1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "value.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "gdbcore.h"
30 #include "objfiles.h"
31 #include "dis-asm.h"
32 #include "dwarf2/frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35
36 enum gdb_regnum
37 {
38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39 E_RET0_REGNUM = E_R0_REGNUM,
40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
46 E_SP_REGNUM,
47 E_CCR_REGNUM,
48 E_PC_REGNUM,
49 E_CYCLES_REGNUM,
50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
52 E_INSTS_REGNUM,
53 E_MACH_REGNUM,
54 E_MACL_REGNUM,
55 E_SBR_REGNUM,
56 E_VBR_REGNUM
57 };
58
59 #define H8300_MAX_NUM_REGS 18
60
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
63
64 struct h8300_frame_cache
65 {
66 /* Base address. */
67 CORE_ADDR base;
68 CORE_ADDR sp_offset;
69 CORE_ADDR pc;
70
71 /* Flag showing that a frame has been created in the prologue code. */
72 int uses_fp;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
76 CORE_ADDR saved_sp;
77 };
78
79 enum
80 {
81 h8300_reg_size = 2,
82 h8300h_reg_size = 4,
83 h8300_max_reg_size = 4,
84 };
85
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
90
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 && !is_h8300_normal_mode (gdbarch)) \
93 ? h8300h_reg_size : h8300_reg_size)
94
95 /* Normal frames. */
96
97 /* Allocate and initialize a frame cache. */
98
99 static void
h8300_init_frame_cache(struct gdbarch * gdbarch,struct h8300_frame_cache * cache)100 h8300_init_frame_cache (struct gdbarch *gdbarch,
101 struct h8300_frame_cache *cache)
102 {
103 int i;
104
105 /* Base address. */
106 cache->base = 0;
107 cache->sp_offset = 0;
108 cache->pc = 0;
109
110 /* Frameless until proven otherwise. */
111 cache->uses_fp = 0;
112
113 /* Saved registers. We initialize these to -1 since zero is a valid
114 offset (that's where %fp is supposed to be stored). */
115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
116 cache->saved_regs[i] = -1;
117 }
118
119 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
120 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
121 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
122 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
123 #define IS_MOVB_EXT(x) ((x) == 0x7860)
124 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
125 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
126 #define IS_MOVW_EXT(x) ((x) == 0x78e0)
127 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
128 /* Same instructions as mov.w, just prefixed with 0x0100. */
129 #define IS_MOVL_PRE(x) ((x) == 0x0100)
130 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
131 #define IS_MOVL_EXT(x) ((x) == 0x78e0)
132 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
133
134 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
135 #define IS_PUSH_FP(x) ((x) == 0x01006df6)
136 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
137 #define IS_SUB2_SP(x) ((x) == 0x1b87)
138 #define IS_SUB4_SP(x) ((x) == 0x1b97)
139 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
140 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
141 #define IS_SUBL4_SP(x) ((x) == 0x1acf)
142 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
143 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
144 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
145 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
146
147 /* If the instruction at PC is an argument register spill, return its
148 length. Otherwise, return zero.
149
150 An argument register spill is an instruction that moves an argument
151 from the register in which it was passed to the stack slot in which
152 it really lives. It is a byte, word, or longword move from an
153 argument register to a negative offset from the frame pointer.
154
155 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
156 is used, it could be a byte, word or long move to registers r3-r5. */
157
158 static int
h8300_is_argument_spill(struct gdbarch * gdbarch,CORE_ADDR pc)159 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
160 {
161 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
162 int w = read_memory_unsigned_integer (pc, 2, byte_order);
163
164 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
165 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
166 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
167 return 2;
168
169 if (IS_MOVB_Rn16_SP (w)
170 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
171 {
172 /* ... and d:16 is negative. */
173 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
174 return 4;
175 }
176 else if (IS_MOVB_EXT (w))
177 {
178 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
179 2, byte_order)))
180 {
181 ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order);
182
183 /* ... and d:24 is negative. */
184 if ((disp & 0x00800000) != 0)
185 return 8;
186 }
187 }
188 else if (IS_MOVW_Rn16_SP (w)
189 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
190 {
191 /* ... and d:16 is negative. */
192 if (read_memory_integer (pc + 2, 2, byte_order) < 0)
193 return 4;
194 }
195 else if (IS_MOVW_EXT (w))
196 {
197 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
198 2, byte_order)))
199 {
200 ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order);
201
202 /* ... and d:24 is negative. */
203 if ((disp & 0x00800000) != 0)
204 return 8;
205 }
206 }
207 else if (IS_MOVL_PRE (w))
208 {
209 int w2 = read_memory_integer (pc + 2, 2, byte_order);
210
211 if (IS_MOVL_Rn16_SP (w2)
212 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
213 {
214 /* ... and d:16 is negative. */
215 if (read_memory_integer (pc + 4, 2, byte_order) < 0)
216 return 6;
217 }
218 else if (IS_MOVL_EXT (w2))
219 {
220 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
221 {
222 ULONGEST disp = read_memory_unsigned_integer (pc + 6, 4,
223 byte_order);
224
225 /* ... and d:24 is negative. */
226 if ((disp & 0x00800000) != 0)
227 return 10;
228 }
229 }
230 }
231
232 return 0;
233 }
234
235 /* Do a full analysis of the prologue at PC and update CACHE
236 accordingly. Bail out early if CURRENT_PC is reached. Return the
237 address where the analysis stopped.
