xref: /netbsd/external/gpl3/gdb/dist/gdb/buildsym.c (revision 1424dfb3)
1 /* Support routines for building symbol tables in GDB's internal format.
2    Copyright (C) 1986-2020 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 #include "defs.h"
20 #include "buildsym-legacy.h"
21 #include "bfd.h"
22 #include "gdb_obstack.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "complaints.h"
28 #include "expression.h"		/* For "enum exp_opcode" used by...  */
29 #include "filenames.h"		/* For DOSish file names.  */
30 #include "macrotab.h"
31 #include "demangle.h"		/* Needed by SYMBOL_INIT_DEMANGLED_NAME.  */
32 #include "block.h"
33 #include "cp-support.h"
34 #include "dictionary.h"
35 #include "addrmap.h"
36 #include <algorithm>
37 
38 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
39    questionable--see comment where we call them).  */
40 
41 #include "stabsread.h"
42 
43 /* List of blocks already made (lexical contexts already closed).
44    This is used at the end to make the blockvector.  */
45 
46 struct pending_block
47   {
48     struct pending_block *next;
49     struct block *block;
50   };
51 
52 /* Initial sizes of data structures.  These are realloc'd larger if
53    needed, and realloc'd down to the size actually used, when
54    completed.  */
55 
56 #define	INITIAL_LINE_VECTOR_LENGTH	1000
57 
58 
buildsym_compunit(struct objfile * objfile_,const char * name,const char * comp_dir_,enum language language_,CORE_ADDR last_addr)59 buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
60 				      const char *name,
61 				      const char *comp_dir_,
62 				      enum language language_,
63 				      CORE_ADDR last_addr)
64   : m_objfile (objfile_),
65     m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
66     m_comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
67     m_language (language_),
68     m_last_source_start_addr (last_addr)
69 {
70   /* Allocate the compunit symtab now.  The caller needs it to allocate
71      non-primary symtabs.  It is also needed by get_macro_table.  */
72   m_compunit_symtab = allocate_compunit_symtab (m_objfile, name);
73 
74   /* Build the subfile for NAME (the main source file) so that we can record
75      a pointer to it for later.
76      IMPORTANT: Do not allocate a struct symtab for NAME here.
77      It can happen that the debug info provides a different path to NAME than
78      DIRNAME,NAME.  We cope with this in watch_main_source_file_lossage but
79      that only works if the main_subfile doesn't have a symtab yet.  */
80   start_subfile (name);
81   /* Save this so that we don't have to go looking for it at the end
82      of the subfiles list.  */
83   m_main_subfile = m_current_subfile;
84 }
85 
~buildsym_compunit()86 buildsym_compunit::~buildsym_compunit ()
87 {
88   struct subfile *subfile, *nextsub;
89 
90   if (m_pending_macros != nullptr)
91     free_macro_table (m_pending_macros);
92 
93   for (subfile = m_subfiles;
94        subfile != NULL;
95        subfile = nextsub)
96     {
97       nextsub = subfile->next;
98       xfree (subfile->name);
99       xfree (subfile->line_vector);
100       xfree (subfile);
101     }
102 
103   struct pending *next, *next1;
104 
105   for (next = m_file_symbols; next != NULL; next = next1)
106     {
107       next1 = next->next;
108       xfree ((void *) next);
109     }
110 
111   for (next = m_global_symbols; next != NULL; next = next1)
112     {
113       next1 = next->next;
114       xfree ((void *) next);
115     }
116 }
117 
118 struct macro_table *
get_macro_table()119 buildsym_compunit::get_macro_table ()
120 {
121   if (m_pending_macros == nullptr)
122     m_pending_macros = new_macro_table (&m_objfile->per_bfd->storage_obstack,
123 					&m_objfile->per_bfd->string_cache,
124 					m_compunit_symtab);
125   return m_pending_macros;
126 }
127 
128 /* Maintain the lists of symbols and blocks.  */
129 
130 /* Add a symbol to one of the lists of symbols.  */
131 
132 void
add_symbol_to_list(struct symbol * symbol,struct pending ** listhead)133 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
134 {
135   struct pending *link;
136 
137   /* If this is an alias for another symbol, don't add it.  */
138   if (symbol->linkage_name () && symbol->linkage_name ()[0] == '#')
139     return;
140 
141   /* We keep PENDINGSIZE symbols in each link of the list.  If we
142      don't have a link with room in it, add a new link.  */
143   if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
144     {
145       link = XNEW (struct pending);
146       link->next = *listhead;
147       *listhead = link;
148       link->nsyms = 0;
149     }
150 
151   (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
152 }
153 
154 /* Find a symbol named NAME on a LIST.  NAME need not be
155    '\0'-terminated; LENGTH is the length of the name.  */
156 
157 struct symbol *
find_symbol_in_list(struct pending * list,char * name,int length)158 find_symbol_in_list (struct pending *list, char *name, int length)
159 {
160   int j;
161   const char *pp;
162 
163   while (list != NULL)
164     {
165       for (j = list->nsyms; --j >= 0;)
166 	{
167 	  pp = list->symbol[j]->linkage_name ();
168 	  if (*pp == *name && strncmp (pp, name, length) == 0
169 	      && pp[length] == '\0')
170 	    {
171 	      return (list->symbol[j]);
172 	    }
173 	}
174       list = list->next;
175     }
176   return (NULL);
177 }
178 
179 /* Record BLOCK on the list of all blocks in the file.  Put it after
