xref: /netbsd/external/gpl3/gdb/dist/gdb/infcall.c (revision 1424dfb3)
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "interps.h"
42 #include "thread-fsm.h"
43 #include <algorithm>
44 #include "gdbsupport/scope-exit.h"
45 #include <list>
46 
47 /* If we can't find a function's name from its address,
48    we print this instead.  */
49 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
50 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
51                                    + 2 * sizeof (CORE_ADDR))
52 
53 /* NOTE: cagney/2003-04-16: What's the future of this code?
54 
55    GDB needs an asynchronous expression evaluator, that means an
56    asynchronous inferior function call implementation, and that in
57    turn means restructuring the code so that it is event driven.  */
58 
59 static bool may_call_functions_p = true;
60 static void
show_may_call_functions_p(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)61 show_may_call_functions_p (struct ui_file *file, int from_tty,
62 			   struct cmd_list_element *c,
63 			   const char *value)
64 {
65   fprintf_filtered (file,
66 		    _("Permission to call functions in the program is %s.\n"),
67 		    value);
68 }
69 
70 /* How you should pass arguments to a function depends on whether it
71    was defined in K&R style or prototype style.  If you define a
72    function using the K&R syntax that takes a `float' argument, then
73    callers must pass that argument as a `double'.  If you define the
74    function using the prototype syntax, then you must pass the
75    argument as a `float', with no promotion.
76 
77    Unfortunately, on certain older platforms, the debug info doesn't
78    indicate reliably how each function was defined.  A function type's
79    TYPE_PROTOTYPED flag may be clear, even if the function was defined
80    in prototype style.  When calling a function whose TYPE_PROTOTYPED
81    flag is clear, GDB consults this flag to decide what to do.
82 
83    For modern targets, it is proper to assume that, if the prototype
84    flag is clear, that can be trusted: `float' arguments should be
85    promoted to `double'.  For some older targets, if the prototype
86    flag is clear, that doesn't tell us anything.  The default is to
87    trust the debug information; the user can override this behavior
88    with "set coerce-float-to-double 0".  */
89 
90 static bool coerce_float_to_double_p = true;
91 static void
show_coerce_float_to_double_p(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)92 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
93 			       struct cmd_list_element *c, const char *value)
94 {
95   fprintf_filtered (file,
96 		    _("Coercion of floats to doubles "
97 		      "when calling functions is %s.\n"),
98 		    value);
99 }
100 
101 /* This boolean tells what gdb should do if a signal is received while
102    in a function called from gdb (call dummy).  If set, gdb unwinds
103    the stack and restore the context to what as it was before the
104    call.
105 
106    The default is to stop in the frame where the signal was received.  */
107 
108 static bool unwind_on_signal_p = false;
109 static void
show_unwind_on_signal_p(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)110 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
111 			 struct cmd_list_element *c, const char *value)
112 {
113   fprintf_filtered (file,
114 		    _("Unwinding of stack if a signal is "
115 		      "received while in a call dummy is %s.\n"),
116 		    value);
117 }
118 
119 /* This boolean tells what gdb should do if a std::terminate call is
120    made while in a function called from gdb (call dummy).
121    As the confines of a single dummy stack prohibit out-of-frame
122    handlers from handling a raised exception, and as out-of-frame
123    handlers are common in C++, this can lead to no handler being found
124    by the unwinder, and a std::terminate call.  This is a false positive.
125    If set, gdb unwinds the stack and restores the context to what it
126    was before the call.
127 
128    The default is to unwind the frame if a std::terminate call is
129    made.  */
130 
131 static bool unwind_on_terminating_exception_p = true;
132 
133 static void
show_unwind_on_terminating_exception_p(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)134 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
135 					struct cmd_list_element *c,
136 					const char *value)
137 
138 {
139   fprintf_filtered (file,
140 		    _("Unwind stack if a C++ exception is "
141 		      "unhandled while in a call dummy is %s.\n"),
142 		    value);
143 }
144 
145 /* Perform the standard coercions that are specified
146    for arguments to be passed to C, Ada or Fortran functions.
147 
148    If PARAM_TYPE is non-NULL, it is the expected parameter type.
149    IS_PROTOTYPED is non-zero if the function declaration is prototyped.  */
150 
151 static struct value *
value_arg_coerce(struct gdbarch * gdbarch,struct value * arg,struct type * param_type,int is_prototyped)152 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
153 		  struct type *param_type, int is_prototyped)
154 {
155   const struct builtin_type *builtin = builtin_type (gdbarch);
156   struct type *arg_type = check_typedef (value_type (arg));
157   struct type *type
158     = param_type ? check_typedef (param_type) : arg_type;
159 
160   /* Perform any Ada- and Fortran-specific coercion first.  */
161   if (current_language->la_language == language_ada)
162     arg = ada_convert_actual (arg, type);
163   else if (current_language->la_language == language_fortran)
164     type = fortran_preserve_arg_pointer (arg, type);
165 
166   /* Force the value to the target if we will need its address.  At
167      this point, we could allocate arguments on the stack instead of
168      calling malloc if we knew that their addresses would not be
169      saved by the called function.  */
170   arg = value_coerce_to_target (arg);
171 
172   switch (type->code ())
173     {
174     case TYPE_CODE_REF:
175     case TYPE_CODE_RVALUE_REF:
176       {
177 	struct value *new_value;
178 
179 	if (TYPE_IS_REFERENCE (arg_type))
180 	  return value_cast_pointers (type, arg, 0);
181 
182 	/* Cast the value to the reference's target type, and then
183 	   convert it back to a reference.  This will issue an error
184 	   if the value was not previously in memory - in some cases
185 	   we should clearly be allowing this, but how?  */
186 	new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
187 	new_value = value_ref (new_value, type->code ());
188 	return new_value;
189       }
190     case TYPE_CODE_INT:
191     case TYPE_CODE_CHAR:
192     case TYPE_CODE_BOOL:
193     case TYPE_CODE_ENUM:
