xref: /netbsd/external/gpl3/gdb/dist/gdb/objfiles.c (revision f72a8c67)
1 /* GDB routines for manipulating objfiles.
2 
3    Copyright (C) 1992-2020 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* This file contains support routines for creating, manipulating, and
23    destroying objfile structures.  */
24 
25 #include "defs.h"
26 #include "bfd.h"		/* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41 
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56 
57 #include <algorithm>
58 #include <vector>
59 
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61    modules.  */
62 
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64 
65 /* Externally visible variables that are owned by this module.
66    See declarations in objfile.h for more info.  */
67 
68 struct objfile_pspace_info
69 {
70   objfile_pspace_info () = default;
71   ~objfile_pspace_info ();
72 
73   struct obj_section **sections = nullptr;
74   int num_sections = 0;
75 
76   /* Nonzero if object files have been added since the section map
77      was last updated.  */
78   int new_objfiles_available = 0;
79 
80   /* Nonzero if the section map MUST be updated before use.  */
81   int section_map_dirty = 0;
82 
83   /* Nonzero if section map updates should be inhibited if possible.  */
84   int inhibit_updates = 0;
85 };
86 
87 /* Per-program-space data key.  */
88 static const struct program_space_key<objfile_pspace_info>
89   objfiles_pspace_data;
90 
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93   xfree (sections);
94 }
95 
96 /* Get the current svr4 data.  If none is found yet, add it now.  This
97    function always returns a valid object.  */
98 
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102   struct objfile_pspace_info *info;
103 
104   info = objfiles_pspace_data.get (pspace);
105   if (info == NULL)
106     info = objfiles_pspace_data.emplace (pspace);
107 
108   return info;
109 }
110 
111 
112 
113 /* Per-BFD data key.  */
114 
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116 
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120 
121 /* Create the per-BFD storage object for OBJFILE.  If ABFD is not
122    NULL, and it already has a per-BFD storage object, use that.
123    Otherwise, allocate a new per-BFD storage object.  Note that it is
124    not safe to call this multiple times for a given OBJFILE -- it can
125    only be called when allocating or re-initializing OBJFILE.  */
126 
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130   struct objfile_per_bfd_storage *storage = NULL;
131 
132   if (abfd != NULL)
133     storage = objfiles_bfd_data.get (abfd);
134 
135   if (storage == NULL)
136     {
137       storage = new objfile_per_bfd_storage;
138       /* If the object requires gdb to do relocations, we simply fall
139 	 back to not sharing data across users.  These cases are rare
140 	 enough that this seems reasonable.  */
141       if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 	objfiles_bfd_data.set (abfd, storage);
143 
144       /* Look up the gdbarch associated with the BFD.  */
145       if (abfd != NULL)
146 	storage->gdbarch = gdbarch_from_bfd (abfd);
147     }
148 
149   return storage;
150 }
151 
152 /* See objfiles.h.  */
153 
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157   objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159 
160 /* Set the objfile's per-BFD notion of the "main" name and
161    language.  */
162 
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 		       const char *name, enum language lang)
166 {
167   if (objfile->per_bfd->name_of_main == NULL
168       || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169     objfile->per_bfd->name_of_main
170       = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171   objfile->per_bfd->language_of_main = lang;
172 }
173 
174 /* Helper structure to map blocks to static link properties in hash tables.  */
175 
176 struct static_link_htab_entry
177 {
178   const struct block *block;
179   const struct dynamic_prop *static_link;
180 };
181 
182 /* Return a hash code for struct static_link_htab_entry *P.  */
183 
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187   const struct static_link_htab_entry *e
188     = (const struct static_link_htab_entry *) p;
189 
190   return htab_hash_pointer (e->block);
191 }
192 
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194    mappings for the same block.  */
195 
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199   const struct static_link_htab_entry *e1
200     = (const struct static_link_htab_entry *) p1;
201   const struct static_link_htab_entry *e2
202     = (const struct static_link_htab_entry *) p2;
203 
204   return e1->block == e2->block;
205 }
206 
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208    Must not be called more than once for each BLOCK.  */
209 
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 			      const struct block *block,
213 			      const struct dynamic_prop *static_link)
214 {
215   void **slot;
216   struct static_link_htab_entry lookup_entry;
217   struct static_link_htab_entry *entry;
218 
219   if (objfile->static_links == NULL)
220     objfile->static_links.reset (htab_create_alloc
221       (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222        xcalloc, xfree));
223 
224   /* Create a slot for the mapping, make sure it's the first mapping for this
225      block and then create the mapping itself.  */
226   lookup_entry.block = block;
227   slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228   gdb_assert (*slot == NULL);
229 
230   entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231   entry->block = block;
232   entry->static_link = static_link;
233   *slot = (void *) entry;
234 }
235 
236 /* Look for a static link for BLOCK, which is part of OBJFILE.  Return NULL if
237    none was found.  */
238 
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 			    const struct block *block)
242 {
243   struct static_link_htab_entry *entry;
244   struct static_link_htab_entry lookup_entry;
245 
246   if (objfile->static_links == NULL)
247     return NULL;
248   lookup_entry.block = block;
249   entry = ((struct static_link_htab_entry *)
250 	   htab_find (objfile->static_links.get (), &lookup_entry));
251   if (entry == NULL)
252     return NULL;
253 
254   gdb_assert (entry->block == block);
255   return entry->static_link;
256 }
257 
258 
259 
260 /* Called via bfd_map_over_sections to build up the section table that
261    the objfile references.  The objfile contains pointers to the start
262    of the table (objfile->sections) and to the first location after
263    the end of the table (objfile->sections_end).  */
264 
265 static void
266 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
267 			      struct objfile *objfile, int force)
268 {
269   struct obj_section *section;
270 
271   if (!force)
272     {
273       flagword aflag;
274 
275       aflag = bfd_section_flags (asect);
276       if (!(aflag & SEC_ALLOC))
277 	return;
278     }
279 
280   section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281   section->objfile = objfile;
282   section->the_bfd_section = asect;
283   section->ovly_mapped = 0;
284 }
285 
286 static void
287 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
288 			 void *objfilep)
289 {
290   add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
291 }
292 
293 /* Builds a section table for OBJFILE.
