got_entry(unsigned int got_index,
418                           Sized_relobj<size, big_endian>* obj,
419                           unsigned int r_sym,
420                           unsigned int got_type);
421 
422   // Reserve a GOT entry for a global symbol, and regenerate any
423   // necessary dynamic relocations.
424   void
425   reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
426                            unsigned int got_type);
427 
428   // Register an existing PLT entry for a global symbol.
429   void
430   register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
431                             Symbol* gsym);
432 
433   // Force a COPY relocation for a given symbol.
434   void
435   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
436 
437   // Apply an incremental relocation.
438   void
439   apply_relocation(const Relocate_info<size, big_endian>* relinfo,
440                    typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
441                    unsigned int r_type,
442                    typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
443                    const Symbol* gsym,
444                    unsigned char* view,
445                    typename elfcpp::Elf_types<size>::Elf_Addr address,
446                    section_size_type view_size);
447 
448  private:
449   // The class which scans relocations.
450   class Scan
451   {
452   public:
Scan()453     Scan()
454       : issued_non_pic_error_(false)
455     { }
456 
457     static inline int
458     get_reference_flags(unsigned int r_type);
459 
460     inline void
461     local(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
462           Sized_relobj_file<size, big_endian>* object,
463           unsigned int data_shndx,
464           Output_section* output_section,
465           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
466           const elfcpp::Sym<size, big_endian>& lsym,
467           bool is_discarded);
468 
469     inline void
470     global(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
471            Sized_relobj_file<size, big_endian>* object,
472            unsigned int data_shndx,
473            Output_section* output_section,
474            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
475            Symbol* gsym);
476 
477     inline bool
478     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
479                             Target_tilegx* target,
480                             Sized_relobj_file<size, big_endian>* object,
481                             unsigned int data_shndx,
482                             Output_section* output_section,
483                             const elfcpp::Rela<size, big_endian>& reloc,
484                             unsigned int r_type,
485                             const elfcpp::Sym<size, big_endian>& lsym);
486 
487     inline bool
488     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
489                             Target_tilegx* target,
490                             Sized_relobj_file<size, big_endian>* object,
491                             unsigned int data_shndx,
492                             Output_section* output_section,
493                             const elfcpp::Rela<size, big_endian>& reloc,
494                             unsigned int r_type,
495                             Symbol* gsym);
496 
497   private:
498     static void
499     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
500                             unsigned int r_type);
501 
502     static void
503     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
504                              unsigned int r_type, Symbol*);
505 
506     void
507     check_non_pic(Relobj*, unsigned int r_type);
508 
509     inline bool
510     possible_function_pointer_reloc(unsigned int r_type);
511 
512     bool
513     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
514                               unsigned int r_type);
515 
516     // Whether we have issued an error about a non-PIC compilation.
517     bool issued_non_pic_error_;
518   };
519 
520   // The class which implements relocation.
521   class Relocate
522   {
523    public:
Relocate()524     Relocate()
525     { }
526 
~Relocate()527     ~Relocate()
528     {
529     }
530 
531     // Do a relocation.  Return false if the caller should not issue
532     // any warnings about this relocation.
533     inline bool
534     relocate(const Relocate_info<size, big_endian>*, unsigned int,
535 	     Target_tilegx*, Output_section*, size_t, const unsigned char*,
536 	     const Sized_symbol<size>*, const Symbol_value<size>*,
537 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
538 	     section_size_type);
539   };
540 
541   // Adjust TLS relocation type based on the options and whether this
542   // is a local symbol.
543   static tls::Tls_optimization
544   optimize_tls_reloc(bool is_final, int r_type);
545 
546   // Get the GOT section, creating it if necessary.
547   Output_data_got<size, big_endian>*
548   got_section(Symbol_table*, Layout*);
549 
550   // Get the GOT PLT section.
551   Output_data_space*
got_plt_section() const552   got_plt_section() const
553   {
554     gold_assert(this->got_plt_ != NULL);
555     return this->got_plt_;
556   }
557 
558   // Create the PLT section.
559   void
560   make_plt_section(Symbol_table* symtab, Layout* layout);
561 
562   // Create a PLT entry for a global symbol.
563   void
564   make_plt_entry(Symbol_table*, Layout*, Symbol*);
565 
566   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
567   void
568   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
569                              Sized_relobj_file<size, big_endian>* relobj,
570                              unsigned int local_sym_index);
571 
572   // Create a GOT entry for the TLS module index.
573   unsigned int
574   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
575                       Sized_relobj_file<size, big_endian>* object);
576 
577   // Get the PLT section.
578   Output_data_plt_tilegx<size, big_endian>*
plt_section() const579   plt_section() const
580   {
581     gold_assert(this->plt_ != NULL);
582     return this->plt_;
583   }
584 
585   // Get the dynamic reloc section, creating it if necessary.
586   Reloc_section*
587   rela_dyn_section(Layout*);
588 
589   // Get the section to use for IRELATIVE relocations.
590   Reloc_section*
591   rela_irelative_section(Layout*);
592 
593   // Add a potential copy relocation.
594   void
copy_reloc(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int shndx,Output_section * output_section,Symbol * sym,const elfcpp::Rela<size,big_endian> & reloc)595   copy_reloc(Symbol_table* symtab, Layout* layout,
596              Sized_relobj_file<size, big_endian>* object,
597              unsigned int shndx, Output_section* output_section,
598              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
599   {
600     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
601     this->copy_relocs_.copy_reloc(symtab, layout,
602                                   symtab->get_sized_symbol<size>(sym),
603                                   object, shndx, output_section,
604 				  r_type, reloc.get_r_offset(),
605 				  reloc.get_r_addend(),
606                                   this->rela_dyn_section(layout));
607   }
608 
609   // Information about this specific target which we pass to the
610   // general Target structure.
611   static const Target::Target_info tilegx_info;
612 
613   // The types of GOT entries needed for this platform.
614   // These values are exposed to the ABI in an incremental link.
615   // Do not renumber existing values without changing the version
616   // number of the .gnu_incremental_inputs section.
617   enum Got_type
618   {
619     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
620     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
621     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
622     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
623   };
624 
625   // This type is used as the argument to the target specific
626   // relocation routines.  The only target specific reloc is
627   // R_X86_64_TLSDESC against a local symbol.
628   struct Tlsdesc_info
629   {
Tlsdesc_info__anonb0c8aae70111::Target_tilegx::Tlsdesc_info630     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
631                  unsigned int a_r_sym)
632       : object(a_object), r_sym(a_r_sym)
633     { }
634 
635     // The object in which the local symbol is defined.
636     Sized_relobj_file<size, big_endian>* object;
637     // The local symbol index in the object.
638     unsigned int r_sym;
639   };
640 
641   // The GOT section.
642   Output_data_got<size, big_endian>* got_;
643   // The PLT section.
644   Output_data_plt_tilegx<size, big_endian>* plt_;
645   // The GOT PLT section.
646   Output_data_space* got_plt_;
647   // The GOT section for IRELATIVE relocations.
648   Output_data_space* got_irelative_;
649   // The _GLOBAL_OFFSET_TABLE_ symbol.
650   Symbol* global_offset_table_;
651   // The _TILEGX_DYNAMIC_ symbol.
652   Symbol* tilegx_dynamic_;
653   // The dynamic reloc section.
654   Reloc_section* rela_dyn_;
655   // The section to use for IRELATIVE relocs.
656   Reloc_section* rela_irelative_;
657   // Relocs saved to avoid a COPY reloc.
658   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
659   // Offset of the GOT entry for the TLS module index.
660   unsigned int got_mod_index_offset_;
661   // True if the _tls_get_addr symbol has been defined.
662   bool tls_get_addr_sym_defined_;
663 };
664 
665 template<>
666 const Target::Target_info Target_tilegx<64, false>::tilegx_info =
667 {
668   64,                   // size
669   false,                // is_big_endian
670   elfcpp::EM_TILEGX,    // machine_code
671   false,                // has_make_symbol
672   false,                // has_resolve
673   false,                // has_code_fill
674   true,                 // is_default_stack_executable
675   false,                // can_icf_inline_merge_sections
676   '\0',                 // wrap_char
677   "/lib/ld.so.1",       // program interpreter
678   0x10000,              // default_text_segment_address
679   0x10000,              // abi_pagesize (overridable by -z max-page-size)
680   0x10000,              // common_pagesize (overridable by -z common-page-size)
681   false,                // isolate_execinstr
682   0,                    // rosegment_gap
683   elfcpp::SHN_UNDEF,    // small_common_shndx
684   elfcpp::SHN_UNDEF,    // large_common_shndx
685   0,                    // small_common_section_flags
686   0,                    // large_common_section_flags
687   NULL,                 // attributes_section
688   NULL,                 // attributes_vendor
689   "_start",		// entry_symbol_name
690   32,			// hash_entry_size
691   elfcpp::SHT_PROGBITS,	// unwind_section_type
692 };
693 
694 template<>
695 const Target::Target_info Target_tilegx<32, false>::tilegx_info =
696 {
697   32,                   // size
698   false,                // is_big_endian
699   elfcpp::EM_TILEGX,    // machine_code
700   false,                // has_make_symbol
701   false,                // has_resolve
702   false,                // has_code_fill
703   true,                 // is_default_stack_executable
704   false,                // can_icf_inline_merge_sections
705   '\0',                 // wrap_char
706   "/lib32/ld.so.1",     // program interpreter
707   0x10000,              // default_text_segment_address
708   0x10000,              // abi_pagesize (overridable by -z max-page-size)
709   0x10000,              // common_pagesize (overridable by -z common-page-size)
710   false,                // isolate_execinstr
711   0,                    // rosegment_gap
712   elfcpp::SHN_UNDEF,    // small_common_shndx
713   elfcpp::SHN_UNDEF,    // large_common_shndx
714   0,                    // small_common_section_flags
715   0,                    // large_common_section_flags
716   NULL,                 // attributes_section
717   NULL,                 // attributes_vendor
718   "_start",		// entry_symbol_name
719   32,			// hash_entry_size
720   elfcpp::SHT_PROGBITS,	// unwind_section_type
721 };
722 
723 template<>
724 const Target::Target_info Target_tilegx<64, true>::tilegx_info =
725 {
726   64,                   // size
727   true,                 // is_big_endian
728   elfcpp::EM_TILEGX,    // machine_code
729   false,                // has_make_symbol
730   false,                // has_resolve
731   false,                // has_code_fill
732   true,                 // is_default_stack_executable
733   false,                // can_icf_inline_merge_sections
734   '\0',                 // wrap_char
735   "/lib/ld.so.1",       // program interpreter
736   0x10000,              // default_text_segment_address
737   0x10000,              // abi_pagesize (overridable by -z max-page-size)
738   0x10000,              // common_pagesize (overridable by -z common-page-size)
739   false,                // isolate_execinstr
740   0,                    // rosegment_gap
741   elfcpp::SHN_UNDEF,    // small_common_shndx
742   elfcpp::SHN_UNDEF,    // large_common_shndx
743   0,                    // small_common_section_flags
744   0,                    // large_common_section_flags
745   NULL,                 // attributes_section
746   NULL,                 // attributes_vendor
747   "_start",		// entry_symbol_name
748   32,			// hash_entry_size
749   elfcpp::SHT_PROGBITS,	// unwind_section_type
750 };
751 
752 template<>
753 const Target::Target_info Target_tilegx<32, true>::tilegx_info =
754 {
755   32,                   // size
756   true,                 // is_big_endian
757   elfcpp::EM_TILEGX,    // machine_code
758   false,                // has_make_symbol
759   false,                // has_resolve
760   false,                // has_code_fill
761   true,                 // is_default_stack_executable
762   false,                // can_icf_inline_merge_sections
763   '\0',                 // wrap_char
764   "/lib32/ld.so.1",     // program interpreter
765   0x10000,              // default_text_segment_address
766   0x10000,              // abi_pagesize (overridable by -z max-page-size)
767   0x10000,              // common_pagesize (overridable by -z common-page-size)
768   false,                // isolate_execinstr
769   0,                    // rosegment_gap
770   elfcpp::SHN_UNDEF,    // small_common_shndx
771   elfcpp::SHN_UNDEF,    // large_common_shndx
772   0,                    // small_common_section_flags
773   0,                    // large_common_section_flags
774   NULL,                 // attributes_section
775   NULL,                  // attributes_vendor
776   "_start",		// entry_symbol_name
777   32,			// hash_entry_size
778   elfcpp::SHT_PROGBITS,	// unwind_section_type
779 };
780 
781 // tilegx relocation handlers
782 template<int size, bool big_endian>
783 class Tilegx_relocate_functions
784 {
785 public:
786   // overflow check will be supported later
787   typedef enum
788   {
789     STATUS_OKAY,        // No error during relocation.
790     STATUS_OVERFLOW,    // Relocation overflow.
791     STATUS_BAD_RELOC    // Relocation cannot be applied.
792   } Status;
793 
794   struct Tilegx_howto
795   {
796     // right shift operand by this number of bits.
797     unsigned char srshift;
798 
799     // the offset to apply relocation.
800     unsigned char doffset;
801 
802     // set to 1 for pc-relative relocation.
803     unsigned char is_pcrel;
804 
805     // size in bits, or 0 if this table entry should be ignored.
806     unsigned char bsize;
807 
808     // whether we need to check overflow.
809     unsigned char overflow;
810   };
811 
812   static const Tilegx_howto howto[elfcpp::R_TILEGX_NUM];
813 
814 private:
815 
816   // Do a simple rela relocation
817   template<int valsize>
818   static inline void
rela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Swap<size,big_endian>::Valtype addend,elfcpp::Elf_Xword srshift,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword bitmask)819   rela(unsigned char* view,
820        const Sized_relobj_file<size, big_endian>* object,
821        const Symbol_value<size>* psymval,
822        typename elfcpp::Swap<size, big_endian>::Valtype addend,
823        elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
824        elfcpp::Elf_Xword bitmask)
825   {
826     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
827     Valtype* wv = reinterpret_cast<Valtype*>(view);
828     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
829     Valtype reloc = 0;
830     if (size == 32)
831       reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
832     else
833       reloc = psymval->value(object, addend) >> srshift;
834 
835     elfcpp::Elf_Xword dst_mask = bitmask << doffset;
836 
837     val &= ~dst_mask;
838     reloc &= bitmask;
839 
840     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
841   }
842 
843   // Do a simple rela relocation
844   template<int valsize>
845   static inline void
rela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Swap<size,big_endian>::Valtype addend,elfcpp::Elf_Xword srshift,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword bitmask)846   rela_ua(unsigned char* view,
847           const Sized_relobj_file<size, big_endian>* object,
848           const Symbol_value<size>* psymval,
849           typename elfcpp::Swap<size, big_endian>::Valtype addend,
850           elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
851           elfcpp::Elf_Xword bitmask)
852   {
853     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
854       Valtype;
855     unsigned char* wv = view;
856     Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
857     Valtype reloc = 0;
858     if (size == 32)
859       reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
860     else
861       reloc = psymval->value(object, addend) >> srshift;
862 
863     elfcpp::Elf_Xword dst_mask = bitmask << doffset;
864 
865     val &= ~dst_mask;
866     reloc &= bitmask;
867 
868     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv,
869       val | (reloc<<doffset));
870   }
871 
872   template<int valsize>
873   static inline void
rela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Swap<size,big_endian>::Valtype addend,elfcpp::Elf_Xword srshift,elfcpp::Elf_Xword doffset1,elfcpp::Elf_Xword bitmask1,elfcpp::Elf_Xword doffset2,elfcpp::Elf_Xword bitmask2)874   rela(unsigned char* view,
875        const Sized_relobj_file<size, big_endian>* object,
876        const Symbol_value<size>* psymval,
877        typename elfcpp::Swap<size, big_endian>::Valtype addend,
878        elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
879        elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
880        elfcpp::Elf_Xword bitmask2)
881   {
882     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
883     Valtype* wv = reinterpret_cast<Valtype*>(view);
884     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
885     Valtype reloc = 0;
886     if (size == 32)
887       reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
888     else
889       reloc = psymval->value(object, addend) >> srshift;
890 
891     elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
892                                   | (bitmask2 << doffset2);
893     val &= ~dst_mask;
894     reloc = ((reloc & bitmask1) << doffset1)
895              | ((reloc & bitmask2) << doffset2);
896 
897     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
898 
899   }
900 
901   // Do a simple PC relative relocation with a Symbol_value with the
902   // addend in the relocation.