238
239 We handle all cases that can be generated by gcc.
240
241 For allocating a stack frame:
242
243 mov.w r6,@-sp
244 mov.w sp,r6
245 mov.w #-n,rN
246 add.w rN,sp
247
248 mov.w r6,@-sp
249 mov.w sp,r6
250 subs #2,sp
251 (repeat)
252
253 mov.l er6,@-sp
254 mov.l sp,er6
255 add.l #-n,sp
256
257 mov.w r6,@-sp
258 mov.w sp,r6
259 subs #4,sp
260 (repeat)
261
262 For saving registers:
263
264 mov.w rN,@-sp
265 mov.l erN,@-sp
266 stm.l reglist,@-sp
267
268 */
269
270 static CORE_ADDR
h8300_analyze_prologue(struct gdbarch * gdbarch,CORE_ADDR pc,CORE_ADDR current_pc,struct h8300_frame_cache * cache)271 h8300_analyze_prologue (struct gdbarch *gdbarch,
272 CORE_ADDR pc, CORE_ADDR current_pc,
273 struct h8300_frame_cache *cache)
274 {
275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
276 unsigned int op;
277 int regno, i, spill_size;
278
279 cache->sp_offset = 0;
280
281 if (pc >= current_pc)
282 return current_pc;
283
284 op = read_memory_unsigned_integer (pc, 4, byte_order);
285
286 if (IS_PUSHFP_MOVESPFP (op))
287 {
288 cache->saved_regs[E_FP_REGNUM] = 0;
289 cache->uses_fp = 1;
290 pc += 4;
291 }
292 else if (IS_PUSH_FP (op))
293 {
294 cache->saved_regs[E_FP_REGNUM] = 0;
295 pc += 4;
296 if (pc >= current_pc)
297 return current_pc;
298 op = read_memory_unsigned_integer (pc, 2, byte_order);
299 if (IS_MOV_SP_FP (op))
300 {
301 cache->uses_fp = 1;
302 pc += 2;
303 }
304 }
305
306 while (pc < current_pc)
307 {
308 op = read_memory_unsigned_integer (pc, 2, byte_order);
309 if (IS_SUB2_SP (op))
310 {
311 cache->sp_offset += 2;
312 pc += 2;
313 }
314 else if (IS_SUB4_SP (op))
315 {
316 cache->sp_offset += 4;
317 pc += 2;
318 }
319 else if (IS_ADD_IMM_SP (op))
320 {
321 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
322 pc += 4;
323 }
324 else if (IS_SUB_IMM_SP (op))
325 {
326 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
327 pc += 4;
328 }
329 else if (IS_SUBL4_SP (op))
330 {
331 cache->sp_offset += 4;
332 pc += 2;
333 }
334 else if (IS_MOV_IMM_Rn (op))
335 {
336 int offset = read_memory_integer (pc + 2, 2, byte_order);
337 regno = op & 0x000f;
338 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
339 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
340 {
341 cache->sp_offset -= offset;
342 pc += 6;
343 }
344 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
345 {
346 cache->sp_offset += offset;
347 pc += 6;
348 }
349 else
350 break;
351 }
352 else if (IS_PUSH (op))
353 {
354 regno = op & 0x000f;
355 cache->sp_offset += 2;
356 cache->saved_regs[regno] = cache->sp_offset;
357 pc += 2;
358 }
359 else if (op == 0x0100)
360 {
361 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
362 if (IS_PUSH (op))
363 {
364 regno = op & 0x000f;
365 cache->sp_offset += 4;
366 cache->saved_regs[regno] = cache->sp_offset;
367 pc += 4;
368 }
369 else
370 break;
371 }
372 else if ((op & 0xffcf) == 0x0100)
373 {
374 int op1;
375 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
376 if (IS_PUSH (op1))
377 {
378 /* Since the prefix is 0x01x0, this is not a simple pushm but a
379 stm.l reglist,@-sp */
380 i = ((op & 0x0030) >> 4) + 1;
381 regno = op1 & 0x000f;
382 for (; i > 0; regno++, --i)
383 {
384 cache->sp_offset += 4;
385 cache->saved_regs[regno] = cache->sp_offset;
386 }
387 pc += 4;
388 }
389 else
390 break;
391 }
392 else
393 break;
394 }
395
396 /* Check for spilling an argument register to the stack frame.
397 This could also be an initializing store from non-prologue code,
398 but I don't think there's any harm in skipping that. */
399 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
400 && pc + spill_size <= current_pc)
401 pc += spill_size;
402
403 return pc;
404 }
405
406 static struct h8300_frame_cache *
h8300_frame_cache(struct frame_info * this_frame,void ** this_cache)407 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
408 {
409 struct gdbarch *gdbarch = get_frame_arch (this_frame);
410 struct h8300_frame_cache *cache;
411 int i;
412 CORE_ADDR current_pc;
413
414 if (*this_cache)
415 return (struct h8300_frame_cache *) *this_cache;
416
417 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
418 h8300_init_frame_cache (gdbarch, cache);
419 *this_cache = cache;
420
421 /* In principle, for normal frames, %fp holds the frame pointer,
422 which holds the base address for the current stack frame.