194       /* If we don't have a prototype, coerce to integer type if necessary.  */
195       if (!is_prototyped)
196 	{
197 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
198 	    type = builtin->builtin_int;
199 	}
200       /* Currently all target ABIs require at least the width of an integer
201          type for an argument.  We may have to conditionalize the following
202          type coercion for future targets.  */
203       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
204 	type = builtin->builtin_int;
205       break;
206     case TYPE_CODE_FLT:
207       if (!is_prototyped && coerce_float_to_double_p)
208 	{
209 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
210 	    type = builtin->builtin_double;
211 	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
212 	    type = builtin->builtin_long_double;
213 	}
214       break;
215     case TYPE_CODE_FUNC:
216       type = lookup_pointer_type (type);
217       break;
218     case TYPE_CODE_ARRAY:
219       /* Arrays are coerced to pointers to their first element, unless
220          they are vectors, in which case we want to leave them alone,
221          because they are passed by value.  */
222       if (current_language->c_style_arrays)
223 	if (!TYPE_VECTOR (type))
224 	  type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
225       break;
226     case TYPE_CODE_UNDEF:
227     case TYPE_CODE_PTR:
228     case TYPE_CODE_STRUCT:
229     case TYPE_CODE_UNION:
230     case TYPE_CODE_VOID:
231     case TYPE_CODE_SET:
232     case TYPE_CODE_RANGE:
233     case TYPE_CODE_STRING:
234     case TYPE_CODE_ERROR:
235     case TYPE_CODE_MEMBERPTR:
236     case TYPE_CODE_METHODPTR:
237     case TYPE_CODE_METHOD:
238     case TYPE_CODE_COMPLEX:
239     default:
240       break;
241     }
242 
243   return value_cast (type, arg);
244 }
245 
246 /* See infcall.h.  */
247 
248 CORE_ADDR
find_function_addr(struct value * function,struct type ** retval_type,struct type ** function_type)249 find_function_addr (struct value *function,
250 		    struct type **retval_type,
251 		    struct type **function_type)
252 {
253   struct type *ftype = check_typedef (value_type (function));
254   struct gdbarch *gdbarch = get_type_arch (ftype);
255   struct type *value_type = NULL;
256   /* Initialize it just to avoid a GCC false warning.  */
257   CORE_ADDR funaddr = 0;
258 
259   /* If it's a member function, just look at the function
260      part of it.  */
261 
262   /* Determine address to call.  */
263   if (ftype->code () == TYPE_CODE_FUNC
264       || ftype->code () == TYPE_CODE_METHOD)
265     funaddr = value_address (function);
266   else if (ftype->code () == TYPE_CODE_PTR)
267     {
268       funaddr = value_as_address (function);
269       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
270       if (ftype->code () == TYPE_CODE_FUNC
271 	  || ftype->code () == TYPE_CODE_METHOD)
272 	funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
273 						      current_top_target ());
274     }
275   if (ftype->code () == TYPE_CODE_FUNC
276       || ftype->code () == TYPE_CODE_METHOD)
277     {
278       if (TYPE_GNU_IFUNC (ftype))
279 	{
280 	  CORE_ADDR resolver_addr = funaddr;
281 
282 	  /* Resolve the ifunc.  Note this may call the resolver
283 	     function in the inferior.  */
284 	  funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
285 
286 	  /* Skip querying the function symbol if no RETVAL_TYPE or
287 	     FUNCTION_TYPE have been asked for.  */
288 	  if (retval_type != NULL || function_type != NULL)
289 	    {
290 	      type *target_ftype = find_function_type (funaddr);
291 	      /* If we don't have debug info for the target function,
292 		 see if we can instead extract the target function's
293 		 type from the type that the resolver returns.  */
294 	      if (target_ftype == NULL)
295 		target_ftype = find_gnu_ifunc_target_type (resolver_addr);
296 	      if (target_ftype != NULL)
297 		{
298 		  value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype));
299 		  ftype = target_ftype;
300 		}
301 	    }
302 	}
303       else
304 	value_type = TYPE_TARGET_TYPE (ftype);
305     }
306   else if (ftype->code () == TYPE_CODE_INT)
307     {
308       /* Handle the case of functions lacking debugging info.
309          Their values are characters since their addresses are char.  */
310       if (TYPE_LENGTH (ftype) == 1)
311 	funaddr = value_as_address (value_addr (function));
312       else
313 	{
314 	  /* Handle function descriptors lacking debug info.  */
315 	  int found_descriptor = 0;
316 
317 	  funaddr = 0;	/* pacify "gcc -Werror" */
318 	  if (VALUE_LVAL (function) == lval_memory)
319 	    {
320 	      CORE_ADDR nfunaddr;
321 
322 	      funaddr = value_as_address (value_addr (function));
323 	      nfunaddr = funaddr;
324 	      funaddr
325 		= gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
326 						      current_top_target ());
327 	      if (funaddr != nfunaddr)
328 		found_descriptor = 1;
329 	    }
330 	  if (!found_descriptor)
331 	    /* Handle integer used as address of a function.  */
332 	    funaddr = (CORE_ADDR) value_as_long (function);
333 	}
334     }
335   else
336     error (_("Invalid data type for function to be called."));
337 
338   if (retval_type != NULL)
339     *retval_type = value_type;
340   if (function_type != NULL)
341     *function_type = ftype;
342   return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
343 }
344 
345 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
346    function returns to.  */
347 
348 static CORE_ADDR
push_dummy_code(struct gdbarch * gdbarch,CORE_ADDR sp,CORE_ADDR funaddr,gdb::array_view<value * > args,struct type * value_type,CORE_ADDR * real_pc,CORE_ADDR * bp_addr,struct regcache * regcache)349 push_dummy_code (struct gdbarch *gdbarch,
350 		 CORE_ADDR sp, CORE_ADDR funaddr,
351 		 gdb::array_view<value *> args,
352 		 struct type *value_type,
353 		 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
354 		 struct regcache *regcache)
355 {
356   gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
357 
358   return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
359 				  args.data (), args.size (),
360 				  value_type, real_pc, bp_addr,
361 				  regcache);
362 }
363 
364 /* See infcall.h.  */
365 
366 void
error_call_unknown_return_type(const char * func_name)367 error_call_unknown_return_type (const char *func_name)
368 {
369   if (func_name != NULL)
370     error (_("'%s' has unknown return type; "
371 	     "cast the call to its declared return type"),
372 	   func_name);
373   else
374     error (_("function has unknown return type; "
375 	     "cast the call to its declared return type"));
376 }
377 
378 /* Fetch the name of the function at FUNADDR.