294 
295    Note that the OFFSET and OVLY_MAPPED in each table entry are
296    initialized to zero.  */
297 
298 void
299 build_objfile_section_table (struct objfile *objfile)
300 {
301   int count = gdb_bfd_count_sections (objfile->obfd);
302 
303   objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
304 				      count,
305 				      struct obj_section);
306   objfile->sections_end = (objfile->sections + count);
307   bfd_map_over_sections (objfile->obfd,
308 			 add_to_objfile_sections, (void *) objfile);
309 
310   /* See gdb_bfd_section_index.  */
311   add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
312   add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
313   add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
314   add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
315 }
316 
317 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
318    initialize the new objfile as best we can and link it into the list
319    of all known objfiles.
320 
321    NAME should contain original non-canonicalized filename or other
322    identifier as entered by user.  If there is no better source use
323    bfd_get_filename (ABFD).  NAME may be NULL only if ABFD is NULL.
324    NAME content is copied into returned objfile.
325 
326    The FLAGS word contains various bits (OBJF_*) that can be taken as
327    requests for specific operations.  Other bits like OBJF_SHARED are
328    simply copied through to the new objfile flags member.  */
329 
330 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
331   : flags (flags_),
332     pspace (current_program_space),
333     partial_symtabs (new psymtab_storage ()),
334     obfd (abfd)
335 {
336   const char *expanded_name;
337 
338   /* We could use obstack_specify_allocation here instead, but
339      gdb_obstack.h specifies the alloc/dealloc functions.  */
340   obstack_init (&objfile_obstack);
341 
342   objfile_alloc_data (this);
343 
344   gdb::unique_xmalloc_ptr<char> name_holder;
345   if (name == NULL)
346     {
347       gdb_assert (abfd == NULL);
348       gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
349       expanded_name = "<<anonymous objfile>>";
350     }
351   else if ((flags & OBJF_NOT_FILENAME) != 0
352 	   || is_target_filename (name))
353     expanded_name = name;
354   else
355     {
356       name_holder = gdb_abspath (name);
357       expanded_name = name_holder.get ();
358     }
359   original_name = obstack_strdup (&objfile_obstack, expanded_name);
360 
361   /* Update the per-objfile information that comes from the bfd, ensuring
362      that any data that is reference is saved in the per-objfile data
363      region.  */
364 
365   gdb_bfd_ref (abfd);
366   if (abfd != NULL)
367     {
368       mtime = bfd_get_mtime (abfd);
369 
370       /* Build section table.  */
371       build_objfile_section_table (this);
372     }
373 
374   per_bfd = get_objfile_bfd_data (this, abfd);
375 }
376 
377 /* If there is a valid and known entry point, function fills *ENTRY_P with it
378    and returns non-zero; otherwise it returns zero.  */
379 
380 int
381 entry_point_address_query (CORE_ADDR *entry_p)
382 {
383   if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
384     return 0;
385 
386   int idx = symfile_objfile->per_bfd->ei.the_bfd_section_index;
387   *entry_p = (symfile_objfile->per_bfd->ei.entry_point
388 	      + symfile_objfile->section_offsets[idx]);
389 
390   return 1;
391 }
392 
393 /* Get current entry point address.  Call error if it is not known.  */
394 
395 CORE_ADDR
396 entry_point_address (void)
397 {
398   CORE_ADDR retval;
399 
400   if (!entry_point_address_query (&retval))
401     error (_("Entry point address is not known."));
402 
403   return retval;
404 }
405 
406 separate_debug_iterator &
407 separate_debug_iterator::operator++ ()
408 {
409   gdb_assert (m_objfile != nullptr);
410 
411   struct objfile *res;
412 
413   /* If any, return the first child.  */
414   res = m_objfile->separate_debug_objfile;
415   if (res != nullptr)
416     {
417       m_objfile = res;
418       return *this;
419     }
420 
421   /* Common case where there is no separate debug objfile.  */
422   if (m_objfile == m_parent)
423     {
424       m_objfile = nullptr;
425       return *this;
426     }
427 
428   /* Return the brother if any.  Note that we don't iterate on brothers of
429      the parents.  */
430   res = m_objfile->separate_debug_objfile_link;
431   if (res != nullptr)
432     {
433       m_objfile = res;
434       return *this;
435     }
436 
437   for (res = m_objfile->separate_debug_objfile_backlink;
438        res != m_parent;
439        res = res->separate_debug_objfile_backlink)
440     {
441       gdb_assert (res != nullptr);
442       if (res->separate_debug_objfile_link != nullptr)
443 	{
444 	  m_objfile = res->separate_debug_objfile_link;
445 	  return *this;
446 	}
447     }
448   m_objfile = nullptr;
449   return *this;
450 }
451 
452 /* Add OBJFILE as a separate debug objfile of PARENT.  */
453 
454 static void
455 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
456 {
457   gdb_assert (objfile && parent);
458 
459   /* Must not be already in a list.  */
460   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
461   gdb_assert (objfile->separate_debug_objfile_link == NULL);
462   gdb_assert (objfile->separate_debug_objfile == NULL);
463   gdb_assert (parent->separate_debug_objfile_backlink == NULL);
464   gdb_assert (parent->separate_debug_objfile_link == NULL);
465 
466   objfile->separate_debug_objfile_backlink = parent;
467   objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
468   parent->separate_debug_objfile = objfile;
469 }
470 
471 /* See objfiles.h.  */
472 
473 objfile *