423 However, for functions that don't need it, the frame pointer is
424 optional. For these "frameless" functions the frame pointer is
425 actually the frame pointer of the calling frame. */
426
427 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
428 if (cache->base == 0)
429 return cache;
430
431 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
432
433 cache->pc = get_frame_func (this_frame);
434 current_pc = get_frame_pc (this_frame);
435 if (cache->pc != 0)
436 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
437
438 if (!cache->uses_fp)
439 {
440 /* We didn't find a valid frame, which means that CACHE->base
441 currently holds the frame pointer for our calling frame. If
442 we're at the start of a function, or somewhere half-way its
443 prologue, the function's frame probably hasn't been fully
444 setup yet. Try to reconstruct the base address for the stack
445 frame by looking at the stack pointer. For truly "frameless"
446 functions this might work too. */
447
448 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
449 + cache->sp_offset;
450 cache->saved_sp = cache->base + BINWORD (gdbarch);
451 cache->saved_regs[E_PC_REGNUM] = 0;
452 }
453 else
454 {
455 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
456 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
457 }
458
459 /* Adjust all the saved registers such that they contain addresses
460 instead of offsets. */
461 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
462 if (cache->saved_regs[i] != -1)
463 cache->saved_regs[i] = cache->base - cache->saved_regs[i];
464
465 return cache;
466 }
467
468 static void
h8300_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)469 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
470 struct frame_id *this_id)
471 {
472 struct h8300_frame_cache *cache =
473 h8300_frame_cache (this_frame, this_cache);
474
475 /* This marks the outermost frame. */
476 if (cache->base == 0)
477 return;
478
479 *this_id = frame_id_build (cache->saved_sp, cache->pc);
480 }
481
482 static struct value *
h8300_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)483 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
484 int regnum)
485 {
486 struct gdbarch *gdbarch = get_frame_arch (this_frame);
487 struct h8300_frame_cache *cache =
488 h8300_frame_cache (this_frame, this_cache);
489
490 gdb_assert (regnum >= 0);
491
492 if (regnum == E_SP_REGNUM && cache->saved_sp)
493 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
494
495 if (regnum < gdbarch_num_regs (gdbarch)
496 && cache->saved_regs[regnum] != -1)
497 return frame_unwind_got_memory (this_frame, regnum,
498 cache->saved_regs[regnum]);
499
500 return frame_unwind_got_register (this_frame, regnum, regnum);
501 }
502
503 static const struct frame_unwind h8300_frame_unwind = {
504 NORMAL_FRAME,
505 default_frame_unwind_stop_reason,
506 h8300_frame_this_id,
507 h8300_frame_prev_register,
508 NULL,
509 default_frame_sniffer
510 };
511
512 static CORE_ADDR
h8300_frame_base_address(struct frame_info * this_frame,void ** this_cache)513 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
514 {
515 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
516 return cache->base;
517 }
518
519 static const struct frame_base h8300_frame_base = {
520 &h8300_frame_unwind,
521 h8300_frame_base_address,
522 h8300_frame_base_address,
523 h8300_frame_base_address
524 };
525
526 static CORE_ADDR
h8300_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)527 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
528 {
529 CORE_ADDR func_addr = 0 , func_end = 0;
530
531 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
532 {
533 struct symtab_and_line sal;
534 struct h8300_frame_cache cache;
535
536 /* Found a function. */
537 sal = find_pc_line (func_addr, 0);
538 if (sal.end && sal.end < func_end)
539 /* Found a line number, use it as end of prologue. */
540 return sal.end;
541
542 /* No useable line symbol. Use prologue parsing method. */
543 h8300_init_frame_cache (gdbarch, &cache);
544 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
545 }
546
547 /* No function symbol -- just return the PC. */
548 return (CORE_ADDR) pc;
549 }
550
551 /* Function: push_dummy_call
552 Setup the function arguments for calling a function in the inferior.
553 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
554 on the H8/300H.
555
556 There are actually two ABI's here: -mquickcall (the default) and
557 -mno-quickcall. With -mno-quickcall, all arguments are passed on
558 the stack after the return address, word-aligned. With
559 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
560 GCC doesn't indicate in the object file which ABI was used to
561 compile it, GDB only supports the default --- -mquickcall.
562
563 Here are the rules for -mquickcall, in detail:
564
565 Each argument, whether scalar or aggregate, is padded to occupy a
566 whole number of words. Arguments smaller than a word are padded at
567 the most significant end; those larger than a word are padded at
568 the least significant end.
569
570 The initial arguments are passed in r0 -- r2. Earlier arguments go in
571 lower-numbered registers. Multi-word arguments are passed in
572 consecutive registers, with the most significant end in the
573 lower-numbered register.
574
575 If an argument doesn't fit entirely in the remaining registers, it
576 is passed entirely on the stack. Stack arguments begin just after
577 the return address. Once an argument has overflowed onto the stack
578 this way, all subsequent arguments are passed on the stack.