379    This is used in printing an error message for call_function_by_hand.
380    BUF is used to print FUNADDR in hex if the function name cannot be
381    determined.  It must be large enough to hold formatted result of
382    RAW_FUNCTION_ADDRESS_FORMAT.  */
383 
384 static const char *
get_function_name(CORE_ADDR funaddr,char * buf,int buf_size)385 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
386 {
387   {
388     struct symbol *symbol = find_pc_function (funaddr);
389 
390     if (symbol)
391       return symbol->print_name ();
392   }
393 
394   {
395     /* Try the minimal symbols.  */
396     struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
397 
398     if (msymbol.minsym)
399       return msymbol.minsym->print_name ();
400   }
401 
402   {
403     std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
404 				     hex_string (funaddr));
405 
406     gdb_assert (tmp.length () + 1 <= buf_size);
407     return strcpy (buf, tmp.c_str ());
408   }
409 }
410 
411 /* All the meta data necessary to extract the call's return value.  */
412 
413 struct call_return_meta_info
414 {
415   /* The caller frame's architecture.  */
416   struct gdbarch *gdbarch;
417 
418   /* The called function.  */
419   struct value *function;
420 
421   /* The return value's type.  */
422   struct type *value_type;
423 
424   /* Are we returning a value using a structure return or a normal
425      value return?  */
426   int struct_return_p;
427 
428   /* If using a structure return, this is the structure's address.  */
429   CORE_ADDR struct_addr;
430 };
431 
432 /* Extract the called function's return value.  */
433 
434 static struct value *
get_call_return_value(struct call_return_meta_info * ri)435 get_call_return_value (struct call_return_meta_info *ri)
436 {
437   struct value *retval = NULL;
438   thread_info *thr = inferior_thread ();
439   bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
440 
441   if (ri->value_type->code () == TYPE_CODE_VOID)
442     retval = allocate_value (ri->value_type);
443   else if (ri->struct_return_p)
444     {
445       if (stack_temporaries)
446 	{
447 	  retval = value_from_contents_and_address (ri->value_type, NULL,
448 						    ri->struct_addr);
449 	  push_thread_stack_temporary (thr, retval);
450 	}
451       else
452 	{
453 	  retval = allocate_value (ri->value_type);
454 	  read_value_memory (retval, 0, 1, ri->struct_addr,
455 			     value_contents_raw (retval),
456 			     TYPE_LENGTH (ri->value_type));
457 	}
458     }
459   else
460     {
461       retval = allocate_value (ri->value_type);
462       gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
463 			    get_current_regcache (),
464 			    value_contents_raw (retval), NULL);
465       if (stack_temporaries && class_or_union_p (ri->value_type))
466 	{
467 	  /* Values of class type returned in registers are copied onto
468 	     the stack and their lval_type set to lval_memory.  This is
469 	     required because further evaluation of the expression
470 	     could potentially invoke methods on the return value
471 	     requiring GDB to evaluate the "this" pointer.  To evaluate
472 	     the this pointer, GDB needs the memory address of the
473 	     value.  */
474 	  value_force_lval (retval, ri->struct_addr);
475 	  push_thread_stack_temporary (thr, retval);
476 	}
477     }
478 
479   gdb_assert (retval != NULL);
480   return retval;
481 }
482 
483 /* Data for the FSM that manages an infcall.  It's main job is to
484    record the called function's return value.  */
485 
486 struct call_thread_fsm : public thread_fsm
487 {
488   /* All the info necessary to be able to extract the return
489      value.  */
490   struct call_return_meta_info return_meta_info;
491 
492   /* The called function's return value.  This is extracted from the
493      target before the dummy frame is popped.  */
494   struct value *return_value = nullptr;
495 
496   /* The top level that started the infcall (and is synchronously
497      waiting for it to end).  */
498   struct ui *waiting_ui;
499 
500   call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
501 		   struct gdbarch *gdbarch, struct value *function,
502 		   struct type *value_type,
503 		   int struct_return_p, CORE_ADDR struct_addr);
504 
505   bool should_stop (struct thread_info *thread) override;
506 
507   bool should_notify_stop () override;
508 };
509 
510 /* Allocate a new call_thread_fsm object.  */
511 
call_thread_fsm(struct ui * waiting_ui,struct interp * cmd_interp,struct gdbarch * gdbarch,struct value * function,struct type * value_type,int struct_return_p,CORE_ADDR struct_addr)512 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
513 				  struct interp *cmd_interp,
514 				  struct gdbarch *gdbarch,
515 				  struct value *function,
516 				  struct type *value_type,
517 				  int struct_return_p, CORE_ADDR struct_addr)
518   : thread_fsm (cmd_interp),
519     waiting_ui (waiting_ui)
520 {
521   return_meta_info.gdbarch = gdbarch;
522   return_meta_info.function = function;
523   return_meta_info.value_type = value_type;
524   return_meta_info.struct_return_p = struct_return_p;
525   return_meta_info.struct_addr = struct_addr;
526 }
527 
528 /* Implementation of should_stop method for infcalls.  */
529 
530 bool
should_stop(struct thread_info * thread)531 call_thread_fsm::should_stop (struct thread_info *thread)
532 {
533   if (stop_stack_dummy == STOP_STACK_DUMMY)
534     {
535       /* Done.  */
536       set_finished ();
537 
538       /* Stash the return value before the dummy frame is popped and
539 	 registers are restored to what they were before the
540 	 call..  */
541       return_value = get_call_return_value (&return_meta_info);
542 
543       /* Break out of wait_sync_command_done.  */
544       scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
545       target_terminal::ours ();
546       waiting_ui->prompt_state = PROMPT_NEEDED;
547     }
548 
549   return true;
550 }
551 
552 /* Implementation of should_notify_stop method for infcalls.  */
553 
554 bool
should_notify_stop()555 call_thread_fsm::should_notify_stop ()
556 {
557   if (finished_p ())
558     {
559       /* Infcall succeeded.  Be silent and proceed with evaluating the
560 	 expression.  */
561       return false;
562     }
563 
564   /* Something wrong happened.  E.g., an unexpected breakpoint
565      triggered, or a signal was intercepted.  Notify the stop.  */
566   return true;
567 }
568 
569 /* Subroutine of call_function_by_hand to simplify it.
570    Start up the inferior and wait for it to stop.
571    Return the exception if there's an error, or an exception with
572    reason >= 0 if there's no error.
573 
574    This is done inside a TRY_CATCH so the caller needn't worry about
575    thrown errors.  The caller should rethrow if there's an error.  */
576 
577 static struct gdb_exception
run_inferior_call(struct call_thread_fsm * sm,struct thread_info * call_thread,CORE_ADDR real_pc)578 run_inferior_call (struct call_thread_fsm *sm,
579 		   struct thread_info *call_thread, CORE_ADDR real_pc)
580 {
581   struct gdb_exception caught_error;
582   int saved_in_infcall = call_thread->control.in_infcall;
583   ptid_t call_thread_ptid = call_thread->ptid;
584   enum prompt_state saved_prompt_state = current_ui->prompt_state;
585   int was_running = call_thread->state == THREAD_RUNNING;
586   int saved_ui_async = current_ui->async;
587 
588   /* Infcalls run synchronously, in the foreground.  */
589   current_ui->prompt_state = PROMPT_BLOCKED;
590   /* So that we don't print the prompt prematurely in
591      fetch_inferior_event.  */
592   current_ui->async = 0;
593 
594   delete_file_handler (current_ui->input_fd);
595 
596   call_thread->control.in_infcall = 1;
597 
598   clear_proceed_status (0);
599 
600   /* Associate the FSM with the thread after clear_proceed_status
601      (otherwise it'd clear this FSM), and before anything throws, so
602      we don't leak it (and any resources it manages).  */
603   call_thread->thread_fsm = sm;
604 
605   disable_watchpoints_before_interactive_call_start ();
606 
607   /* We want to print return value, please...  */
608   call_thread->control.proceed_to_finish = 1;
609 
610   try
611     {
612       proceed (real_pc, GDB_SIGNAL_0);
613 
614       /* Inferior function calls are always synchronous, even if the
615 	 target supports asynchronous execution.  */
616       wait_sync_command_done ();
617     }
618   catch (gdb_exception &e)
619     {
620       caught_error = std::move (e);
621     }
622 
623   /* If GDB has the prompt blocked before, then ensure that it remains
624      so.  normal_stop calls async_enable_stdin, so reset the prompt
625      state again here.  In other cases, stdin will be re-enabled by
626      inferior_event_handler, when an exception is thrown.  */
627   current_ui->prompt_state = saved_prompt_state;
628   if (current_ui->prompt_state == PROMPT_BLOCKED)
629     delete_file_handler (current_ui->input_fd);
630   else
631     ui_register_input_event_handler (current_ui);
632   current_ui->async = saved_ui_async;
633 
634   /* If the infcall does NOT succeed, normal_stop will have already
635      finished the thread states.  However, on success, normal_stop
636      defers here, so that we can set back the thread states to what
637      they were before the call.  Note that we must also finish the
638      state of new threads that might have spawned while the call was
639      running.  The main cases to handle are:
640 
641      - "(gdb) print foo ()", or any other command that evaluates an
642      expression at the prompt.  (The thread was marked stopped before.)