474 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
475 	       objfile *parent)
476 {
477   objfile *result = new objfile (bfd_, name_, flags_);
478   if (parent != nullptr)
479     add_separate_debug_objfile (result, parent);
480 
481   /* Using std::make_shared might be a bit nicer here, but that would
482      require making the constructor public.  */
483   current_program_space->add_objfile (std::shared_ptr<objfile> (result),
484 				      parent);
485 
486   /* Rebuild section map next time we need it.  */
487   get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
488 
489   return result;
490 }
491 
492 /* See objfiles.h.  */
493 
494 void
495 objfile::unlink ()
496 {
497   current_program_space->remove_objfile (this);
498 }
499 
500 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
501    itself.  */
502 
503 void
504 free_objfile_separate_debug (struct objfile *objfile)
505 {
506   struct objfile *child;
507 
508   for (child = objfile->separate_debug_objfile; child;)
509     {
510       struct objfile *next_child = child->separate_debug_objfile_link;
511       child->unlink ();
512       child = next_child;
513     }
514 }
515 
516 /* Destroy an objfile and all the symtabs and psymtabs under it.  */
517 
518 objfile::~objfile ()
519 {
520   /* First notify observers that this objfile is about to be freed.  */
521   gdb::observers::free_objfile.notify (this);
522 
523   /* Free all separate debug objfiles.  */
524   free_objfile_separate_debug (this);
525 
526   if (separate_debug_objfile_backlink)
527     {
528       /* We freed the separate debug file, make sure the base objfile
529 	 doesn't reference it.  */
530       struct objfile *child;
531 
532       child = separate_debug_objfile_backlink->separate_debug_objfile;
533 
534       if (child == this)
535         {
536           /* THIS is the first child.  */
537           separate_debug_objfile_backlink->separate_debug_objfile =
538             separate_debug_objfile_link;
539         }
540       else
541         {
542           /* Find THIS in the list.  */
543           while (1)
544             {
545               if (child->separate_debug_objfile_link == this)
546                 {
547                   child->separate_debug_objfile_link =
548                     separate_debug_objfile_link;
549                   break;
550                 }
551               child = child->separate_debug_objfile_link;
552               gdb_assert (child);
553             }
554         }
555     }
556 
557   /* Remove any references to this objfile in the global value
558      lists.  */
559   preserve_values (this);
560 
561   /* It still may reference data modules have associated with the objfile and
562      the symbol file data.  */
563   forget_cached_source_info_for_objfile (this);
564 
565   breakpoint_free_objfile (this);
566   btrace_free_objfile (this);
567 
568   /* First do any symbol file specific actions required when we are
569      finished with a particular symbol file.  Note that if the objfile
570      is using reusable symbol information (via mmalloc) then each of
571      these routines is responsible for doing the correct thing, either
572      freeing things which are valid only during this particular gdb
573      execution, or leaving them to be reused during the next one.  */
574 
575   if (sf != NULL)
576     (*sf->sym_finish) (this);
577 
578   /* Discard any data modules have associated with the objfile.  The function
579      still may reference obfd.  */
580   objfile_free_data (this);
581 
582   if (obfd)
583     gdb_bfd_unref (obfd);
584   else
585     delete per_bfd;
586 
587   /* Before the symbol table code was redone to make it easier to
588      selectively load and remove information particular to a specific
589      linkage unit, gdb used to do these things whenever the monolithic
590      symbol table was blown away.  How much still needs to be done
591      is unknown, but we play it safe for now and keep each action until
592      it is shown to be no longer needed.  */
593 
594   /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
595      for example), so we need to call this here.  */
596   clear_pc_function_cache ();
597 
598   /* Check to see if the current_source_symtab belongs to this objfile,
599      and if so, call clear_current_source_symtab_and_line.  */
600 
601   {
602     struct symtab_and_line cursal = get_current_source_symtab_and_line ();
603 
604     if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
605       clear_current_source_symtab_and_line ();
606   }
607 
608   /* Free the obstacks for non-reusable objfiles.  */
609   obstack_free (&objfile_obstack, 0);
610 
611   /* Rebuild section map next time we need it.  */
612   get_objfile_pspace_data (pspace)->section_map_dirty = 1;
613 }
614 
615 
616 /* A helper function for objfile_relocate1 that relocates a single
617    symbol.  */
618 
619 static void
620 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
621 		     const section_offsets &delta)
622 {
623   fixup_symbol_section (sym, objfile);
624 
625   /* The RS6000 code from which this was taken skipped
626      any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
627      But I'm leaving out that test, on the theory that
628      they can't possibly pass the tests below.  */
629   if ((SYMBOL_CLASS (sym) == LOC_LABEL
630        || SYMBOL_CLASS (sym) == LOC_STATIC)
631       && SYMBOL_SECTION (sym) >= 0)
632     {
633       SET_SYMBOL_VALUE_ADDRESS (sym,
634 				SYMBOL_VALUE_ADDRESS (sym)
635 				+ delta[SYMBOL_SECTION (sym)]);
636     }
637 }
638 
639 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
640    entries in new_offsets.  SEPARATE_DEBUG_OBJFILE is not touched here.