579
580 The above rule has odd consequences. For example, on the h8/300s,
581 if a function takes two longs and an int as arguments:
582 - the first long will be passed in r0/r1,
583 - the second long will be passed entirely on the stack, since it
584 doesn't fit in r2,
585 - and the int will be passed on the stack, even though it could fit
586 in r2.
587
588 A weird exception: if an argument is larger than a word, but not a
589 whole number of words in length (before padding), it is passed on
590 the stack following the rules for stack arguments above, even if
591 there are sufficient registers available to hold it. Stranger
592 still, the argument registers are still `used up' --- even though
593 there's nothing in them.
594
595 So, for example, on the h8/300s, if a function expects a three-byte
596 structure and an int, the structure will go on the stack, and the
597 int will go in r2, not r0.
598
599 If the function returns an aggregate type (struct, union, or class)
600 by value, the caller must allocate space to hold the return value,
601 and pass the callee a pointer to this space as an invisible first
602 argument, in R0.
603
604 For varargs functions, the last fixed argument and all the variable
605 arguments are always passed on the stack. This means that calls to
606 varargs functions don't work properly unless there is a prototype
607 in scope.
608
609 Basically, this ABI is not good, for the following reasons:
610 - You can't call vararg functions properly unless a prototype is in scope.
611 - Structure passing is inconsistent, to no purpose I can see.
612 - It often wastes argument registers, of which there are only three
613 to begin with. */
614
615 static CORE_ADDR
h8300_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)616 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
617 struct regcache *regcache, CORE_ADDR bp_addr,
618 int nargs, struct value **args, CORE_ADDR sp,
619 function_call_return_method return_method,
620 CORE_ADDR struct_addr)
621 {
622 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
623 int stack_alloc = 0, stack_offset = 0;
624 int wordsize = BINWORD (gdbarch);
625 int reg = E_ARG0_REGNUM;
626 int argument;
627
628 /* First, make sure the stack is properly aligned. */
629 sp = align_down (sp, wordsize);
630
631 /* Now make sure there's space on the stack for the arguments. We
632 may over-allocate a little here, but that won't hurt anything. */
633 for (argument = 0; argument < nargs; argument++)
634 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
635 wordsize);
636 sp -= stack_alloc;
637
638 /* Now load as many arguments as possible into registers, and push
639 the rest onto the stack.
640 If we're returning a structure by value, then we must pass a
641 pointer to the buffer for the return value as an invisible first
642 argument. */
643 if (return_method == return_method_struct)
644 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
645
646 for (argument = 0; argument < nargs; argument++)
647 {
648 struct type *type = value_type (args[argument]);
649 int len = TYPE_LENGTH (type);
650 char *contents = (char *) value_contents (args[argument]);
651
652 /* Pad the argument appropriately. */
653 int padded_len = align_up (len, wordsize);
654 /* Use std::vector here to get zero initialization. */
655 std::vector<gdb_byte> padded (padded_len);
656
657 memcpy ((len < wordsize ? padded.data () + padded_len - len
658 : padded.data ()),
659 contents, len);
660
661 /* Could the argument fit in the remaining registers? */
662 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
663 {
664 /* Are we going to pass it on the stack anyway, for no good
665 reason? */
666 if (len > wordsize && len % wordsize)
667 {
668 /* I feel so unclean. */
669 write_memory (sp + stack_offset, padded.data (), padded_len);
670 stack_offset += padded_len;
671
672 /* That's right --- even though we passed the argument
673 on the stack, we consume the registers anyway! Love
674 me, love my dog. */
675 reg += padded_len / wordsize;
676 }
677 else
678 {
679 /* Heavens to Betsy --- it's really going in registers!
680 Note that on the h8/300s, there are gaps between the
681 registers in the register file. */
682 int offset;
683
684 for (offset = 0; offset < padded_len; offset += wordsize)
685 {
686 ULONGEST word
687 = extract_unsigned_integer (&padded[offset],
688 wordsize, byte_order);
689 regcache_cooked_write_unsigned (regcache, reg++, word);
690 }
691 }
692 }
693 else
694 {
695 /* It doesn't fit in registers! Onto the stack it goes. */
696 write_memory (sp + stack_offset, padded.data (), padded_len);
697 stack_offset += padded_len;
698
699 /* Once one argument has spilled onto the stack, all
700 subsequent arguments go on the stack. */
701 reg = E_ARGLAST_REGNUM + 1;
702 }
703 }
704
705 /* Store return address. */
706 sp -= wordsize;
707 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
708
709 /* Update stack pointer. */
710 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
711
712 /* Return the new stack pointer minus the return address slot since
713 that's what DWARF2/GCC uses as the frame's CFA. */
714 return sp + wordsize;