903   template<int valsize>
904   static inline void
pcrela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Swap<size,big_endian>::Valtype addend,typename elfcpp::Elf_types<size>::Elf_Addr address,elfcpp::Elf_Xword srshift,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword bitmask)905   pcrela(unsigned char* view,
906          const Sized_relobj_file<size, big_endian>* object,
907          const Symbol_value<size>* psymval,
908          typename elfcpp::Swap<size, big_endian>::Valtype addend,
909          typename elfcpp::Elf_types<size>::Elf_Addr address,
910          elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
911          elfcpp::Elf_Xword bitmask)
912 
913   {
914     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
915     Valtype* wv = reinterpret_cast<Valtype*>(view);
916     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
917     Valtype reloc = 0;
918     if (size == 32)
919       reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
920                >> srshift;
921     else
922       reloc = (psymval->value(object, addend) - address) >> srshift;
923 
924     elfcpp::Elf_Xword dst_mask = bitmask << doffset;
925     val &= ~dst_mask;
926     reloc &= bitmask;
927 
928     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
929   }
930 
931   template<int valsize>
932   static inline void
pcrela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Swap<size,big_endian>::Valtype addend,typename elfcpp::Elf_types<size>::Elf_Addr address,elfcpp::Elf_Xword srshift,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword bitmask)933   pcrela_ua(unsigned char* view,
934            const Sized_relobj_file<size, big_endian>* object,
935            const Symbol_value<size>* psymval,
936            typename elfcpp::Swap<size, big_endian>::Valtype addend,
937            typename elfcpp::Elf_types<size>::Elf_Addr address,
938            elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
939            elfcpp::Elf_Xword bitmask)
940 
941   {
942     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
943       Valtype;
944     unsigned char* wv = view;
945     Valtype reloc = 0;
946     if (size == 32)
947       reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
948                >> srshift;
949     else
950       reloc = (psymval->value(object, addend) - address) >> srshift;
951 
952     reloc &= bitmask;
953 
954     elfcpp::Swap<valsize, big_endian>::writeval(wv, reloc << doffset);
955   }
956 
957   template<int valsize>
958   static inline void
pcrela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Swap<size,big_endian>::Valtype addend,typename elfcpp::Elf_types<size>::Elf_Addr address,elfcpp::Elf_Xword srshift,elfcpp::Elf_Xword doffset1,elfcpp::Elf_Xword bitmask1,elfcpp::Elf_Xword doffset2,elfcpp::Elf_Xword bitmask2)959   pcrela(unsigned char* view,
960          const Sized_relobj_file<size, big_endian>* object,
961          const Symbol_value<size>* psymval,
962          typename elfcpp::Swap<size, big_endian>::Valtype addend,
963          typename elfcpp::Elf_types<size>::Elf_Addr address,
964          elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
965          elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
966          elfcpp::Elf_Xword bitmask2)
967 
968   {
969     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
970     Valtype* wv = reinterpret_cast<Valtype*>(view);
971     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
972     Valtype reloc = 0;
973     if (size == 32)
974       reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
975                >> srshift;
976     else
977       reloc = (psymval->value(object, addend) - address) >> srshift;
978 
979     elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
980                                   | (bitmask2 << doffset2);
981     val &= ~dst_mask;
982     reloc = ((reloc & bitmask1) << doffset1)
983              | ((reloc & bitmask2) << doffset2);
984 
985     elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
986   }
987 
988   typedef Tilegx_relocate_functions<size, big_endian> This;
989   typedef Relocate_functions<size, big_endian> Base;
990 
991 public:
992 
993   static inline void
abs64(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend)994   abs64(unsigned char* view,
995         const Sized_relobj_file<size, big_endian>* object,
996         const Symbol_value<size>* psymval,
997         typename elfcpp::Elf_types<size>::Elf_Addr addend)
998   {
999     This::template rela_ua<64>(view, object, psymval, addend, 0, 0,
1000                                0xffffffffffffffffllu);
1001   }
1002 
1003   static inline void
abs32(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend)1004   abs32(unsigned char* view,
1005         const Sized_relobj_file<size, big_endian>* object,
1006         const Symbol_value<size>* psymval,
1007         typename elfcpp::Elf_types<size>::Elf_Addr addend)
1008   {
1009     This::template rela_ua<32>(view, object, psymval, addend, 0, 0,
1010                                0xffffffff);
1011   }
1012 
1013   static inline void
abs16(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend)1014   abs16(unsigned char* view,
1015         const Sized_relobj_file<size, big_endian>* object,
1016         const Symbol_value<size>* psymval,
1017         typename elfcpp::Elf_types<size>::Elf_Addr addend)
1018   {
1019     This::template rela_ua<16>(view, object, psymval, addend, 0, 0,
1020                                0xffff);
1021   }
1022 
1023   static inline void
pc_abs64(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend,typename elfcpp::Elf_types<size>::Elf_Addr address)1024   pc_abs64(unsigned char* view,
1025         const Sized_relobj_file<size, big_endian>* object,
1026         const Symbol_value<size>* psymval,
1027         typename elfcpp::Elf_types<size>::Elf_Addr addend,
1028 	    typename elfcpp::Elf_types<size>::Elf_Addr address)
1029   {
1030     This::template pcrela_ua<64>(view, object, psymval, addend, address, 0, 0,
1031                                0xffffffffffffffffllu);
1032   }
1033 
1034   static inline void
pc_abs32(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend,typename elfcpp::Elf_types<size>::Elf_Addr address)1035   pc_abs32(unsigned char* view,
1036         const Sized_relobj_file<size, big_endian>* object,
1037         const Symbol_value<size>* psymval,
1038         typename elfcpp::Elf_types<size>::Elf_Addr addend,
1039 	    typename elfcpp::Elf_types<size>::Elf_Addr address)
1040   {
1041     This::template pcrela_ua<32>(view, object, psymval, addend, address, 0, 0,
1042                                  0xffffffff);
1043   }
1044 
1045   static inline void
pc_abs16(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend,typename elfcpp::Elf_types<size>::Elf_Addr address)1046   pc_abs16(unsigned char* view,
1047         const Sized_relobj_file<size, big_endian>* object,
1048         const Symbol_value<size>* psymval,
1049         typename elfcpp::Elf_types<size>::Elf_Addr addend,
1050 	    typename elfcpp::Elf_types<size>::Elf_Addr address)
1051   {
1052     This::template pcrela_ua<16>(view, object, psymval, addend, address, 0, 0,
1053                                  0xffff);
1054   }
1055 
1056   static inline void
imm_x_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend,Tilegx_howto & r_howto)1057   imm_x_general(unsigned char* view,
1058                 const Sized_relobj_file<size, big_endian>* object,
1059                 const Symbol_value<size>* psymval,
1060                 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1061                 Tilegx_howto &r_howto)
1062   {
1063     This::template rela<64>(view, object, psymval, addend,
1064                             (elfcpp::Elf_Xword)(r_howto.srshift),
1065                             (elfcpp::Elf_Xword)(r_howto.doffset),
1066                             (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
1067   }
1068 
1069   static inline void
imm_x_pcrel_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend,typename elfcpp::Elf_types<size>::Elf_Addr address,Tilegx_howto & r_howto)1070   imm_x_pcrel_general(unsigned char* view,
1071                       const Sized_relobj_file<size, big_endian>* object,
1072                       const Symbol_value<size>* psymval,
1073                       typename elfcpp::Elf_types<size>::Elf_Addr addend,
1074                       typename elfcpp::Elf_types<size>::Elf_Addr address,
1075                       Tilegx_howto &r_howto)
1076   {
1077     This::template pcrela<64>(view, object, psymval, addend, address,
1078                               (elfcpp::Elf_Xword)(r_howto.srshift),
1079                               (elfcpp::Elf_Xword)(r_howto.doffset),
1080                               (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
1081   }
1082 
1083   static inline void
imm_x_two_part_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Addr addend,typename elfcpp::Elf_types<size>::Elf_Addr address,unsigned int r_type)1084   imm_x_two_part_general(unsigned char* view,
1085                          const Sized_relobj_file<size, big_endian>* object,
1086                          const Symbol_value<size>* psymval,
1087                          typename elfcpp::Elf_types<size>::Elf_Addr addend,
1088                          typename elfcpp::Elf_types<size>::Elf_Addr address,
1089                          unsigned int r_type)
1090   {
1091 
1092     elfcpp::Elf_Xword doffset1 = 0llu;
1093     elfcpp::Elf_Xword doffset2 = 0llu;
1094     elfcpp::Elf_Xword dmask1   = 0llu;
1095     elfcpp::Elf_Xword dmask2   = 0llu;
1096     elfcpp::Elf_Xword rshift   = 0llu;
1097     unsigned int pc_rel        = 0;
1098 
1099     switch (r_type)
1100       {
1101       case elfcpp::R_TILEGX_BROFF_X1:
1102         doffset1 = 31llu;
1103         doffset2 = 37llu;
1104         dmask1   = 0x3fllu;
1105         dmask2   = 0x1ffc0llu;
1106         rshift   = 3llu;
1107         pc_rel   = 1;
1108         break;
1109       case elfcpp::R_TILEGX_DEST_IMM8_X1:
1110         doffset1 = 31llu;
1111         doffset2 = 43llu;
1112         dmask1   = 0x3fllu;
1113         dmask2   = 0xc0llu;
1114         rshift   = 0llu;
1115         break;
1116       }
1117 
1118     if (pc_rel)
1119       This::template pcrela<64>(view, object, psymval, addend, address,
1120                                 rshift, doffset1, dmask1, doffset2, dmask2);
1121     else
1122       This::template rela<64>(view, object, psymval, addend, rshift,
1123                               doffset1, dmask1, doffset2, dmask2);
1124 
1125   }
1126 
1127   static inline void
tls_relax(unsigned char * view,unsigned int r_type,tls::Tls_optimization opt_t)1128   tls_relax(unsigned char* view, unsigned int r_type,
1129             tls::Tls_optimization opt_t)
1130   {
1131 
1132     const uint64_t TILEGX_X_MOVE_R0_R0 = 0x283bf8005107f000llu;
1133     const uint64_t TILEGX_Y_MOVE_R0_R0 = 0xae05f800540bf000llu;
1134     const uint64_t TILEGX_X_LD         = 0x286ae80000000000llu;
1135     const uint64_t TILEGX_X_LD4S       = 0x286a980000000000llu;
1136     const uint64_t TILEGX_X1_FULL_MASK = 0x3fffffff80000000llu;
1137     const uint64_t TILEGX_X0_RRR_MASK  = 0x000000007ffc0000llu;
1138     const uint64_t TILEGX_X1_RRR_MASK  = 0x3ffe000000000000llu;
1139     const uint64_t TILEGX_Y0_RRR_MASK  = 0x00000000780c0000llu;
1140     const uint64_t TILEGX_Y1_RRR_MASK  = 0x3c06000000000000llu;
1141     const uint64_t TILEGX_X0_RRR_SRCB_MASK = 0x000000007ffff000llu;
1142     const uint64_t TILEGX_X1_RRR_SRCB_MASK = 0x3ffff80000000000llu;
1143     const uint64_t TILEGX_Y0_RRR_SRCB_MASK = 0x00000000780ff000llu;
1144     const uint64_t TILEGX_Y1_RRR_SRCB_MASK = 0x3c07f80000000000llu;
1145     const uint64_t TILEGX_X_ADD_R0_R0_TP   = 0x2807a800500f5000llu;
1146     const uint64_t TILEGX_Y_ADD_R0_R0_TP   = 0x9a13a8002c275000llu;
1147     const uint64_t TILEGX_X_ADDX_R0_R0_TP  = 0x2805a800500b5000llu;
1148     const uint64_t TILEGX_Y_ADDX_R0_R0_TP  = 0x9a01a8002c035000llu;
1149 
1150     const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_MASK =
1151       (TILEGX_X0_RRR_MASK | (0x3Fllu << 12));
1152 
1153     const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_MASK =
1154       (TILEGX_X1_RRR_MASK | (0x3Fllu << 43));
1155 
1156     const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_MASK =
1157       (TILEGX_Y0_RRR_MASK | (0x3Fllu << 12));
1158 
1159     const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_MASK =
1160       (TILEGX_Y1_RRR_MASK | (0x3Fllu << 43));
1161 
1162     const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK =
1163       (TILEGX_X0_RRR_SRCB_MASK | (0x3Fllu << 6));
1164 
1165     const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK =
1166       (TILEGX_X1_RRR_SRCB_MASK | (0x3Fllu << 37));
1167 
1168     const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK =
1169       (TILEGX_Y0_RRR_SRCB_MASK | (0x3Fllu << 6));
1170 
1171     const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK =
1172       (TILEGX_Y1_RRR_SRCB_MASK | (0x3Fllu << 37));
1173 
1174     typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1175     Valtype* wv = reinterpret_cast<Valtype*>(view);
1176     Valtype val = elfcpp::Swap<64, big_endian>::readval(wv);
1177     Valtype reloc = 0;
1178 
1179     switch (r_type)
1180     {
1181       case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
1182         if (opt_t == tls::TLSOPT_NONE) {
1183           // GD/IE: 1. copy dest operand into the second source operand
1184           //        2. change the opcode to "add"
1185           reloc = (val & 0x3Fllu) << 12;  // featch the dest reg
1186           reloc |= ((size == 32
1187                      ? TILEGX_X_ADDX_R0_R0_TP
1188                      : TILEGX_X_ADD_R0_R0_TP)
1189                     & TILEGX_X0_RRR_MASK);  // change opcode
1190           val &= ~R_TILEGX_IMM8_X0_TLS_ADD_MASK;
1191         } else if (opt_t == tls::TLSOPT_TO_LE) {
1192           // LE: 1. copy dest operand into the first source operand
1193           //     2. change the opcode to "move"
1194           reloc = (val & 0x3Fllu) << 6;
1195           reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK);
1196           val &= ~R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK;
1197         } else
1198           gold_unreachable();
1199         break;
1200       case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
1201         if (opt_t == tls::TLSOPT_NONE) {
1202           reloc = (val & (0x3Fllu << 31)) << 12;
1203           reloc |= ((size == 32
1204                      ? TILEGX_X_ADDX_R0_R0_TP
1205                      : TILEGX_X_ADD_R0_R0_TP)
1206                     & TILEGX_X1_RRR_MASK);
1207           val &= ~R_TILEGX_IMM8_X1_TLS_ADD_MASK;
1208         } else if (opt_t == tls::TLSOPT_TO_LE) {
1209           reloc = (val & (0x3Fllu << 31)) << 6;
1210           reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK);
1211           val &= ~R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK;
1212         } else
1213           gold_unreachable();
1214         break;
1215       case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
1216         if (opt_t == tls::TLSOPT_NONE) {
1217           reloc = (val & 0x3Fllu) << 12;
1218           reloc |= ((size == 32
1219                      ? TILEGX_Y_ADDX_R0_R0_TP
1220                      : TILEGX_Y_ADD_R0_R0_TP)
1221                     & TILEGX_Y0_RRR_MASK);
1222           val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_MASK;
1223         } else if (opt_t == tls::TLSOPT_TO_LE) {
1224           reloc = (val & 0x3Fllu) << 6;
1225           reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK);
1226           val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK;
1227         } else
1228           gold_unreachable();
1229         break;
1230       case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
1231         if (opt_t == tls::TLSOPT_NONE) {
1232           reloc = (val & (0x3Fllu << 31)) << 12;
1233           reloc |= ((size == 32
1234                      ? TILEGX_Y_ADDX_R0_R0_TP
1235                      : TILEGX_Y_ADD_R0_R0_TP)
1236                     & TILEGX_Y1_RRR_MASK);
1237           val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_MASK;
1238         } else if (opt_t == tls::TLSOPT_TO_LE) {
1239           reloc = (val & (0x3Fllu << 31)) << 6;
1240           reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK);
1241           val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK;
1242         } else
1243           gold_unreachable();
1244         break;
1245       case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
1246         if (opt_t == tls::TLSOPT_NONE) {
1247           // GD see comments for optimize_tls_reloc
1248           reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK;
1249           val &= ~TILEGX_X0_RRR_SRCB_MASK;
1250         } else if (opt_t == tls::TLSOPT_TO_IE
1251                    || opt_t == tls::TLSOPT_TO_LE) {
1252           // IE/LE
1253           reloc = (size == 32
1254                    ? TILEGX_X_ADDX_R0_R0_TP
1255                    : TILEGX_X_ADD_R0_R0_TP)
1256                    & TILEGX_X0_RRR_SRCB_MASK;
1257           val &= ~TILEGX_X0_RRR_SRCB_MASK;
1258         }
1259         break;
1260       case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
1261         if (opt_t == tls::TLSOPT_NONE) {
1262           reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
1263           val &= ~TILEGX_X1_RRR_SRCB_MASK;
1264         } else if (opt_t == tls::TLSOPT_TO_IE
1265                    || opt_t == tls::TLSOPT_TO_LE) {
1266           reloc = (size == 32
1267                    ? TILEGX_X_ADDX_R0_R0_TP
1268                    : TILEGX_X_ADD_R0_R0_TP)
1269                    & TILEGX_X1_RRR_SRCB_MASK;
1270           val &= ~TILEGX_X1_RRR_SRCB_MASK;
1271         }
1272         break;
1273       case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
1274         if (opt_t == tls::TLSOPT_NONE) {
1275           reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK;
1276           val &= ~TILEGX_Y0_RRR_SRCB_MASK;
1277         } else if (opt_t == tls::TLSOPT_TO_IE
1278                    || opt_t == tls::TLSOPT_TO_LE) {
1279           reloc = (size == 32
1280                    ? TILEGX_Y_ADDX_R0_R0_TP
1281                    : TILEGX_Y_ADD_R0_R0_TP)
1282                    & TILEGX_Y0_RRR_SRCB_MASK;
1283           val &= ~TILEGX_Y0_RRR_SRCB_MASK;
1284         }
1285         break;
1286       case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
1287         if (opt_t == tls::TLSOPT_NONE) {
1288           reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK;
1289           val &= ~TILEGX_Y1_RRR_SRCB_MASK;
1290         } else if (opt_t == tls::TLSOPT_TO_IE
1291                    || opt_t == tls::TLSOPT_TO_LE) {
1292           reloc = (size == 32
1293                    ? TILEGX_Y_ADDX_R0_R0_TP
1294                    : TILEGX_Y_ADD_R0_R0_TP)
1295                    & TILEGX_Y1_RRR_SRCB_MASK;
1296           val &= ~TILEGX_Y1_RRR_SRCB_MASK;
1297         }
1298         break;
1299       case elfcpp::R_TILEGX_TLS_IE_LOAD:
1300         if (opt_t == tls::TLSOPT_NONE) {
1301           // IE
1302           reloc = (size == 32
1303                    ? TILEGX_X_LD4S
1304                    : TILEGX_X_LD)
1305                    & TILEGX_X1_RRR_SRCB_MASK;
1306           val &= ~TILEGX_X1_RRR_SRCB_MASK;
1307         } else if (opt_t == tls::TLSOPT_TO_LE) {
1308           // LE
1309           reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
1310           val &= ~TILEGX_X1_RRR_SRCB_MASK;
1311         } else
1312           gold_unreachable();
1313         break;
1314       case elfcpp::R_TILEGX_TLS_GD_CALL:
1315         if (opt_t == tls::TLSOPT_TO_IE) {
1316           // ld/ld4s r0, r0
1317           reloc = (size == 32
1318                   ? TILEGX_X_LD4S
1319                   : TILEGX_X_LD) & TILEGX_X1_FULL_MASK;
1320           val &= ~TILEGX_X1_FULL_MASK;
1321         } else if (opt_t == tls::TLSOPT_TO_LE) {
1322           // move r0, r0
1323           reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_FULL_MASK;
1324           val &= ~TILEGX_X1_FULL_MASK;
1325         } else
1326           // should be handled in ::relocate
1327           gold_unreachable();
1328         break;
1329       default:
1330         gold_unreachable();
1331         break;
1332     }
1333     elfcpp::Swap<64, big_endian>::writeval(wv, val | reloc);
1334   }
1335 };
1336 
1337 template<>
1338 const Tilegx_relocate_functions<64, false>::Tilegx_howto
1339 Tilegx_relocate_functions<64, false>::howto[elfcpp::R_TILEGX_NUM] =
1340 {
1341   {  0,  0, 0,  0, 0}, // R_TILEGX_NONE
1342   {  0,  0, 0, 64, 0}, // R_TILEGX_64
1343   {  0,  0, 0, 32, 0}, // R_TILEGX_32
1344   {  0,  0, 0, 16, 0}, // R_TILEGX_16
1345   {  0,  0, 0,  8, 0}, // R_TILEGX_8
1346   {  0,  0, 1, 64, 0}, // R_TILEGX_64_PCREL
1347   {  0,  0, 1, 32, 0}, // R_TILEGX_32_PCREL
1348   {  0,  0, 1, 16, 0}, // R_TILEGX_16_PCREL
1349   {  0,  0, 1,  8, 0}, // R_TILEGX_8_PCREL
1350   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0
1351   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1
1352   { 32,  0, 0,  0, 0}, // R_TILEGX_HW2
1353   { 48,  0, 0,  0, 0}, // R_TILEGX_HW3
1354   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0_LAST
1355   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1_LAST
1356   { 32,  0, 0,  0, 0}, // R_TILEGX_HW2_LAST
1357   {  0,  0, 0,  0, 0}, // R_TILEGX_COPY
1358   {  0,  0, 0,  8, 0}, // R_TILEGX_GLOB_DAT
1359   {  0,  0, 0,  0, 0}, // R_TILEGX_JMP_SLOT
1360   {  0,  0, 0,  0, 0}, // R_TILEGX_RELATIVE
1361   {  3,  1, 1,  0, 0}, // R_TILEGX_BROFF_X1
1362   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1363   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1364   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X0
1365   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y0
1366   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X1
1367   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y1
1368   {  0,  1, 0,  8, 0}, // R_TILEGX_DEST_IMM8_X1
1369   {  0,  1, 0,  8, 0}, // R_TILEGX_MT_IMM14_X1
1370   {  0,  1, 0,  8, 0}, // R_TILEGX_MF_IMM14_X1
1371   {  0,  1, 0,  8, 0}, // R_TILEGX_MMSTART_X0
1372   {  0,  1, 0,  8, 0}, // R_TILEGX_MMEND_X0
1373   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X0
1374   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X1
1375   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y0
1376   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y1
1377   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1378   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1379   { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1380   { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1381   { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1382   { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1383   { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1384   { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1385   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1386   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1387   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1388   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1389   { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1390   { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1391   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1392   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1393   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1394   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1395   { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1396   { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1397   { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1398   { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1399   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1400   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1401   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1402   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1403   { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1404   { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1405   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1406   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1407   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1408   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1409   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1410   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1411   { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1412   { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1413   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1414   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1415   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1416   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1417   { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1418   { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1419   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1420   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1421   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1422   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1423   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1424   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1425   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1426   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1427   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1428   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1429   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1430   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1431   {  0,  0, 0,  0, 0}, // R_TILEGX_IRELATIVE
1432   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1433   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1434   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1435   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1436   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1437   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1438   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1439   { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1440   { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1441   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1442   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1443   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1444   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1445   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1446   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1447   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD64
1448   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF64
1449   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF64
1450   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD32
1451   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF32
1452   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF32
1453   {  3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1454   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1455   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1456   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1457   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1458   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_IE_LOAD
1459   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1460   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1461   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1462   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1463   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTINHERIT
1464   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTENTRY
1465 };
1466 
1467 template<>
1468 const Tilegx_relocate_functions<32, false>::Tilegx_howto
1469 Tilegx_relocate_functions<32, false>::howto[elfcpp::R_TILEGX_NUM] =
1470 {
1471   {  0,  0, 0,  0, 0}, // R_TILEGX_NONE
1472   {  0,  0, 0, 64, 0}, // R_TILEGX_64
1473   {  0,  0, 0, 32, 0}, // R_TILEGX_32
1474   {  0,  0, 0, 16, 0}, // R_TILEGX_16
1475   {  0,  0, 0,  8, 0}, // R_TILEGX_8
1476   {  0,  0, 1, 64, 0}, // R_TILEGX_64_PCREL
1477   {  0,  0, 1, 32, 0}, // R_TILEGX_32_PCREL
1478   {  0,  0, 1, 16, 0}, // R_TILEGX_16_PCREL
1479   {  0,  0, 1,  8, 0}, // R_TILEGX_8_PCREL
1480   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0
1481   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1
1482   { 31,  0, 0,  0, 0}, // R_TILEGX_HW2
1483   { 31,  0, 0,  0, 0}, // R_TILEGX_HW3
1484   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0_LAST
1485   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1_LAST
1486   { 31,  0, 0,  0, 0}, // R_TILEGX_HW2_LAST
1487   {  0,  0, 0,  0, 0}, // R_TILEGX_COPY
1488   {  0,  0, 0,  8, 0}, // R_TILEGX_GLOB_DAT
1489   {  0,  0, 0,  0, 0}, // R_TILEGX_JMP_SLOT
1490   {  0,  0, 0,  0, 0}, // R_TILEGX_RELATIVE
1491   {  3,  1, 1,  0, 0}, // R_TILEGX_BROFF_X1
1492   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1493   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1494   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X0
1495   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y0
1496   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X1
1497   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y1
1498   {  0,  1, 0,  8, 0}, // R_TILEGX_DEST_IMM8_X1
1499   {  0,  1, 0,  8, 0}, // R_TILEGX_MT_IMM14_X1
1500   {  0,  1, 0,  8, 0}, // R_TILEGX_MF_IMM14_X1
1501   {  0,  1, 0,  8, 0}, // R_TILEGX_MMSTART_X0
1502   {  0,  1, 0,  8, 0}, // R_TILEGX_MMEND_X0
1503   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X0
1504   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X1
1505   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y0
1506   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y1