180    OPBLOCK, or at the beginning if opblock is NULL.  This puts the
181    block in the list after all its subblocks.  */
182 
183 void
record_pending_block(struct block * block,struct pending_block * opblock)184 buildsym_compunit::record_pending_block (struct block *block,
185 					 struct pending_block *opblock)
186 {
187   struct pending_block *pblock;
188 
189   pblock = XOBNEW (&m_pending_block_obstack, struct pending_block);
190   pblock->block = block;
191   if (opblock)
192     {
193       pblock->next = opblock->next;
194       opblock->next = pblock;
195     }
196   else
197     {
198       pblock->next = m_pending_blocks;
199       m_pending_blocks = pblock;
200     }
201 }
202 
203 /* Take one of the lists of symbols and make a block from it.  Keep
204    the order the symbols have in the list (reversed from the input
205    file).  Put the block on the list of pending blocks.  */
206 
207 struct block *
finish_block_internal(struct symbol * symbol,struct pending ** listhead,struct pending_block * old_blocks,const struct dynamic_prop * static_link,CORE_ADDR start,CORE_ADDR end,int is_global,int expandable)208 buildsym_compunit::finish_block_internal
209     (struct symbol *symbol,
210      struct pending **listhead,
211      struct pending_block *old_blocks,
212      const struct dynamic_prop *static_link,
213      CORE_ADDR start, CORE_ADDR end,
214      int is_global, int expandable)
215 {
216   struct gdbarch *gdbarch = m_objfile->arch ();
217   struct pending *next, *next1;
218   struct block *block;
219   struct pending_block *pblock;
220   struct pending_block *opblock;
221 
222   block = (is_global
223 	   ? allocate_global_block (&m_objfile->objfile_obstack)
224 	   : allocate_block (&m_objfile->objfile_obstack));
225 
226   if (symbol)
227     {
228       BLOCK_MULTIDICT (block)
229 	= mdict_create_linear (&m_objfile->objfile_obstack, *listhead);
230     }
231   else
232     {
233       if (expandable)
234 	{
235 	  BLOCK_MULTIDICT (block) = mdict_create_hashed_expandable (m_language);
236 	  mdict_add_pending (BLOCK_MULTIDICT (block), *listhead);
237 	}
238       else
239 	{
240 	  BLOCK_MULTIDICT (block) =
241 	    mdict_create_hashed (&m_objfile->objfile_obstack, *listhead);
242 	}
243     }
244 
245   BLOCK_START (block) = start;
246   BLOCK_END (block) = end;
247 
248   /* Put the block in as the value of the symbol that names it.  */
249 
250   if (symbol)
251     {
252       struct type *ftype = SYMBOL_TYPE (symbol);
253       struct mdict_iterator miter;
254       SYMBOL_BLOCK_VALUE (symbol) = block;
255       BLOCK_FUNCTION (block) = symbol;
256 
257       if (ftype->num_fields () <= 0)
258 	{
259 	  /* No parameter type information is recorded with the
260 	     function's type.  Set that from the type of the
261 	     parameter symbols.  */
262 	  int nparams = 0, iparams;
263 	  struct symbol *sym;
264 
265 	  /* Here we want to directly access the dictionary, because
266 	     we haven't fully initialized the block yet.  */
267 	  ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
268 	    {
269 	      if (SYMBOL_IS_ARGUMENT (sym))
270 		nparams++;
271 	    }
272 	  if (nparams > 0)
273 	    {
274 	      ftype->set_num_fields (nparams);
275 	      ftype->set_fields
276 		((struct field *)
277 		 TYPE_ALLOC (ftype, nparams * sizeof (struct field)));
278 
279 	      iparams = 0;
280 	      /* Here we want to directly access the dictionary, because
281 		 we haven't fully initialized the block yet.  */
282 	      ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
283 		{
284 		  if (iparams == nparams)
285 		    break;
286 
287 		  if (SYMBOL_IS_ARGUMENT (sym))
288 		    {
289 		      ftype->field (iparams).set_type (SYMBOL_TYPE (sym));
290 		      TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
291 		      iparams++;
292 		    }
293 		}
294 	    }
295 	}
296     }
297   else
298     {
299       BLOCK_FUNCTION (block) = NULL;
300     }
301 
302   if (static_link != NULL)
303     objfile_register_static_link (m_objfile, block, static_link);
304 
305   /* Now free the links of the list, and empty the list.  */
306 
307   for (next = *listhead; next; next = next1)
308     {
309       next1 = next->next;
310       xfree (next);
311     }
312   *listhead = NULL;
313 
314   /* Check to be sure that the blocks have an end address that is
315      greater than starting address.  */
316 
317   if (BLOCK_END (block) < BLOCK_START (block))
318     {
319       if (symbol)
320 	{
321 	  complaint (_("block end address less than block "
322 		       "start address in %s (patched it)"),
323 		     symbol->print_name ());
324 	}
325       else
326 	{
327 	  complaint (_("block end address %s less than block "
328 		       "start address %s (patched it)"),
329 		     paddress (gdbarch, BLOCK_END (block)),
330 		     paddress (gdbarch, BLOCK_START (block)));
331 	}
332       /* Better than nothing.  */
333       BLOCK_END (block) = BLOCK_START (block);
334     }
335 
336   /* Install this block as the superblock of all blocks made since the
337      start of this scope that don't have superblocks yet.  */
338 
339   opblock = NULL;
340   for (pblock = m_pending_blocks;
341        pblock && pblock != old_blocks;
342        pblock = pblock->next)
343     {
344       if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
345 	{
346 	  /* Check to be sure the blocks are nested as we receive
347 	     them.  If the compiler/assembler/linker work, this just
348 	     burns a small amount of time.
