1 /* GDB routines for manipulating objfiles. 2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc. 4 5 Contributed by Cygnus Support, using pieces from other GDB modules. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 /* This file contains support routines for creating, manipulating, and 23 destroying objfile structures. */ 24 25 #include "defs.h" 26 #include "bfd.h" /* Binary File Description */ 27 #include "symtab.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdb-stabs.h" 31 #include "target.h" 32 #include "bcache.h" 33 #include "expression.h" 34 #include "parser-defs.h" 35 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include "gdb_obstack.h" 40 #include "hashtab.h" 41 42 #include "breakpoint.h" 43 #include "block.h" 44 #include "dictionary.h" 45 #include "source.h" 46 #include "addrmap.h" 47 #include "arch-utils.h" 48 #include "exec.h" 49 #include "observable.h" 50 #include "complaints.h" 51 #include "psymtab.h" 52 #include "solist.h" 53 #include "gdb_bfd.h" 54 #include "btrace.h" 55 #include "gdbsupport/pathstuff.h" 56 57 #include <algorithm> 58 #include <vector> 59 60 /* Keep a registry of per-objfile data-pointers required by other GDB 61 modules. */ 62 63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD) 64 65 /* Externally visible variables that are owned by this module. 66 See declarations in objfile.h for more info. */ 67 68 struct objfile_pspace_info 69 { 70 objfile_pspace_info () = default; 71 ~objfile_pspace_info (); 72 73 struct obj_section **sections = nullptr; 74 int num_sections = 0; 75 76 /* Nonzero if object files have been added since the section map 77 was last updated. */ 78 int new_objfiles_available = 0; 79 80 /* Nonzero if the section map MUST be updated before use. */ 81 int section_map_dirty = 0; 82 83 /* Nonzero if section map updates should be inhibited if possible. */ 84 int inhibit_updates = 0; 85 }; 86 87 /* Per-program-space data key. */ 88 static const struct program_space_key<objfile_pspace_info> 89 objfiles_pspace_data; 90 91 objfile_pspace_info::~objfile_pspace_info () 92 { 93 xfree (sections); 94 } 95 96 /* Get the current svr4 data. If none is found yet, add it now. This 97 function always returns a valid object. */ 98 99 static struct objfile_pspace_info * 100 get_objfile_pspace_data (struct program_space *pspace) 101 { 102 struct objfile_pspace_info *info; 103 104 info = objfiles_pspace_data.get (pspace); 105 if (info == NULL) 106 info = objfiles_pspace_data.emplace (pspace); 107 108 return info; 109 } 110 111 112 113 /* Per-BFD data key. */ 114 115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data; 116 117 objfile_per_bfd_storage::~objfile_per_bfd_storage () 118 { 119 } 120 121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not 122 NULL, and it already has a per-BFD storage object, use that. 123 Otherwise, allocate a new per-BFD storage object. Note that it is 124 not safe to call this multiple times for a given OBJFILE -- it can 125 only be called when allocating or re-initializing OBJFILE. */ 126 127 static struct objfile_per_bfd_storage * 128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd) 129 { 130 struct objfile_per_bfd_storage *storage = NULL; 131 132 if (abfd != NULL) 133 storage = objfiles_bfd_data.get (abfd); 134 135 if (storage == NULL) 136 { 137 storage = new objfile_per_bfd_storage; 138 /* If the object requires gdb to do relocations, we simply fall 139 back to not sharing data across users. These cases are rare 140 enough that this seems reasonable. */ 141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd)) 142 objfiles_bfd_data.set (abfd, storage); 143 144 /* Look up the gdbarch associated with the BFD. */ 145 if (abfd != NULL) 146 storage->gdbarch = gdbarch_from_bfd (abfd); 147 } 148 149 return storage; 150 } 151 152 /* See objfiles.h. */ 153 154 void 155 set_objfile_per_bfd (struct objfile *objfile) 156 { 157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd); 158 } 159 160 /* Set the objfile's per-BFD notion of the "main" name and 161 language. */ 162 163 void 164 set_objfile_main_name (struct objfile *objfile, 165 const char *name, enum language lang) 166 { 167 if (objfile->per_bfd->name_of_main == NULL 168 || strcmp (objfile->per_bfd->name_of_main, name) != 0) 169 objfile->per_bfd->name_of_main 170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name); 171 objfile->per_bfd->language_of_main = lang; 172 } 173 174 /* Helper structure to map blocks to static link properties in hash tables. */ 175 176 struct static_link_htab_entry 177 { 178 const struct block *block; 179 const struct dynamic_prop *static_link; 180 }; 181 182 /* Return a hash code for struct static_link_htab_entry *P. */ 183 184 static hashval_t 185 static_link_htab_entry_hash (const void *p) 186 { 187 const struct static_link_htab_entry *e 188 = (const struct static_link_htab_entry *) p; 189 190 return htab_hash_pointer (e->block); 191 } 192 193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are 194 mappings for the same block. */ 195 196 static int 197 static_link_htab_entry_eq (const void *p1, const void *p2) 198 { 199 const struct static_link_htab_entry *e1 200 = (const struct static_link_htab_entry *) p1; 201 const struct static_link_htab_entry *e2 202 = (const struct static_link_htab_entry *) p2; 203 204 return e1->block == e2->block; 205 } 206 207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE. 208 Must not be called more than once for each BLOCK. */ 209 210 void 211 objfile_register_static_link (struct objfile *objfile, 212 const struct block *block, 213 const struct dynamic_prop *static_link) 214 { 215 void **slot; 216 struct static_link_htab_entry lookup_entry; 217 struct static_link_htab_entry *entry; 218 219 if (objfile->static_links == NULL) 220 objfile->static_links.reset (htab_create_alloc 221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL, 222 xcalloc, xfree)); 223 224 /* Create a slot for the mapping, make sure it's the first mapping for this 225 block and then create the mapping itself. */ 226 lookup_entry.block = block; 227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT); 228 gdb_assert (*slot == NULL); 229 230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry); 231 entry->block = block; 232 entry->static_link = static_link; 233 *slot = (void *) entry; 234 } 235 236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if 237 none was found. */ 238 239 const struct dynamic_prop * 240 objfile_lookup_static_link (struct objfile *objfile, 241 const struct block *block) 242 { 243 struct static_link_htab_entry *entry; 244 struct static_link_htab_entry lookup_entry; 245 246 if (objfile->static_links == NULL) 247 return NULL; 248 lookup_entry.block = block; 249 entry = ((struct static_link_htab_entry *) 250 htab_find (objfile->static_links.get (), &lookup_entry)); 251 if (entry == NULL) 252 return NULL; 253 254 gdb_assert (entry->block == block); 255 return entry->static_link; 256 } 257 258 259 260 /* Called via bfd_map_over_sections to build up the section table that 261 the objfile references. The objfile contains pointers to the start 262 of the table (objfile->sections) and to the first location after 263 the end of the table (objfile->sections_end). */ 264 265 static void 266 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect, 267 struct objfile *objfile, int force) 268 { 269 struct obj_section *section; 270 271 if (!force) 272 { 273 flagword aflag; 274 275 aflag = bfd_section_flags (asect); 276 if (!(aflag & SEC_ALLOC)) 277 return; 278 } 279 280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)]; 281 section->objfile = objfile; 282 section->the_bfd_section = asect; 283 section->ovly_mapped = 0; 284 } 285 286 static void 287 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect, 288 void *objfilep) 289 { 290 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0); 291 } 292 293 /* Builds a section table for OBJFILE. 