643 
644      - "(gdb) break foo if return_false()" or similar cases where we
645      do an infcall while handling an event (while the thread is still
646      marked running).  In this example, whether the condition
647      evaluates true and thus we'll present a user-visible stop is
648      decided elsewhere.  */
649   if (!was_running
650       && call_thread_ptid == inferior_ptid
651       && stop_stack_dummy == STOP_STACK_DUMMY)
652     finish_thread_state (call_thread->inf->process_target (),
653 			 user_visible_resume_ptid (0));
654 
655   enable_watchpoints_after_interactive_call_stop ();
656 
657   /* Call breakpoint_auto_delete on the current contents of the bpstat
658      of inferior call thread.
659      If all error()s out of proceed ended up calling normal_stop
660      (and perhaps they should; it already does in the special case
661      of error out of resume()), then we wouldn't need this.  */
662   if (caught_error.reason < 0)
663     {
664       if (call_thread->state != THREAD_EXITED)
665 	breakpoint_auto_delete (call_thread->control.stop_bpstat);
666     }
667 
668   call_thread->control.in_infcall = saved_in_infcall;
669 
670   return caught_error;
671 }
672 
673 /* Reserve space on the stack for a value of the given type.
674    Return the address of the allocated space.
675    Make certain that the value is correctly aligned.
676    The SP argument is modified.  */
677 
678 static CORE_ADDR
reserve_stack_space(const type * values_type,CORE_ADDR & sp)679 reserve_stack_space (const type *values_type, CORE_ADDR &sp)
680 {
681   struct frame_info *frame = get_current_frame ();
682   struct gdbarch *gdbarch = get_frame_arch (frame);
683   CORE_ADDR addr = 0;
684 
685   if (gdbarch_inner_than (gdbarch, 1, 2))
686     {
687       /* Stack grows downward.  Align STRUCT_ADDR and SP after
688 	 making space.  */
689       sp -= TYPE_LENGTH (values_type);
690       if (gdbarch_frame_align_p (gdbarch))
691 	sp = gdbarch_frame_align (gdbarch, sp);
692       addr = sp;
693     }
694   else
695     {
696       /* Stack grows upward.  Align the frame, allocate space, and
697 	 then again, re-align the frame???  */
698       if (gdbarch_frame_align_p (gdbarch))
699 	sp = gdbarch_frame_align (gdbarch, sp);
700       addr = sp;
701       sp += TYPE_LENGTH (values_type);
702       if (gdbarch_frame_align_p (gdbarch))
703 	sp = gdbarch_frame_align (gdbarch, sp);
704     }
705 
706   return addr;
707 }
708 
709 /* The data structure which keeps a destructor function and
710    its implicit 'this' parameter.  */
711 
712 struct destructor_info
713 {
destructor_infodestructor_info714   destructor_info (struct value *function, struct value *self)
715     : function (function), self (self) { }
716 
717   struct value *function;
718   struct value *self;
719 };
720 
721 
722 /* Auxiliary function that takes a list of destructor functions
723    with their 'this' parameters, and invokes the functions.  */
724 
725 static void
call_destructors(const std::list<destructor_info> & dtors_to_invoke,struct type * default_return_type)726 call_destructors (const std::list<destructor_info> &dtors_to_invoke,
727 		  struct type *default_return_type)
728 {
729   for (auto vals : dtors_to_invoke)
730     {
731       call_function_by_hand (vals.function, default_return_type,
732 			     gdb::make_array_view (&(vals.self), 1));
733     }
734 }
735 
736 /* See infcall.h.  */
737 
738 struct value *
call_function_by_hand(struct value * function,type * default_return_type,gdb::array_view<value * > args)739 call_function_by_hand (struct value *function,
740 		       type *default_return_type,
741 		       gdb::array_view<value *> args)
742 {
743   return call_function_by_hand_dummy (function, default_return_type,
744 				      args, NULL, NULL);
745 }
746 
747 /* All this stuff with a dummy frame may seem unnecessarily complicated
748    (why not just save registers in GDB?).  The purpose of pushing a dummy
749    frame which looks just like a real frame is so that if you call a
750    function and then hit a breakpoint (get a signal, etc), "backtrace"
751    will look right.  Whether the backtrace needs to actually show the
752    stack at the time the inferior function was called is debatable, but
753    it certainly needs to not display garbage.  So if you are contemplating
754    making dummy frames be different from normal frames, consider that.  */
755 
756 /* Perform a function call in the inferior.
757    ARGS is a vector of values of arguments.
758    FUNCTION is a value, the function to be called.
759    Returns a value representing what the function returned.
760    May fail to return, if a breakpoint or signal is hit
761    during the execution of the function.
762 
763    ARGS is modified to contain coerced values.  */
764 
765 struct value *
call_function_by_hand_dummy(struct value * function,type * default_return_type,gdb::array_view<value * > args,dummy_frame_dtor_ftype * dummy_dtor,void * dummy_dtor_data)766 call_function_by_hand_dummy (struct value *function,
767 			     type *default_return_type,
768 			     gdb::array_view<value *> args,
769 			     dummy_frame_dtor_ftype *dummy_dtor,
770 			     void *dummy_dtor_data)
771 {
772   CORE_ADDR sp;
773   struct type *target_values_type;
774   function_call_return_method return_method = return_method_normal;
775   CORE_ADDR struct_addr = 0;
776   CORE_ADDR real_pc;
777   CORE_ADDR bp_addr;
778   struct frame_id dummy_id;
779   struct frame_info *frame;
780   struct gdbarch *gdbarch;
781   ptid_t call_thread_ptid;
782   struct gdb_exception e;
783   char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
784 
785   if (!may_call_functions_p)
786     error (_("Cannot call functions in the program: "
787 	     "may-call-functions is off."));
788 
789   if (!target_has_execution)
790     noprocess ();
791 
792   if (get_traceframe_number () >= 0)
793     error (_("May not call functions while looking at trace frames."));
794 
795   if (execution_direction == EXEC_REVERSE)
796     error (_("Cannot call functions in reverse mode."));
797 
798   /* We're going to run the target, and inspect the thread's state
799      afterwards.  Hold a strong reference so that the pointer remains
800      valid even if the thread exits.  */
801   thread_info_ref call_thread
802     = thread_info_ref::new_reference (inferior_thread ());
803 
804   bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
805 
806   frame = get_current_frame ();
807   gdbarch = get_frame_arch (frame);
808 
809   if (!gdbarch_push_dummy_call_p (gdbarch))
810     error (_("This target does not support function calls."));
811 
812   /* Find the function type and do a sanity check.  */
813   type *ftype;
814   type *values_type;
815   CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
816 
817   if (values_type == NULL)
818     values_type = default_return_type;
819   if (values_type == NULL)
820     {
821       const char *name = get_function_name (funaddr,
822 					    name_buf, sizeof (name_buf));
823       error (_("'%s' has unknown return type; "
824 	       "cast the call to its declared return type"),
825 	     name);
826     }
827 
828   values_type = check_typedef (values_type);
829 
830   if (args.size () < ftype->num_fields ())
831     error (_("Too few arguments in function call."));
832 
833   /* A holder for the inferior status.