349 
350 	     Skip blocks which correspond to a function; they're not
351 	     physically nested inside this other blocks, only
352 	     lexically nested.  */
353 	  if (BLOCK_FUNCTION (pblock->block) == NULL
354 	      && (BLOCK_START (pblock->block) < BLOCK_START (block)
355 		  || BLOCK_END (pblock->block) > BLOCK_END (block)))
356 	    {
357 	      if (symbol)
358 		{
359 		  complaint (_("inner block not inside outer block in %s"),
360 			     symbol->print_name ());
361 		}
362 	      else
363 		{
364 		  complaint (_("inner block (%s-%s) not "
365 			       "inside outer block (%s-%s)"),
366 			     paddress (gdbarch, BLOCK_START (pblock->block)),
367 			     paddress (gdbarch, BLOCK_END (pblock->block)),
368 			     paddress (gdbarch, BLOCK_START (block)),
369 			     paddress (gdbarch, BLOCK_END (block)));
370 		}
371 	      if (BLOCK_START (pblock->block) < BLOCK_START (block))
372 		BLOCK_START (pblock->block) = BLOCK_START (block);
373 	      if (BLOCK_END (pblock->block) > BLOCK_END (block))
374 		BLOCK_END (pblock->block) = BLOCK_END (block);
375 	    }
376 	  BLOCK_SUPERBLOCK (pblock->block) = block;
377 	}
378       opblock = pblock;
379     }
380 
381   block_set_using (block,
382 		   (is_global
383 		    ? m_global_using_directives
384 		    : m_local_using_directives),
385 		   &m_objfile->objfile_obstack);
386   if (is_global)
387     m_global_using_directives = NULL;
388   else
389     m_local_using_directives = NULL;
390 
391   record_pending_block (block, opblock);
392 
393   return block;
394 }
395 
396 struct block *
finish_block(struct symbol * symbol,struct pending_block * old_blocks,const struct dynamic_prop * static_link,CORE_ADDR start,CORE_ADDR end)397 buildsym_compunit::finish_block (struct symbol *symbol,
398 				 struct pending_block *old_blocks,
399 				 const struct dynamic_prop *static_link,
400 				 CORE_ADDR start, CORE_ADDR end)
401 {
402   return finish_block_internal (symbol, &m_local_symbols,
403 				old_blocks, static_link, start, end, 0, 0);
404 }
405 
406 /* Record that the range of addresses from START to END_INCLUSIVE
407    (inclusive, like it says) belongs to BLOCK.  BLOCK's start and end
408    addresses must be set already.  You must apply this function to all
409    BLOCK's children before applying it to BLOCK.
410 
411    If a call to this function complicates the picture beyond that
412    already provided by BLOCK_START and BLOCK_END, then we create an
413    address map for the block.  */
414 void
record_block_range(struct block * block,CORE_ADDR start,CORE_ADDR end_inclusive)415 buildsym_compunit::record_block_range (struct block *block,
416 				       CORE_ADDR start,
417 				       CORE_ADDR end_inclusive)
418 {
419   /* If this is any different from the range recorded in the block's
420      own BLOCK_START and BLOCK_END, then note that the address map has
421      become interesting.  Note that even if this block doesn't have
422      any "interesting" ranges, some later block might, so we still
423      need to record this block in the addrmap.  */
424   if (start != BLOCK_START (block)
425       || end_inclusive + 1 != BLOCK_END (block))
426     m_pending_addrmap_interesting = true;
427 
428   if (m_pending_addrmap == nullptr)
429     m_pending_addrmap = addrmap_create_mutable (&m_pending_addrmap_obstack);
430 
431   addrmap_set_empty (m_pending_addrmap, start, end_inclusive, block);
432 }
433 
434 struct blockvector *
make_blockvector()435 buildsym_compunit::make_blockvector ()
436 {
437   struct pending_block *next;
438   struct blockvector *blockvector;
439   int i;
440 
441   /* Count the length of the list of blocks.  */
442 
443   for (next = m_pending_blocks, i = 0; next; next = next->next, i++)
444     {
445     }
446 
447   blockvector = (struct blockvector *)
448     obstack_alloc (&m_objfile->objfile_obstack,
449 		   (sizeof (struct blockvector)
450 		    + (i - 1) * sizeof (struct block *)));
451 
452   /* Copy the blocks into the blockvector.  This is done in reverse
453      order, which happens to put the blocks into the proper order
454      (ascending starting address).  finish_block has hair to insert
455      each block into the list after its subblocks in order to make
456      sure this is true.  */
457 
458   BLOCKVECTOR_NBLOCKS (blockvector) = i;
459   for (next = m_pending_blocks; next; next = next->next)
460     {
461       BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
462     }
463 
464   free_pending_blocks ();
465 
466   /* If we needed an address map for this symtab, record it in the
467      blockvector.  */
468   if (m_pending_addrmap != nullptr && m_pending_addrmap_interesting)
469     BLOCKVECTOR_MAP (blockvector)
470       = addrmap_create_fixed (m_pending_addrmap, &m_objfile->objfile_obstack);
471   else
472     BLOCKVECTOR_MAP (blockvector) = 0;
473 
474   /* Some compilers output blocks in the wrong order, but we depend on
475      their being in the right order so we can binary search.  Check the
476      order and moan about it.
477      Note: Remember that the first two blocks are the global and static
478      blocks.  We could special case that fact and begin checking at block 2.