641    Return non-zero iff any change happened.  */
642 
643 static int
644 objfile_relocate1 (struct objfile *objfile,
645 		   const section_offsets &new_offsets)
646 {
647   section_offsets delta (objfile->section_offsets.size ());
648 
649   int something_changed = 0;
650 
651   for (int i = 0; i < objfile->section_offsets.size (); ++i)
652     {
653       delta[i] = new_offsets[i] - objfile->section_offsets[i];
654       if (delta[i] != 0)
655 	something_changed = 1;
656     }
657   if (!something_changed)
658     return 0;
659 
660   /* OK, get all the symtabs.  */
661   {
662     for (compunit_symtab *cust : objfile->compunits ())
663       {
664 	for (symtab *s : compunit_filetabs (cust))
665 	  {
666 	    struct linetable *l;
667 
668 	    /* First the line table.  */
669 	    l = SYMTAB_LINETABLE (s);
670 	    if (l)
671 	      {
672 		for (int i = 0; i < l->nitems; ++i)
673 		  l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)];
674 	      }
675 	  }
676       }
677 
678     for (compunit_symtab *cust : objfile->compunits ())
679       {
680 	const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
681 	int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
682 
683 	if (BLOCKVECTOR_MAP (bv))
684 	  addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
685 
686 	for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
687 	  {
688 	    struct block *b;
689 	    struct symbol *sym;
690 	    struct mdict_iterator miter;
691 
692 	    b = BLOCKVECTOR_BLOCK (bv, i);
693 	    BLOCK_START (b) += delta[block_line_section];
694 	    BLOCK_END (b) += delta[block_line_section];
695 
696 	    if (BLOCK_RANGES (b) != nullptr)
697 	      for (int j = 0; j < BLOCK_NRANGES (b); j++)
698 		{
699 		  BLOCK_RANGE_START (b, j) += delta[block_line_section];
700 		  BLOCK_RANGE_END (b, j) += delta[block_line_section];
701 		}
702 
703 	    /* We only want to iterate over the local symbols, not any
704 	       symbols in included symtabs.  */
705 	    ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
706 	      {
707 		relocate_one_symbol (sym, objfile, delta);
708 	      }
709 	  }
710       }
711   }
712 
713   /* This stores relocated addresses and so must be cleared.  This
714      will cause it to be recreated on demand.  */
715   objfile->psymbol_map.clear ();
716 
717   /* Relocate isolated symbols.  */
718   {
719     struct symbol *iter;
720 
721     for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
722       relocate_one_symbol (iter, objfile, delta);
723   }
724 
725   {
726     int i;
727 
728     for (i = 0; i < objfile->section_offsets.size (); ++i)
729       objfile->section_offsets[i] = new_offsets[i];
730   }
731 
732   /* Rebuild section map next time we need it.  */
733   get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
734 
735   /* Update the table in exec_ops, used to read memory.  */
736   struct obj_section *s;
737   ALL_OBJFILE_OSECTIONS (objfile, s)
738     {
739       int idx = s - objfile->sections;
740 
741       exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
742 				obj_section_addr (s));
743     }
744 
745   /* Data changed.  */
746   return 1;
747 }
748 
749 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
750    entries in new_offsets.  Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