834      This is only needed while we're preparing the inferior function call.  */
835   infcall_control_state_up inf_status (save_infcall_control_state ());
836 
837   /* Save the caller's registers and other state associated with the
838      inferior itself so that they can be restored once the
839      callee returns.  To allow nested calls the registers are (further
840      down) pushed onto a dummy frame stack.  This unique pointer
841      is released once the regcache has been pushed).  */
842   infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
843 
844   /* Ensure that the initial SP is correctly aligned.  */
845   {
846     CORE_ADDR old_sp = get_frame_sp (frame);
847 
848     if (gdbarch_frame_align_p (gdbarch))
849       {
850 	sp = gdbarch_frame_align (gdbarch, old_sp);
851 	/* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
852 	   ABIs, a function can use memory beyond the inner most stack
853 	   address.  AMD64 called that region the "red zone".  Skip at
854 	   least the "red zone" size before allocating any space on
855 	   the stack.  */
856 	if (gdbarch_inner_than (gdbarch, 1, 2))
857 	  sp -= gdbarch_frame_red_zone_size (gdbarch);
858 	else
859 	  sp += gdbarch_frame_red_zone_size (gdbarch);
860 	/* Still aligned?  */
861 	gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
862 	/* NOTE: cagney/2002-09-18:
863 
864 	   On a RISC architecture, a void parameterless generic dummy
865 	   frame (i.e., no parameters, no result) typically does not
866 	   need to push anything the stack and hence can leave SP and
867 	   FP.  Similarly, a frameless (possibly leaf) function does
868 	   not push anything on the stack and, hence, that too can
869 	   leave FP and SP unchanged.  As a consequence, a sequence of
870 	   void parameterless generic dummy frame calls to frameless
871 	   functions will create a sequence of effectively identical
872 	   frames (SP, FP and TOS and PC the same).  This, not
873 	   surprisingly, results in what appears to be a stack in an
874 	   infinite loop --- when GDB tries to find a generic dummy
875 	   frame on the internal dummy frame stack, it will always
876 	   find the first one.
877 
878 	   To avoid this problem, the code below always grows the
879 	   stack.  That way, two dummy frames can never be identical.
880 	   It does burn a few bytes of stack but that is a small price
881 	   to pay :-).  */
882 	if (sp == old_sp)
883 	  {
884 	    if (gdbarch_inner_than (gdbarch, 1, 2))
885 	      /* Stack grows down.  */
886 	      sp = gdbarch_frame_align (gdbarch, old_sp - 1);
887 	    else
888 	      /* Stack grows up.  */
889 	      sp = gdbarch_frame_align (gdbarch, old_sp + 1);
890 	  }
891 	/* SP may have underflown address zero here from OLD_SP.  Memory access
892 	   functions will probably fail in such case but that is a target's
893 	   problem.  */
894       }
895     else
896       /* FIXME: cagney/2002-09-18: Hey, you loose!
897 
898 	 Who knows how badly aligned the SP is!
899 
900 	 If the generic dummy frame ends up empty (because nothing is
901 	 pushed) GDB won't be able to correctly perform back traces.
902 	 If a target is having trouble with backtraces, first thing to
903 	 do is add FRAME_ALIGN() to the architecture vector.  If that
904 	 fails, try dummy_id().
905 
906          If the ABI specifies a "Red Zone" (see the doco) the code
907          below will quietly trash it.  */
908       sp = old_sp;
909 
910     /* Skip over the stack temporaries that might have been generated during
911        the evaluation of an expression.  */
912     if (stack_temporaries)
913       {
914 	struct value *lastval;
915 
916 	lastval = get_last_thread_stack_temporary (call_thread.get ());
917         if (lastval != NULL)
918 	  {
919 	    CORE_ADDR lastval_addr = value_address (lastval);
920 
921 	    if (gdbarch_inner_than (gdbarch, 1, 2))
922 	      {
923 		gdb_assert (sp >= lastval_addr);
924 		sp = lastval_addr;
925 	      }
926 	    else
927 	      {
928 		gdb_assert (sp <= lastval_addr);
929 		sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
930 	      }
931 
932 	    if (gdbarch_frame_align_p (gdbarch))
933 	      sp = gdbarch_frame_align (gdbarch, sp);
934 	  }
935       }
936   }
937 
938   /* Are we returning a value using a structure return?  */
939 
940   if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
941     {
942       return_method = return_method_hidden_param;
943 
944       /* Tell the target specific argument pushing routine not to
945 	 expect a value.  */
946       target_values_type = builtin_type (gdbarch)->builtin_void;
947     }
948   else
949     {
950       if (using_struct_return (gdbarch, function, values_type))
951 	return_method = return_method_struct;
952       target_values_type = values_type;
953     }
954 
955   gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
956 
957   /* Determine the location of the breakpoint (and possibly other
958      stuff) that the called function will return to.  The SPARC, for a
959      function returning a structure or union, needs to make space for
960      not just the breakpoint but also an extra word containing the
961      size (?) of the structure being passed.  */
962 
963   switch (gdbarch_call_dummy_location (gdbarch))
964     {
965     case ON_STACK:
966       {
967 	const gdb_byte *bp_bytes;
968 	CORE_ADDR bp_addr_as_address;
969 	int bp_size;
970 
971 	/* Be careful BP_ADDR is in inferior PC encoding while
972 	   BP_ADDR_AS_ADDRESS is a plain memory address.  */
973 
974 	sp = push_dummy_code (gdbarch, sp, funaddr, args,
975 			      target_values_type, &real_pc, &bp_addr,
976 			      get_current_regcache ());
977 
978 	/* Write a legitimate instruction at the point where the infcall
979 	   breakpoint is going to be inserted.  While this instruction
980 	   is never going to be executed, a user investigating the
981 	   memory from GDB would see this instruction instead of random
982 	   uninitialized bytes.  We chose the breakpoint instruction
983 	   as it may look as the most logical one to the user and also
984 	   valgrind 3.7.0 needs it for proper vgdb inferior calls.
985 
986 	   If software breakpoints are unsupported for this target we
987 	   leave the user visible memory content uninitialized.  */
988 
989 	bp_addr_as_address = bp_addr;
990 	bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
991 					       &bp_size);
992 	if (bp_bytes != NULL)
993 	  write_memory (bp_addr_as_address, bp_bytes, bp_size);
994       }
995       break;
996     case AT_ENTRY_POINT:
997       {
998 	CORE_ADDR dummy_addr;
999 
1000 	real_pc = funaddr;
1001 	dummy_addr = entry_point_address ();
1002 
1003 	/* A call dummy always consists of just a single breakpoint, so
1004 	   its address is the same as the address of the dummy.
1005 
1006 	   The actual breakpoint is inserted separatly so there is no need to
1007 	   write that out.  */
1008 	bp_addr = dummy_addr;
1009 	break;
1010       }
1011     default:
1012       internal_error (__FILE__, __LINE__, _("bad switch"));
1013     }
1014 
1015   /* Coerce the arguments and handle pass-by-reference.