479      To avoid making that assumption we do not.  */
480   if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
481     {
482       for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
483 	{
484 	  if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
485 	      > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
486 	    {
487 	      CORE_ADDR start
488 		= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
489 
490 	      complaint (_("block at %s out of order"),
491 			 hex_string ((LONGEST) start));
492 	    }
493 	}
494     }
495 
496   return (blockvector);
497 }
498 
499 /* Start recording information about source code that came from an
500    included (or otherwise merged-in) source file with a different
501    name.  NAME is the name of the file (cannot be NULL).  */
502 
503 void
start_subfile(const char * name)504 buildsym_compunit::start_subfile (const char *name)
505 {
506   const char *subfile_dirname;
507   struct subfile *subfile;
508 
509   subfile_dirname = m_comp_dir.get ();
510 
511   /* See if this subfile is already registered.  */
512 
513   for (subfile = m_subfiles; subfile; subfile = subfile->next)
514     {
515       char *subfile_name;
516 
517       /* If NAME is an absolute path, and this subfile is not, then
518 	 attempt to create an absolute path to compare.  */
519       if (IS_ABSOLUTE_PATH (name)
520 	  && !IS_ABSOLUTE_PATH (subfile->name)
521 	  && subfile_dirname != NULL)
522 	subfile_name = concat (subfile_dirname, SLASH_STRING,
523 			       subfile->name, (char *) NULL);
524       else
525 	subfile_name = subfile->name;
526 
527       if (FILENAME_CMP (subfile_name, name) == 0)
528 	{
529 	  m_current_subfile = subfile;
530 	  if (subfile_name != subfile->name)
531 	    xfree (subfile_name);
532 	  return;
533 	}
534       if (subfile_name != subfile->name)
535 	xfree (subfile_name);
536     }
537 
538   /* This subfile is not known.  Add an entry for it.  */
539 
540   subfile = XNEW (struct subfile);
541   memset (subfile, 0, sizeof (struct subfile));
542   subfile->buildsym_compunit = this;
543 
544   subfile->next = m_subfiles;
545   m_subfiles = subfile;
546 
547   m_current_subfile = subfile;
548 
549   subfile->name = xstrdup (name);
550 
551   /* Initialize line-number recording for this subfile.  */
552   subfile->line_vector = NULL;
553 
554   /* Default the source language to whatever can be deduced from the
555      filename.  If nothing can be deduced (such as for a C/C++ include
556      file with a ".h" extension), then inherit whatever language the
557      previous subfile had.  This kludgery is necessary because there
558      is no standard way in some object formats to record the source
559      language.  Also, when symtabs are allocated we try to deduce a
560      language then as well, but it is too late for us to use that
561      information while reading symbols, since symtabs aren't allocated
562      until after all the symbols have been processed for a given
563      source file.  */
564 
565   subfile->language = deduce_language_from_filename (subfile->name);
566   if (subfile->language == language_unknown
567       && subfile->next != NULL)
568     {
569       subfile->language = subfile->next->language;
570     }
571 
572   /* If the filename of this subfile ends in .C, then change the
573      language of any pending subfiles from C to C++.  We also accept
574      any other C++ suffixes accepted by deduce_language_from_filename.  */
575   /* Likewise for f2c.  */
576 
577   if (subfile->name)
578     {
579       struct subfile *s;
580       enum language sublang = deduce_language_from_filename (subfile->name);
581 
582       if (sublang == language_cplus || sublang == language_fortran)
583 	for (s = m_subfiles; s != NULL; s = s->next)
584 	  if (s->language == language_c)
585 	    s->language = sublang;
586     }
587 
588   /* And patch up this file if necessary.  */
589   if (subfile->language == language_c
590       && subfile->next != NULL
591       && (subfile->next->language == language_cplus
592 	  || subfile->next->language == language_fortran))
593     {
594       subfile->language = subfile->next->language;
595     }
596 }
597 
598 /* For stabs readers, the first N_SO symbol is assumed to be the
599    source file name, and the subfile struct is initialized using that
600    assumption.  If another N_SO symbol is later seen, immediately
601    following the first one, then the first one is assumed to be the
602    directory name and the second one is really the source file name.