751 
752    The number and ordering of sections does differ between the two objfiles.
753    Only their names match.  Also the file offsets will differ (objfile being
754    possibly prelinked but separate_debug_objfile is probably not prelinked) but
755    the in-memory absolute address as specified by NEW_OFFSETS must match both
756    files.  */
757 
758 void
759 objfile_relocate (struct objfile *objfile,
760 		  const section_offsets &new_offsets)
761 {
762   int changed = 0;
763 
764   changed |= objfile_relocate1 (objfile, new_offsets);
765 
766   for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
767     {
768       if (debug_objfile == objfile)
769 	continue;
770 
771       section_addr_info objfile_addrs
772 	= build_section_addr_info_from_objfile (objfile);
773 
774       /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
775 	 relative ones must be already created according to debug_objfile.  */
776 
777       addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
778 
779       gdb_assert (debug_objfile->section_offsets.size ()
780 		  == gdb_bfd_count_sections (debug_objfile->obfd));
781       section_offsets new_debug_offsets
782 	(debug_objfile->section_offsets.size ());
783       relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
784 
785       changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
786     }
787 
788   /* Relocate breakpoints as necessary, after things are relocated.  */
789   if (changed)
790     breakpoint_re_set ();
791 }
792 
793 /* Rebase (add to the offsets) OBJFILE by SLIDE.  SEPARATE_DEBUG_OBJFILE is
794    not touched here.
795    Return non-zero iff any change happened.  */
796 
797 static int
798 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
799 {
800   section_offsets new_offsets (objfile->section_offsets.size (), slide);
801   return objfile_relocate1 (objfile, new_offsets);
802 }
803 
804 /* Rebase (add to the offsets) OBJFILE by SLIDE.  Process also OBJFILE's
805    SEPARATE_DEBUG_OBJFILEs.  */
806 
807 void
808 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
809 {
810   int changed = 0;
811 
812   for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
813     changed |= objfile_rebase1 (debug_objfile, slide);
814 
815   /* Relocate breakpoints as necessary, after things are relocated.  */
816   if (changed)
817     breakpoint_re_set ();
818 }
819 
820 /* Return non-zero if OBJFILE has partial symbols.  */
821 
822 int
823 objfile_has_partial_symbols (struct objfile *objfile)
824 {
825   if (!objfile->sf)
826     return 0;
827 
828   /* If we have not read psymbols, but we have a function capable of reading
829      them, then that is an indication that they are in fact available.  Without
830      this function the symbols may have been already read in but they also may
831      not be present in this objfile.  */
832   if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
833       && objfile->sf->sym_read_psymbols != NULL)
834     return 1;
835 
836   return objfile->sf->qf->has_symbols (objfile);
837 }
838 
839 /* Return non-zero if OBJFILE has full symbols.  */
840 
841 int
842 objfile_has_full_symbols (struct objfile *objfile)
843 {
844   return objfile->compunit_symtabs != NULL;
845 }
846 
847 /* Return non-zero if OBJFILE has full or partial symbols, either directly
848    or through a separate debug file.  */
849 
850 int
851 objfile_has_symbols (struct objfile *objfile)
852 {
853   for (::objfile *o : objfile->separate_debug_objfiles ())
854     if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
855       return 1;
856   return 0;
857 }
858 
859 
860 /* Many places in gdb want to test just to see if we have any partial
861    symbols available.  This function returns zero if none are currently
862    available, nonzero otherwise.  */
863 
864 int
865 have_partial_symbols (void)
866 {
867   for (objfile *ofp : current_program_space->objfiles ())
868     {
869       if (objfile_has_partial_symbols (ofp))
870 	return 1;
871     }
872   return 0;
873 }
874 
875 /* Many places in gdb want to test just to see if we have any full
876    symbols available.  This function returns zero if none are currently
877    available, nonzero otherwise.  */
878 
879 int
880 have_full_symbols (void)
881 {
882   for (objfile *ofp : current_program_space->objfiles ())
883     {
884       if (objfile_has_full_symbols (ofp))
885 	return 1;
886     }
887   return 0;
888 }
889 
890 
891 /* This operations deletes all objfile entries that represent solibs that
892    weren't explicitly loaded by the user, via e.g., the add-symbol-file
893    command.  */
894 
895 void
896 objfile_purge_solibs (void)
897 {
898   for (objfile *objf : current_program_space->objfiles_safe ())
899     {
900       /* We assume that the solib package has been purged already, or will
901 	 be soon.  */
902 
903       if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
904 	objf->unlink ();
905     }
906 }
907 
908 
909 /* Many places in gdb want to test just to see if we have any minimal
910    symbols available.  This function returns zero if none are currently
911    available, nonzero otherwise.  */
912 
913 int
914 have_minimal_symbols (void)
915 {
916   for (objfile *ofp : current_program_space->objfiles ())
917     {
918       if (ofp->per_bfd->minimal_symbol_count > 0)
919 	{
920 	  return 1;
921 	}
922     }
923   return 0;
924 }
925 
926 /* Qsort comparison function.  */
927 
928 static bool
929 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
930 {
931   const CORE_ADDR sect1_addr = obj_section_addr (sect1);
932   const CORE_ADDR sect2_addr = obj_section_addr (sect2);
933 
934   if (sect1_addr < sect2_addr)
935     return true;
936   else if (sect1_addr > sect2_addr)
937     return false;