1507   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1508   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1509   { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1510   { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1511   { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1512   { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1513   { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1514   { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1515   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1516   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1517   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1518   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1519   { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1520   { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1521   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1522   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1523   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1524   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1525   { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1526   { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1527   { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1528   { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1529   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1530   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1531   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1532   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1533   { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1534   { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1535   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1536   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1537   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1538   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1539   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1540   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1541   { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1542   { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1543   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1544   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1545   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1546   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1547   { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1548   { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1549   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1550   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1551   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1552   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1553   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1554   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1555   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1556   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1557   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1558   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1559   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1560   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1561   {  0,  0, 0,  0, 0}, // R_TILEGX_IRELATIVE
1562   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1563   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1564   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1565   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1566   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1567   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1568   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1569   { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1570   { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1571   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1572   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1573   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1574   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1575   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1576   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1577   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD64
1578   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF64
1579   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF64
1580   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD32
1581   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF32
1582   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF32
1583   {  3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1584   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1585   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1586   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1587   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1588   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_IE_LOAD
1589   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1590   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1591   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1592   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1593   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTINHERIT
1594   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTENTRY
1595 };
1596 
1597 template<>
1598 const Tilegx_relocate_functions<64, true>::Tilegx_howto
1599 Tilegx_relocate_functions<64, true>::howto[elfcpp::R_TILEGX_NUM] =
1600 {
1601   {  0,  0, 0,  0, 0}, // R_TILEGX_NONE
1602   {  0,  0, 0, 64, 0}, // R_TILEGX_64
1603   {  0,  0, 0, 32, 0}, // R_TILEGX_32
1604   {  0,  0, 0, 16, 0}, // R_TILEGX_16
1605   {  0,  0, 0,  8, 0}, // R_TILEGX_8
1606   {  0,  0, 1, 64, 0}, // R_TILEGX_64_PCREL
1607   {  0,  0, 1, 32, 0}, // R_TILEGX_32_PCREL
1608   {  0,  0, 1, 16, 0}, // R_TILEGX_16_PCREL
1609   {  0,  0, 1,  8, 0}, // R_TILEGX_8_PCREL
1610   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0
1611   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1
1612   { 32,  0, 0,  0, 0}, // R_TILEGX_HW2
1613   { 48,  0, 0,  0, 0}, // R_TILEGX_HW3
1614   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0_LAST
1615   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1_LAST
1616   { 32,  0, 0,  0, 0}, // R_TILEGX_HW2_LAST
1617   {  0,  0, 0,  0, 0}, // R_TILEGX_COPY
1618   {  0,  0, 0,  8, 0}, // R_TILEGX_GLOB_DAT
1619   {  0,  0, 0,  0, 0}, // R_TILEGX_JMP_SLOT
1620   {  0,  0, 0,  0, 0}, // R_TILEGX_RELATIVE
1621   {  3,  1, 1,  0, 0}, // R_TILEGX_BROFF_X1
1622   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1623   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1624   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X0
1625   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y0
1626   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X1
1627   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y1
1628   {  0,  1, 0,  8, 0}, // R_TILEGX_DEST_IMM8_X1
1629   {  0,  1, 0,  8, 0}, // R_TILEGX_MT_IMM14_X1
1630   {  0,  1, 0,  8, 0}, // R_TILEGX_MF_IMM14_X1
1631   {  0,  1, 0,  8, 0}, // R_TILEGX_MMSTART_X0
1632   {  0,  1, 0,  8, 0}, // R_TILEGX_MMEND_X0
1633   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X0
1634   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X1
1635   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y0
1636   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y1
1637   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1638   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1639   { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1640   { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1641   { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1642   { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1643   { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1644   { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1645   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1646   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1647   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1648   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1649   { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1650   { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1651   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1652   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1653   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1654   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1655   { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1656   { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1657   { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1658   { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1659   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1660   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1661   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1662   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1663   { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1664   { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1665   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1666   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1667   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1668   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1669   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1670   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1671   { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1672   { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1673   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1674   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1675   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1676   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1677   { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1678   { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1679   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1680   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1681   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1682   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1683   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1684   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1685   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1686   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1687   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1688   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1689   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1690   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1691   {  0,  0, 0,  0, 0}, // R_TILEGX_IRELATIVE
1692   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1693   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1694   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1695   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1696   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1697   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1698   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1699   { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1700   { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1701   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1702   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1703   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1704   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1705   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1706   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1707   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD64
1708   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF64
1709   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF64
1710   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD32
1711   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF32
1712   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF32
1713   {  3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1714   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1715   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1716   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1717   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1718   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_IE_LOAD
1719   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1720   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1721   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1722   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1723   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTINHERIT
1724   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTENTRY
1725 };
1726 
1727 template<>
1728 const Tilegx_relocate_functions<32, true>::Tilegx_howto
1729 Tilegx_relocate_functions<32, true>::howto[elfcpp::R_TILEGX_NUM] =
1730 {
1731   {  0,  0, 0,  0, 0}, // R_TILEGX_NONE
1732   {  0,  0, 0, 64, 0}, // R_TILEGX_64
1733   {  0,  0, 0, 32, 0}, // R_TILEGX_32
1734   {  0,  0, 0, 16, 0}, // R_TILEGX_16
1735   {  0,  0, 0,  8, 0}, // R_TILEGX_8
1736   {  0,  0, 1, 64, 0}, // R_TILEGX_64_PCREL
1737   {  0,  0, 1, 32, 0}, // R_TILEGX_32_PCREL
1738   {  0,  0, 1, 16, 0}, // R_TILEGX_16_PCREL
1739   {  0,  0, 1,  8, 0}, // R_TILEGX_8_PCREL
1740   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0
1741   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1
1742   { 31,  0, 0,  0, 0}, // R_TILEGX_HW2
1743   { 31,  0, 0,  0, 0}, // R_TILEGX_HW3
1744   {  0,  0, 0,  0, 0}, // R_TILEGX_HW0_LAST
1745   { 16,  0, 0,  0, 0}, // R_TILEGX_HW1_LAST
1746   { 31,  0, 0,  0, 0}, // R_TILEGX_HW2_LAST
1747   {  0,  0, 0,  0, 0}, // R_TILEGX_COPY
1748   {  0,  0, 0,  8, 0}, // R_TILEGX_GLOB_DAT
1749   {  0,  0, 0,  0, 0}, // R_TILEGX_JMP_SLOT
1750   {  0,  0, 0,  0, 0}, // R_TILEGX_RELATIVE
1751   {  3,  1, 1,  0, 0}, // R_TILEGX_BROFF_X1
1752   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1753   {  3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1754   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X0
1755   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y0
1756   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_X1
1757   {  0,  1, 0,  8, 0}, // R_TILEGX_IMM8_Y1
1758   {  0,  1, 0,  8, 0}, // R_TILEGX_DEST_IMM8_X1
1759   {  0,  1, 0,  8, 0}, // R_TILEGX_MT_IMM14_X1
1760   {  0,  1, 0,  8, 0}, // R_TILEGX_MF_IMM14_X1
1761   {  0,  1, 0,  8, 0}, // R_TILEGX_MMSTART_X0
1762   {  0,  1, 0,  8, 0}, // R_TILEGX_MMEND_X0
1763   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X0
1764   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_X1
1765   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y0
1766   {  0,  1, 0,  8, 0}, // R_TILEGX_SHAMT_Y1
1767   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1768   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1769   { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1770   { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1771   { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1772   { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1773   { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1774   { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1775   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1776   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1777   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1778   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1779   { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1780   { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1781   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1782   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1783   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1784   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1785   { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1786   { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1787   { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1788   { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1789   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1790   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1791   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1792   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1793   { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1794   { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1795   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1796   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1797   {  0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1798   {  0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1799   { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1800   { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1801   { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1802   { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1803   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1804   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1805   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1806   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1807   { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1808   { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1809   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1810   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1811   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1812   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1813   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1814   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1815   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1816   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1817   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1818   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1819   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1820   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1821   {  0,  0, 0,  0, 0}, // R_TILEGX_IRELATIVE
1822   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1823   {  0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1824   {  0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1825   {  0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1826   {  0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1827   { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1828   { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1829   { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1830   { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1831   {  0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1832   {  0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1833   { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1834   { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1835   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1836   {  0,  0, 0,  0, 0}, // R_TILEGX_INVALID
1837   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD64
1838   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF64
1839   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF64
1840   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPMOD32
1841   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_DTPOFF32
1842   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_TPOFF32
1843   {  3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1844   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1845   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1846   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1847   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1848   {  0,  0, 0,  0, 0}, // R_TILEGX_TLS_IE_LOAD
1849   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1850   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1851   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1852   {  0,  0, 0,  0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1853   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTINHERIT
1854   {  0,  0, 0,  0, 0}, // R_TILEGX_GNU_VTENTRY
1855 };
1856 
1857 // Get the GOT section, creating it if necessary.
1858 
1859 template<int size, bool big_endian>
1860 Output_data_got<size, big_endian>*
got_section(Symbol_table * symtab,Layout * layout)1861 Target_tilegx<size, big_endian>::got_section(Symbol_table* symtab,
1862                                              Layout* layout)
1863 {
1864   if (this->got_ == NULL)
1865     {
1866       gold_assert(symtab != NULL && layout != NULL);
1867 
1868       // When using -z now, we can treat .got.plt as a relro section.
1869       // Without -z now, it is modified after program startup by lazy
1870       // PLT relocations.
1871       bool is_got_plt_relro = parameters->options().now();
1872       Output_section_order got_order = (is_got_plt_relro
1873                                         ? ORDER_RELRO
1874                                         : ORDER_RELRO_LAST);
1875       Output_section_order got_plt_order = (is_got_plt_relro
1876                                             ? ORDER_RELRO
1877                                             : ORDER_NON_RELRO_FIRST);
1878 
1879       this->got_ = new Output_data_got<size, big_endian>();
1880 
1881       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1882                                       (elfcpp::SHF_ALLOC
1883                                        | elfcpp::SHF_WRITE),
1884                                       this->got_, got_order, true);
1885 
1886       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1887       this->global_offset_table_ =
1888         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1889                                       Symbol_table::PREDEFINED,
1890                                       this->got_,
1891                                       0, 0, elfcpp::STT_OBJECT,
1892                                       elfcpp::STB_LOCAL,
1893                                       elfcpp::STV_HIDDEN, 0,
1894                                       false, false);
1895 
1896       if (parameters->options().shared()) {
1897         // we need to keep the address of .dynamic section in the
1898         // first got entry for .so
1899         this->tilegx_dynamic_ =
1900           symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
1901                                         Symbol_table::PREDEFINED,
1902                                         layout->dynamic_section(),
1903                                         0, 0, elfcpp::STT_OBJECT,
1904                                         elfcpp::STB_LOCAL,
1905                                         elfcpp::STV_HIDDEN, 0,
1906                                         false, false);
1907 
1908         this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
1909       } else
1910         // for executable, just set the first entry to zero.
1911         this->got_->set_current_data_size(size / 8);
1912 
1913       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
1914       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1915                                       (elfcpp::SHF_ALLOC
1916                                        | elfcpp::SHF_WRITE),
1917                                       this->got_plt_, got_plt_order,
1918                                       is_got_plt_relro);
1919 
1920       // The first two entries are reserved.
1921       this->got_plt_->set_current_data_size
1922              (TILEGX_GOTPLT_RESERVE_COUNT * (size / 8));
1923 
1924       if (!is_got_plt_relro)
1925         {
1926           // Those bytes can go into the relro segment.
1927           layout->increase_relro(size / 8);
1928         }
1929 
1930 
1931       // If there are any IRELATIVE relocations, they get GOT entries
1932       // in .got.plt after the jump slot entries.
1933       this->got_irelative_
1934          = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1935       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1936                                       (elfcpp::SHF_ALLOC
1937                                        | elfcpp::SHF_WRITE),
1938                                       this->got_irelative_,
1939                                       got_plt_order, is_got_plt_relro);
1940     }
1941 
1942   return this->got_;
1943 }
1944 
1945 // Get the dynamic reloc section, creating it if necessary.
1946 
1947 template<int size, bool big_endian>
1948 typename Target_tilegx<size, big_endian>::Reloc_section*
rela_dyn_section(Layout * layout)1949 Target_tilegx<size, big_endian>::rela_dyn_section(Layout* layout)
1950 {
1951   if (this->rela_dyn_ == NULL)
1952     {
1953       gold_assert(layout != NULL);
1954       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1955       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1956                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
1957                                       ORDER_DYNAMIC_RELOCS, false);
1958     }
1959   return this->rela_dyn_;
1960 }
1961 
1962 // Get the section to use for IRELATIVE relocs, creating it if
1963 // necessary.  These go in .rela.dyn, but only after all other dynamic
1964 // relocations.  They need to follow the other dynamic relocations so
1965 // that they can refer to global variables initialized by those
1966 // relocs.
1967 
1968 template<int size, bool big_endian>
1969 typename Target_tilegx<size, big_endian>::Reloc_section*
rela_irelative_section(Layout * layout)1970 Target_tilegx<size, big_endian>::rela_irelative_section(Layout* layout)
1971 {
1972   if (this->rela_irelative_ == NULL)
1973     {
1974       // Make sure we have already created the dynamic reloc section.
1975       this->rela_dyn_section(layout);
1976       this->rela_irelative_ = new Reloc_section(false);
1977       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1978                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
1979                                       ORDER_DYNAMIC_RELOCS, false);
1980       gold_assert(this->rela_dyn_->output_section()
1981                   == this->rela_irelative_->output_section());
1982     }
1983   return this->rela_irelative_;
1984 }
1985 
1986 // Initialize the PLT section.
1987 
1988 template<int size, bool big_endian>
1989 void
init(Layout * layout)1990 Output_data_plt_tilegx<size, big_endian>::init(Layout* layout)
1991 {
1992   this->rel_ = new Reloc_section(false);
1993   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1994                                   elfcpp::SHF_ALLOC, this->rel_,
1995                                   ORDER_DYNAMIC_PLT_RELOCS, false);
1996 }
1997 
1998 template<int size, bool big_endian>
1999 void
do_adjust_output_section(Output_section * os)2000 Output_data_plt_tilegx<size, big_endian>::do_adjust_output_section(
2001   Output_section* os)
2002 {
2003   os->set_entsize(this->get_plt_entry_size());
2004 }
2005 
2006 // Add an entry to the PLT.
2007 
2008 template<int size, bool big_endian>
2009 void
add_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)2010 Output_data_plt_tilegx<size, big_endian>::add_entry(Symbol_table* symtab,
2011   Layout* layout, Symbol* gsym)
2012 {
2013   gold_assert(!gsym->has_plt_offset());
2014 
2015   unsigned int plt_index;
2016   off_t plt_offset;
2017   section_offset_type got_offset;
2018 
2019   unsigned int* pcount;
2020   unsigned int reserved;
2021   Output_data_space* got;
2022   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2023       && gsym->can_use_relative_reloc(false))
2024     {
2025       pcount = &this->irelative_count_;
2026       reserved = 0;
2027       got = this->got_irelative_;
2028     }
2029   else
2030     {
2031       pcount = &this->count_;
2032       reserved = TILEGX_GOTPLT_RESERVE_COUNT;
2033       got = this->got_plt_;
2034     }
2035 
2036   if (!this->is_data_size_valid())
2037     {
2038       plt_index = *pcount;
2039 
2040       // TILEGX .plt section layout
2041       //
2042       //  ----
2043       //   plt_header
2044       //  ----
2045       //   plt stub
2046       //  ----
2047       //   ...
2048       //  ----
2049       //
2050       // TILEGX .got.plt section layout
2051       //
2052       //  ----
2053       //  reserv1
2054       //  ----
2055       //  reserv2
2056       //  ----
2057       //   entries for normal function
2058       //  ----
2059       //   ...
2060       //  ----
2061       //   entries for ifunc
2062       //  ----
2063       //   ...
2064       //  ----
2065       if (got == this->got_irelative_)
2066         plt_offset = plt_index * this->get_plt_entry_size();
2067       else
2068         plt_offset = (plt_index + 1) * this->get_plt_entry_size();
2069 
2070       ++*pcount;
2071 
2072       got_offset = (plt_index + reserved) * (size / 8);
2073       gold_assert(got_offset == got->current_data_size());
2074 
2075       // Every PLT entry needs a GOT entry which points back to the PLT
2076       // entry (this will be changed by the dynamic linker, normally
2077       // lazily when the function is called).
2078       got->set_current_data_size(got_offset + size / 8);
2079     }
2080   else
2081     {
2082       // FIXME: This is probably not correct for IRELATIVE relocs.
2083 
2084       // For incremental updates, find an available slot.
2085       plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
2086                                              this->get_plt_entry_size(), 0);
2087       if (plt_offset == -1)
2088         gold_fallback(_("out of patch space (PLT);"
2089                         " relink with --incremental-full"));
2090 
2091       // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
2092       // can be calculated from the PLT index, adjusting for the three
2093       // reserved entries at the beginning of the GOT.
2094       plt_index = plt_offset / this->get_plt_entry_size() - 1;
2095       got_offset = (plt_index + reserved) * (size / 8);
2096     }
2097 
2098   gsym->set_plt_offset(plt_offset);
2099 
2100   // Every PLT entry needs a reloc.
2101   this->add_relocation(symtab, layout, gsym, got_offset);
2102 
2103   // Note that we don't need to save the symbol.  The contents of the
2104   // PLT are independent of which symbols are used.  The symbols only
2105   // appear in the relocations.
2106 }
2107 
2108 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
2109 // the PLT offset.
2110 
2111 template<int size, bool big_endian>
2112 unsigned int
add_local_ifunc_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)2113 Output_data_plt_tilegx<size, big_endian>::add_local_ifunc_entry(
2114     Symbol_table* symtab,
2115     Layout* layout,
2116     Sized_relobj_file<size, big_endian>* relobj,
2117     unsigned int local_sym_index)
2118 {
2119   unsigned int plt_offset =
2120     this->irelative_count_ * this->get_plt_entry_size();
2121   ++this->irelative_count_;
2122 
2123   section_offset_type got_offset = this->got_irelative_->current_data_size();
2124 
2125   // Every PLT entry needs a GOT entry which points back to the PLT
2126   // entry.
2127   this->got_irelative_->set_current_data_size(got_offset + size / 8);
2128 
2129   // Every PLT entry needs a reloc.