294 295 Note that the OFFSET and OVLY_MAPPED in each table entry are 296 initialized to zero. */ 297 298 void 299 build_objfile_section_table (struct objfile *objfile) 300 { 301 int count = gdb_bfd_count_sections (objfile->obfd); 302 303 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack, 304 count, 305 struct obj_section); 306 objfile->sections_end = (objfile->sections + count); 307 bfd_map_over_sections (objfile->obfd, 308 add_to_objfile_sections, (void *) objfile); 309 310 /* See gdb_bfd_section_index. */ 311 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1); 312 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1); 313 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1); 314 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1); 315 } 316 317 /* Given a pointer to an initialized bfd (ABFD) and some flag bits, 318 initialize the new objfile as best we can and link it into the list 319 of all known objfiles. 320 321 NAME should contain original non-canonicalized filename or other 322 identifier as entered by user. If there is no better source use 323 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL. 324 NAME content is copied into returned objfile. 325 326 The FLAGS word contains various bits (OBJF_*) that can be taken as 327 requests for specific operations. Other bits like OBJF_SHARED are 328 simply copied through to the new objfile flags member. */ 329 330 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_) 331 : flags (flags_), 332 pspace (current_program_space), 333 partial_symtabs (new psymtab_storage ()), 334 obfd (abfd) 335 { 336 const char *expanded_name; 337 338 /* We could use obstack_specify_allocation here instead, but 339 gdb_obstack.h specifies the alloc/dealloc functions. */ 340 obstack_init (&objfile_obstack); 341 342 objfile_alloc_data (this); 343 344 gdb::unique_xmalloc_ptr<char> name_holder; 345 if (name == NULL) 346 { 347 gdb_assert (abfd == NULL); 348 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0); 349 expanded_name = "<<anonymous objfile>>"; 350 } 351 else if ((flags & OBJF_NOT_FILENAME) != 0 352 || is_target_filename (name)) 353 expanded_name = name; 354 else 355 { 356 name_holder = gdb_abspath (name); 357 expanded_name = name_holder.get (); 358 } 359 original_name = obstack_strdup (&objfile_obstack, expanded_name); 360 361 /* Update the per-objfile information that comes from the bfd, ensuring 362 that any data that is reference is saved in the per-objfile data 363 region. */ 364 365 gdb_bfd_ref (abfd); 366 if (abfd != NULL) 367 { 368 mtime = bfd_get_mtime (abfd); 369 370 /* Build section table. */ 371 build_objfile_section_table (this); 372 } 373 374 per_bfd = get_objfile_bfd_data (this, abfd); 375 } 376 377 /* If there is a valid and known entry point, function fills *ENTRY_P with it 378 and returns non-zero; otherwise it returns zero. */ 379 380 int 381 entry_point_address_query (CORE_ADDR *entry_p) 382 { 383 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p) 384 return 0; 385 386 int idx = symfile_objfile->per_bfd->ei.the_bfd_section_index; 387 *entry_p = (symfile_objfile->per_bfd->ei.entry_point 388 + symfile_objfile->section_offsets[idx]); 389 390 return 1; 391 } 392 393 /* Get current entry point address. Call error if it is not known. */ 394 395 CORE_ADDR 396 entry_point_address (void) 397 { 398 CORE_ADDR retval; 399 400 if (!entry_point_address_query (&retval)) 401 error (_("Entry point address is not known.")); 402 403 return retval; 404 } 405 406 separate_debug_iterator & 407 separate_debug_iterator::operator++ () 408 { 409 gdb_assert (m_objfile != nullptr); 410 411 struct objfile *res; 412 413 /* If any, return the first child. */ 414 res = m_objfile->separate_debug_objfile; 415 if (res != nullptr) 416 { 417 m_objfile = res; 418 return *this; 419 } 420 421 /* Common case where there is no separate debug objfile. */ 422 if (m_objfile == m_parent) 423 { 424 m_objfile = nullptr; 425 return *this; 426 } 427 428 /* Return the brother if any. Note that we don't iterate on brothers of 429 the parents. */ 430 res = m_objfile->separate_debug_objfile_link; 431 if (res != nullptr) 432 { 433 m_objfile = res; 434 return *this; 435 } 436 437 for (res = m_objfile->separate_debug_objfile_backlink; 438 res != m_parent; 439 res = res->separate_debug_objfile_backlink) 440 { 441 gdb_assert (res != nullptr); 442 if (res->separate_debug_objfile_link != nullptr) 443 { 444 m_objfile = res->separate_debug_objfile_link; 445 return *this; 446 } 447 } 448 m_objfile = nullptr; 449 return *this; 450 } 451 452 /* Add OBJFILE as a separate debug objfile of PARENT. */ 453 454 static void 455 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent) 456 { 457 gdb_assert (objfile && parent); 458 459 /* Must not be already in a list. */ 460 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 461 gdb_assert (objfile->separate_debug_objfile_link == NULL); 462 gdb_assert (objfile->separate_debug_objfile == NULL); 463 gdb_assert (parent->separate_debug_objfile_backlink == NULL); 464 gdb_assert (parent->separate_debug_objfile_link == NULL); 465 466 objfile->separate_debug_objfile_backlink = parent; 467 objfile->separate_debug_objfile_link = parent->separate_debug_objfile; 468 parent->separate_debug_objfile = objfile; 469 } 470 471 /* See objfiles.h. */ 472 473 objfile * 474 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_, 475 objfile *parent) 476 { 477 objfile *result = new objfile (bfd_, name_, flags_); 478 if (parent != nullptr) 479 add_separate_debug_objfile (result, parent); 480 481 /* Using std::make_shared might be a bit nicer here, but that would 482 require making the constructor public. */ 483 current_program_space->add_objfile (std::shared_ptr<objfile> (result), 484 parent); 485 486 /* Rebuild section map next time we need it. */ 487 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1; 488 489 return result; 490 } 491 492 /* See objfiles.h. */ 493 494 void 495 objfile::unlink () 496 { 497 current_program_space->remove_objfile (this); 498 } 499 500 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE 501 itself. */ 502 503 void 504 free_objfile_separate_debug (struct objfile *objfile) 505 { 506 struct objfile *child; 507 508 for (child = objfile->separate_debug_objfile; child;) 509 { 510 struct objfile *next_child = child->separate_debug_objfile_link; 511 child->unlink (); 512 child = next_child; 513 } 514 } 515 516 /* Destroy an objfile and all the symtabs and psymtabs under it. */ 517 518 objfile::~objfile () 519 { 520 /* First notify observers that this objfile is about to be freed. */ 521 gdb::observers::free_objfile.notify (this); 522 523 /* Free all separate debug objfiles. */ 524 free_objfile_separate_debug (this); 525 526 if (separate_debug_objfile_backlink) 527 { 528 /* We freed the separate debug file, make sure the base objfile 529 doesn't reference it. */ 530 struct objfile *child; 531 532 child = separate_debug_objfile_backlink->separate_debug_objfile; 533 534 if (child == this) 535 { 536 /* THIS is the first child. */ 537 separate_debug_objfile_backlink->separate_debug_objfile = 538 separate_debug_objfile_link; 539 } 540 else 541 { 542 /* Find THIS in the list. */ 543 while (1) 544 { 545 if (child->separate_debug_objfile_link == this) 546 { 547 child->separate_debug_objfile_link = 548 separate_debug_objfile_link; 549 break; 550 } 551 child = child->separate_debug_objfile_link; 552 gdb_assert (child); 553 } 554 } 555 } 556 557 /* Remove any references to this objfile in the global value 558 lists. */ 559 preserve_values (this); 560 561 /* It still may reference data modules have associated with the objfile and 562 the symbol file data. */ 563 forget_cached_source_info_for_objfile (this); 564 565 breakpoint_free_objfile (this); 566 btrace_free_objfile (this); 567 568 /* First do any symbol file specific actions required when we are 569 finished with a particular symbol file. Note that if the objfile 570 is using reusable symbol information (via mmalloc) then each of 571 these routines is responsible for doing the correct thing, either 572 freeing things which are valid only during this particular gdb 573 execution, or leaving them to be reused during the next one. */ 574 575 if (sf != NULL) 576 (*sf->sym_finish) (this); 577 578 /* Discard any data modules have associated with the objfile. The function 579 still may reference obfd. */ 580 objfile_free_data (this); 581 582 if (obfd) 583 gdb_bfd_unref (obfd); 584 else 585 delete