938   else
939     {
940       /* Sections are at the same address.  This could happen if
941 	 A) we have an objfile and a separate debuginfo.
942 	 B) we are confused, and have added sections without proper relocation,
943 	 or something like that.  */
944 
945       const struct objfile *const objfile1 = sect1->objfile;
946       const struct objfile *const objfile2 = sect2->objfile;
947 
948       if (objfile1->separate_debug_objfile == objfile2
949 	  || objfile2->separate_debug_objfile == objfile1)
950 	{
951 	  /* Case A.  The ordering doesn't matter: separate debuginfo files
952 	     will be filtered out later.  */
953 
954 	  return false;
955 	}
956 
957       /* Case B.  Maintain stable sort order, so bugs in GDB are easier to
958 	 triage.  This section could be slow (since we iterate over all
959 	 objfiles in each call to sort_cmp), but this shouldn't happen
960 	 very often (GDB is already in a confused state; one hopes this
961 	 doesn't happen at all).  If you discover that significant time is
962 	 spent in the loops below, do 'set complaints 100' and examine the
963 	 resulting complaints.  */
964       if (objfile1 == objfile2)
965 	{
966 	  /* Both sections came from the same objfile.  We are really
967 	     confused.  Sort on sequence order of sections within the
968 	     objfile.  The order of checks is important here, if we find a
969 	     match on SECT2 first then either SECT2 is before SECT1, or,
970 	     SECT2 == SECT1, in both cases we should return false.  The
971 	     second case shouldn't occur during normal use, but std::sort
972 	     does check that '!(a < a)' when compiled in debug mode.  */
973 
974 	  const struct obj_section *osect;
975 
976 	  ALL_OBJFILE_OSECTIONS (objfile1, osect)
977 	    if (osect == sect2)
978 	      return false;
979 	    else if (osect == sect1)
980 	      return true;
981 
982 	  /* We should have found one of the sections before getting here.  */
983 	  gdb_assert_not_reached ("section not found");
984 	}
985       else
986 	{
987 	  /* Sort on sequence number of the objfile in the chain.  */
988 
989 	  for (objfile *objfile : current_program_space->objfiles ())
990 	    if (objfile == objfile1)
991 	      return true;
992 	    else if (objfile == objfile2)
993 	      return false;
994 
995 	  /* We should have found one of the objfiles before getting here.  */
996 	  gdb_assert_not_reached ("objfile not found");
997 	}
998     }
999 
1000   /* Unreachable.  */
1001   gdb_assert_not_reached ("unexpected code path");
1002   return false;
1003 }
1004 
1005 /* Select "better" obj_section to keep.  We prefer the one that came from
1006    the real object, rather than the one from separate debuginfo.
1007    Most of the time the two sections are exactly identical, but with
1008    prelinking the .rel.dyn section in the real object may have different
1009    size.  */
1010 
1011 static struct obj_section *
1012 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1013 {
1014   gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1015   gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1016 	      || (b->objfile->separate_debug_objfile == a->objfile));
1017   gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1018 	      || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1019 
1020   if (a->objfile->separate_debug_objfile != NULL)
1021     return a;
1022   return b;
1023 }
1024 
1025 /* Return 1 if SECTION should be inserted into the section map.
1026    We want to insert only non-overlay and non-TLS section.  */
1027 
1028 static int
1029 insert_section_p (const struct bfd *abfd,
1030 		  const struct bfd_section *section)
1031 {
1032   const bfd_vma lma = bfd_section_lma (section);
1033 
1034   if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1035       && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1036     /* This is an overlay section.  IN_MEMORY check is needed to avoid
1037        discarding sections from the "system supplied DSO" (aka vdso)
1038        on some Linux systems (e.g. Fedora 11).  */
1039     return 0;
1040   if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1041     /* This is a TLS section.  */
1042     return 0;
1043 
1044   return 1;
1045 }
1046 
1047 /* Filter out overlapping sections where one section came from the real
1048    objfile, and the other from a separate debuginfo file.
1049    Return the size of table after redundant sections have been eliminated.  */
1050 
1051 static int
1052 filter_debuginfo_sections (struct obj_section **map, int map_size)
1053 {
1054   int i, j;
1055 
1056   for (i = 0, j = 0; i < map_size - 1; i++)
1057     {
1058       struct obj_section *const sect1 = map[i];
1059       struct obj_section *const sect2 = map[i + 1];
1060       const struct objfile *const objfile1 = sect1->objfile;
1061       const struct objfile *const objfile2 = sect2->objfile;
1062       const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1063       const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1064 
1065       if (sect1_addr == sect2_addr
1066 	  && (objfile1->separate_debug_objfile == objfile2
1067 	      || objfile2->separate_debug_objfile == objfile1))
1068 	{
1069 	  map[j++] = preferred_obj_section (sect1, sect2);
1070 	  ++i;
1071 	}
1072       else
1073 	map[j++] = sect1;
1074     }
1075 
1076   if (i < map_size)
1077     {
1078       gdb_assert (i == map_size - 1);
1079       map[j++] = map[i];
1080     }
1081 
1082   /* The map should not have shrunk to less than half the original size.  */
1083   gdb_assert (map_size / 2 <= j);
1084 
1085   return j;
1086 }
1087 
1088 /* Filter out overlapping sections, issuing a warning if any are found.