715 }
716
717 /* Function: extract_return_value
718 Figure out where in REGBUF the called function has left its return value.
719 Copy that into VALBUF. Be sure to account for CPU type. */
720
721 static void
h8300_extract_return_value(struct type * type,struct regcache * regcache,gdb_byte * valbuf)722 h8300_extract_return_value (struct type *type, struct regcache *regcache,
723 gdb_byte *valbuf)
724 {
725 struct gdbarch *gdbarch = regcache->arch ();
726 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
727 int len = TYPE_LENGTH (type);
728 ULONGEST c, addr;
729
730 switch (len)
731 {
732 case 1:
733 case 2:
734 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
735 store_unsigned_integer (valbuf, len, byte_order, c);
736 break;
737 case 4: /* Needs two registers on plain H8/300 */
738 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
739 store_unsigned_integer (valbuf, 2, byte_order, c);
740 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
741 store_unsigned_integer (valbuf + 2, 2, byte_order, c);
742 break;
743 case 8: /* long long is now 8 bytes. */
744 if (type->code () == TYPE_CODE_INT)
745 {
746 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
747 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
748 store_unsigned_integer (valbuf, len, byte_order, c);
749 }
750 else
751 {
752 error (_("I don't know how this 8 byte value is returned."));
753 }
754 break;
755 }
756 }
757
758 static void
h8300h_extract_return_value(struct type * type,struct regcache * regcache,gdb_byte * valbuf)759 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
760 gdb_byte *valbuf)
761 {
762 struct gdbarch *gdbarch = regcache->arch ();
763 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
764 ULONGEST c;
765
766 switch (TYPE_LENGTH (type))
767 {
768 case 1:
769 case 2:
770 case 4:
771 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
772 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
773 break;
774 case 8: /* long long is now 8 bytes. */
775 if (type->code () == TYPE_CODE_INT)
776 {
777 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
778 store_unsigned_integer (valbuf, 4, byte_order, c);
779 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
780 store_unsigned_integer (valbuf + 4, 4, byte_order, c);
781 }
782 else
783 {
784 error (_("I don't know how this 8 byte value is returned."));
785 }
786 break;
787 }
788 }
789
790 static int
h8300_use_struct_convention(struct type * value_type)791 h8300_use_struct_convention (struct type *value_type)
792 {
793 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
794 stack. */
795
796 if (value_type->code () == TYPE_CODE_STRUCT
797 || value_type->code () == TYPE_CODE_UNION)
798 return 1;
799 return !(TYPE_LENGTH (value_type) == 1
800 || TYPE_LENGTH (value_type) == 2
801 || TYPE_LENGTH (value_type) == 4);
802 }
803
804 static int
h8300h_use_struct_convention(struct type * value_type)805 h8300h_use_struct_convention (struct type *value_type)
806 {
807 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
808 returned in R0/R1, everything else on the stack. */
809 if (value_type->code () == TYPE_CODE_STRUCT
810 || value_type->code () == TYPE_CODE_UNION)
811 return 1;
812 return !(TYPE_LENGTH (value_type) == 1
813 || TYPE_LENGTH (value_type) == 2
814 || TYPE_LENGTH (value_type) == 4
815 || (TYPE_LENGTH (value_type) == 8
816 && value_type->code () == TYPE_CODE_INT));
817 }
818
819 /* Function: store_return_value
820 Place the appropriate value in the appropriate registers.
821 Primarily used by the RETURN command. */
822
823 static void
h8300_store_return_value(struct type * type,struct regcache * regcache,const gdb_byte * valbuf)824 h8300_store_return_value (struct type *type, struct regcache *regcache,
825 const gdb_byte *valbuf)
826 {
827 struct gdbarch *gdbarch = regcache->arch ();
828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
829 ULONGEST val;
830
831 switch (TYPE_LENGTH (type))
832 {
833 case 1:
834 case 2: /* short... */
835 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
836 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
837 break;
838 case 4: /* long, float */
839 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
840 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
841 (val >> 16) & 0xffff);
842 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
843 break;
844 case 8: /* long long, double and long double
845 are all defined as 4 byte types so
846 far so this shouldn't happen. */
847 error (_("I don't know how to return an 8 byte value."));
848 break;
849 }
850 }
851
852 static void
h8300h_store_return_value(struct type * type,struct regcache * regcache,const gdb_byte * valbuf)853 h8300h_store_return_value (struct type *type, struct regcache *regcache,
854 const gdb_byte *valbuf)
855 {
856 struct gdbarch *gdbarch = regcache->arch ();
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 ULONGEST val;
859
860 switch (TYPE_LENGTH (type))
861 {
862 case 1:
863 case 2:
864 case 4: /* long, float */
865 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
866 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
867 break;
868 case 8:
869 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
870 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
871 (val >> 32) & 0xffffffff);
872 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
873 val & 0xffffffff);
874 break;
875 }
876 }
877
878 static enum return_value_convention
h8300_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)879 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
880 struct type *type, struct regcache *regcache,
881 gdb_byte *readbuf, const gdb_byte *writebuf)
882 {
883 if (h8300_use_struct_convention (type))
884 return RETURN_VALUE_STRUCT_CONVENTION;
885 if (writebuf)
886 h8300_store_return_value (type, regcache, writebuf);
887 else if (readbuf)
888 h8300_extract_return_value (type, regcache, readbuf);
889 return RETURN_VALUE_REGISTER_CONVENTION;
890 }
891
892 static enum return_value_convention
h8300h_return_value(struct gdbarch * gdbarch,struct value * function,struct type * type,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)893 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