per_bfd; 586 587 /* Before the symbol table code was redone to make it easier to 588 selectively load and remove information particular to a specific 589 linkage unit, gdb used to do these things whenever the monolithic 590 symbol table was blown away. How much still needs to be done 591 is unknown, but we play it safe for now and keep each action until 592 it is shown to be no longer needed. */ 593 594 /* Not all our callers call clear_symtab_users (objfile_purge_solibs, 595 for example), so we need to call this here. */ 596 clear_pc_function_cache (); 597 598 /* Check to see if the current_source_symtab belongs to this objfile, 599 and if so, call clear_current_source_symtab_and_line. */ 600 601 { 602 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 603 604 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this) 605 clear_current_source_symtab_and_line (); 606 } 607 608 /* Free the obstacks for non-reusable objfiles. */ 609 obstack_free (&objfile_obstack, 0); 610 611 /* Rebuild section map next time we need it. */ 612 get_objfile_pspace_data (pspace)->section_map_dirty = 1; 613 } 614 615 616 /* A helper function for objfile_relocate1 that relocates a single 617 symbol. */ 618 619 static void 620 relocate_one_symbol (struct symbol *sym, struct objfile *objfile, 621 const section_offsets &delta) 622 { 623 fixup_symbol_section (sym, objfile); 624 625 /* The RS6000 code from which this was taken skipped 626 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN. 627 But I'm leaving out that test, on the theory that 628 they can't possibly pass the tests below. */ 629 if ((SYMBOL_CLASS (sym) == LOC_LABEL 630 || SYMBOL_CLASS (sym) == LOC_STATIC) 631 && SYMBOL_SECTION (sym) >= 0) 632 { 633 SET_SYMBOL_VALUE_ADDRESS (sym, 634 SYMBOL_VALUE_ADDRESS (sym) 635 + delta[SYMBOL_SECTION (sym)]); 636 } 637 } 638 639 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 640 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here. 641 Return non-zero iff any change happened. */ 642 643 static int 644 objfile_relocate1 (struct objfile *objfile, 645 const section_offsets &new_offsets) 646 { 647 section_offsets delta (objfile->section_offsets.size ()); 648 649 int something_changed = 0; 650 651 for (int i = 0; i < objfile->section_offsets.size (); ++i) 652 { 653 delta[i] = new_offsets[i] - objfile->section_offsets[i]; 654 if (delta[i] != 0) 655 something_changed = 1; 656 } 657 if (!something_changed) 658 return 0; 659 660 /* OK, get all the symtabs. */ 661 { 662 for (compunit_symtab *cust : objfile->compunits ()) 663 { 664 for (symtab *s : compunit_filetabs (cust)) 665 { 666 struct linetable *l; 667 668 /* First the line table. */ 669 l = SYMTAB_LINETABLE (s); 670 if (l) 671 { 672 for (int i = 0; i < l->nitems; ++i) 673 l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)]; 674 } 675 } 676 } 677 678 for (compunit_symtab *cust : objfile->compunits ()) 679 { 680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust); 681 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust); 682 683 if (BLOCKVECTOR_MAP (bv)) 684 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]); 685 686 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) 687 { 688 struct block *b; 689 struct symbol *sym; 690 struct mdict_iterator miter; 691 692 b = BLOCKVECTOR_BLOCK (bv, i); 693 BLOCK_START (b) += delta[block_line_section]; 694 BLOCK_END (b) += delta[block_line_section]; 695 696 if (BLOCK_RANGES (b) != nullptr) 697 for (int j = 0; j < BLOCK_NRANGES (b); j++) 698 { 699 BLOCK_RANGE_START (b, j) += delta[block_line_section]; 700 BLOCK_RANGE_END (b, j) += delta[block_line_section]; 701 } 702 703 /* We only want to iterate over the local symbols, not any 704 symbols in included symtabs. */ 705 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym) 706 { 707 relocate_one_symbol (sym, objfile, delta); 708 } 709 } 710 } 711 } 712 713 /* This stores relocated addresses and so must be cleared. This 714 will cause it to be recreated on demand. */ 715 objfile->psymbol_map.clear (); 716 717 /* Relocate isolated symbols. */ 718 { 719 struct symbol *iter; 