1016      We want to remember the destruction required for pass-by-ref values.
1017      For these, store the dtor function and the 'this' argument
1018      in DTORS_TO_INVOKE.  */
1019   std::list<destructor_info> dtors_to_invoke;
1020 
1021   for (int i = args.size () - 1; i >= 0; i--)
1022     {
1023       int prototyped;
1024       struct type *param_type;
1025 
1026       /* FIXME drow/2002-05-31: Should just always mark methods as
1027 	 prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
1028       if (ftype->code () == TYPE_CODE_METHOD)
1029 	prototyped = 1;
1030       if (TYPE_TARGET_TYPE (ftype) == NULL && ftype->num_fields () == 0
1031 	  && default_return_type != NULL)
1032 	{
1033 	  /* Calling a no-debug function with the return type
1034 	     explicitly cast.  Assume the function is prototyped,
1035 	     with a prototype matching the types of the arguments.
1036 	     E.g., with:
1037 	     float mult (float v1, float v2) { return v1 * v2; }
1038 	     This:
1039 	     (gdb) p (float) mult (2.0f, 3.0f)
1040 	     Is a simpler alternative to:
1041 	     (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
1042 	  */
1043 	  prototyped = 1;
1044 	}
1045       else if (i < ftype->num_fields ())
1046 	prototyped = TYPE_PROTOTYPED (ftype);
1047       else
1048 	prototyped = 0;
1049 
1050       if (i < ftype->num_fields ())
1051 	param_type = ftype->field (i).type ();
1052       else
1053 	param_type = NULL;
1054 
1055       value *original_arg = args[i];
1056       args[i] = value_arg_coerce (gdbarch, args[i],
1057 				  param_type, prototyped);
1058 
1059       if (param_type == NULL)
1060 	continue;
1061 
1062       auto info = language_pass_by_reference (param_type);
1063       if (!info.copy_constructible)
1064 	error (_("expression cannot be evaluated because the type '%s' "
1065 		 "is not copy constructible"), param_type->name ());
1066 
1067       if (!info.destructible)
1068 	error (_("expression cannot be evaluated because the type '%s' "
1069 		 "is not destructible"), param_type->name ());
1070 
1071       if (info.trivially_copyable)
1072 	continue;
1073 
1074       /* Make a copy of the argument on the stack.  If the argument is
1075 	 trivially copy ctor'able, copy bit by bit.  Otherwise, call
1076 	 the copy ctor to initialize the clone.  */
1077       CORE_ADDR addr = reserve_stack_space (param_type, sp);
1078       value *clone
1079 	= value_from_contents_and_address (param_type, nullptr, addr);
1080       push_thread_stack_temporary (call_thread.get (), clone);
1081       value *clone_ptr
1082 	= value_from_pointer (lookup_pointer_type (param_type), addr);
1083 
1084       if (info.trivially_copy_constructible)
1085 	{
1086 	  int length = TYPE_LENGTH (param_type);
1087 	  write_memory (addr, value_contents (args[i]), length);
1088 	}
1089       else
1090 	{
1091 	  value *copy_ctor;
1092 	  value *cctor_args[2] = { clone_ptr, original_arg };
1093 	  find_overload_match (gdb::make_array_view (cctor_args, 2),
1094 			       param_type->name (), METHOD,
1095 			       &clone_ptr, nullptr, &copy_ctor, nullptr,
1096 			       nullptr, 0, EVAL_NORMAL);
1097 
1098 	  if (copy_ctor == nullptr)
1099 	    error (_("expression cannot be evaluated because a copy "
1100 		     "constructor for the type '%s' could not be found "
1101 		     "(maybe inlined?)"), param_type->name ());
1102 
1103 	  call_function_by_hand (copy_ctor, default_return_type,
1104 				 gdb::make_array_view (cctor_args, 2));
1105 	}
1106 
1107       /* If the argument has a destructor, remember it so that we
1108 	 invoke it after the infcall is complete.  */
1109       if (!info.trivially_destructible)
1110 	{
1111 	  /* Looking up the function via overload resolution does not
1112 	     work because the compiler (in particular, gcc) adds an
1113 	     artificial int parameter in some cases.  So we look up
1114 	     the function by using the "~" name.  This should be OK
1115 	     because there can be only one dtor definition.  */
1116 	  const char *dtor_name = nullptr;
1117 	  for (int fieldnum = 0;
1118 	       fieldnum < TYPE_NFN_FIELDS (param_type);
1119 	       fieldnum++)
1120 	    {
1121 	      fn_field *fn
1122 		= TYPE_FN_FIELDLIST1 (param_type, fieldnum);
1123 	      const char *field_name
1124 		= TYPE_FN_FIELDLIST_NAME (param_type, fieldnum);
1125 
1126 	      if (field_name[0] == '~')
1127 		dtor_name = TYPE_FN_FIELD_PHYSNAME (fn, 0);
1128 	    }
1129 
1130 	  if (dtor_name == nullptr)
1131 	    error (_("expression cannot be evaluated because a destructor "
1132 		     "for the type '%s' could not be found "
1133 		     "(maybe inlined?)"), param_type->name ());
1134 
1135 	  value *dtor
1136 	    = find_function_in_inferior (dtor_name, 0);
1137 
1138 	  /* Insert the dtor to the front of the list to call them
1139 	     in reverse order later.  */
1140 	  dtors_to_invoke.emplace_front (dtor, clone_ptr);
1141 	}
1142 
1143       args[i] = clone_ptr;
1144     }
1145 
1146   /* Reserve space for the return structure to be written on the
1147      stack, if necessary.
1148 
1149      While evaluating expressions, we reserve space on the stack for
1150      return values of class type even if the language ABI and the target
1151      ABI do not require that the return value be passed as a hidden first
1152      argument.  This is because we want to store the return value as an
1153      on-stack temporary while the expression is being evaluated.  This
1154      enables us to have chained function calls in expressions.
1155 
1156      Keeping the return values as on-stack temporaries while the expression
1157      is being evaluated is OK because the thread is stopped until the
1158      expression is completely evaluated.  */
1159 
1160   if (return_method != return_method_normal
1161       || (stack_temporaries && class_or_union_p (values_type)))
1162     struct_addr = reserve_stack_space (values_type, sp);
1163 
1164   std::vector<struct value *> new_args;
1165   if (return_method == return_method_hidden_param)
1166     {
1167       /* Add the new argument to the front of the argument list.  */
1168       new_args.reserve (args.size ());
1169       new_args.push_back
1170 	(value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1171       new_args.insert (new_args.end (), args.begin (), args.end ());
1172       args = new_args;
1173     }
1174 
1175   /* Create the dummy stack frame.  Pass in the call dummy address as,
1176      presumably, the ABI code knows where, in the call dummy, the
1177      return address should be pointed.  */
1178   sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1179 				bp_addr, args.size (), args.data (),
1180 				sp, return_method, struct_addr);
1181 
1182   /* Set up a frame ID for the dummy frame so we can pass it to
1183      set_momentary_breakpoint.  We need to give the breakpoint a frame
1184      ID so that the breakpoint code can correctly re-identify the
1185      dummy breakpoint.  */
1186   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
1187      saved as the dummy-frame TOS, and used by dummy_id to form
1188      the frame ID's stack address.  */
1189   dummy_id = frame_id_build (sp, bp_addr);
1190 
1191   /* Create a momentary breakpoint at the return address of the
1192      inferior.  That way it breaks when it returns.  */
1193 
1194   {
1195     symtab_and_line sal;
1196     sal.pspace = current_program_space;
1197     sal.pc = bp_addr;
1198     sal.section = find_pc_overlay (sal.pc);
1199 
1200     /* Sanity.  The exact same SP value is returned by
1201        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1202        dummy_id to form the frame ID's stack address.  */
1203     breakpoint *bpt
1204       = set_momentary_breakpoint (gdbarch, sal,
1205 				  dummy_id, bp_call_dummy).release ();
1206 
1207     /* set_momentary_breakpoint invalidates FRAME.  */
1208     frame = NULL;
1209 
1210     bpt->disposition = disp_del;
1211     gdb_assert (bpt->related_breakpoint == bpt);
1212 
1213     breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1214     if (longjmp_b)
1215       {
1216 	/* Link BPT into the chain of LONGJMP_B.  */
1217 	bpt->related_breakpoint = longjmp_b;
1218 	while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1219 	  longjmp_b = longjmp_b->related_breakpoint;
1220 	longjmp_b->related_breakpoint = bpt;
1221       }
1222   }
1223 
1224   /* Create a breakpoint in std::terminate.