894 struct type *type, struct regcache *regcache,
895 gdb_byte *readbuf, const gdb_byte *writebuf)
896 {
897 if (h8300h_use_struct_convention (type))
898 {
899 if (readbuf)
900 {
901 ULONGEST addr;
902
903 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
904 read_memory (addr, readbuf, TYPE_LENGTH (type));
905 }
906
907 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
908 }
909 if (writebuf)
910 h8300h_store_return_value (type, regcache, writebuf);
911 else if (readbuf)
912 h8300h_extract_return_value (type, regcache, readbuf);
913 return RETURN_VALUE_REGISTER_CONVENTION;
914 }
915
916 /* Implementation of 'register_sim_regno' gdbarch method. */
917
918 static int
h8300_register_sim_regno(struct gdbarch * gdbarch,int regnum)919 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
920 {
921 /* Only makes sense to supply raw registers. */
922 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
923
924 /* We hide the raw ccr from the user by making it nameless. Because
925 the default register_sim_regno hook returns
926 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
927 override it. The sim register numbering is compatible with
928 gdb's. */
929 return regnum;
930 }
931
932 static const char *
h8300_register_name_common(const char * regnames[],int numregs,struct gdbarch * gdbarch,int regno)933 h8300_register_name_common (const char *regnames[], int numregs,
934 struct gdbarch *gdbarch, int regno)
935 {
936 if (regno < 0
937 || regno >= numregs)
938 internal_error (__FILE__, __LINE__,
939 _("h8300_register_name_common: illegal register number %d"),
940 regno);
941 else
942 return regnames[regno];
943 }
944
945 static const char *
h8300_register_name(struct gdbarch * gdbarch,int regno)946 h8300_register_name (struct gdbarch *gdbarch, int regno)
947 {
948 /* The register names change depending on which h8300 processor
949 type is selected. */
950 static const char *register_names[] = {
951 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
952 "sp", "", "pc", "cycles", "tick", "inst",
953 "ccr", /* pseudo register */
954 };
955 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
956 gdbarch, regno);
957 }
958
959 static const char *
h8300h_register_name(struct gdbarch * gdbarch,int regno)960 h8300h_register_name (struct gdbarch *gdbarch, int regno)
961 {
962 static const char *register_names[] = {
963 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
964 "sp", "", "pc", "cycles", "tick", "inst",
965 "ccr", /* pseudo register */
966 };
967 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
968 gdbarch, regno);
969 }
970
971 static const char *
h8300s_register_name(struct gdbarch * gdbarch,int regno)972 h8300s_register_name (struct gdbarch *gdbarch, int regno)
973 {
974 static const char *register_names[] = {
975 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
976 "sp", "", "pc", "cycles", "", "tick", "inst",
977 "mach", "macl",
978 "ccr", "exr" /* pseudo registers */
979 };
980 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
981 gdbarch, regno);
982 }
983
984 static const char *
h8300sx_register_name(struct gdbarch * gdbarch,int regno)985 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
986 {
987 static const char *register_names[] = {
988 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
989 "sp", "", "pc", "cycles", "", "tick", "inst",
990 "mach", "macl", "sbr", "vbr",
991 "ccr", "exr" /* pseudo registers */
992 };
993 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
994 gdbarch, regno);
995 }
996
997 static void
h8300_print_register(struct gdbarch * gdbarch,struct ui_file * file,struct frame_info * frame,int regno)998 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
999 struct frame_info *frame, int regno)
1000 {
1001 LONGEST rval;
1002 const char *name = gdbarch_register_name (gdbarch, regno);
1003
1004 if (!name || !*name)
1005 return;
1006
1007 rval = get_frame_register_signed (frame, regno);
1008
1009 fprintf_filtered (file, "%-14s ", name);
1010 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1011 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1012 {
1013 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1014 print_longest (file, 'u', 1, rval);
1015 }
1016 else
1017 {
1018 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
1019 BINWORD (gdbarch)));
1020 print_longest (file, 'd', 1, rval);
1021 }
1022 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1023 {
1024 /* CCR register */
1025 int C, Z, N, V;
1026 unsigned char l = rval & 0xff;
1027 fprintf_filtered (file, "\t");
1028 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1029 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1030 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1031 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1032 N = (l & 0x8) != 0;
1033 Z = (l & 0x4) != 0;
1034 V = (l & 0x2) != 0;
1035 C = (l & 0x1) != 0;
1036 fprintf_filtered (file, "N-%d ", N);
1037 fprintf_filtered (file, "Z-%d ", Z);
1038 fprintf_filtered (file, "V-%d ", V);
1039 fprintf_filtered (file, "C-%d ", C);
1040 if ((C | Z) == 0)
1041 fprintf_filtered (file, "u> ");
1042 if ((C | Z) == 1)
1043 fprintf_filtered (file, "u<= ");
1044 if (C == 0)
1045 fprintf_filtered (file, "u>= ");
1046 if (C == 1)
1047 fprintf_filtered (file, "u< ");
1048 if (Z == 0)
1049 fprintf_filtered (file, "!= ");
1050 if (Z == 1)
1051 fprintf_filtered (file, "== ");
1052 if ((N ^ V) == 0)
1053 fprintf_filtered (file, ">= ");
1054 if ((N ^ V) == 1)
1055 fprintf_filtered (file, "< ");
1056 if ((Z | (N ^ V)) == 0)
1057 fprintf_filtered (file, "> ");
1058 if ((Z | (N ^ V)) == 1)
1059 fprintf_filtered (file, "<= ");
1060 }
1061 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1062 {
1063 /* EXR register */
1064 unsigned char l = rval & 0xff;
1065 fprintf_filtered (file, "\t");
1066 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1067 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1068 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1069 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1070 }
1071 fprintf_filtered (file, "\n");
1072 }
1073
1074 static void