2130   Reloc_section* rela = this->rela_irelative(symtab, layout);
2131   rela->add_symbolless_local_addend(relobj, local_sym_index,
2132                                     elfcpp::R_TILEGX_IRELATIVE,
2133                                     this->got_irelative_, got_offset, 0);
2134 
2135   return plt_offset;
2136 }
2137 
2138 // Add the relocation for a PLT entry.
2139 
2140 template<int size, bool big_endian>
2141 void
add_relocation(Symbol_table * symtab,Layout * layout,Symbol * gsym,unsigned int got_offset)2142 Output_data_plt_tilegx<size, big_endian>::add_relocation(Symbol_table* symtab,
2143                                              Layout* layout,
2144                                              Symbol* gsym,
2145                                              unsigned int got_offset)
2146 {
2147   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2148       && gsym->can_use_relative_reloc(false))
2149     {
2150       Reloc_section* rela = this->rela_irelative(symtab, layout);
2151       rela->add_symbolless_global_addend(gsym, elfcpp::R_TILEGX_IRELATIVE,
2152                                          this->got_irelative_, got_offset, 0);
2153     }
2154   else
2155     {
2156       gsym->set_needs_dynsym_entry();
2157       this->rel_->add_global(gsym, elfcpp::R_TILEGX_JMP_SLOT, this->got_plt_,
2158                              got_offset, 0);
2159     }
2160 }
2161 
2162 // Return where the IRELATIVE relocations should go in the PLT.  These
2163 // follow the JUMP_SLOT and the TLSDESC relocations.
2164 
2165 template<int size, bool big_endian>
2166 typename Output_data_plt_tilegx<size, big_endian>::Reloc_section*
rela_irelative(Symbol_table * symtab,Layout * layout)2167 Output_data_plt_tilegx<size, big_endian>::rela_irelative(Symbol_table* symtab,
2168                                                          Layout* layout)
2169 {
2170   if (this->irelative_rel_ == NULL)
2171     {
2172       // case we see any later on.
2173       this->irelative_rel_ = new Reloc_section(false);
2174       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2175                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
2176                                       ORDER_DYNAMIC_PLT_RELOCS, false);
2177       gold_assert(this->irelative_rel_->output_section()
2178                   == this->rel_->output_section());
2179 
2180       if (parameters->doing_static_link())
2181         {
2182           // A statically linked executable will only have a .rela.plt
2183           // section to hold R_TILEGX_IRELATIVE relocs for
2184           // STT_GNU_IFUNC symbols.  The library will use these
2185           // symbols to locate the IRELATIVE relocs at program startup
2186           // time.
2187           symtab->define_in_output_data("__rela_iplt_start", NULL,
2188                                         Symbol_table::PREDEFINED,
2189                                         this->irelative_rel_, 0, 0,
2190                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2191                                         elfcpp::STV_HIDDEN, 0, false, true);
2192           symtab->define_in_output_data("__rela_iplt_end", NULL,
2193                                         Symbol_table::PREDEFINED,
2194                                         this->irelative_rel_, 0, 0,
2195                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2196                                         elfcpp::STV_HIDDEN, 0, true, true);
2197         }
2198     }
2199   return this->irelative_rel_;
2200 }
2201 
2202 // Return the PLT address to use for a global symbol.
2203 
2204 template<int size, bool big_endian>
2205 uint64_t
address_for_global(const Symbol * gsym)2206 Output_data_plt_tilegx<size, big_endian>::address_for_global(
2207   const Symbol* gsym)
2208 {
2209   uint64_t offset = 0;
2210   if (gsym->type() == elfcpp::STT_GNU_IFUNC
2211       && gsym->can_use_relative_reloc(false))
2212     offset = (this->count_ + 1) * this->get_plt_entry_size();
2213   return this->address() + offset + gsym->plt_offset();
2214 }
2215 
2216 // Return the PLT address to use for a local symbol.  These are always
2217 // IRELATIVE relocs.
2218 
2219 template<int size, bool big_endian>
2220 uint64_t
address_for_local(const Relobj * object,unsigned int r_sym)2221 Output_data_plt_tilegx<size, big_endian>::address_for_local(
2222     const Relobj* object,
2223     unsigned int r_sym)
2224 {
2225   return (this->address()
2226 	  + (this->count_ + 1) * this->get_plt_entry_size()
2227 	  + object->local_plt_offset(r_sym));
2228 }
2229 
2230 // Set the final size.
2231 template<int size, bool big_endian>
2232 void
set_final_data_size()2233 Output_data_plt_tilegx<size, big_endian>::set_final_data_size()
2234 {
2235   unsigned int count = this->count_ + this->irelative_count_;
2236   this->set_data_size((count + 1) * this->get_plt_entry_size());
2237 }
2238 
2239 // The first entry in the PLT for an executable.
2240 template<>
2241 const unsigned char
2242 Output_data_plt_tilegx<64, false>::first_plt_entry[plt_entry_size] =
2243 {
2244   0x00, 0x30, 0x48, 0x51,
2245   0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
2246   0x00, 0x30, 0xbc, 0x35,
2247   0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
2248   0xff, 0xaf, 0x30, 0x40,
2249   0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2250   // padding
2251   0x00, 0x00, 0x00, 0x00,
2252   0x00, 0x00, 0x00, 0x00,
2253   0x00, 0x00, 0x00, 0x00,
2254   0x00, 0x00, 0x00, 0x00
2255 };
2256 
2257 template<>
2258 const unsigned char
2259 Output_data_plt_tilegx<32, false>::first_plt_entry[plt_entry_size] =
2260 {
2261   0x00, 0x30, 0x48, 0x51,
2262   0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
2263   0x00, 0x30, 0xbc, 0x35,
2264   0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
2265   0xff, 0xaf, 0x30, 0x40,
2266   0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2267   // padding
2268   0x00, 0x00, 0x00, 0x00,
2269   0x00, 0x00, 0x00, 0x00,
2270   0x00, 0x00, 0x00, 0x00,
2271   0x00, 0x00, 0x00, 0x00
2272 };
2273 
2274 template<>
2275 const unsigned char
2276 Output_data_plt_tilegx<64, true>::first_plt_entry[plt_entry_size] =
2277 {
2278   0x00, 0x30, 0x48, 0x51,
2279   0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
2280   0x00, 0x30, 0xbc, 0x35,
2281   0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
2282   0xff, 0xaf, 0x30, 0x40,
2283   0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2284   // padding
2285   0x00, 0x00, 0x00, 0x00,
2286   0x00, 0x00, 0x00, 0x00,
2287   0x00, 0x00, 0x00, 0x00,
2288   0x00, 0x00, 0x00, 0x00
2289 };
2290 
2291 template<>
2292 const unsigned char
2293 Output_data_plt_tilegx<32, true>::first_plt_entry[plt_entry_size] =
2294 {
2295   0x00, 0x30, 0x48, 0x51,
2296   0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
2297   0x00, 0x30, 0xbc, 0x35,
2298   0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
2299   0xff, 0xaf, 0x30, 0x40,
2300   0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2301   // padding
2302   0x00, 0x00, 0x00, 0x00,
2303   0x00, 0x00, 0x00, 0x00,
2304   0x00, 0x00, 0x00, 0x00,
2305   0x00, 0x00, 0x00, 0x00
2306 };
2307 
2308 template<int size, bool big_endian>
2309 void
fill_first_plt_entry(unsigned char * pov)2310 Output_data_plt_tilegx<size, big_endian>::fill_first_plt_entry(
2311   unsigned char* pov)
2312 {
2313   memcpy(pov, first_plt_entry, plt_entry_size);
2314 }
2315 
2316 // Subsequent entries in the PLT for an executable.
2317 
2318 template<>
2319 const unsigned char
2320 Output_data_plt_tilegx<64, false>::plt_entry[plt_entry_size] =
2321 {
2322   0xdc, 0x0f, 0x00, 0x10,
2323   0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2324   0xdb, 0x0f, 0x00, 0x10,
2325   0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2326   0x9c, 0xc6, 0x0d, 0xd0,
2327   0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2328   0x9b, 0xb6, 0xc5, 0xad,
2329   0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
2330   0xdd, 0x0f, 0x00, 0x70,
2331   0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2332 
2333 };
2334 
2335 template<>
2336 const unsigned char
2337 Output_data_plt_tilegx<32, false>::plt_entry[plt_entry_size] =
2338 {
2339   0xdc, 0x0f, 0x00, 0x10,
2340   0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2341   0xdb, 0x0f, 0x00, 0x10,
2342   0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2343   0x9c, 0xc6, 0x0d, 0xd0,
2344   0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2345   0x9b, 0xb6, 0xc5, 0xad,
2346   0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
2347   0xdd, 0x0f, 0x00, 0x70,
2348   0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2349 };
2350 
2351 template<>
2352 const unsigned char
2353 Output_data_plt_tilegx<64, true>::plt_entry[plt_entry_size] =
2354 {
2355   0xdc, 0x0f, 0x00, 0x10,
2356   0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2357   0xdb, 0x0f, 0x00, 0x10,
2358   0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2359   0x9c, 0xc6, 0x0d, 0xd0,
2360   0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2361   0x9b, 0xb6, 0xc5, 0xad,
2362   0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
2363   0xdd, 0x0f, 0x00, 0x70,
2364   0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2365 
2366 };
2367 
2368 template<>
2369 const unsigned char
2370 Output_data_plt_tilegx<32, true>::plt_entry[plt_entry_size] =
2371 {
2372   0xdc, 0x0f, 0x00, 0x10,
2373   0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2374   0xdb, 0x0f, 0x00, 0x10,
2375   0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2376   0x9c, 0xc6, 0x0d, 0xd0,
2377   0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2378   0x9b, 0xb6, 0xc5, 0xad,
2379   0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
2380   0xdd, 0x0f, 0x00, 0x70,
2381   0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2382 };
2383 
2384 template<int size, bool big_endian>
2385 void
fill_plt_entry(unsigned char * pov,typename elfcpp::Elf_types<size>::Elf_Addr gotplt_base,unsigned int got_offset,typename elfcpp::Elf_types<size>::Elf_Addr plt_base,unsigned int plt_offset,unsigned int plt_index)2386 Output_data_plt_tilegx<size, big_endian>::fill_plt_entry(
2387                  unsigned char* pov,
2388                  typename elfcpp::Elf_types<size>::Elf_Addr gotplt_base,
2389                  unsigned int got_offset,
2390                  typename elfcpp::Elf_types<size>::Elf_Addr plt_base,
2391                  unsigned int plt_offset, unsigned int plt_index)
2392 {
2393 
2394   const uint32_t TILEGX_IMM16_MASK = 0xFFFF;
2395   const uint32_t TILEGX_X0_IMM16_BITOFF = 12;
2396   const uint32_t TILEGX_X1_IMM16_BITOFF = 43;
2397 
2398   typedef typename elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::Valtype
2399     Valtype;
2400   memcpy(pov, plt_entry, plt_entry_size);
2401 
2402   // first bundle in plt stub - x0
2403   Valtype* wv = reinterpret_cast<Valtype*>(pov);
2404   Valtype val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2405   Valtype reloc =
2406     ((gotplt_base + got_offset) - (plt_base + plt_offset + 8)) >> 16;
2407   elfcpp::Elf_Xword dst_mask =
2408     (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2409   val &= ~dst_mask;
2410   reloc &= TILEGX_IMM16_MASK;
2411   elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2412     val | (reloc<<TILEGX_X0_IMM16_BITOFF));
2413 
2414   // second bundle in plt stub - x1
2415   wv = reinterpret_cast<Valtype*>(pov + 8);
2416   val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2417   reloc = (gotplt_base + got_offset) - (plt_base + plt_offset + 8);
2418   dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
2419   val &= ~dst_mask;
2420   reloc &= TILEGX_IMM16_MASK;
2421   elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2422     val | (reloc<<TILEGX_X1_IMM16_BITOFF));
2423 
2424   // second bundle in plt stub - x0
2425   wv = reinterpret_cast<Valtype*>(pov + 8);
2426   val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2427   reloc = (gotplt_base - (plt_base + plt_offset + 8)) >> 16;
2428   dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2429   val &= ~dst_mask;
2430   reloc &= TILEGX_IMM16_MASK;
2431   elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2432     val | (reloc<<TILEGX_X0_IMM16_BITOFF));
2433 
2434   // third bundle in plt stub - x1
2435   wv = reinterpret_cast<Valtype*>(pov + 16);
2436   val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2437   reloc = gotplt_base - (plt_base + plt_offset + 8);
2438   dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
2439   val &= ~dst_mask;
2440   reloc &= TILEGX_IMM16_MASK;
2441   elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2442     val | (reloc<<TILEGX_X1_IMM16_BITOFF));
2443 
2444   // fifth bundle in plt stub - carry plt_index x0
2445   wv = reinterpret_cast<Valtype*>(pov + 32);
2446   val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2447   dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2448   val &= ~dst_mask;
2449   plt_index &= TILEGX_IMM16_MASK;
2450   elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2451     val | (plt_index<<TILEGX_X0_IMM16_BITOFF));
2452 
2453 }
2454 
2455 // Write out the PLT.  This uses the hand-coded instructions above.
2456 
2457 template<int size, bool big_endian>
2458 void
do_write(Output_file * of)2459 Output_data_plt_tilegx<size, big_endian>::do_write(Output_file* of)
2460 {
2461   const off_t offset = this->offset();
2462   const section_size_type oview_size =
2463     convert_to_section_size_type(this->data_size());
2464   unsigned char* const oview = of->get_output_view(offset, oview_size);
2465 
2466   const off_t got_file_offset = this->got_plt_->offset();
2467   gold_assert(parameters->incremental_update()
2468               || (got_file_offset + this->got_plt_->data_size()
2469                   == this->got_irelative_->offset()));
2470   const section_size_type got_size =
2471     convert_to_section_size_type(this->got_plt_->data_size()
2472                                  + this->got_irelative_->data_size());
2473   unsigned char* const got_view = of->get_output_view(got_file_offset,
2474                                                       got_size);
2475 
2476   unsigned char* pov = oview;
2477 
2478   // The base address of the .plt section.
2479   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2480   typename elfcpp::Elf_types<size>::Elf_Addr got_address =
2481     this->got_plt_->address();
2482 
2483   this->fill_first_plt_entry(pov);
2484   pov += this->get_plt_entry_size();
2485 
2486   unsigned char* got_pov = got_view;
2487 
2488   // first entry of .got.plt are set to -1
2489   // second entry of .got.plt are set to 0
2490   memset(got_pov, 0xff, size / 8);
2491   got_pov += size / 8;
2492   memset(got_pov, 0x0, size / 8);
2493   got_pov += size / 8;
2494 
2495   unsigned int plt_offset = this->get_plt_entry_size();
2496   const unsigned int count = this->count_ + this->irelative_count_;
2497   unsigned int got_offset = (size / 8) * TILEGX_GOTPLT_RESERVE_COUNT;
2498   for (unsigned int plt_index = 0;
2499        plt_index < count;
2500        ++plt_index,
2501          pov += this->get_plt_entry_size(),
2502          got_pov += size / 8,
2503          plt_offset += this->get_plt_entry_size(),
2504          got_offset += size / 8)
2505     {
2506       // Set and adjust the PLT entry itself.
2507       this->fill_plt_entry(pov, got_address, got_offset,
2508                            plt_address, plt_offset, plt_index);
2509 
2510       // Initialize entry in .got.plt to plt start address
2511       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
2512     }
2513 
2514   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2515   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2516 
2517   of->write_output_view(offset, oview_size, oview);
2518   of->write_output_view(got_file_offset, got_size, got_view);
2519 }
2520 
2521 // Create the PLT section.
2522 
2523 template<int size, bool big_endian>
2524 void
make_plt_section(Symbol_table * symtab,Layout * layout)2525 Target_tilegx<size, big_endian>::make_plt_section(Symbol_table* symtab,
2526                                                   Layout* layout)
2527 {
2528   if (this->plt_ == NULL)
2529     {
2530       // Create the GOT sections first.
2531       this->got_section(symtab, layout);
2532 
2533       // Ensure that .rela.dyn always appears before .rela.plt,
2534       // because on TILE-Gx, .rela.dyn needs to include .rela.plt
2535       // in it's range.
2536       this->rela_dyn_section(layout);
2537 
2538       this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
2539         TILEGX_INST_BUNDLE_SIZE, this->got_, this->got_plt_,
2540         this->got_irelative_);
2541 
2542       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2543                                       (elfcpp::SHF_ALLOC
2544                                        | elfcpp::SHF_EXECINSTR),
2545                                       this->plt_, ORDER_NON_RELRO_FIRST,
2546                                       false);
2547 
2548       // Make the sh_info field of .rela.plt point to .plt.
2549       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2550       rela_plt_os->set_info_section(this->plt_->output_section());
2551     }
2552 }
2553 
2554 // Create a PLT entry for a global symbol.
2555 
2556 template<int size, bool big_endian>
2557 void
make_plt_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)2558 Target_tilegx<size, big_endian>::make_plt_entry(Symbol_table* symtab,
2559                                                 Layout* layout, Symbol* gsym)
2560 {
2561   if (gsym->has_plt_offset())
2562     return;
2563 
2564   if (this->plt_ == NULL)
2565     this->make_plt_section(symtab, layout);
2566 
2567   this->plt_->add_entry(symtab, layout, gsym);
2568 }
2569 
2570 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2571 
2572 template<int size, bool big_endian>
2573 void
make_local_ifunc_plt_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)2574 Target_tilegx<size, big_endian>::make_local_ifunc_plt_entry(
2575     Symbol_table* symtab, Layout* layout,
2576     Sized_relobj_file<size, big_endian>* relobj,
2577     unsigned int local_sym_index)
2578 {
2579   if (relobj->local_has_plt_offset(local_sym_index))
2580     return;
2581   if (this->plt_ == NULL)
2582     this->make_plt_section(symtab, layout);
2583   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2584                                                               relobj,
2585                                                               local_sym_index);
2586   relobj->set_local_plt_offset(local_sym_index, plt_offset);
2587 }
2588 
2589 // Return the number of entries in the PLT.
2590 
2591 template<int size, bool big_endian>
2592 unsigned int
plt_entry_count() const2593 Target_tilegx<size, big_endian>::plt_entry_count() const
2594 {
2595   if (this->plt_ == NULL)
2596     return 0;
2597   return this->plt_->entry_count();
2598 }
2599 
2600 // Return the offset of the first non-reserved PLT entry.
2601 
2602 template<int size, bool big_endian>
2603 unsigned int
first_plt_entry_offset() const2604 Target_tilegx<size, big_endian>::first_plt_entry_offset() const
2605 {
2606   return this->plt_->first_plt_entry_offset();
2607 }
2608 
2609 // Return the size of each PLT entry.
2610 
2611 template<int size, bool big_endian>
2612 unsigned int
plt_entry_size() const2613 Target_tilegx<size, big_endian>::plt_entry_size() const
2614 {
2615   return this->plt_->get_plt_entry_size();
2616 }
2617 
2618 // Create the GOT and PLT sections for an incremental update.
2619 
2620 template<int size, bool big_endian>
2621 Output_data_got_base*
init_got_plt_for_update(Symbol_table * symtab,Layout * layout,unsigned int got_count,unsigned int plt_count)2622 Target_tilegx<size, big_endian>::init_got_plt_for_update(Symbol_table* symtab,
2623                                        Layout* layout,
2624                                        unsigned int got_count,
2625                                        unsigned int plt_count)
2626 {
2627   gold_assert(this->got_ == NULL);
2628 
2629   this->got_ =
2630     new Output_data_got<size, big_endian>((got_count
2631                                            + TILEGX_GOT_RESERVE_COUNT)
2632                                           * (size / 8));
2633   layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2634                                   (elfcpp::SHF_ALLOC
2635                                    | elfcpp::SHF_WRITE),
2636                                   this->got_, ORDER_RELRO_LAST,
2637                                   true);
2638 
2639   // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
2640   this->global_offset_table_ =
2641     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2642                                   Symbol_table::PREDEFINED,
2643                                   this->got_,
2644                                   0, 0, elfcpp::STT_OBJECT,
2645                                   elfcpp::STB_LOCAL,
2646                                   elfcpp::STV_HIDDEN, 0,
2647                                   false, false);
2648 
2649   if (parameters->options().shared()) {
2650     this->tilegx_dynamic_ =
2651             symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
2652                             Symbol_table::PREDEFINED,
2653                             layout->dynamic_section(),
2654                             0, 0, elfcpp::STT_OBJECT,
2655                             elfcpp::STB_LOCAL,
2656                             elfcpp::STV_HIDDEN, 0,
2657                             false, false);
2658 
2659     this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
2660   } else
2661     this->got_->set_current_data_size(size / 8);
2662 
2663   // Add the two reserved entries.