1225      If a C++ exception is raised in the dummy-frame, and the
1226      exception handler is (normally, and expected to be) out-of-frame,
1227      the default C++ handler will (wrongly) be called in an inferior
1228      function call.  This is wrong, as an exception can be  normally
1229      and legally handled out-of-frame.  The confines of the dummy frame
1230      prevent the unwinder from finding the correct handler (or any
1231      handler, unless it is in-frame).  The default handler calls
1232      std::terminate.  This will kill the inferior.  Assert that
1233      terminate should never be called in an inferior function
1234      call.  Place a momentary breakpoint in the std::terminate function
1235      and if triggered in the call, rewind.  */
1236   if (unwind_on_terminating_exception_p)
1237     set_std_terminate_breakpoint ();
1238 
1239   /* Everything's ready, push all the info needed to restore the
1240      caller (and identify the dummy-frame) onto the dummy-frame
1241      stack.  */
1242   dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1243   if (dummy_dtor != NULL)
1244     register_dummy_frame_dtor (dummy_id, call_thread.get (),
1245 			       dummy_dtor, dummy_dtor_data);
1246 
1247   /* Register a clean-up for unwind_on_terminating_exception_breakpoint.  */
1248   SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1249 
1250   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1251      If you're looking to implement asynchronous dummy-frames, then
1252      just below is the place to chop this function in two..  */
1253 
1254   {
1255     struct thread_fsm *saved_sm;
1256     struct call_thread_fsm *sm;
1257 
1258     /* Save the current FSM.  We'll override it.  */
1259     saved_sm = call_thread->thread_fsm;
1260     call_thread->thread_fsm = NULL;
1261 
1262     /* Save this thread's ptid, we need it later but the thread
1263        may have exited.  */
1264     call_thread_ptid = call_thread->ptid;
1265 
1266     /* Run the inferior until it stops.  */
1267 
1268     /* Create the FSM used to manage the infcall.  It tells infrun to
1269        not report the stop to the user, and captures the return value
1270        before the dummy frame is popped.  run_inferior_call registers
1271        it with the thread ASAP.  */
1272     sm = new call_thread_fsm (current_ui, command_interp (),
1273 			      gdbarch, function,
1274 			      values_type,
1275 			      return_method != return_method_normal,
1276 			      struct_addr);
1277 
1278     e = run_inferior_call (sm, call_thread.get (), real_pc);
1279 
1280     gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1281 
1282     if (call_thread->state != THREAD_EXITED)
1283       {
1284 	/* The FSM should still be the same.  */
1285 	gdb_assert (call_thread->thread_fsm == sm);
1286 
1287 	if (call_thread->thread_fsm->finished_p ())
1288 	  {
1289 	    struct value *retval;
1290 
1291 	    /* The inferior call is successful.  Pop the dummy frame,
1292 	       which runs its destructors and restores the inferior's
1293 	       suspend state, and restore the inferior control
1294 	       state.  */
1295 	    dummy_frame_pop (dummy_id, call_thread.get ());
1296 	    restore_infcall_control_state (inf_status.release ());
1297 
1298 	    /* Get the return value.  */
1299 	    retval = sm->return_value;
1300 
1301 	    /* Clean up / destroy the call FSM, and restore the
1302 	       original one.  */
1303 	    call_thread->thread_fsm->clean_up (call_thread.get ());
1304 	    delete call_thread->thread_fsm;
1305 	    call_thread->thread_fsm = saved_sm;
1306 
1307 	    maybe_remove_breakpoints ();
1308 
1309 	    gdb_assert (retval != NULL);
1310 
1311 	    /* Destruct the pass-by-ref argument clones.  */
1312 	    call_destructors (dtors_to_invoke, default_return_type);
1313 
1314 	    return retval;
1315 	  }
1316 
1317 	/* Didn't complete.  Clean up / destroy the call FSM, and restore the
1318 	   previous state machine, and handle the error.  */
1319 	call_thread->thread_fsm->clean_up (call_thread.get ());
1320 	delete call_thread->thread_fsm;
1321 	call_thread->thread_fsm = saved_sm;
1322       }
1323   }
1324 
1325   /* Rethrow an error if we got one trying to run the inferior.  */
1326 
1327   if (e.reason < 0)
1328     {
1329       const char *name = get_function_name (funaddr,
1330                                             name_buf, sizeof (name_buf));
1331 
1332       discard_infcall_control_state (inf_status.release ());
1333 
1334       /* We could discard the dummy frame here if the program exited,
1335          but it will get garbage collected the next time the program is
1336          run anyway.  */
1337 
1338       switch (e.reason)
1339 	{
1340 	case RETURN_ERROR:
1341 	  throw_error (e.error, _("%s\n\
1342 An error occurred while in a function called from GDB.\n\
1343 Evaluation of the expression containing the function\n\
1344 (%s) will be abandoned.\n\
1345 When the function is done executing, GDB will silently stop."),
1346 		       e.what (), name);
1347 	case RETURN_QUIT:
1348 	default:
1349 	  throw_exception (std::move (e));
1350 	}
1351     }
1352 
1353   /* If the program has exited, or we stopped at a different thread,
1354      exit and inform the user.  */
1355 
1356   if (! target_has_execution)
1357     {
1358       const char *name = get_function_name (funaddr,
1359 					    name_buf, sizeof (name_buf));
1360 
1361       /* If we try to restore the inferior status,
1362 	 we'll crash as the inferior is no longer running.  */
1363       discard_infcall_control_state (inf_status.release ());
1364 
1365       /* We could discard the dummy frame here given that the program exited,
1366          but it will get garbage collected the next time the program is
1367          run anyway.  */
1368 
1369       error (_("The program being debugged exited while in a function "
1370 	       "called from GDB.\n"
1371 	       "Evaluation of the expression containing the function\n"
1372 	       "(%s) will be abandoned."),
1373 	     name);
1374     }
1375 
1376   if (call_thread_ptid != inferior_ptid)
1377     {
1378       const char *name = get_function_name (funaddr,
1379 					    name_buf, sizeof (name_buf));
1380 
1381       /* We've switched threads.  This can happen if another thread gets a
1382 	 signal or breakpoint while our thread was running.