603 
604    So we have to patch up the subfile struct by moving the old name
605    value to dirname and remembering the new name.  Some sanity
606    checking is performed to ensure that the state of the subfile
607    struct is reasonable and that the old name we are assuming to be a
608    directory name actually is (by checking for a trailing '/').  */
609 
610 void
patch_subfile_names(struct subfile * subfile,const char * name)611 buildsym_compunit::patch_subfile_names (struct subfile *subfile,
612 					const char *name)
613 {
614   if (subfile != NULL
615       && m_comp_dir == NULL
616       && subfile->name != NULL
617       && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
618     {
619       m_comp_dir.reset (subfile->name);
620       subfile->name = xstrdup (name);
621       set_last_source_file (name);
622 
623       /* Default the source language to whatever can be deduced from
624          the filename.  If nothing can be deduced (such as for a C/C++
625          include file with a ".h" extension), then inherit whatever
626          language the previous subfile had.  This kludgery is
627          necessary because there is no standard way in some object
628          formats to record the source language.  Also, when symtabs
629          are allocated we try to deduce a language then as well, but
630          it is too late for us to use that information while reading
631          symbols, since symtabs aren't allocated until after all the
632          symbols have been processed for a given source file.  */
633 
634       subfile->language = deduce_language_from_filename (subfile->name);
635       if (subfile->language == language_unknown
636 	  && subfile->next != NULL)
637 	{
638 	  subfile->language = subfile->next->language;
639 	}
640     }
641 }
642 
643 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
644    switching source files (different subfiles, as we call them) within
645    one object file, but using a stack rather than in an arbitrary
646    order.  */
647 
648 void
push_subfile()649 buildsym_compunit::push_subfile ()
650 {
651   gdb_assert (m_current_subfile != NULL);
652   gdb_assert (m_current_subfile->name != NULL);
653   m_subfile_stack.push_back (m_current_subfile->name);
654 }
655 
656 const char *
pop_subfile()657 buildsym_compunit::pop_subfile ()
658 {
659   gdb_assert (!m_subfile_stack.empty ());
660   const char *name = m_subfile_stack.back ();
661   m_subfile_stack.pop_back ();
662   return name;
663 }
664 
665 /* Add a linetable entry for line number LINE and address PC to the
666    line vector for SUBFILE.  */
667 
668 void
record_line(struct subfile * subfile,int line,CORE_ADDR pc,bool is_stmt)669 buildsym_compunit::record_line (struct subfile *subfile, int line,
670 				CORE_ADDR pc, bool is_stmt)
671 {
672   struct linetable_entry *e;
673 
674   /* Make sure line vector exists and is big enough.  */
675   if (!subfile->line_vector)
676     {
677       subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
678       subfile->line_vector = (struct linetable *)
679 	xmalloc (sizeof (struct linetable)
680 	   + subfile->line_vector_length * sizeof (struct linetable_entry));
681       subfile->line_vector->nitems = 0;
682       m_have_line_numbers = true;
683     }
684 
685   if (subfile->line_vector->nitems >= subfile->line_vector_length)
686     {
687       subfile->line_vector_length *= 2;
688       subfile->line_vector = (struct linetable *)
689 	xrealloc ((char *) subfile->line_vector,
690 		  (sizeof (struct linetable)
691 		   + (subfile->line_vector_length
692 		      * sizeof (struct linetable_entry))));
693     }
694 
695   /* Normally, we treat lines as unsorted.  But the end of sequence
696      marker is special.  We sort line markers at the same PC by line
697      number, so end of sequence markers (which have line == 0) appear
698      first.  This is right if the marker ends the previous function,
699      and there is no padding before the next function.  But it is
700      wrong if the previous line was empty and we are now marking a
701      switch to a different subfile.  We must leave the end of sequence
702      marker at the end of this group of lines, not sort the empty line
703      to after the marker.  The easiest way to accomplish this is to
704      delete any empty lines from our table, if they are followed by
705      end of sequence markers.  All we lose is the ability to set
706      breakpoints at some lines which contain no instructions
707      anyway.  */
708   if (line == 0)
709     {
710       while (subfile->line_vector->nitems > 0)
711 	{
712 	  e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
713 	  if (e->pc != pc)
714 	    break;
715 	  subfile->line_vector->nitems--;
716 	}
717     }
718 
719   e = subfile->line_vector->item + subfile->line_vector->nitems++;
720   e->line = line;
721   e->is_stmt = is_stmt ? 1 : 0;
722   e->pc = pc;
723 }
724 
725 
726 /* Subroutine of end_symtab to simplify it.  Look for a subfile that
727    matches the main source file's basename.  If there is only one, and
728    if the main source file doesn't have any symbol or line number
729    information, then copy this file's symtab and line_vector to the
730    main source file's subfile and discard the other subfile.  This can
731    happen because of a compiler bug or from the user playing games
732    with #line or from things like a distributed build system that
733    manipulates the debug info.  This can also happen from an innocent
734    symlink in the paths, we don't canonicalize paths here.  */
735 
736 void
watch_main_source_file_lossage()737 buildsym_compunit::watch_main_source_file_lossage ()
738 {
739   struct subfile *mainsub, *subfile;
740 
741   /* Get the main source file.  */
742   mainsub = m_main_subfile;
743 
744   /* If the main source file doesn't have any line number or symbol
745      info, look for an alias in another subfile.  */
746 
747   if (mainsub->line_vector == NULL
748       && mainsub->symtab == NULL)
749     {
750       const char *mainbase = lbasename (mainsub->name);
751       int nr_matches = 0;
752       struct subfile *prevsub;
753       struct subfile *mainsub_alias = NULL;
754       struct subfile *prev_mainsub_alias = NULL;
755 
756       prevsub = NULL;
757       for (subfile = m_subfiles;
758 	   subfile != NULL;
759 	   subfile = subfile->next)
760 	{
761 	  if (subfile == mainsub)
762 	    continue;
763 	  if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
764 	    {
765 	      ++nr_matches;
766 	      mainsub_alias = subfile;
767 	      prev_mainsub_alias = prevsub;
768 	    }
769 	  prevsub = subfile;
770 	}
771 
772       if (nr_matches == 1)
773 	{
774 	  gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
775 
776 	  /* Found a match for the main source file.
777 	     Copy its line_vector and symtab to the main subfile
778 	     and then discard it.  */
779 
780 	  mainsub->line_vector = mainsub_alias->line_vector;
781 	  mainsub->line_vector_length = mainsub_alias->line_vector_length;
782 	  mainsub->symtab = mainsub_alias->symtab;
783 
784 	  if (prev_mainsub_alias == NULL)
785 	    m_subfiles = mainsub_alias->next;
786 	  else
787 	    prev_mainsub_alias->next = mainsub_alias->next;
788 	  xfree (mainsub_alias->name);
789 	  xfree (mainsub_alias);
790 	}
791     }
792 }
793 
794 /* Implementation of the first part of end_symtab.  It allows modifying
795    STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
796    If the returned value is NULL there is no blockvector created for
797    this symtab (you still must call end_symtab_from_static_block).