2664   this->got_plt_
2665      = new Output_data_space((plt_count + TILEGX_GOTPLT_RESERVE_COUNT)
2666                               * (size / 8), size / 8, "** GOT PLT");
2667   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2668                                   (elfcpp::SHF_ALLOC
2669                                    | elfcpp::SHF_WRITE),
2670                                   this->got_plt_, ORDER_NON_RELRO_FIRST,
2671                                   false);
2672 
2673   // If there are any IRELATIVE relocations, they get GOT entries in
2674   // .got.plt after the jump slot.
2675   this->got_irelative_
2676      = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
2677   layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2678                                   elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2679                                   this->got_irelative_,
2680                                   ORDER_NON_RELRO_FIRST, false);
2681 
2682   // Create the PLT section.
2683   this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
2684     this->plt_entry_size(), this->got_, this->got_plt_, this->got_irelative_,
2685     plt_count);
2686 
2687   layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2688                                   elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2689                                   this->plt_, ORDER_PLT, false);
2690 
2691   // Make the sh_info field of .rela.plt point to .plt.
2692   Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2693   rela_plt_os->set_info_section(this->plt_->output_section());
2694 
2695   // Create the rela_dyn section.
2696   this->rela_dyn_section(layout);
2697 
2698   return this->got_;
2699 }
2700 
2701 // Reserve a GOT entry for a local symbol, and regenerate any
2702 // necessary dynamic relocations.
2703 
2704 template<int size, bool big_endian>
2705 void
reserve_local_got_entry(unsigned int got_index,Sized_relobj<size,big_endian> * obj,unsigned int r_sym,unsigned int got_type)2706 Target_tilegx<size, big_endian>::reserve_local_got_entry(
2707     unsigned int got_index,
2708     Sized_relobj<size, big_endian>* obj,
2709     unsigned int r_sym,
2710     unsigned int got_type)
2711 {
2712   unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
2713                             * (size / 8);
2714   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2715 
2716   this->got_->reserve_local(got_index, obj, r_sym, got_type);
2717   switch (got_type)
2718     {
2719     case GOT_TYPE_STANDARD:
2720       if (parameters->options().output_is_position_independent())
2721         rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_TILEGX_RELATIVE,
2722                                      this->got_, got_offset, 0, false);
2723       break;
2724     case GOT_TYPE_TLS_OFFSET:
2725       rela_dyn->add_local(obj, r_sym,
2726                           size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
2727                                        : elfcpp::R_TILEGX_TLS_DTPOFF64,
2728                           this->got_, got_offset, 0);
2729       break;
2730     case GOT_TYPE_TLS_PAIR:
2731       this->got_->reserve_slot(got_index + 1);
2732       rela_dyn->add_local(obj, r_sym,
2733                           size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2734                                        : elfcpp::R_TILEGX_TLS_DTPMOD64,
2735                           this->got_, got_offset, 0);
2736       break;
2737     case GOT_TYPE_TLS_DESC:
2738       gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
2739       break;
2740     default:
2741       gold_unreachable();
2742     }
2743 }
2744 
2745 // Reserve a GOT entry for a global symbol, and regenerate any
2746 // necessary dynamic relocations.
2747 
2748 template<int size, bool big_endian>
2749 void
reserve_global_got_entry(unsigned int got_index,Symbol * gsym,unsigned int got_type)2750 Target_tilegx<size, big_endian>::reserve_global_got_entry(
2751   unsigned int got_index, Symbol* gsym, unsigned int got_type)
2752 {
2753   unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
2754                             * (size / 8);
2755   Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2756 
2757   this->got_->reserve_global(got_index, gsym, got_type);
2758   switch (got_type)
2759     {
2760     case GOT_TYPE_STANDARD:
2761       if (!gsym->final_value_is_known())
2762         {
2763           if (gsym->is_from_dynobj()
2764               || gsym->is_undefined()
2765               || gsym->is_preemptible()
2766               || gsym->type() == elfcpp::STT_GNU_IFUNC)
2767             rela_dyn->add_global(gsym, elfcpp::R_TILEGX_GLOB_DAT,
2768                                  this->got_, got_offset, 0);
2769           else
2770             rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
2771                                           this->got_, got_offset, 0, false);
2772         }
2773       break;
2774     case GOT_TYPE_TLS_OFFSET:
2775       rela_dyn->add_global_relative(gsym,
2776                                     size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32
2777                                                : elfcpp::R_TILEGX_TLS_TPOFF64,
2778                                     this->got_, got_offset, 0, false);
2779       break;
2780     case GOT_TYPE_TLS_PAIR:
2781       this->got_->reserve_slot(got_index + 1);
2782       rela_dyn->add_global_relative(gsym,
2783                                     size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2784                                                : elfcpp::R_TILEGX_TLS_DTPMOD64,
2785                                     this->got_, got_offset, 0, false);
2786       rela_dyn->add_global_relative(gsym,
2787                                     size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
2788                                                : elfcpp::R_TILEGX_TLS_DTPOFF64,
2789                                     this->got_, got_offset + size / 8,
2790                                     0, false);
2791       break;
2792     case GOT_TYPE_TLS_DESC:
2793       gold_fatal(_("TLS_DESC not yet supported for TILEGX"));
2794       break;
2795     default:
2796       gold_unreachable();
2797     }
2798 }
2799 
2800 // Register an existing PLT entry for a global symbol.
2801 
2802 template<int size, bool big_endian>
2803 void
register_global_plt_entry(Symbol_table * symtab,Layout * layout,unsigned int plt_index,Symbol * gsym)2804 Target_tilegx<size, big_endian>::register_global_plt_entry(
2805   Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym)
2806 {
2807   gold_assert(this->plt_ != NULL);
2808   gold_assert(!gsym->has_plt_offset());
2809 
2810   this->plt_->reserve_slot(plt_index);
2811 
2812   gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2813 
2814   unsigned int got_offset = (plt_index + 2) * (size / 8);
2815   this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2816 }
2817 
2818 // Force a COPY relocation for a given symbol.
2819 
2820 template<int size, bool big_endian>
2821 void
emit_copy_reloc(Symbol_table * symtab,Symbol * sym,Output_section * os,off_t offset)2822 Target_tilegx<size, big_endian>::emit_copy_reloc(
2823     Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2824 {
2825   this->copy_relocs_.emit_copy_reloc(symtab,
2826                                      symtab->get_sized_symbol<size>(sym),
2827                                      os,
2828                                      offset,
2829                                      this->rela_dyn_section(NULL));
2830 }
2831 
2832 // Create a GOT entry for the TLS module index.
2833 
2834 template<int size, bool big_endian>
2835 unsigned int
got_mod_index_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object)2836 Target_tilegx<size, big_endian>::got_mod_index_entry(Symbol_table* symtab,
2837                                   Layout* layout,
2838                                   Sized_relobj_file<size, big_endian>* object)
2839 {
2840   if (this->got_mod_index_offset_ == -1U)
2841     {
2842       gold_assert(symtab != NULL && layout != NULL && object != NULL);
2843       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2844       Output_data_got<size, big_endian>* got
2845          = this->got_section(symtab, layout);
2846       unsigned int got_offset = got->add_constant(0);
2847       rela_dyn->add_local(object, 0,
2848                           size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2849                                        : elfcpp::R_TILEGX_TLS_DTPMOD64, got,
2850                           got_offset, 0);
2851       got->add_constant(0);
2852       this->got_mod_index_offset_ = got_offset;
2853     }
2854   return this->got_mod_index_offset_;
2855 }
2856 
2857 // Optimize the TLS relocation type based on what we know about the
2858 // symbol.  IS_FINAL is true if the final address of this symbol is
2859 // known at link time.
2860 //
2861 // the transformation rules is described below:
2862 //
2863 //   compiler GD reference
2864 //    |
2865 //    V
2866 //     moveli      tmp, hw1_last_tls_gd(x)     X0/X1
2867 //     shl16insli  r0,  tmp, hw0_tls_gd(x)     X0/X1
2868 //     addi        r0, got, tls_add(x)         Y0/Y1/X0/X1
2869 //     jal         tls_gd_call(x)              X1
2870 //     addi        adr, r0,  tls_gd_add(x)     Y0/Y1/X0/X1
2871 //
2872 //     linker tranformation of GD insn sequence
2873 //      |
2874 //      V
2875 //      ==> GD:
2876 //       moveli      tmp, hw1_last_tls_gd(x)     X0/X1
2877 //       shl16insli  r0,  tmp, hw0_tls_gd(x)     X0/X1
2878 //       add         r0,  got, r0                Y0/Y1/X0/X1
2879 //       jal         plt(__tls_get_addr)         X1
2880 //       move        adr, r0                     Y0/Y1/X0/X1
2881 //      ==> IE:
2882 //       moveli      tmp, hw1_last_tls_ie(x)     X0/X1
2883 //       shl16insli  r0,  tmp, hw0_tls_ie(x)     X0/X1
2884 //       add         r0,  got, r0                Y0/Y1/X0/X1
2885 //       ld          r0,  r0                     X1
2886 //       add         adr, r0, tp                 Y0/Y1/X0/X1
2887 //      ==> LE:
2888 //       moveli      tmp, hw1_last_tls_le(x)     X0/X1
2889 //       shl16insli  r0,  tmp, hw0_tls_le(x)     X0/X1
2890 //       move        r0,  r0                     Y0/Y1/X0/X1
2891 //       move        r0,  r0                     Y0/Y1/X0/X1
2892 //       add         adr, r0, tp                 Y0/Y1/X0/X1
2893 //
2894 //
2895 //   compiler IE reference
2896 //    |
2897 //    V
2898 //     moveli      tmp, hw1_last_tls_ie(x)     X0/X1
2899 //     shl16insli  tmp, tmp, hw0_tls_ie(x)     X0/X1
2900 //     addi        tmp, got, tls_add(x)        Y0/Y1/X0/X1
2901 //     ld_tls      tmp, tmp, tls_ie_load(x)    X1
2902 //     add         adr, tmp, tp                Y0/Y1/X0/X1
2903 //
2904 //     linker transformation for IE insn sequence
2905 //      |
2906 //      V
2907 //      ==> IE:
2908 //       moveli      tmp, hw1_last_tls_ie(x)     X0/X1
2909 //       shl16insli  tmp, tmp, hw0_tls_ie(x)     X0/X1
2910 //       add         tmp, got, tmp               Y0/Y1/X0/X1
2911 //       ld          tmp, tmp                    X1
2912 //       add         adr, tmp, tp                Y0/Y1/X0/X1
2913 //      ==> LE:
2914 //       moveli      tmp, hw1_last_tls_le(x)     X0/X1
2915 //       shl16insli  tmp, tmp, hw0_tls_le(x)     X0/X1
2916 //       move        tmp, tmp                    Y0/Y1/X0/X1
2917 //       move        tmp, tmp                    Y0/Y1/X0/X1
2918 //
2919 //
2920 //   compiler LE reference
2921 //    |
2922 //    V
2923 //     moveli        tmp, hw1_last_tls_le(x)     X0/X1
2924 //     shl16insli    tmp, tmp, hw0_tls_le(x)     X0/X1
2925 //     add           adr, tmp, tp                Y0/Y1/X0/X1
2926 
2927 template<int size, bool big_endian>
2928 tls::Tls_optimization
optimize_tls_reloc(bool is_final,int r_type)2929 Target_tilegx<size, big_endian>::optimize_tls_reloc(bool is_final, int r_type)
2930 {
2931   // If we are generating a shared library, then we can't do anything
2932   // in the linker.
2933   if (parameters->options().shared())
2934     return tls::TLSOPT_NONE;
2935 
2936   switch (r_type)
2937     {
2938     // unique GD relocations
2939     case elfcpp::R_TILEGX_TLS_GD_CALL:
2940     case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
2941     case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
2942     case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
2943     case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
2944     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
2945     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
2946     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
2947     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
2948     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
2949     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
2950       // These are General-Dynamic which permits fully general TLS
2951       // access.  Since we know that we are generating an executable,
2952       // we can convert this to Initial-Exec.  If we also know that
2953       // this is a local symbol, we can further switch to Local-Exec.
2954       if (is_final)
2955         return tls::TLSOPT_TO_LE;
2956       return tls::TLSOPT_TO_IE;
2957 
2958     // unique IE relocations
2959     case elfcpp::R_TILEGX_TLS_IE_LOAD:
2960     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
2961     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
2962     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
2963     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
2964     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
2965     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
2966       // These are Initial-Exec relocs which get the thread offset
2967       // from the GOT.  If we know that we are linking against the
2968       // local symbol, we can switch to Local-Exec, which links the
2969       // thread offset into the instruction.
2970       if (is_final)
2971         return tls::TLSOPT_TO_LE;
2972       return tls::TLSOPT_NONE;
2973 
2974     // could be created for both GD and IE
2975     // but they are expanded into the same
2976     // instruction in GD and IE.
2977     case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
2978     case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
2979     case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
2980     case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
2981       if (is_final)
2982         return tls::TLSOPT_TO_LE;
2983       return tls::TLSOPT_NONE;
2984 
2985     // unique LE relocations
2986     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
2987     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
2988     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
2989     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
2990     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
2991     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
2992       // When we already have Local-Exec, there is nothing further we
2993       // can do.
2994       return tls::TLSOPT_NONE;
2995 
2996     default:
2997       gold_unreachable();
2998     }
2999 }
3000 
3001 // Get the Reference_flags for a particular relocation.
3002 
3003 template<int size, bool big_endian>
3004 int
get_reference_flags(unsigned int r_type)3005 Target_tilegx<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
3006 {
3007   switch (r_type)
3008     {
3009     case elfcpp::R_TILEGX_NONE:
3010     case elfcpp::R_TILEGX_GNU_VTINHERIT:
3011     case elfcpp::R_TILEGX_GNU_VTENTRY:
3012       // No symbol reference.
3013       return 0;
3014 
3015     case elfcpp::R_TILEGX_64:
3016     case elfcpp::R_TILEGX_32:
3017     case elfcpp::R_TILEGX_16:
3018     case elfcpp::R_TILEGX_8:
3019       return Symbol::ABSOLUTE_REF;
3020 
3021     case elfcpp::R_TILEGX_BROFF_X1:
3022     case elfcpp::R_TILEGX_64_PCREL:
3023     case elfcpp::R_TILEGX_32_PCREL:
3024     case elfcpp::R_TILEGX_16_PCREL:
3025     case elfcpp::R_TILEGX_8_PCREL:
3026     case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3027     case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3028     case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3029     case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3030     case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3031     case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3032     case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3033     case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3034     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3035     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3036     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3037     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3038     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3039     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3040       return Symbol::RELATIVE_REF;
3041 
3042     case elfcpp::R_TILEGX_JUMPOFF_X1:
3043     case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3044     case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3045     case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3046     case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3047     case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3048     case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3049     case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3050     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3051     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3052     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3053     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3054     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3055     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3056       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3057 
3058     case elfcpp::R_TILEGX_IMM16_X0_HW0:
3059     case elfcpp::R_TILEGX_IMM16_X1_HW0:
3060     case elfcpp::R_TILEGX_IMM16_X0_HW1:
3061     case elfcpp::R_TILEGX_IMM16_X1_HW1:
3062     case elfcpp::R_TILEGX_IMM16_X0_HW2:
3063     case elfcpp::R_TILEGX_IMM16_X1_HW2:
3064     case elfcpp::R_TILEGX_IMM16_X0_HW3:
3065     case elfcpp::R_TILEGX_IMM16_X1_HW3:
3066     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3067     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3068     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3069     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3070     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3071     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3072       return Symbol::ABSOLUTE_REF;
3073 
3074     case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3075     case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3076     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3077     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3078     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3079     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3080       // Absolute in GOT.
3081       return Symbol::ABSOLUTE_REF;
3082 
3083     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3084     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3085     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3086     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3087     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3088     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3089     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3090     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3091     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3092     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3093     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3094     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3095     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3096     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3097     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3098     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3099     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3100     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3101     case elfcpp::R_TILEGX_TLS_DTPOFF64:
3102     case elfcpp::R_TILEGX_TLS_DTPMOD32:
3103     case elfcpp::R_TILEGX_TLS_DTPOFF32:
3104     case elfcpp::R_TILEGX_TLS_TPOFF32:
3105     case elfcpp::R_TILEGX_TLS_GD_CALL:
3106     case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3107     case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3108     case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3109     case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3110     case elfcpp::R_TILEGX_TLS_IE_LOAD:
3111     case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3112     case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3113     case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3114     case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3115       return Symbol::TLS_REF;
3116 
3117     case elfcpp::R_TILEGX_COPY:
3118     case elfcpp::R_TILEGX_GLOB_DAT:
3119     case elfcpp::R_TILEGX_JMP_SLOT:
3120     case elfcpp::R_TILEGX_RELATIVE:
3121     case elfcpp::R_TILEGX_TLS_TPOFF64:
3122     case elfcpp::R_TILEGX_TLS_DTPMOD64:
3123     default:
3124       // Not expected.  We will give an error later.
3125       return 0;
3126     }
3127 }
3128 
3129 // Report an unsupported relocation against a local symbol.
3130 
3131 template<int size, bool big_endian>
3132 void
unsupported_reloc_local(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)3133 Target_tilegx<size, big_endian>::Scan::unsupported_reloc_local(
3134      Sized_relobj_file<size, big_endian>* object,
3135      unsigned int r_type)
3136 {
3137   gold_error(_("%s: unsupported reloc %u against local symbol"),
3138              object->name().c_str(), r_type);
3139 }
3140 
3141 // We are about to emit a dynamic relocation of type R_TYPE.  If the
3142 // dynamic linker does not support it, issue an error.
3143 template<int size, bool big_endian>
3144 void
check_non_pic(Relobj * object,unsigned int r_type)3145 Target_tilegx<size, big_endian>::Scan::check_non_pic(Relobj* object,
3146                                                      unsigned int r_type)
3147 {
3148   switch (r_type)
3149     {
3150       // These are the relocation types supported by glibc for tilegx
3151       // which should always work.
3152     case elfcpp::R_TILEGX_RELATIVE:
3153     case elfcpp::R_TILEGX_GLOB_DAT:
3154     case elfcpp::R_TILEGX_JMP_SLOT:
3155     case elfcpp::R_TILEGX_TLS_DTPMOD64:
3156     case elfcpp::R_TILEGX_TLS_DTPOFF64:
3157     case elfcpp::R_TILEGX_TLS_TPOFF64:
3158     case elfcpp::R_TILEGX_8:
3159     case elfcpp::R_TILEGX_16:
3160     case elfcpp::R_TILEGX_32:
3161     case elfcpp::R_TILEGX_64:
3162     case elfcpp::R_TILEGX_COPY:
3163     case elfcpp::R_TILEGX_IMM16_X0_HW0:
3164     case elfcpp::R_TILEGX_IMM16_X1_HW0:
3165     case elfcpp::R_TILEGX_IMM16_X0_HW1:
3166     case elfcpp::R_TILEGX_IMM16_X1_HW1:
3167     case elfcpp::R_TILEGX_IMM16_X0_HW2:
3168     case elfcpp::R_TILEGX_IMM16_X1_HW2:
3169     case elfcpp::R_TILEGX_IMM16_X0_HW3:
3170     case elfcpp::R_TILEGX_IMM16_X1_HW3:
3171     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3172     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3173     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3174     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3175     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3176     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3177     case elfcpp::R_TILEGX_BROFF_X1:
3178     case elfcpp::R_TILEGX_JUMPOFF_X1:
3179     case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3180     case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3181     case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3182     case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3183     case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3184     case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3185     case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3186     case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3187     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3188     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3189     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3190     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3191     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3192     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3193       return;
3194 
3195     default:
3196       // This prevents us from issuing more than one error per reloc
3197       // section.  But we can still wind up issuing more than one
3198       // error per object file.