h8300_print_registers_info(struct gdbarch * gdbarch,struct ui_file * file,struct frame_info * frame,int regno,int cpregs)1075 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1076 struct frame_info *frame, int regno, int cpregs)
1077 {
1078 if (regno < 0)
1079 {
1080 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1081 h8300_print_register (gdbarch, file, frame, regno);
1082 h8300_print_register (gdbarch, file, frame,
1083 E_PSEUDO_CCR_REGNUM (gdbarch));
1084 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1085 if (is_h8300smode (gdbarch))
1086 {
1087 h8300_print_register (gdbarch, file, frame,
1088 E_PSEUDO_EXR_REGNUM (gdbarch));
1089 if (is_h8300sxmode (gdbarch))
1090 {
1091 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1092 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1093 }
1094 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1095 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1096 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1097 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1098 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1099 }
1100 else
1101 {
1102 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1103 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1104 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1105 }
1106 }
1107 else
1108 {
1109 if (regno == E_CCR_REGNUM)
1110 h8300_print_register (gdbarch, file, frame,
1111 E_PSEUDO_CCR_REGNUM (gdbarch));
1112 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1113 && is_h8300smode (gdbarch))
1114 h8300_print_register (gdbarch, file, frame,
1115 E_PSEUDO_EXR_REGNUM (gdbarch));
1116 else
1117 h8300_print_register (gdbarch, file, frame, regno);
1118 }
1119 }
1120
1121 static struct type *
h8300_register_type(struct gdbarch * gdbarch,int regno)1122 h8300_register_type (struct gdbarch *gdbarch, int regno)
1123 {
1124 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
1125 internal_error (__FILE__, __LINE__,
1126 _("h8300_register_type: illegal register number %d"),
1127 regno);
1128 else
1129 {
1130 switch (regno)
1131 {
1132 case E_PC_REGNUM:
1133 return builtin_type (gdbarch)->builtin_func_ptr;
1134 case E_SP_REGNUM:
1135 case E_FP_REGNUM:
1136 return builtin_type (gdbarch)->builtin_data_ptr;
1137 default:
1138 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1139 return builtin_type (gdbarch)->builtin_uint8;
1140 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1141 return builtin_type (gdbarch)->builtin_uint8;
1142 else if (is_h8300hmode (gdbarch))
1143 return builtin_type (gdbarch)->builtin_int32;
1144 else
1145 return builtin_type (gdbarch)->builtin_int16;
1146 }
1147 }
1148 }
1149
1150 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as
1151 pseudo-registers to users with smaller sizes than the corresponding
1152 raw registers. These helpers extend/narrow the values. */
1153
1154 static enum register_status
pseudo_from_raw_register(struct gdbarch * gdbarch,readable_regcache * regcache,gdb_byte * buf,int pseudo_regno,int raw_regno)1155 pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache,
1156 gdb_byte *buf, int pseudo_regno, int raw_regno)
1157 {
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 enum register_status status;
1160 ULONGEST val;
1161
1162 status = regcache->raw_read (raw_regno, &val);
1163 if (status == REG_VALID)
1164 store_unsigned_integer (buf,
1165 register_size (gdbarch, pseudo_regno),
1166 byte_order, val);
1167 return status;
1168 }
1169
1170 /* See pseudo_from_raw_register. */
1171
1172 static void
raw_from_pseudo_register(struct gdbarch * gdbarch,struct regcache * regcache,const gdb_byte * buf,int raw_regno,int pseudo_regno)1173 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1174 const gdb_byte *buf, int raw_regno, int pseudo_regno)
1175 {
1176 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1177 ULONGEST val;
1178
1179 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1180 byte_order);
1181 regcache_raw_write_unsigned (regcache, raw_regno, val);
1182 }
1183
1184 static enum register_status
h8300_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int regno,gdb_byte * buf)1185 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1186 readable_regcache *regcache, int regno,
1187 gdb_byte *buf)
1188 {
1189 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1190 {
1191 return pseudo_from_raw_register (gdbarch, regcache, buf,
1192 regno, E_CCR_REGNUM);
1193 }
1194 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1195 {
1196 return pseudo_from_raw_register (gdbarch, regcache, buf,
1197 regno, E_EXR_REGNUM);
1198 }
1199 else
1200 return regcache->raw_read (regno, buf);
1201 }
1202
1203 static void
h8300_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int regno,const gdb_byte * buf)1204 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1205 struct regcache *regcache, int regno,
1206 const gdb_byte *buf)
1207 {
1208 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1209 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1210 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1211 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1212 else
1213 regcache->raw_write (regno, buf);
1214 }
1215
1216 static int
h8300_dbg_reg_to_regnum(struct gdbarch * gdbarch,int regno)1217 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1218 {
1219 if (regno == E_CCR_REGNUM)
1220 return E_PSEUDO_CCR_REGNUM (gdbarch);
1221 return regno;
1222 }
1223
1224 static int
h8300s_dbg_reg_to_regnum(struct gdbarch * gdbarch,int regno)1225 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1226 {
1227 if (regno == E_CCR_REGNUM)
1228 return E_PSEUDO_CCR_REGNUM (gdbarch);
1229 if (regno == E_EXR_REGNUM)
1230 return E_PSEUDO_EXR_REGNUM (gdbarch);
1231 return regno;
1232 }
1233
1234 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1235 constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 }; /* Sleep */
1236
1237 typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint;
1238
1239 static struct gdbarch *
h8300_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1240 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1241 {
1242 struct gdbarch *gdbarch;
1243
1244 arches = gdbarch_list_lookup_by_info (arches, &info);
1245 if (arches != NULL)
1246 return arches->gdbarch;
1247