798 
799    END_ADDR is the same as for end_symtab: the address of the end of the
800    file's text.
801 
802    If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
803    expandable.
804 
805    If REQUIRED is non-zero, then a symtab is created even if it does
806    not contain any symbols.  */
807 
808 struct block *
end_symtab_get_static_block(CORE_ADDR end_addr,int expandable,int required)809 buildsym_compunit::end_symtab_get_static_block (CORE_ADDR end_addr,
810 						int expandable, int required)
811 {
812   /* Finish the lexical context of the last function in the file; pop
813      the context stack.  */
814 
815   if (!m_context_stack.empty ())
816     {
817       struct context_stack cstk = pop_context ();
818 
819       /* Make a block for the local symbols within.  */
820       finish_block (cstk.name, cstk.old_blocks, NULL,
821 		    cstk.start_addr, end_addr);
822 
823       if (!m_context_stack.empty ())
824 	{
825 	  /* This is said to happen with SCO.  The old coffread.c
826 	     code simply emptied the context stack, so we do the
827 	     same.  FIXME: Find out why it is happening.  This is not
828 	     believed to happen in most cases (even for coffread.c);
829 	     it used to be an abort().  */
830 	  complaint (_("Context stack not empty in end_symtab"));
831 	  m_context_stack.clear ();
832 	}
833     }
834 
835   /* Reordered executables may have out of order pending blocks; if
836      OBJF_REORDERED is true, then sort the pending blocks.  */
837 
838   if ((m_objfile->flags & OBJF_REORDERED) && m_pending_blocks)
839     {
840       struct pending_block *pb;
841 
842       std::vector<block *> barray;
843 
844       for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
845 	barray.push_back (pb->block);
846 
847       /* Sort blocks by start address in descending order.  Blocks with the
848 	 same start address must remain in the original order to preserve
849 	 inline function caller/callee relationships.  */
850       std::stable_sort (barray.begin (), barray.end (),
851 			[] (const block *a, const block *b)
852 			{
853 			  return BLOCK_START (a) > BLOCK_START (b);
854 			});
855 
856       int i = 0;
857       for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
858 	pb->block = barray[i++];
859     }
860 
861   /* Cleanup any undefined types that have been left hanging around
862      (this needs to be done before the finish_blocks so that
863      file_symbols is still good).
864 
865      Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
866      specific, but harmless for other symbol readers, since on gdb
867      startup or when finished reading stabs, the state is set so these
868      are no-ops.  FIXME: Is this handled right in case of QUIT?  Can
869      we make this cleaner?  */
870 
871   cleanup_undefined_stabs_types (m_objfile);
872   finish_global_stabs (m_objfile);
873 
874   if (!required
875       && m_pending_blocks == NULL
876       && m_file_symbols == NULL
877       && m_global_symbols == NULL
878       && !m_have_line_numbers
879       && m_pending_macros == NULL
880       && m_global_using_directives == NULL)
881     {
882       /* Ignore symtabs that have no functions with real debugging info.  */
883       return NULL;
884     }
885   else
886     {
887       /* Define the STATIC_BLOCK.  */
888       return finish_block_internal (NULL, get_file_symbols (), NULL, NULL,
889 				    m_last_source_start_addr,
890 				    end_addr, 0, expandable);
891     }
892 }
893 
894 /* Subroutine of end_symtab_from_static_block to simplify it.
895    Handle the "have blockvector" case.
896    See end_symtab_from_static_block for a description of the arguments.  */
897 
898 struct compunit_symtab *
end_symtab_with_blockvector(struct block * static_block,int section,int expandable)899 buildsym_compunit::end_symtab_with_blockvector (struct block *static_block,
900 						int section, int expandable)
901 {
902   struct compunit_symtab *cu = m_compunit_symtab;
903   struct blockvector *blockvector;
904   struct subfile *subfile;
905   CORE_ADDR end_addr;
906 
907   gdb_assert (static_block != NULL);
908   gdb_assert (m_subfiles != NULL);
909 
910   end_addr = BLOCK_END (static_block);
911 
912   /* Create the GLOBAL_BLOCK and build the blockvector.  */
913   finish_block_internal (NULL, get_global_symbols (), NULL, NULL,
914 			 m_last_source_start_addr, end_addr,
915 			 1, expandable);
916   blockvector = make_blockvector ();
917 
918   /* Read the line table if it has to be read separately.