1089    Overlapping sections could really be overlay sections which we didn't
1090    classify as such in insert_section_p, or we could be dealing with a
1091    corrupt binary.  */
1092 
1093 static int
1094 filter_overlapping_sections (struct obj_section **map, int map_size)
1095 {
1096   int i, j;
1097 
1098   for (i = 0, j = 0; i < map_size - 1; )
1099     {
1100       int k;
1101 
1102       map[j++] = map[i];
1103       for (k = i + 1; k < map_size; k++)
1104 	{
1105 	  struct obj_section *const sect1 = map[i];
1106 	  struct obj_section *const sect2 = map[k];
1107 	  const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1108 	  const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1109 	  const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1110 
1111 	  gdb_assert (sect1_addr <= sect2_addr);
1112 
1113 	  if (sect1_endaddr <= sect2_addr)
1114 	    break;
1115 	  else
1116 	    {
1117 	      /* We have an overlap.  Report it.  */
1118 
1119 	      struct objfile *const objf1 = sect1->objfile;
1120 	      struct objfile *const objf2 = sect2->objfile;
1121 
1122 	      const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1123 	      const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1124 
1125 	      const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1126 
1127 	      struct gdbarch *const gdbarch = objf1->arch ();
1128 
1129 	      complaint (_("unexpected overlap between:\n"
1130 			   " (A) section `%s' from `%s' [%s, %s)\n"
1131 			   " (B) section `%s' from `%s' [%s, %s).\n"
1132 			   "Will ignore section B"),
1133 			 bfd_section_name (bfds1), objfile_name (objf1),
1134 			 paddress (gdbarch, sect1_addr),
1135 			 paddress (gdbarch, sect1_endaddr),
1136 			 bfd_section_name (bfds2), objfile_name (objf2),
1137 			 paddress (gdbarch, sect2_addr),
1138 			 paddress (gdbarch, sect2_endaddr));
1139 	    }
1140 	}
1141       i = k;
1142     }
1143 
1144   if (i < map_size)
1145     {
1146       gdb_assert (i == map_size - 1);
1147       map[j++] = map[i];
1148     }
1149 
1150   return j;
1151 }
1152 
1153 
1154 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1155    TLS, overlay and overlapping sections.  */
1156 
1157 static void
1158 update_section_map (struct program_space *pspace,
1159 		    struct obj_section ***pmap, int *pmap_size)
1160 {
1161   struct objfile_pspace_info *pspace_info;
1162   int alloc_size, map_size, i;
1163   struct obj_section *s, **map;
1164 
1165   pspace_info = get_objfile_pspace_data (pspace);
1166   gdb_assert (pspace_info->section_map_dirty != 0
1167 	      || pspace_info->new_objfiles_available != 0);
1168 
1169   map = *pmap;
1170   xfree (map);
1171 
1172   alloc_size = 0;
1173   for (objfile *objfile : pspace->objfiles ())
1174     ALL_OBJFILE_OSECTIONS (objfile, s)
1175       if (insert_section_p (objfile->obfd, s->the_bfd_section))
1176 	alloc_size += 1;
1177 
1178   /* This happens on detach/attach (e.g. in gdb.base/attach.exp).  */
1179   if (alloc_size == 0)
1180     {
1181       *pmap = NULL;
1182       *pmap_size = 0;
1183       return;
1184     }
1185 
1186   map = XNEWVEC (struct obj_section *, alloc_size);
1187 
1188   i = 0;
1189   for (objfile *objfile : pspace->objfiles ())
1190     ALL_OBJFILE_OSECTIONS (objfile, s)
1191       if (insert_section_p (objfile->obfd, s->the_bfd_section))
1192 	map[i++] = s;
1193 
1194   std::sort (map, map + alloc_size, sort_cmp);
1195   map_size = filter_debuginfo_sections(map, alloc_size);
1196   map_size = filter_overlapping_sections(map, map_size);
1197 
1198   if (map_size < alloc_size)
1199     /* Some sections were eliminated.  Trim excess space.  */
1200     map = XRESIZEVEC (struct obj_section *, map, map_size);
1201   else
1202     gdb_assert (alloc_size == map_size);
1203 
1204   *pmap = map;
1205   *pmap_size = map_size;
1206 }
1207 
1208 /* Bsearch comparison function.  */
1209 
1210 static int
1211 bsearch_cmp (const void *key, const void *elt)
1212 {
1213   const CORE_ADDR pc = *(CORE_ADDR *) key;
1214   const struct obj_section *section = *(const struct obj_section **) elt;
1215 
1216   if (pc < obj_section_addr (section))
1217     return -1;
1218   if (pc < obj_section_endaddr (section))
1219     return 0;
1220   return 1;
1221 }
1222 
1223 /* Returns a section whose range includes PC or NULL if none found.   */
1224 
1225 struct obj_section *
1226 find_pc_section (CORE_ADDR pc)
1227 {
1228   struct objfile_pspace_info *pspace_info;
1229   struct obj_section *s, **sp;
1230 
1231   /* Check for mapped overlay section first.  */
1232   s = find_pc_mapped_section (pc);
1233   if (s)
1234     return s;
1235 
1236   pspace_info = get_objfile_pspace_data (current_program_space);