1383 	 There's no point in restoring the inferior status,
1384 	 we're in a different thread.  */
1385       discard_infcall_control_state (inf_status.release ());
1386       /* Keep the dummy frame record, if the user switches back to the
1387 	 thread with the hand-call, we'll need it.  */
1388       if (stopped_by_random_signal)
1389 	error (_("\
1390 The program received a signal in another thread while\n\
1391 making a function call from GDB.\n\
1392 Evaluation of the expression containing the function\n\
1393 (%s) will be abandoned.\n\
1394 When the function is done executing, GDB will silently stop."),
1395 	       name);
1396       else
1397 	error (_("\
1398 The program stopped in another thread while making a function call from GDB.\n\
1399 Evaluation of the expression containing the function\n\
1400 (%s) will be abandoned.\n\
1401 When the function is done executing, GDB will silently stop."),
1402 	       name);
1403     }
1404 
1405     {
1406       /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop.  */
1407       std::string name = get_function_name (funaddr, name_buf,
1408 					    sizeof (name_buf));
1409 
1410       if (stopped_by_random_signal)
1411 	{
1412 	  /* We stopped inside the FUNCTION because of a random
1413 	     signal.  Further execution of the FUNCTION is not
1414 	     allowed.  */
1415 
1416 	  if (unwind_on_signal_p)
1417 	    {
1418 	      /* The user wants the context restored.  */
1419 
1420 	      /* We must get back to the frame we were before the
1421 		 dummy call.  */
1422 	      dummy_frame_pop (dummy_id, call_thread.get ());
1423 
1424 	      /* We also need to restore inferior status to that before the
1425 		 dummy call.  */
1426 	      restore_infcall_control_state (inf_status.release ());
1427 
1428 	      /* FIXME: Insert a bunch of wrap_here; name can be very
1429 		 long if it's a C++ name with arguments and stuff.  */
1430 	      error (_("\
1431 The program being debugged was signaled while in a function called from GDB.\n\
1432 GDB has restored the context to what it was before the call.\n\
1433 To change this behavior use \"set unwindonsignal off\".\n\
1434 Evaluation of the expression containing the function\n\
1435 (%s) will be abandoned."),
1436 		     name.c_str ());
1437 	    }
1438 	  else
1439 	    {
1440 	      /* The user wants to stay in the frame where we stopped
1441 		 (default).
1442 		 Discard inferior status, we're not at the same point
1443 		 we started at.  */
1444 	      discard_infcall_control_state (inf_status.release ());
1445 
1446 	      /* FIXME: Insert a bunch of wrap_here; name can be very
1447 		 long if it's a C++ name with arguments and stuff.  */
1448 	      error (_("\
1449 The program being debugged was signaled while in a function called from GDB.\n\
1450 GDB remains in the frame where the signal was received.\n\
1451 To change this behavior use \"set unwindonsignal on\".\n\
1452 Evaluation of the expression containing the function\n\
1453 (%s) will be abandoned.\n\
1454 When the function is done executing, GDB will silently stop."),
1455 		     name.c_str ());
1456 	    }
1457 	}
1458 
1459       if (stop_stack_dummy == STOP_STD_TERMINATE)
1460 	{
1461 	  /* We must get back to the frame we were before the dummy
1462 	     call.  */
1463 	  dummy_frame_pop (dummy_id, call_thread.get ());
1464 
1465 	  /* We also need to restore inferior status to that before
1466 	     the dummy call.  */
1467 	  restore_infcall_control_state (inf_status.release ());
1468 
1469 	  error (_("\
1470 The program being debugged entered a std::terminate call, most likely\n\
1471 caused by an unhandled C++ exception.  GDB blocked this call in order\n\
1472 to prevent the program from being terminated, and has restored the\n\
1473 context to its original state before the call.\n\
1474 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1475 Evaluation of the expression containing the function (%s)\n\
1476 will be abandoned."),
1477 		 name.c_str ());
1478 	}
1479       else if (stop_stack_dummy == STOP_NONE)
1480 	{
1481 
1482 	  /* We hit a breakpoint inside the FUNCTION.
1483 	     Keep the dummy frame, the user may want to examine its state.
1484 	     Discard inferior status, we're not at the same point
1485 	     we started at.  */
1486 	  discard_infcall_control_state (inf_status.release ());
1487 
1488 	  /* The following error message used to say "The expression
1489 	     which contained the function call has been discarded."
1490 	     It is a hard concept to explain in a few words.  Ideally,
1491 	     GDB would be able to resume evaluation of the expression
1492 	     when the function finally is done executing.  Perhaps
1493 	     someday this will be implemented (it would not be easy).  */
1494 	  /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1495 	     a C++ name with arguments and stuff.  */
1496 	  error (_("\
1497 The program being debugged stopped while in a function called from GDB.\n\
1498 Evaluation of the expression containing the function\n\
1499 (%s) will be abandoned.\n\
1500 When the function is done executing, GDB will silently stop."),
1501 		 name.c_str ());
1502 	}
1503 
1504     }
1505 
1506   /* The above code errors out, so ...  */
1507   gdb_assert_not_reached ("... should not be here");
1508 }
1509 
1510 void _initialize_infcall ();
1511 void
_initialize_infcall()1512 _initialize_infcall ()
1513 {
1514   add_setshow_boolean_cmd ("may-call-functions", no_class,
1515 			   &may_call_functions_p, _("\
1516 Set permission to call functions in the program."), _("\
1517 Show permission to call functions in the program."), _("\
1518 When this permission is on, GDB may call functions in the program.\n\
1519 Otherwise, any sort of attempt to call a function in the program\n\
1520 will result in an error."),
1521 			   NULL,
1522 			   show_may_call_functions_p,
1523 			   &setlist, &showlist);
1524 
1525   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1526 			   &coerce_float_to_double_p, _("\
1527 Set coercion of floats to doubles when calling functions."), _("\
1528 Show coercion of floats to doubles when calling functions."), _("\
1529 Variables of type float should generally be converted to doubles before\n\
1530 calling an unprototyped function, and left alone when calling a prototyped\n\
1531 function.  However, some older debug info formats do not provide enough\n\
1532 information to determine that a function is prototyped.  If this flag is\n\
1533 set, GDB will perform the conversion for a function it considers\n\
1534 unprototyped.\n\
1535 The default is to perform the conversion."),
1536 			   NULL,
1537 			   show_coerce_float_to_double_p,
1538 			   &setlist, &showlist);
1539 
1540   add_setshow_boolean_cmd ("unwindonsignal", no_class,
1541 			   &unwind_on_signal_p, _("\
1542 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1543 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1544 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1545 is received while in a function called from gdb (call dummy).  If set, gdb\n\
1546 unwinds the stack and restore the context to what as it was before the call.\n\
1547 The default is to stop in the frame where the signal was received."),
1548 			   NULL,
1549 			   show_unwind_on_signal_p,
1550 			   &setlist, &showlist);
1551 
1552   add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1553 			   &unwind_on_terminating_exception_p, _("\
1554 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1555 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1556 			   _("\
1557 The unwind on terminating exception flag lets the user determine\n\
1558 what gdb should do if a std::terminate() call is made from the\n\
1559 default exception handler.  If set, gdb unwinds the stack and restores\n\
1560 the context to what it was before the call.  If unset, gdb allows the\n\
1561 std::terminate call to proceed.\n\
1562 The default is to unwind the frame."),
1563 			   NULL,
1564 			   show_unwind_on_terminating_exception_p,
1565 			   &setlist, &showlist);
1566 
1567 }
1568