919      This is only used by xcoffread.c.  */
920   if (m_objfile->sf->sym_read_linetable != NULL)
921     m_objfile->sf->sym_read_linetable (m_objfile);
922 
923   /* Handle the case where the debug info specifies a different path
924      for the main source file.  It can cause us to lose track of its
925      line number information.  */
926   watch_main_source_file_lossage ();
927 
928   /* Now create the symtab objects proper, if not already done,
929      one for each subfile.  */
930 
931   for (subfile = m_subfiles;
932        subfile != NULL;
933        subfile = subfile->next)
934     {
935       int linetablesize = 0;
936 
937       if (subfile->line_vector)
938 	{
939 	  linetablesize = sizeof (struct linetable) +
940 	    subfile->line_vector->nitems * sizeof (struct linetable_entry);
941 
942 	  const auto lte_is_less_than
943 	    = [] (const linetable_entry &ln1,
944 		  const linetable_entry &ln2) -> bool
945 	      {
946 		if (ln1.pc == ln2.pc
947 		    && ((ln1.line == 0) != (ln2.line == 0)))
948 		  return ln1.line == 0;
949 
950 		return (ln1.pc < ln2.pc);
951 	      };
952 
953 	  /* Like the pending blocks, the line table may be scrambled in
954 	     reordered executables.  Sort it if OBJF_REORDERED is true.  It
955 	     is important to preserve the order of lines at the same
956 	     address, as this maintains the inline function caller/callee
957 	     relationships, this is why std::stable_sort is used.  */
958 	  if (m_objfile->flags & OBJF_REORDERED)
959 	    std::stable_sort (subfile->line_vector->item,
960 			      subfile->line_vector->item
961 			      + subfile->line_vector->nitems,
962 			      lte_is_less_than);
963 	}
964 
965       /* Allocate a symbol table if necessary.  */
966       if (subfile->symtab == NULL)
967 	subfile->symtab = allocate_symtab (cu, subfile->name);
968       struct symtab *symtab = subfile->symtab;
969 
970       /* Fill in its components.  */
971 
972       if (subfile->line_vector)
973 	{
974 	  /* Reallocate the line table on the symbol obstack.  */
975 	  SYMTAB_LINETABLE (symtab) = (struct linetable *)
976 	    obstack_alloc (&m_objfile->objfile_obstack, linetablesize);
977 	  memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
978 		  linetablesize);
979 	}
980       else
981 	{
982 	  SYMTAB_LINETABLE (symtab) = NULL;
983 	}
984 
985       /* Use whatever language we have been using for this
986 	 subfile, not the one that was deduced in allocate_symtab
987 	 from the filename.  We already did our own deducing when
988 	 we created the subfile, and we may have altered our
989 	 opinion of what language it is from things we found in
990 	 the symbols.  */
991       symtab->language = subfile->language;
992     }
993 
994   /* Make sure the symtab of main_subfile is the first in its list.  */
995   {
996     struct symtab *main_symtab, *prev_symtab;
997 
998     main_symtab = m_main_subfile->symtab;
999     prev_symtab = NULL;
1000     for (symtab *symtab : compunit_filetabs (cu))
1001       {
1002 	if (symtab == main_symtab)
1003 	  {
1004 	    if (prev_symtab != NULL)
1005 	      {
1006 		prev_symtab->next = main_symtab->next;
1007 		main_symtab->next = COMPUNIT_FILETABS (cu);
1008 		COMPUNIT_FILETABS (cu) = main_symtab;
1009 	      }
1010 	    break;
1011 	  }
1012 	prev_symtab = symtab;
1013       }
1014     gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1015   }
1016 
1017   /* Fill out the compunit symtab.  */
1018 
1019   if (m_comp_dir != NULL)
1020     {
1021       /* Reallocate the dirname on the symbol obstack.  */
1022       const char *comp_dir = m_comp_dir.get ();
1023       COMPUNIT_DIRNAME (cu) = obstack_strdup (&m_objfile->objfile_obstack,
1024 					      comp_dir);
1025     }
1026 
1027   /* Save the debug format string (if any) in the symtab.  */
1028   COMPUNIT_DEBUGFORMAT (cu) = m_debugformat;
1029 
1030   /* Similarly for the producer.  */
1031   COMPUNIT_PRODUCER (cu) = m_producer;
1032 
1033   COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1034   {
1035     struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1036 
1037     set_block_compunit_symtab (b, cu);
1038   }
1039 
1040   COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1041 
1042   COMPUNIT_MACRO_TABLE (cu) = release_macros ();
1043 
1044   /* Default any symbols without a specified symtab to the primary symtab.  */
1045   {
1046     int block_i;
1047 
1048     /* The main source file's symtab.  */
1049     struct symtab *symtab = COMPUNIT_FILETABS (cu);
1050 
1051     for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1052       {
1053 	struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1054 	struct symbol *sym;
1055 	struct mdict_iterator miter;
1056 
1057 	/* Inlined functions may have symbols not in the global or
1058 	   static symbol lists.  */
1059 	if (BLOCK_FUNCTION (block) != NULL)
1060 	  if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1061 	    symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1062 
1063 	/* Note that we only want to fix up symbols from the local
1064 	   blocks, not blocks coming from included symtabs.  That is why
1065 	   we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS.  */
1066 	ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
1067 	  if (symbol_symtab (sym) == NULL)
1068 	    symbol_set_symtab (sym, symtab);
1069       }
1070   }
1071 
1072   add_compunit_symtab_to_objfile (cu);
1073 
1074   return cu;
1075 }
1076 
1077 /* Implementation of the second part of end_symtab.  Pass STATIC_BLOCK
1078    as value returned by end_symtab_get_static_block.
1079 
1080    SECTION is the same as for end_symtab: the section number
1081    (in objfile->section_offsets) of the blockvector and linetable.
1082 
1083    If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1084    expandable.  */
1085 
1086 struct compunit_symtab *
end_symtab_from_static_block(struct block * static_block,int section,int expandable)1087 buildsym_compunit::end_symtab_from_static_block (struct block *static_block,
1088 						 int section, int expandable)
1089 {
1090   struct compunit_symtab *cu;
1091 
1092   if (static_block == NULL)
1093     {
1094       /* Handle the "no blockvector" case.
1095 	 When this happens there is nothing to record, so there's nothing
1096 	 to do: memory will be freed up later.
1097 
1098 	 Note: We won't be adding a compunit to the objfile's list of
1099 	 compunits, so there's nothing to unchain.  However, since each symtab
1100 	 is added to the objfile's obstack we can't free that space.