1248 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1249 return NULL;
1250
1251 gdbarch = gdbarch_alloc (&info, 0);
1252
1253 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1254
1255 switch (info.bfd_arch_info->mach)
1256 {
1257 case bfd_mach_h8300:
1258 set_gdbarch_num_regs (gdbarch, 13);
1259 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1260 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1261 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1262 set_gdbarch_register_name (gdbarch, h8300_register_name);
1263 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1264 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265 set_gdbarch_return_value (gdbarch, h8300_return_value);
1266 break;
1267 case bfd_mach_h8300h:
1268 case bfd_mach_h8300hn:
1269 set_gdbarch_num_regs (gdbarch, 13);
1270 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1271 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1272 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1273 set_gdbarch_register_name (gdbarch, h8300h_register_name);
1274 if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1275 {
1276 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1277 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1278 }
1279 else
1280 {
1281 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1282 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1283 }
1284 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1285 break;
1286 case bfd_mach_h8300s:
1287 case bfd_mach_h8300sn:
1288 set_gdbarch_num_regs (gdbarch, 16);
1289 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1290 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1291 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1292 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1293 if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1294 {
1295 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1296 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1297 }
1298 else
1299 {
1300 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1301 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1302 }
1303 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1304 break;
1305 case bfd_mach_h8300sx:
1306 case bfd_mach_h8300sxn:
1307 set_gdbarch_num_regs (gdbarch, 18);
1308 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1309 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1310 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1311 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1312 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1313 {
1314 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1315 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1316 }
1317 else
1318 {
1319 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1320 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1321 }
1322 set_gdbarch_return_value (gdbarch, h8300h_return_value);
1323 break;
1324 }
1325
1326 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1327 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1328
1329 /*
1330 * Basic register fields and methods.
1331 */
1332
1333 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1334 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1335 set_gdbarch_register_type (gdbarch, h8300_register_type);
1336 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1337
1338 /*
1339 * Frame Info
1340 */
1341 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1342
1343 /* Frame unwinder. */
1344 frame_base_set_default (gdbarch, &h8300_frame_base);
1345
1346 /*
1347 * Miscellany
1348 */
1349 /* Stack grows up. */
1350 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1351
1352 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1353 h8300_breakpoint::kind_from_pc);
1354 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1355 h8300_breakpoint::bp_from_kind);
1356 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1357
1358 set_gdbarch_char_signed (gdbarch, 0);
1359 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1360 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1361 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1362
1363 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1364 set_gdbarch_wchar_signed (gdbarch, 0);
1365
1366 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1367 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1368 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1369 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1370
1371 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1372
1373 /* Hook in the DWARF CFI frame unwinder. */
1374 dwarf2_append_unwinders (gdbarch);
1375 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1376
1377 return gdbarch;
1378
1379 }
1380
1381 void _initialize_h8300_tdep ();
1382 void
_initialize_h8300_tdep()1383 _initialize_h8300_tdep ()
1384 {
1385 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1386 }
1387
1388 static int
is_h8300hmode(struct gdbarch * gdbarch)1389 is_h8300hmode (struct gdbarch *gdbarch)
1390 {
1391 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1392 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1393 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1394 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1395 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1396 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1397 }
1398
1399 static int
is_h8300smode(struct gdbarch * gdbarch)1400 is_h8300smode (struct gdbarch *gdbarch)
1401 {
1402 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1403 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1404 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1406 }
1407
1408 static int
is_h8300sxmode(struct gdbarch * gdbarch)1409 is_h8300sxmode (struct gdbarch *gdbarch)
1410 {
1411 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1412 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1413 }
1414
1415 static int
is_h8300_normal_mode(struct gdbarch * gdbarch)1416 is_h8300_normal_mode (struct gdbarch *gdbarch)
1417 {
1418 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1419 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1420 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1421 }
1422