3199       if (this->issued_non_pic_error_)
3200         return;
3201       gold_assert(parameters->options().output_is_position_independent());
3202       object->error(_("requires unsupported dynamic reloc %u; "
3203                       "recompile with -fPIC"),
3204                     r_type);
3205       this->issued_non_pic_error_ = true;
3206       return;
3207 
3208     case elfcpp::R_TILEGX_NONE:
3209       gold_unreachable();
3210     }
3211 }
3212 
3213 // Return whether we need to make a PLT entry for a relocation of the
3214 // given type against a STT_GNU_IFUNC symbol.
3215 
3216 template<int size, bool big_endian>
3217 bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)3218 Target_tilegx<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
3219      Sized_relobj_file<size, big_endian>* object, unsigned int r_type)
3220 {
3221   int flags = Scan::get_reference_flags(r_type);
3222   if (flags & Symbol::TLS_REF)
3223     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
3224                object->name().c_str(), r_type);
3225   return flags != 0;
3226 }
3227 
3228 // Scan a relocation for a local symbol.
3229 
3230 template<int size, bool big_endian>
3231 inline void
local(Symbol_table * symtab,Layout * layout,Target_tilegx<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & reloc,unsigned int r_type,const elfcpp::Sym<size,big_endian> & lsym,bool is_discarded)3232 Target_tilegx<size, big_endian>::Scan::local(Symbol_table* symtab,
3233                                  Layout* layout,
3234                                  Target_tilegx<size, big_endian>* target,
3235                                  Sized_relobj_file<size, big_endian>* object,
3236                                  unsigned int data_shndx,
3237                                  Output_section* output_section,
3238                                  const elfcpp::Rela<size, big_endian>& reloc,
3239                                  unsigned int r_type,
3240                                  const elfcpp::Sym<size, big_endian>& lsym,
3241                                  bool is_discarded)
3242 {
3243   if (is_discarded)
3244     return;
3245 
3246   // A local STT_GNU_IFUNC symbol may require a PLT entry.
3247   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3248   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3249     {
3250       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3251       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
3252     }
3253 
3254   switch (r_type)
3255     {
3256     case elfcpp::R_TILEGX_NONE:
3257     case elfcpp::R_TILEGX_GNU_VTINHERIT:
3258     case elfcpp::R_TILEGX_GNU_VTENTRY:
3259       break;
3260 
3261     // If building a shared library (or a position-independent
3262     // executable), because the runtime address needs plus
3263     // the module base address, so generate a R_TILEGX_RELATIVE.
3264     case elfcpp::R_TILEGX_32:
3265     case elfcpp::R_TILEGX_64:
3266       if (parameters->options().output_is_position_independent())
3267         {
3268           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3269           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3270           rela_dyn->add_local_relative(object, r_sym,
3271                                        elfcpp::R_TILEGX_RELATIVE,
3272                                        output_section, data_shndx,
3273                                        reloc.get_r_offset(),
3274                                        reloc.get_r_addend(), is_ifunc);
3275         }
3276       break;
3277 
3278     // If building a shared library (or a position-independent
3279     // executable), we need to create a dynamic relocation for this
3280     // location.
3281     case elfcpp::R_TILEGX_8:
3282     case elfcpp::R_TILEGX_16:
3283     case elfcpp::R_TILEGX_IMM16_X0_HW0:
3284     case elfcpp::R_TILEGX_IMM16_X1_HW0:
3285     case elfcpp::R_TILEGX_IMM16_X0_HW1:
3286     case elfcpp::R_TILEGX_IMM16_X1_HW1:
3287     case elfcpp::R_TILEGX_IMM16_X0_HW2:
3288     case elfcpp::R_TILEGX_IMM16_X1_HW2:
3289     case elfcpp::R_TILEGX_IMM16_X0_HW3:
3290     case elfcpp::R_TILEGX_IMM16_X1_HW3:
3291     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3292     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3293     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3294     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3295     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3296     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3297       if (parameters->options().output_is_position_independent())
3298         {
3299           this->check_non_pic(object, r_type);
3300 
3301           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3302           unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3303           if (lsym.get_st_type() != elfcpp::STT_SECTION)
3304             rela_dyn->add_local(object, r_sym, r_type, output_section,
3305                                 data_shndx, reloc.get_r_offset(),
3306                                 reloc.get_r_addend());
3307           else
3308             {
3309               gold_assert(lsym.get_st_value() == 0);
3310               rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
3311                                                     output_section,
3312                                                     data_shndx,
3313                                                     reloc.get_r_offset(),
3314                                                     reloc.get_r_addend());
3315 
3316             }
3317         }
3318       break;
3319 
3320     // R_TILEGX_JUMPOFF_X1_PLT against local symbol
3321     // may happen for ifunc case.
3322     case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3323     case elfcpp::R_TILEGX_JUMPOFF_X1:
3324     case elfcpp::R_TILEGX_64_PCREL:
3325     case elfcpp::R_TILEGX_32_PCREL:
3326     case elfcpp::R_TILEGX_16_PCREL:
3327     case elfcpp::R_TILEGX_8_PCREL:
3328     case elfcpp::R_TILEGX_BROFF_X1:
3329     case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3330     case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3331     case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3332     case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3333     case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3334     case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3335     case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3336     case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3337     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3338     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3339     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3340     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3341     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3342     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3343     case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3344     case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3345     case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3346     case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3347     case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3348     case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3349     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3350     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3351     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3352     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3353     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3354     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3355       break;
3356 
3357     case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3358     case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3359     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3360     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3361     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3362     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3363       {
3364         // The symbol requires a GOT entry.
3365         Output_data_got<size, big_endian>* got
3366            = target->got_section(symtab, layout);
3367         unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3368 
3369         // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
3370         // lets function pointers compare correctly with shared
3371         // libraries.  Otherwise we would need an IRELATIVE reloc.
3372         bool is_new;
3373         if (is_ifunc)
3374           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3375         else
3376           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3377         if (is_new)
3378           {
3379             // tilegx dynamic linker will not update local got entry,
3380             // so, if we are generating a shared object, we need to add a
3381             // dynamic relocation for this symbol's GOT entry to inform
3382             // dynamic linker plus the load base explicitly.
3383             if (parameters->options().output_is_position_independent())
3384               {
3385                unsigned int got_offset
3386                   = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3387 
3388                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3389                 rela_dyn->add_local_relative(object, r_sym,
3390                                              r_type,
3391                                              got, got_offset, 0, is_ifunc);
3392               }
3393           }
3394       }
3395       break;
3396 
3397     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3398     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3399     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3400     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3401     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3402     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3403     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3404     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3405     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3406     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3407     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3408     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3409     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3410     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3411     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3412     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3413     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3414     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3415     case elfcpp::R_TILEGX_TLS_GD_CALL:
3416     case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3417     case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3418     case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3419     case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3420     case elfcpp::R_TILEGX_TLS_IE_LOAD:
3421     case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3422     case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3423     case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3424     case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3425       {
3426          bool output_is_shared = parameters->options().shared();
3427          const tls::Tls_optimization opt_t =
3428           Target_tilegx<size, big_endian>::optimize_tls_reloc(
3429             !output_is_shared, r_type);
3430 
3431          switch (r_type)
3432            {
3433              case elfcpp::R_TILEGX_TLS_GD_CALL:
3434                // FIXME: predefine __tls_get_addr
3435                //
3436                // R_TILEGX_TLS_GD_CALL implicitly reference __tls_get_addr,
3437                // while all other target, x86/arm/mips/powerpc/sparc
3438                // generate tls relocation against __tls_get_addr explicitly,
3439                // so for TILEGX, we need the following hack.
3440                if (opt_t == tls::TLSOPT_NONE) {
3441                  if (!target->tls_get_addr_sym_defined_) {
3442                    Symbol* sym = NULL;
3443                    options::parse_set(NULL, "__tls_get_addr",
3444                                      (gold::options::String_set*)
3445                                      &parameters->options().undefined());
3446                    symtab->add_undefined_symbols_from_command_line(layout);
3447                    target->tls_get_addr_sym_defined_ = true;
3448                    sym = symtab->lookup("__tls_get_addr");
3449                    sym->set_in_reg();
3450                  }
3451                  target->make_plt_entry(symtab, layout,
3452                                         symtab->lookup("__tls_get_addr"));
3453                }
3454                break;
3455 
3456              // only make effect when applying relocation
3457              case elfcpp::R_TILEGX_TLS_IE_LOAD:
3458              case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3459              case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3460              case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3461              case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3462              case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3463              case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3464              case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3465              case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3466                break;
3467 
3468              // GD: requires two GOT entry for module index and offset
3469              // IE: requires one GOT entry for tp-relative offset
3470              // LE: shouldn't happen for global symbol
3471              case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3472              case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3473              case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3474              case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3475              case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3476              case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3477                {
3478                  if (opt_t == tls::TLSOPT_NONE) {
3479                    Output_data_got<size, big_endian> *got
3480                       = target->got_section(symtab, layout);
3481                    unsigned int r_sym
3482                       = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3483                    unsigned int shndx = lsym.get_st_shndx();
3484                    bool is_ordinary;
3485                    shndx = object->adjust_sym_shndx(r_sym, shndx,
3486                                                     &is_ordinary);
3487                    if (!is_ordinary)
3488                      object->error(_("local symbol %u has bad shndx %u"),
3489                                    r_sym, shndx);
3490                    else
3491                      got->add_local_pair_with_rel(object, r_sym, shndx,
3492                                            GOT_TYPE_TLS_PAIR,
3493                                            target->rela_dyn_section(layout),
3494                                            size == 32
3495                                            ? elfcpp::R_TILEGX_TLS_DTPMOD32
3496                                            : elfcpp::R_TILEGX_TLS_DTPMOD64);
3497                   } else if (opt_t == tls::TLSOPT_TO_IE) {
3498                     Output_data_got<size, big_endian>* got
3499                        = target->got_section(symtab, layout);
3500                     Reloc_section* rela_dyn
3501                        = target->rela_dyn_section(layout);
3502                     unsigned int r_sym
3503                        = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3504                     unsigned int off = got->add_constant(0);
3505                     object->set_local_got_offset(r_sym,
3506                                                  GOT_TYPE_TLS_OFFSET,off);
3507                     rela_dyn->add_symbolless_local_addend(object, r_sym,
3508                                             size == 32
3509                                             ? elfcpp::R_TILEGX_TLS_TPOFF32
3510                                             : elfcpp::R_TILEGX_TLS_TPOFF64,
3511                                             got, off, 0);
3512                   } else if (opt_t != tls::TLSOPT_TO_LE)
3513                     // only TO_LE is allowed for local symbol
3514                     unsupported_reloc_local(object, r_type);
3515                }
3516                break;
3517 
3518              // IE
3519              case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3520              case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3521              case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3522              case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3523              case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3524              case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3525                {
3526                  layout->set_has_static_tls();
3527                  if (opt_t == tls::TLSOPT_NONE) {
3528                    Output_data_got<size, big_endian>* got
3529                       = target->got_section(symtab, layout);
3530                    Reloc_section* rela_dyn
3531                       = target->rela_dyn_section(layout);
3532                    unsigned int r_sym
3533                       = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3534                    unsigned int off = got->add_constant(0);
3535                    object->set_local_got_offset(r_sym,
3536                                                 GOT_TYPE_TLS_OFFSET, off);
3537                    rela_dyn->add_symbolless_local_addend(object, r_sym,
3538                                             size == 32
3539                                             ? elfcpp::R_TILEGX_TLS_TPOFF32
3540                                             : elfcpp::R_TILEGX_TLS_TPOFF64,
3541                                             got, off, 0);
3542                  } else if (opt_t != tls::TLSOPT_TO_LE)
3543                    unsupported_reloc_local(object, r_type);
3544                }
3545                break;
3546 
3547              // LE
3548              case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3549              case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3550              case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3551              case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3552              case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3553              case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3554                layout->set_has_static_tls();
3555                if (parameters->options().shared()) {
3556                  // defer to dynamic linker
3557                  gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3558                  unsigned int r_sym
3559                     = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3560                  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3561                  rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
3562                                                   output_section, data_shndx,
3563                                                   reloc.get_r_offset(), 0);
3564                }
3565                break;
3566 
3567              default:
3568                gold_unreachable();
3569            }
3570       }
3571       break;
3572 
3573     case elfcpp::R_TILEGX_COPY:
3574     case elfcpp::R_TILEGX_GLOB_DAT:
3575     case elfcpp::R_TILEGX_JMP_SLOT:
3576     case elfcpp::R_TILEGX_RELATIVE:
3577       // These are outstanding tls relocs, which are unexpected when linking
3578     case elfcpp::R_TILEGX_TLS_TPOFF32:
3579     case elfcpp::R_TILEGX_TLS_TPOFF64:
3580     case elfcpp::R_TILEGX_TLS_DTPMOD32:
3581     case elfcpp::R_TILEGX_TLS_DTPMOD64:
3582     case elfcpp::R_TILEGX_TLS_DTPOFF32:
3583     case elfcpp::R_TILEGX_TLS_DTPOFF64:
3584       gold_error(_("%s: unexpected reloc %u in object file"),
3585                  object->name().c_str(), r_type);
3586       break;
3587 
3588     default:
3589       gold_error(_("%s: unsupported reloc %u against local symbol"),
3590                  object->name().c_str(), r_type);
3591       break;
3592     }
3593 }
3594 
3595 
3596 // Report an unsupported relocation against a global symbol.
3597 
3598 template<int size, bool big_endian>
3599 void
unsupported_reloc_global(Sized_relobj_file<size,big_endian> * object,unsigned int r_type,Symbol * gsym)3600 Target_tilegx<size, big_endian>::Scan::unsupported_reloc_global(
3601     Sized_relobj_file<size, big_endian>* object,
3602     unsigned int r_type,
3603     Symbol* gsym)
3604 {
3605   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3606              object->name().c_str(), r_type, gsym->demangled_name().c_str());
3607 }
3608 
3609 // Returns true if this relocation type could be that of a function pointer.
3610 template<int size, bool big_endian>
3611 inline bool
possible_function_pointer_reloc(unsigned int r_type)3612 Target_tilegx<size, big_endian>::Scan::possible_function_pointer_reloc(
3613   unsigned int r_type)
3614 {
3615   switch (r_type)
3616     {
3617       case elfcpp::R_TILEGX_IMM16_X0_HW0:
3618       case elfcpp::R_TILEGX_IMM16_X1_HW0:
3619       case elfcpp::R_TILEGX_IMM16_X0_HW1:
3620       case elfcpp::R_TILEGX_IMM16_X1_HW1:
3621       case elfcpp::R_TILEGX_IMM16_X0_HW2:
3622       case elfcpp::R_TILEGX_IMM16_X1_HW2:
3623       case elfcpp::R_TILEGX_IMM16_X0_HW3:
3624       case elfcpp::R_TILEGX_IMM16_X1_HW3:
3625       case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3626       case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3627       case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3628       case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3629       case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3630       case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3631       case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3632       case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3633       case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3634       case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3635       case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3636       case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3637       case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3638       case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3639       case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3640       case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3641       case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3642       case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3643       case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3644       case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3645       case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3646       case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3647       case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3648       case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3649       case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3650       case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3651       {
3652         return true;
3653       }
3654     }
3655   return false;
3656 }
3657 
3658 // For safe ICF, scan a relocation for a local symbol to check if it
3659 // corresponds to a function pointer being taken.  In that case mark
3660 // the function whose pointer was taken as not foldable.
3661 
3662 template<int size, bool big_endian>
3663 inline bool
local_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_tilegx<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,const elfcpp::Sym<size,big_endian> &)3664 Target_tilegx<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
3665   Symbol_table* ,
3666   Layout* ,
3667   Target_tilegx<size, big_endian>* ,
3668   Sized_relobj_file<size, big_endian>* ,
3669   unsigned int ,
3670   Output_section* ,
3671   const elfcpp::Rela<size, big_endian>& ,
3672   unsigned int r_type,
3673   const elfcpp::Sym<size, big_endian>&)
3674 {
3675   return possible_function_pointer_reloc(r_type);
3676 }
3677 
3678 // For safe ICF, scan a relocation for a global symbol to check if it
3679 // corresponds to a function pointer being taken.  In that case mark
3680 // the function whose pointer was taken as not foldable.
3681 
3682 template<int size, bool big_endian>
3683 inline bool
global_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_tilegx<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,Symbol * gsym)3684 Target_tilegx<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
3685   Symbol_table*,
3686   Layout* ,
3687   Target_tilegx<size, big_endian>* ,
3688   Sized_relobj_file<size, big_endian>* ,
3689   unsigned int ,
3690   Output_section* ,
3691   const elfcpp::Rela<size, big_endian>& ,
3692   unsigned int r_type,
3693   Symbol* gsym)
3694 {
3695   // GOT is not a function.
3696   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
3697     return false;
3698 
3699   // When building a shared library, do not fold symbols whose visibility
3700   // is hidden, internal or protected.
3701   return ((parameters->options().shared()
3702            && (gsym->visibility() == elfcpp::STV_INTERNAL
3703                || gsym->visibility() == elfcpp::STV_PROTECTED
3704                || gsym->visibility() == elfcpp::STV_HIDDEN))
3705           || possible_function_pointer_reloc(r_type));
3706 }
3707 
3708 // Scan a relocation for a global symbol.
3709 
3710 template<int size, bool big_endian>
3711 inline void
global(Symbol_table * symtab,Layout * layout,Target_tilegx<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & reloc,unsigned int r_type,Symbol * gsym)3712 Target_tilegx<size, big_endian>::Scan::global(Symbol_table* symtab,
3713                             Layout* layout,
3714                             Target_tilegx<size, big_endian>* target,
3715                             Sized_relobj_file<size, big_endian>* object,
3716                             unsigned int data_shndx,
3717                             Output_section* output_section,
3718                             const elfcpp::Rela<size, big_endian>& reloc,
3719                             unsigned int r_type,
3720                             Symbol* gsym)
3721 {
3722   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
3723   // section.  We check here to avoid creating a dynamic reloc against
3724   // _GLOBAL_OFFSET_TABLE_.
3725   if (!target->has_got_section()
3726       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
3727     target->got_section(symtab, layout);
3728 
3729   // A STT_GNU_IFUNC symbol may require a PLT entry.
3730   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3731       && this->reloc_needs_plt_for_ifunc(object, r_type))
3732     target->make_plt_entry(symtab, layout, gsym);
3733 
3734   switch (r_type)
3735     {
3736     case elfcpp::R_TILEGX_NONE:
3737     case elfcpp::R_TILEGX_GNU_VTINHERIT:
3738     case elfcpp::R_TILEGX_GNU_VTENTRY:
3739       break;
3740 
3741     case elfcpp::R_TILEGX_DEST_IMM8_X1:
3742     case elfcpp::R_TILEGX_IMM16_X0_HW0:
3743     case elfcpp::R_TILEGX_IMM16_X1_HW0:
3744     case elfcpp::R_TILEGX_IMM16_X0_HW1:
3745     case elfcpp::R_TILEGX_IMM16_X1_HW1:
3746     case elfcpp::R_TILEGX_IMM16_X0_HW2:
3747     case elfcpp::R_TILEGX_IMM16_X1_HW2:
3748     case elfcpp::R_TILEGX_IMM16_X0_HW3:
3749     case elfcpp::R_TILEGX_IMM16_X1_HW3:
3750     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3751     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3752     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3753     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3754     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3755     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3756     case elfcpp::R_TILEGX_64:
3757     case elfcpp::R_TILEGX_32:
3758     case elfcpp::R_TILEGX_16:
3759     case elfcpp::R_TILEGX_8:
3760       {
3761         // Make a PLT entry if necessary.
3762         if (gsym->needs_plt_entry())
3763           {
3764             target->make_plt_entry(symtab, layout, gsym);
3765             // Since this is not a PC-relative relocation, we may be
3766             // taking the address of a function. In that case we need to
3767             // set the entry in the dynamic symbol table to the address of
3768             // the PLT entry.