1101 	 We could do better, but this is believed to be a sufficiently rare
1102 	 event.  */
1103       cu = NULL;
1104     }
1105   else
1106     cu = end_symtab_with_blockvector (static_block, section, expandable);
1107 
1108   return cu;
1109 }
1110 
1111 /* Finish the symbol definitions for one main source file, close off
1112    all the lexical contexts for that file (creating struct block's for
1113    them), then make the struct symtab for that file and put it in the
1114    list of all such.
1115 
1116    END_ADDR is the address of the end of the file's text.  SECTION is
1117    the section number (in objfile->section_offsets) of the blockvector
1118    and linetable.
1119 
1120    Note that it is possible for end_symtab() to return NULL.  In
1121    particular, for the DWARF case at least, it will return NULL when
1122    it finds a compilation unit that has exactly one DIE, a
1123    TAG_compile_unit DIE.  This can happen when we link in an object
1124    file that was compiled from an empty source file.  Returning NULL
1125    is probably not the correct thing to do, because then gdb will
1126    never know about this empty file (FIXME).
1127 
1128    If you need to modify STATIC_BLOCK before it is finalized you should
1129    call end_symtab_get_static_block and end_symtab_from_static_block
1130    yourself.  */
1131 
1132 struct compunit_symtab *
end_symtab(CORE_ADDR end_addr,int section)1133 buildsym_compunit::end_symtab (CORE_ADDR end_addr, int section)
1134 {
1135   struct block *static_block;
1136 
1137   static_block = end_symtab_get_static_block (end_addr, 0, 0);
1138   return end_symtab_from_static_block (static_block, section, 0);
1139 }
1140 
1141 /* Same as end_symtab except create a symtab that can be later added to.  */
1142 
1143 struct compunit_symtab *
end_expandable_symtab(CORE_ADDR end_addr,int section)1144 buildsym_compunit::end_expandable_symtab (CORE_ADDR end_addr, int section)
1145 {
1146   struct block *static_block;
1147 
1148   static_block = end_symtab_get_static_block (end_addr, 1, 0);
1149   return end_symtab_from_static_block (static_block, section, 1);
1150 }
1151 
1152 /* Subroutine of augment_type_symtab to simplify it.
1153    Attach the main source file's symtab to all symbols in PENDING_LIST that
1154    don't have one.  */
1155 
1156 static void
set_missing_symtab(struct pending * pending_list,struct compunit_symtab * cu)1157 set_missing_symtab (struct pending *pending_list,
1158 		    struct compunit_symtab *cu)
1159 {
1160   struct pending *pending;
1161   int i;
1162 
1163   for (pending = pending_list; pending != NULL; pending = pending->next)
1164     {
1165       for (i = 0; i < pending->nsyms; ++i)
1166 	{
1167 	  if (symbol_symtab (pending->symbol[i]) == NULL)
1168 	    symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1169 	}
1170     }
1171 }
1172 
1173 /* Same as end_symtab, but for the case where we're adding more symbols
1174    to an existing symtab that is known to contain only type information.
1175    This is the case for DWARF4 Type Units.  */
1176 
1177 void
augment_type_symtab()1178 buildsym_compunit::augment_type_symtab ()
1179 {
1180   struct compunit_symtab *cust = m_compunit_symtab;
1181   const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1182 
1183   if (!m_context_stack.empty ())
1184     complaint (_("Context stack not empty in augment_type_symtab"));
1185   if (m_pending_blocks != NULL)
1186     complaint (_("Blocks in a type symtab"));
1187   if (m_pending_macros != NULL)
1188     complaint (_("Macro in a type symtab"));
1189   if (m_have_line_numbers)
1190     complaint (_("Line numbers recorded in a type symtab"));
1191 
1192   if (m_file_symbols != NULL)
1193     {
1194       struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1195 
1196       /* First mark any symbols without a specified symtab as belonging
1197 	 to the primary symtab.  */
1198       set_missing_symtab (m_file_symbols, cust);
1199 
1200       mdict_add_pending (BLOCK_MULTIDICT (block), m_file_symbols);
1201     }
1202 
1203   if (m_global_symbols != NULL)
1204     {
1205       struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1206 
1207       /* First mark any symbols without a specified symtab as belonging
1208 	 to the primary symtab.  */
1209       set_missing_symtab (m_global_symbols, cust);
1210 
1211       mdict_add_pending (BLOCK_MULTIDICT (block),
1212 			m_global_symbols);
1213     }
1214 }
1215 
1216 /* Push a context block.  Args are an identifying nesting level
1217    (checkable when you pop it), and the starting PC address of this
1218    context.  */
1219 
1220 struct context_stack *
push_context(int desc,CORE_ADDR valu)1221 buildsym_compunit::push_context (int desc, CORE_ADDR valu)
1222 {
1223   m_context_stack.emplace_back ();
1224   struct context_stack *newobj = &m_context_stack.back ();
1225 
1226   newobj->depth = desc;
1227   newobj->locals = m_local_symbols;
1228   newobj->old_blocks = m_pending_blocks;
1229   newobj->start_addr = valu;
1230   newobj->local_using_directives = m_local_using_directives;
1231   newobj->name = NULL;
1232 
1233   m_local_symbols = NULL;
1234   m_local_using_directives = NULL;
1235 
1236   return newobj;
1237 }
1238 
1239 /* Pop a context block.  Returns the address of the context block just
1240    popped.  */
1241 
1242 struct context_stack
pop_context()1243 buildsym_compunit::pop_context ()
1244 {
1245   gdb_assert (!m_context_stack.empty ());
1246   struct context_stack result = m_context_stack.back ();
1247   m_context_stack.pop_back ();
1248   return result;
1249 }
1250