1237   if (pspace_info->section_map_dirty
1238       || (pspace_info->new_objfiles_available
1239 	  && !pspace_info->inhibit_updates))
1240     {
1241       update_section_map (current_program_space,
1242 			  &pspace_info->sections,
1243 			  &pspace_info->num_sections);
1244 
1245       /* Don't need updates to section map until objfiles are added,
1246          removed or relocated.  */
1247       pspace_info->new_objfiles_available = 0;
1248       pspace_info->section_map_dirty = 0;
1249     }
1250 
1251   /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1252      bsearch be non-NULL.  */
1253   if (pspace_info->sections == NULL)
1254     {
1255       gdb_assert (pspace_info->num_sections == 0);
1256       return NULL;
1257     }
1258 
1259   sp = (struct obj_section **) bsearch (&pc,
1260 					pspace_info->sections,
1261 					pspace_info->num_sections,
1262 					sizeof (*pspace_info->sections),
1263 					bsearch_cmp);
1264   if (sp != NULL)
1265     return *sp;
1266   return NULL;
1267 }
1268 
1269 
1270 /* Return non-zero if PC is in a section called NAME.  */
1271 
1272 int
1273 pc_in_section (CORE_ADDR pc, const char *name)
1274 {
1275   struct obj_section *s;
1276   int retval = 0;
1277 
1278   s = find_pc_section (pc);
1279 
1280   retval = (s != NULL
1281 	    && s->the_bfd_section->name != NULL
1282 	    && strcmp (s->the_bfd_section->name, name) == 0);
1283   return (retval);
1284 }
1285 
1286 
1287 /* Set section_map_dirty so section map will be rebuilt next time it
1288    is used.  Called by reread_symbols.  */
1289 
1290 void
1291 objfiles_changed (void)
1292 {
1293   /* Rebuild section map next time we need it.  */
1294   get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1295 }
1296 
1297 /* See comments in objfiles.h.  */
1298 
1299 scoped_restore_tmpl<int>
1300 inhibit_section_map_updates (struct program_space *pspace)
1301 {
1302   return scoped_restore_tmpl<int>
1303     (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1304 }
1305 
1306 /* See objfiles.h.  */
1307 
1308 bool
1309 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1310 {
1311   struct obj_section *osect;
1312 
1313   if (objfile == NULL)
1314     return false;
1315 
1316   ALL_OBJFILE_OSECTIONS (objfile, osect)
1317     {
1318       if (section_is_overlay (osect) && !section_is_mapped (osect))
1319 	continue;
1320 
1321       if (obj_section_addr (osect) <= addr
1322 	  && addr < obj_section_endaddr (osect))
1323 	return true;
1324     }
1325   return false;
1326 }
1327 
1328 /* See objfiles.h.  */
1329 
1330 bool
1331 shared_objfile_contains_address_p (struct program_space *pspace,
1332 				   CORE_ADDR address)
1333 {
1334   for (objfile *objfile : pspace->objfiles ())
1335     {
1336       if ((objfile->flags & OBJF_SHARED) != 0
1337 	  && is_addr_in_objfile (address, objfile))
1338 	return true;
1339     }
1340 
1341   return false;
1342 }
1343 
1344 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1345    gdbarch method.  It is equivalent to use the objfiles iterable,
1346    searching the objfiles in the order they are stored internally,
1347    ignoring CURRENT_OBJFILE.
1348 
1349    On most platforms, it should be close enough to doing the best
1350    we can without some knowledge specific to the architecture.  */
1351 
1352 void
1353 default_iterate_over_objfiles_in_search_order
1354   (struct gdbarch *gdbarch,
1355    iterate_over_objfiles_in_search_order_cb_ftype *cb,
1356    void *cb_data, struct objfile *current_objfile)
1357 {
1358   int stop = 0;
1359 
1360   for (objfile *objfile : current_program_space->objfiles ())
1361     {
1362        stop = cb (objfile, cb_data);
1363        if (stop)
1364 	 return;
1365     }
1366 }
1367 
1368 /* See objfiles.h.  */
1369 
1370 const char *
1371 objfile_name (const struct objfile *objfile)
1372 {
1373   if (objfile->obfd != NULL)
1374     return bfd_get_filename (objfile->obfd);
1375 
1376   return objfile->original_name;
1377 }
1378 
1379 /* See objfiles.h.  */
1380 
1381 const char *
1382 objfile_filename (const struct objfile *objfile)
1383 {
1384   if (objfile->obfd != NULL)
1385     return bfd_get_filename (objfile->obfd);
1386 
1387   return NULL;
1388 }
1389 
1390 /* See objfiles.h.  */
1391 
1392 const char *
1393 objfile_debug_name (const struct objfile *objfile)
1394 {
1395   return lbasename (objfile->original_name);
1396 }
1397 
1398 /* See objfiles.h.  */
1399 
1400 const char *
1401 objfile_flavour_name (struct objfile *objfile)
1402 {
1403   if (objfile->obfd != NULL)
1404     return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1405   return NULL;
1406 }
1407