3769             if (gsym->is_from_dynobj() && !parameters->options().shared())
3770               gsym->set_needs_dynsym_value();
3771           }
3772         // Make a dynamic relocation if necessary.
3773         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3774           {
3775 	    if (!parameters->options().output_is_position_independent()
3776 		&& gsym->may_need_copy_reloc())
3777               {
3778                 target->copy_reloc(symtab, layout, object,
3779                                    data_shndx, output_section, gsym, reloc);
3780               }
3781             else if (((size == 64 && r_type == elfcpp::R_TILEGX_64)
3782                       || (size == 32 && r_type == elfcpp::R_TILEGX_32))
3783                      && gsym->type() == elfcpp::STT_GNU_IFUNC
3784                      && gsym->can_use_relative_reloc(false)
3785                      && !gsym->is_from_dynobj()
3786                      && !gsym->is_undefined()
3787                      && !gsym->is_preemptible())
3788               {
3789                 // Use an IRELATIVE reloc for a locally defined
3790                 // STT_GNU_IFUNC symbol.  This makes a function
3791                 // address in a PIE executable match the address in a
3792                 // shared library that it links against.
3793                 Reloc_section* rela_dyn =
3794                   target->rela_irelative_section(layout);
3795                 unsigned int r_type = elfcpp::R_TILEGX_IRELATIVE;
3796                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
3797                                                    output_section, object,
3798                                                    data_shndx,
3799                                                    reloc.get_r_offset(),
3800                                                    reloc.get_r_addend());
3801               } else if ((r_type == elfcpp::R_TILEGX_64
3802                           || r_type == elfcpp::R_TILEGX_32)
3803                          && gsym->can_use_relative_reloc(false))
3804               {
3805                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3806                 rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
3807                                               output_section, object,
3808                                               data_shndx,
3809                                               reloc.get_r_offset(),
3810                                               reloc.get_r_addend(), false);
3811               }
3812             else
3813               {
3814                 this->check_non_pic(object, r_type);
3815                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3816                 rela_dyn->add_global(gsym, r_type, output_section, object,
3817                                      data_shndx, reloc.get_r_offset(),
3818                                      reloc.get_r_addend());
3819               }
3820           }
3821       }
3822       break;
3823 
3824     case elfcpp::R_TILEGX_BROFF_X1:
3825     case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3826     case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3827     case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3828     case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3829     case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3830     case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3831     case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3832     case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3833     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3834     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3835     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3836     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3837     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3838     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3839     case elfcpp::R_TILEGX_64_PCREL:
3840     case elfcpp::R_TILEGX_32_PCREL:
3841     case elfcpp::R_TILEGX_16_PCREL:
3842     case elfcpp::R_TILEGX_8_PCREL:
3843       {
3844         // Make a PLT entry if necessary.
3845         if (gsym->needs_plt_entry())
3846           target->make_plt_entry(symtab, layout, gsym);
3847         // Make a dynamic relocation if necessary.
3848         if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3849           {
3850 	    if (parameters->options().output_is_executable()
3851 		&& gsym->may_need_copy_reloc())
3852               {
3853                 target->copy_reloc(symtab, layout, object,
3854                                    data_shndx, output_section, gsym, reloc);
3855               }
3856             else
3857               {
3858                 this->check_non_pic(object, r_type);
3859                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3860                 rela_dyn->add_global(gsym, r_type, output_section, object,
3861                                      data_shndx, reloc.get_r_offset(),
3862                                      reloc.get_r_addend());
3863               }
3864           }
3865       }
3866       break;
3867 
3868     case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3869     case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3870     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3871     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3872     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3873     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3874       {
3875         // The symbol requires a GOT entry.
3876         Output_data_got<size, big_endian>* got
3877            = target->got_section(symtab, layout);
3878         if (gsym->final_value_is_known())
3879           {
3880             // For a STT_GNU_IFUNC symbol we want the PLT address.
3881             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3882               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3883             else
3884               got->add_global(gsym, GOT_TYPE_STANDARD);
3885           }
3886         else
3887           {
3888             // If this symbol is not fully resolved, we need to add a
3889             // dynamic relocation for it.
3890             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3891 
3892             // Use a GLOB_DAT rather than a RELATIVE reloc if:
3893             //
3894             // 1) The symbol may be defined in some other module.
3895             //
3896             // 2) We are building a shared library and this is a
3897             // protected symbol; using GLOB_DAT means that the dynamic
3898             // linker can use the address of the PLT in the main
3899             // executable when appropriate so that function address
3900             // comparisons work.
3901             //
3902             // 3) This is a STT_GNU_IFUNC symbol in position dependent
3903             // code, again so that function address comparisons work.
3904             if (gsym->is_from_dynobj()
3905                 || gsym->is_undefined()
3906                 || gsym->is_preemptible()
3907                 || (gsym->visibility() == elfcpp::STV_PROTECTED
3908                     && parameters->options().shared())
3909                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
3910                     && parameters->options().output_is_position_independent()))
3911               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
3912                                        elfcpp::R_TILEGX_GLOB_DAT);
3913             else
3914               {
3915                 // For a STT_GNU_IFUNC symbol we want to write the PLT
3916                 // offset into the GOT, so that function pointer
3917                 // comparisons work correctly.
3918                 bool is_new;
3919                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
3920                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
3921                 else
3922                   {
3923                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3924                     // Tell the dynamic linker to use the PLT address
3925                     // when resolving relocations.
3926                     if (gsym->is_from_dynobj()
3927                         && !parameters->options().shared())
3928                       gsym->set_needs_dynsym_value();
3929                   }
3930                 if (is_new)
3931                   {
3932                     unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3933                     rela_dyn->add_global_relative(gsym,
3934                                                   r_type,
3935                                                   got, got_off, 0, false);
3936                   }
3937               }
3938           }
3939       }
3940       break;
3941 
3942     // a minor difference here for R_TILEGX_JUMPOFF_X1
3943     // between bfd linker and gold linker for gold, when
3944     // R_TILEGX_JUMPOFF_X1 against global symbol, we
3945     // turn it into JUMPOFF_X1_PLT, otherwise the distance
3946     // to the symbol function may overflow at runtime.
3947     case elfcpp::R_TILEGX_JUMPOFF_X1:
3948 
3949     case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3950     case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3951     case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3952     case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3953     case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3954     case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3955     case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3956     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3957     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3958     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3959     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3960     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3961     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3962       // If the symbol is fully resolved, this is just a PC32 reloc.
3963       // Otherwise we need a PLT entry.
3964       if (gsym->final_value_is_known())
3965         break;
3966       // If building a shared library, we can also skip the PLT entry
3967       // if the symbol is defined in the output file and is protected
3968       // or hidden.
3969       if (gsym->is_defined()
3970           && !gsym->is_from_dynobj()
3971           && !gsym->is_preemptible())
3972         break;
3973       target->make_plt_entry(symtab, layout, gsym);
3974       break;
3975 
3976 
3977     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3978     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3979     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3980     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3981     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3982     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3983     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3984     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3985     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3986     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3987     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3988     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3989     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3990     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3991     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3992     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3993     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3994     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3995     case elfcpp::R_TILEGX_TLS_GD_CALL:
3996     case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3997     case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3998     case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3999     case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4000     case elfcpp::R_TILEGX_TLS_IE_LOAD:
4001     case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4002     case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4003     case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4004     case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4005       {
4006          const bool is_final = gsym->final_value_is_known();
4007          const tls::Tls_optimization opt_t =
4008           Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
4009                                                               r_type);
4010 
4011          switch (r_type)
4012            {
4013               // only expand to plt against __tls_get_addr in GD model
4014               case elfcpp::R_TILEGX_TLS_GD_CALL:
4015                 if (opt_t == tls::TLSOPT_NONE) {
4016                   // FIXME:  it's better '__tls_get_addr' referenced explictly
4017                   if (!target->tls_get_addr_sym_defined_) {
4018                     Symbol* sym = NULL;
4019                     options::parse_set(NULL, "__tls_get_addr",
4020                                        (gold::options::String_set*)
4021                                        &parameters->options().undefined());
4022                     symtab->add_undefined_symbols_from_command_line(layout);
4023                     target->tls_get_addr_sym_defined_ = true;
4024                     sym = symtab->lookup("__tls_get_addr");
4025                     sym->set_in_reg();
4026                   }
4027                   target->make_plt_entry(symtab, layout,
4028                                          symtab->lookup("__tls_get_addr"));
4029                 }
4030                 break;
4031 
4032               // only make effect when applying relocation
4033               case elfcpp::R_TILEGX_TLS_IE_LOAD:
4034               case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4035               case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4036               case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4037               case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4038               case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4039               case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4040               case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4041               case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4042                 break;
4043 
4044               // GD: requires two GOT entry for module index and offset
4045               // IE: requires one GOT entry for tp-relative offset
4046               // LE: shouldn't happen for global symbol
4047               case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4048               case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4049               case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4050               case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4051               case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4052               case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4053                 {
4054                   if (opt_t == tls::TLSOPT_NONE) {
4055                       Output_data_got<size, big_endian>* got
4056                         = target->got_section(symtab, layout);
4057                       got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
4058                                              target->rela_dyn_section(layout),
4059                                              size == 32
4060                                            ? elfcpp::R_TILEGX_TLS_DTPMOD32
4061                                            : elfcpp::R_TILEGX_TLS_DTPMOD64,
4062                                              size == 32
4063                                            ? elfcpp::R_TILEGX_TLS_DTPOFF32
4064                                            : elfcpp::R_TILEGX_TLS_DTPOFF64);
4065                   } else if (opt_t == tls::TLSOPT_TO_IE) {
4066                     // Create a GOT entry for the tp-relative offset.
4067                     Output_data_got<size, big_endian>* got
4068                        = target->got_section(symtab, layout);
4069                     got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4070                                            target->rela_dyn_section(layout),
4071                                            size == 32
4072                                            ? elfcpp::R_TILEGX_TLS_TPOFF32
4073                                            : elfcpp::R_TILEGX_TLS_TPOFF64);
4074                   } else if (opt_t != tls::TLSOPT_TO_LE)
4075                     // exteranl symbol should not be optimized to TO_LE
4076                     unsupported_reloc_global(object, r_type, gsym);
4077                 }
4078                 break;
4079 
4080               // IE
4081               case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4082               case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4083               case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4084               case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4085               case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4086               case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4087                 {
4088                     layout->set_has_static_tls();
4089                   if (opt_t == tls::TLSOPT_NONE) {
4090                     // Create a GOT entry for the tp-relative offset.
4091                     Output_data_got<size, big_endian>* got
4092                        = target->got_section(symtab, layout);
4093                     got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4094                                            target->rela_dyn_section(layout),
4095                                            size == 32
4096                                            ? elfcpp::R_TILEGX_TLS_TPOFF32
4097                                            : elfcpp::R_TILEGX_TLS_TPOFF64);
4098                   } else if (opt_t != tls::TLSOPT_TO_LE)
4099                     unsupported_reloc_global(object, r_type, gsym);
4100                 }
4101                 break;
4102 
4103               // LE
4104               case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4105               case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4106               case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4107               case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4108               case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4109               case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4110                   layout->set_has_static_tls();
4111                 if (parameters->options().shared()) {
4112                   // defer to dynamic linker
4113                   Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4114                   rela_dyn->add_symbolless_global_addend(gsym, r_type,
4115                                                       output_section, object,
4116                                                       data_shndx,
4117                                                       reloc.get_r_offset(), 0);
4118                   }
4119                 break;
4120 
4121               default:
4122                 gold_unreachable();
4123            }
4124       }
4125       break;
4126 
4127     // below are outstanding relocs
4128     // should not existed in static linking stage
4129     case elfcpp::R_TILEGX_COPY:
4130     case elfcpp::R_TILEGX_GLOB_DAT:
4131     case elfcpp::R_TILEGX_JMP_SLOT:
4132     case elfcpp::R_TILEGX_RELATIVE:
4133     case elfcpp::R_TILEGX_TLS_TPOFF32:
4134     case elfcpp::R_TILEGX_TLS_TPOFF64:
4135     case elfcpp::R_TILEGX_TLS_DTPMOD32:
4136     case elfcpp::R_TILEGX_TLS_DTPMOD64:
4137     case elfcpp::R_TILEGX_TLS_DTPOFF32:
4138     case elfcpp::R_TILEGX_TLS_DTPOFF64:
4139       gold_error(_("%s: unexpected reloc %u in object file"),
4140                  object->name().c_str(), r_type);
4141       break;
4142 
4143     default:
4144       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4145                  object->name().c_str(), r_type,
4146                  gsym->demangled_name().c_str());
4147       break;
4148     }
4149 }
4150 
4151 template<int size, bool big_endian>
4152 void
gc_process_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)4153 Target_tilegx<size, big_endian>::gc_process_relocs(Symbol_table* symtab,
4154                                   Layout* layout,
4155                                   Sized_relobj_file<size, big_endian>* object,
4156                                   unsigned int data_shndx,
4157                                   unsigned int sh_type,
4158                                   const unsigned char* prelocs,
4159                                   size_t reloc_count,
4160                                   Output_section* output_section,
4161                                   bool needs_special_offset_handling,
4162                                   size_t local_symbol_count,
4163                                   const unsigned char* plocal_symbols)
4164 {
4165   typedef Target_tilegx<size, big_endian> Tilegx;
4166   typedef typename Target_tilegx<size, big_endian>::Scan Scan;
4167   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
4168       Classify_reloc;
4169 
4170   if (sh_type == elfcpp::SHT_REL)
4171     {
4172       return;
4173     }
4174 
4175    gold::gc_process_relocs<size, big_endian, Tilegx, Scan, Classify_reloc>(
4176      symtab,
4177      layout,
4178      this,
4179      object,
4180      data_shndx,
4181      prelocs,
4182      reloc_count,
4183      output_section,
4184      needs_special_offset_handling,
4185      local_symbol_count,
4186      plocal_symbols);
4187 }
4188 // Scan relocations for a section.
4189 
4190 template<int size, bool big_endian>
4191 void
scan_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)4192 Target_tilegx<size, big_endian>::scan_relocs(Symbol_table* symtab,
4193                                  Layout* layout,
4194                                  Sized_relobj_file<size, big_endian>* object,
4195                                  unsigned int data_shndx,
4196                                  unsigned int sh_type,
4197                                  const unsigned char* prelocs,
4198                                  size_t reloc_count,
4199                                  Output_section* output_section,
4200                                  bool needs_special_offset_handling,
4201                                  size_t local_symbol_count,
4202                                  const unsigned char* plocal_symbols)
4203 {
4204   typedef Target_tilegx<size, big_endian> Tilegx;
4205   typedef typename Target_tilegx<size, big_endian>::Scan Scan;
4206   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
4207       Classify_reloc;
4208 
4209   if (sh_type == elfcpp::SHT_REL)
4210     {
4211       gold_error(_("%s: unsupported REL reloc section"),
4212                  object->name().c_str());
4213       return;
4214     }
4215 
4216   gold::scan_relocs<size, big_endian, Tilegx, Scan, Classify_reloc>(
4217     symtab,
4218     layout,
4219     this,
4220     object,
4221     data_shndx,
4222     prelocs,
4223     reloc_count,
4224     output_section,
4225     needs_special_offset_handling,
4226     local_symbol_count,
4227     plocal_symbols);
4228 }
4229 
4230 template<int size, bool big_endian>
4231 void
do_define_standard_symbols(Symbol_table * symtab,Layout * layout)4232 Target_tilegx<size, big_endian>::do_define_standard_symbols(
4233     Symbol_table* symtab,
4234     Layout* layout)
4235 {
4236   Output_section* feedback_section = layout->find_output_section(".feedback");
4237 
4238   if (feedback_section != NULL)
4239     {
4240       symtab->define_in_output_data("__feedback_section_end",
4241                     NULL,
4242                     Symbol_table::PREDEFINED,
4243                     feedback_section,
4244                     0,
4245                     0,
4246                     elfcpp::STT_NOTYPE,
4247                     elfcpp::STB_GLOBAL,
4248                     elfcpp::STV_HIDDEN,
4249                     0,
4250                     true, // offset_is_from_end
4251                     false);
4252     }
4253 }
4254 
4255 // Finalize the sections.
4256 
4257 template<int size, bool big_endian>
4258 void
do_finalize_sections(Layout * layout,const Input_objects *,Symbol_table * symtab)4259 Target_tilegx<size, big_endian>::do_finalize_sections(
4260     Layout* layout,
4261     const Input_objects*,
4262     Symbol_table* symtab)
4263 {
4264   const Reloc_section* rel_plt = (this->plt_ == NULL
4265                                   ? NULL
4266                                   : this->plt_->rela_plt());
4267   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4268                                   this->rela_dyn_, true, true);
4269 
4270   // Emit any relocs we saved in an attempt to avoid generating COPY
4271   // relocs.
4272   if (this->copy_relocs_.any_saved_relocs())
4273     this->copy_relocs_.emit(this->rela_dyn_section(layout));
4274 
4275   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4276   // the .got section.
4277   Symbol* sym = this->global_offset_table_;
4278   if (sym != NULL)
4279     {
4280       uint64_t data_size = this->got_->current_data_size();
4281       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4282 
4283       // If the .got section is more than 0x8000 bytes, we add
4284       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
4285       // bit relocations have a greater chance of working.
4286       if (data_size >= 0x8000)
4287         symtab->get_sized_symbol<size>(sym)->set_value(
4288           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
4289     }
4290 
4291   if (parameters->doing_static_link()
4292       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4293     {
4294       // If linking statically, make sure that the __rela_iplt symbols
4295       // were defined if necessary, even if we didn't create a PLT.
4296       static const Define_symbol_in_segment syms[] =
4297         {
4298           {
4299             "__rela_iplt_start",        // name
4300             elfcpp::PT_LOAD,            // segment_type
4301             elfcpp::PF_W,               // segment_flags_set
4302             elfcpp::PF(0),              // segment_flags_clear
4303             0,                          // value
4304             0,                          // size
4305             elfcpp::STT_NOTYPE,         // type
4306             elfcpp::STB_GLOBAL,         // binding
4307             elfcpp::STV_HIDDEN,         // visibility
4308             0,                          // nonvis
4309             Symbol::SEGMENT_START,      // offset_from_base
4310             true                        // only_if_ref
4311           },
4312           {
4313             "__rela_iplt_end",          // name
4314             elfcpp::PT_LOAD,            // segment_type
4315             elfcpp::PF_W,               // segment_flags_set
4316             elfcpp::PF(0),              // segment_flags_clear
4317             0,                          // value
4318             0,                          // size
4319             elfcpp::STT_NOTYPE,         // type
4320             elfcpp::STB_GLOBAL,         // binding
4321             elfcpp::STV_HIDDEN,         // visibility
4322             0,                          // nonvis
4323             Symbol::SEGMENT_START,      // offset_from_base
4324             true                        // only_if_ref
4325           }
4326         };
4327 
4328       symtab->define_symbols(layout, 2, syms,
4329                              layout->script_options()->saw_sections_clause());
4330     }
4331 }
4332 
4333 // Perform a relocation.
4334 
4335 template<int size, bool big_endian>
4336 inline bool
relocate(const Relocate_info<size,big_endian> * relinfo,unsigned int,Target_tilegx<size,big_endian> * target,Output_section *,size_t relnum,const unsigned char * preloc,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type)4337 Target_tilegx<size, big_endian>::Relocate::relocate(
4338     const Relocate_info<size, big_endian>* relinfo,
4339     unsigned int,
4340     Target_tilegx<size, big_endian>* target,
4341     Output_section*,
4342     size_t relnum,
4343     const unsigned char* preloc,
4344     const Sized_symbol<size>* gsym,
4345     const Symbol_value<size>* psymval,
4346     unsigned char* view,
4347     typename elfcpp::Elf_types<size>::Elf_Addr address,
4348     section_size_type)
4349 {
4350   if (view == NULL)
4351     return true;
4352 
4353   typedef Tilegx_relocate_functions<size, big_endian> TilegxReloc;
4354   typename TilegxReloc::Tilegx_howto r_howto;
4355 
4356   const elfcpp::Rela<size, big_endian> rela(preloc);
4357   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
4358   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
4359 
4360   // Pick the value to use for symbols defined in the PLT.
4361   Symbol_value<size> symval;
4362   if (gsym != NULL
4363       && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4364     {
4365       symval.set_output_value(target->plt_address_for_global(gsym));
4366       psymval = &symval;
4367     }
4368   else if (gsym == NULL && psymval->is_ifunc_symbol())
4369     {
4370       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4371       if (object->local_has_plt_offset(r_sym))
4372         {
4373           symval.set_output_value(target->plt_address_for_local(object, r_sym));
4374           psymval = &symval;
4375         }
4376     }
4377 
4378   elfcpp::Elf_Xword addend = rela.get_r_addend();
4379 
4380   // Get the GOT offset if needed.
4381   // For tilegx, the GOT pointer points to the start of the GOT section.
4382   bool have_got_offset = false;
4383   int got_offset = 0;
4384   int got_base = target->got_ != NULL
4385                  ? target->got_->current_data_size() >= 0x8000 ? 0x8000 : 0
4386                  : 0;
4387   unsigned int got_type = GOT_TYPE_STANDARD;
4388   bool always_apply_relocation = false;
4389   switch (r_type)
4390     {
4391     case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
4392     case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
4393     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
4394     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
4395     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
4396     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
4397       if (gsym != NULL)
4398         {
4399           gold_assert(gsym->has_got_offset(got_type));
4400           got_offset = gsym->got_offset(got_type) - got_base;
4401         }
4402       else
4403         {
4404           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4405           gold_assert(object->local_has_got_offset(r_sym, got_type));
4406           got_offset =
4407             object->local_got_offset(r_sym, got_type) - got_base;
4408         }
4409       have_got_offset = true;
4410       break;
4411 
4412     default:
4413       break;
4414     }
4415 
4416   r_howto = TilegxReloc::howto[r_type];
4417   switch (r_type)
4418     {
4419     case elfcpp::R_TILEGX_NONE:
4420     case elfcpp::R_TILEGX_GNU_VTINHERIT:
4421     case elfcpp::R_TILEGX_GNU_VTENTRY:
4422       break;
4423 
4424     case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
4425     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
4426     case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
4427     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
4428     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
4429     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
4430       gold_assert(have_got_offset);
4431       symval.set_output_value(got_offset);
4432       psymval = &symval;
4433       always_apply_relocation = true;
4434       addend = 0;
4435       // Fall through.
4436 
4437     // when under PIC mode, these relocations are deferred to rtld
4438     case elfcpp::R_TILEGX_IMM16_X0_HW0:
4439     case elfcpp::R_TILEGX_IMM16_X1_HW0:
4440     case elfcpp::R_TILEGX_IMM16_X0_HW1:
4441     case elfcpp::R_TILEGX_IMM16_X1_HW1:
4442     case elfcpp::R_TILEGX_IMM16_X0_HW2:
4443     case elfcpp::R_TILEGX_IMM16_X1_HW2:
4444     case elfcpp::R_TILEGX_IMM16_X0_HW3:
4445     case elfcpp::R_TILEGX_IMM16_X1_HW3:
4446     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
4447     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
4448     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
4449     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
4450     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
4451     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
4452       if (always_apply_relocation
4453           || !parameters->options().output_is_position_independent())
4454         TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto);
4455       break;
4456 
4457     case elfcpp::R_TILEGX_JUMPOFF_X1:
4458     case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
4459       gold_assert(gsym == NULL
4460                   || gsym->has_plt_offset()
4461                   || gsym->final_value_is_known()
4462                   || (gsym->is_defined()
4463                       && !gsym->is_from_dynobj()
4464                       && !gsym->is_preemptible()));
4465       TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
4466                                        address, r_howto);
4467       break;
4468 
4469 
4470     case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
4471     case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
4472     case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
4473     case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
4474     case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
4475     case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
4476     case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
4477     case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
4478     case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
4479     case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
4480     case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
4481     case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
4482     case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
4483     case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
4484     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
4485     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
4486     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
4487     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
4488     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
4489     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
4490     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
4491     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
4492     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
4493     case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
4494     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
4495     case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
4496       TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
4497                                        address, r_howto);
4498       break;
4499 
4500     case elfcpp::R_TILEGX_BROFF_X1:
4501     case elfcpp::R_TILEGX_DEST_IMM8_X1:
4502       TilegxReloc::imm_x_two_part_general(view, object, psymval,
4503                                           addend, address, r_type);
4504       break;
4505 
4506 
4507     // below are general relocation types, which can be
4508     // handled by target-independent handlers
4509     case elfcpp::R_TILEGX_64:
4510       TilegxReloc::abs64(view, object, psymval, addend);
4511       break;
4512 
4513     case elfcpp::R_TILEGX_64_PCREL:
4514       TilegxReloc::pc_abs64(view, object, psymval, addend, address);
4515       break;
4516 
4517     case elfcpp::R_TILEGX_32:
4518       TilegxReloc::abs32(view, object, psymval, addend);
4519       break;
4520 
4521     case elfcpp::R_TILEGX_32_PCREL:
4522       TilegxReloc::pc_abs32(view, object, psymval, addend, address);
4523       break;
4524 
4525     case elfcpp::R_TILEGX_16:
4526       TilegxReloc::abs16(view, object, psymval, addend);
4527       break;
4528 
4529     case elfcpp::R_TILEGX_16_PCREL:
4530       TilegxReloc::pc_abs16(view, object, psymval, addend, address);
4531       break;
4532 
4533     case elfcpp::R_TILEGX_8:
4534       Relocate_functions<size, big_endian>::rela8(view, object,
4535                                                   psymval, addend);
4536       break;
4537 
4538     case elfcpp::R_TILEGX_8_PCREL:
4539       Relocate_functions<size, big_endian>::pcrela8(view, object,
4540                                                     psymval, addend, address);
4541       break;
4542 
4543     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4544     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4545     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4546     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4547     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4548     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4549     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4550     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4551     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4552     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4553     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4554     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4555     case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4556     case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4557     case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4558     case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4559     case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4560     case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4561     case elfcpp::R_TILEGX_TLS_GD_CALL:
4562     case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4563     case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4564     case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4565     case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4566     case elfcpp::R_TILEGX_TLS_IE_LOAD:
4567     case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4568     case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4569     case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4570     case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4571       {
4572         const bool is_final = (gsym == NULL
4573                                ? !parameters->options().shared()
4574                                : gsym->final_value_is_known());
4575         tls::Tls_optimization opt_t =
4576           Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
4577                                                               r_type);
4578 
4579         switch (r_type)
4580           {
4581 
4582             case elfcpp::R_TILEGX_TLS_GD_CALL:
4583               {
4584                 if (opt_t == tls::TLSOPT_NONE) {
4585                   Symbol *tls_sym = relinfo->symtab->lookup("__tls_get_addr");
4586                   symval.set_output_value(
4587                     target->plt_address_for_global(tls_sym));
4588                   psymval = &symval;
4589                   TilegxReloc::imm_x_pcrel_general(view, object, psymval,
4590                                                    addend, address, r_howto);
4591                 }
4592                 else if (opt_t == tls::TLSOPT_TO_IE
4593                          || opt_t == tls::TLSOPT_TO_LE)
4594                   TilegxReloc::tls_relax(view, r_type, opt_t);
4595               }
4596               break;
4597 
4598             // XX_TLS_GD is the same as normal X_GOT relocation
4599             // except allocating a got entry pair,
4600             case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4601             case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4602             case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4603             case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4604             case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4605             case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4606               if (opt_t == tls::TLSOPT_NONE) {
4607                 got_type = GOT_TYPE_TLS_PAIR;
4608                 have_got_offset = true;
4609               } else if (opt_t == tls::TLSOPT_TO_IE) {
4610                 got_type = GOT_TYPE_TLS_OFFSET;
4611                 have_got_offset = true;
4612               }
4613               goto do_update_value;
4614             // XX_TLS_IE is the same as normal X_GOT relocation
4615             // except allocating one additional runtime relocation
4616             case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4617             case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4618             case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4619             case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4620             case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4621             case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4622               if (opt_t == tls::TLSOPT_NONE) {
4623                 got_type = GOT_TYPE_TLS_OFFSET;
4624                 have_got_offset = true;
4625               }
4626 	      // Fall through.
4627             do_update_value:
4628               if (have_got_offset) {
4629                 if (gsym != NULL) {
4630                   gold_assert(gsym->has_got_offset(got_type));
4631                   got_offset = gsym->got_offset(got_type) - got_base;
4632                 } else {
4633                   unsigned int r_sym
4634                      = elfcpp::elf_r_sym<size>(rela.get_r_info());
4635                   gold_assert(object->local_has_got_offset(r_sym, got_type));
4636                   got_offset =
4637                     object->local_got_offset(r_sym, got_type) - got_base;
4638                 }
4639               }
4640 
4641               if (opt_t == tls::TLSOPT_NONE
4642                   || opt_t == tls::TLSOPT_TO_IE) {
4643                 // for both GD/IE, these relocations
4644                 // actually calculate got offset, so
4645                 // there behavior are the same
4646                 gold_assert(have_got_offset);
4647                 symval.set_output_value(got_offset);
4648                 psymval = &symval;
4649                 addend = 0;
4650                 TilegxReloc::imm_x_general(view, object, psymval,
4651                                            addend, r_howto);
4652                 break;
4653               } // else if (opt_t == tls::TLSOPT_TO_LE)
4654                 //   both GD/IE are turned into LE, which
4655                 //   is absolute relocation.
4656                 // Fall through.
4657 
4658             // LE
4659             //
4660             // tp
4661             // |
4662             // V
4663             //  t_var1 | t_var2 | t_var3 | ...
4664             //  --------------------------------------------------
4665             //
4666             //  so offset to tp should be negative, we get offset
4667             //  from the following formular for LE
4668             //
4669             //    t_var1_off = t_var1_sym_value - tls_section_start
4670             //
4671             case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4672             case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4673             case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4674             case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4675             case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4676             case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4677               {
4678                 Output_segment *tls_segment = relinfo->layout->tls_segment();
4679                 if (tls_segment == NULL) {
4680                   gold_assert(parameters->errors()->error_count() > 0
4681                               || issue_undefined_symbol_error(gsym));
4682                   return false;
4683                 }
4684 
4685                 typename elfcpp::Elf_types<size>::Elf_Addr value
4686                   = psymval->value(relinfo->object, 0);
4687                 symval.set_output_value(value);
4688                 psymval = &symval;
4689                 TilegxReloc::imm_x_general(view, object, psymval,
4690                                            addend, r_howto);
4691               }
4692               break;
4693 
4694             // tls relaxation
4695             case elfcpp::R_TILEGX_TLS_IE_LOAD:
4696             case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4697             case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4698             case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4699             case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4700             case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4701             case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4702             case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4703             case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4704               TilegxReloc::tls_relax(view, r_type, opt_t);
4705               break;
4706 
4707             default:
4708               gold_unreachable();
4709           }
4710       }
4711       break;
4712 
4713     // below are outstanding relocs
4714     // should not existed in static linking stage
4715     case elfcpp::R_TILEGX_COPY:
4716     case elfcpp::R_TILEGX_GLOB_DAT:
4717     case elfcpp::R_TILEGX_JMP_SLOT:
4718     case elfcpp::R_TILEGX_RELATIVE:
4719     case elfcpp::R_TILEGX_TLS_TPOFF32:
4720     case elfcpp::R_TILEGX_TLS_TPOFF64:
4721     case elfcpp::R_TILEGX_TLS_DTPMOD32:
4722     case elfcpp::R_TILEGX_TLS_DTPMOD64:
4723     case elfcpp::R_TILEGX_TLS_DTPOFF32:
4724     case elfcpp::R_TILEGX_TLS_DTPOFF64:
4725       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4726                              _("unexpected reloc %u in object file"),
4727                              r_type);
4728       break;
4729 
4730     default:
4731       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4732                              _("unsupported reloc %u"),
4733                              r_type);
4734       break;
4735     }
4736 
4737   return true;
4738 }
4739 
4740 // Relocate section data.
4741 
4742 template<int size, bool big_endian>
4743 void
relocate_section(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type view_size,const Reloc_symbol_changes * reloc_symbol_changes)4744 Target_tilegx<size, big_endian>::relocate_section(
4745     const Relocate_info<size, big_endian>* relinfo,
4746     unsigned int sh_type,
4747     const unsigned char* prelocs,
4748     size_t reloc_count,
4749     Output_section* output_section,
4750     bool needs_special_offset_handling,
4751     unsigned char* view,
4752     typename elfcpp::Elf_types<size>::Elf_Addr address,
4753     section_size_type view_size,
4754     const Reloc_symbol_changes* reloc_symbol_changes)
4755 {
4756   typedef Target_tilegx<size, big_endian> Tilegx;
4757   typedef typename Target_tilegx<size, big_endian>::Relocate Tilegx_relocate;
4758   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
4759       Classify_reloc;
4760 
4761   gold_assert(sh_type == elfcpp::SHT_RELA);
4762 
4763   gold::relocate_section<size, big_endian, Tilegx, Tilegx_relocate,
4764 			 gold::Default_comdat_behavior, Classify_reloc>(
4765     relinfo,
4766     this,
4767     prelocs,
4768     reloc_count,
4769     output_section,
4770     needs_special_offset_handling,
4771     view,
4772     address,
4773     view_size,
4774     reloc_symbol_changes);
4775 }
4776 
4777 // Apply an incremental relocation.  Incremental relocations always refer
4778 // to global symbols.
4779 
4780 template<int size, bool big_endian>
4781 void
apply_relocation(const Relocate_info<size,big_endian> * relinfo,typename elfcpp::Elf_types<size>::Elf_Addr r_offset,unsigned int r_type,typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,const Symbol * gsym,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type view_size)4782 Target_tilegx<size, big_endian>::apply_relocation(
4783     const Relocate_info<size, big_endian>* relinfo,
4784     typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4785     unsigned int r_type,
4786     typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4787     const Symbol* gsym,
4788     unsigned char* view,
4789     typename elfcpp::Elf_types<size>::Elf_Addr address,
4790     section_size_type view_size)
4791 {
4792   gold::apply_relocation<size, big_endian, Target_tilegx<size, big_endian>,
4793                          typename Target_tilegx<size, big_endian>::Relocate>(
4794     relinfo,
4795     this,
4796     r_offset,
4797     r_type,
4798     r_addend,
4799     gsym,
4800     view,
4801     address,
4802     view_size);
4803 }
4804 
4805 // Scan the relocs during a relocatable link.
4806 
4807 template<int size, bool big_endian>
4808 void
scan_relocatable_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols,Relocatable_relocs * rr)4809 Target_tilegx<size, big_endian>::scan_relocatable_relocs(
4810     Symbol_table* symtab,
4811     Layout* layout,
4812     Sized_relobj_file<size, big_endian>* object,
4813     unsigned int data_shndx,
4814     unsigned int sh_type,
4815     const unsigned char* prelocs,
4816     size_t reloc_count,
4817     Output_section* output_section,
4818     bool needs_special_offset_handling,
4819     size_t local_symbol_count,
4820     const unsigned char* plocal_symbols,
4821     Relocatable_relocs* rr)
4822 {
4823   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
4824       Classify_reloc;
4825   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4826       Scan_relocatable_relocs;
4827 
4828   gold_assert(sh_type == elfcpp::SHT_RELA);
4829 
4830   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
4831     symtab,
4832     layout,
4833     object,
4834     data_shndx,
4835     prelocs,
4836     reloc_count,
4837     output_section,
4838     needs_special_offset_handling,
4839     local_symbol_count,
4840     plocal_symbols,
4841     rr);
4842 }
4843 
4844 // Scan the relocs for --emit-relocs.
4845 
4846 template<int size, bool big_endian>
4847 void
emit_relocs_scan(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_syms,Relocatable_relocs * rr)4848 Target_tilegx<size, big_endian>::emit_relocs_scan(
4849     Symbol_table* symtab,
4850     Layout* layout,
4851     Sized_relobj_file<size, big_endian>* object,
4852     unsigned int data_shndx,
4853     unsigned int sh_type,
4854     const unsigned char* prelocs,
4855     size_t reloc_count,
4856     Output_section* output_section,
4857     bool needs_special_offset_handling,
4858     size_t local_symbol_count,
4859     const unsigned char* plocal_syms,
4860     Relocatable_relocs* rr)
4861 {
4862   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
4863       Classify_reloc;
4864   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4865       Emit_relocs_strategy;
4866 
4867   gold_assert(sh_type == elfcpp::SHT_RELA);
4868 
4869   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
4870     symtab,
4871     layout,
4872     object,
4873     data_shndx,
4874     prelocs,
4875     reloc_count,
4876     output_section,
4877     needs_special_offset_handling,
4878     local_symbol_count,
4879     plocal_syms,
4880     rr);
4881 }
4882 
4883 // Relocate a section during a relocatable link.
4884 
4885 template<int size, bool big_endian>
4886 void
relocate_relocs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr view_address,section_size_type view_size,unsigned char * reloc_view,section_size_type reloc_view_size)4887 Target_tilegx<size, big_endian>::relocate_relocs(
4888     const Relocate_info<size, big_endian>* relinfo,
4889     unsigned int sh_type,
4890     const unsigned char* prelocs,
4891     size_t reloc_count,
4892     Output_section* output_section,
4893     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4894     unsigned char* view,
4895     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4896     section_size_type view_size,
4897     unsigned char* reloc_view,
4898     section_size_type reloc_view_size)
4899 {
4900   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
4901       Classify_reloc;
4902 
4903   gold_assert(sh_type == elfcpp::SHT_RELA);
4904 
4905   gold::relocate_relocs<size, big_endian, Classify_reloc>(
4906     relinfo,
4907     prelocs,
4908     reloc_count,
4909     output_section,
4910     offset_in_output_section,
4911     view,
4912     view_address,
4913     view_size,
4914     reloc_view,
4915     reloc_view_size);
4916 }
4917 
4918 // Return the value to use for a dynamic which requires special
4919 // treatment.  This is how we support equality comparisons of function
4920 // pointers across shared library boundaries, as described in the
4921 // processor specific ABI supplement.
4922 
4923 template<int size, bool big_endian>
4924 uint64_t
do_dynsym_value(const Symbol * gsym) const4925 Target_tilegx<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
4926 {
4927   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4928   return this->plt_address_for_global(gsym);
4929 }
4930 
4931 // Return the value to use for the base of a DW_EH_PE_datarel offset
4932 // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
4933 // assembler can not write out the difference between two labels in
4934 // different sections, so instead of using a pc-relative value they
4935 // use an offset from the GOT.
4936 
4937 template<int size, bool big_endian>
4938 uint64_t
do_ehframe_datarel_base() const4939 Target_tilegx<size, big_endian>::do_ehframe_datarel_base() const
4940 {
4941   gold_assert(this->global_offset_table_ != NULL);
4942   Symbol* sym = this->global_offset_table_;
4943   Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4944   return ssym->value();
4945 }
4946 
4947 // The selector for tilegx object files.
4948 
4949 template<int size, bool big_endian>
4950 class Target_selector_tilegx : public Target_selector
4951 {
4952 public:
Target_selector_tilegx()4953   Target_selector_tilegx()
4954     : Target_selector(elfcpp::EM_TILEGX, size, big_endian,
4955                       (size == 64
4956                        ? (big_endian ? "elf64-tilegx-be" : "elf64-tilegx-le")
4957                           : (big_endian ? "elf32-tilegx-be"
4958                                            : "elf32-tilegx-le")),
4959                       (size == 64
4960                        ? (big_endian ? "elf64tilegx_be" : "elf64tilegx")
4961                           : (big_endian ? "elf32tilegx_be" : "elf32tilegx")))
4962   { }
4963 
4964   Target*
do_instantiate_target()4965   do_instantiate_target()
4966   { return new Target_tilegx<size, big_endian>(); }
4967 
4968 };
4969 
4970 Target_selector_tilegx<64, false> target_selector_tilegx64_le;
4971 Target_selector_tilegx<32, false> target_selector_tilegx32_le;
4972 Target_selector_tilegx<64, true> target_selector_tilegx64_be;
4973 Target_selector_tilegx<32, true> target_selector_tilegx32_be;
4974 } // End anonymous namespace.
4975