720 721 for (iter = objfile->template_symbols; iter; iter = iter->hash_next) 722 relocate_one_symbol (iter, objfile, delta); 723 } 724 725 { 726 int i; 727 728 for (i = 0; i < objfile->section_offsets.size (); ++i) 729 objfile->section_offsets[i] = new_offsets[i]; 730 } 731 732 /* Rebuild section map next time we need it. */ 733 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1; 734 735 /* Update the table in exec_ops, used to read memory. */ 736 struct obj_section *s; 737 ALL_OBJFILE_OSECTIONS (objfile, s) 738 { 739 int idx = s - objfile->sections; 740 741 exec_set_section_address (bfd_get_filename (objfile->obfd), idx, 742 obj_section_addr (s)); 743 } 744 745 /* Data changed. */ 746 return 1; 747 } 748 749 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS 750 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs. 751 752 The number and ordering of sections does differ between the two objfiles. 753 Only their names match. Also the file offsets will differ (objfile being 754 possibly prelinked but separate_debug_objfile is probably not prelinked) but 755 the in-memory absolute address as specified by NEW_OFFSETS must match both 756 files. */ 757 758 void 759 objfile_relocate (struct objfile *objfile, 760 const section_offsets &new_offsets) 761 { 762 int changed = 0; 763 764 changed |= objfile_relocate1 (objfile, new_offsets); 765 766 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ()) 767 { 768 if (debug_objfile == objfile) 769 continue; 770 771 section_addr_info objfile_addrs 772 = build_section_addr_info_from_objfile (objfile); 773 774 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the 775 relative ones must be already created according to debug_objfile. */ 776 777 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd); 778 779 gdb_assert (debug_objfile->section_offsets.size () 780 == gdb_bfd_count_sections (debug_objfile->obfd)); 781 section_offsets new_debug_offsets 782 (debug_objfile->section_offsets.size ()); 783 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs); 784 785 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets); 786 } 787 788 /* Relocate breakpoints as necessary, after things are relocated. */ 789 if (changed) 790 breakpoint_re_set (); 791 } 792 793 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is 794 not touched here. 795 Return non-zero iff any change happened. */ 796 797 static int 798 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide) 799 { 800 section_offsets new_offsets (objfile->section_offsets.size (), slide); 801 return objfile_relocate1 (objfile, new_offsets); 802 } 803 804 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's 805 SEPARATE_DEBUG_OBJFILEs. */ 806 807 void 808 objfile_rebase (struct objfile *objfile, CORE_ADDR slide) 809 { 810 int changed = 0; 811 812 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ()) 813 changed |= objfile_rebase1 (debug_objfile, slide); 814 815 /* Relocate breakpoints as necessary, after things are relocated. */ 816 if (changed) 817 breakpoint_re_set (); 818 } 819 820 /* Return non-zero if OBJFILE has partial symbols. */ 821 822 int 823 objfile_has_partial_symbols (struct objfile *objfile) 824 { 825 if (!objfile->sf) 826 return 0; 827 828 /* If we have not read psymbols, but we have a function capable of reading 829 them, then that is an indication that they are in fact available. Without 830 this function the symbols may have been already read in but they also may 831 not be present in this objfile. */ 832 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0 833 && objfile->sf->sym_read_psymbols != NULL) 834 return 1; 835 836 return objfile->sf->qf->has_symbols (objfile); 837 } 838 839 /* Return non-zero if OBJFILE has full symbols. */ 840 841 int 842 objfile_has_full_symbols (struct objfile *objfile) 843 { 844 return objfile->compunit_symtabs != NULL; 845 } 846 847 /* Return non-zero if OBJFILE has full or partial symbols, either directly 848 or through a separate debug file. */ 849 850 int 851 objfile_has_symbols (struct objfile *objfile) 852 { 853 for (::objfile *o : objfile->separate_debug_objfiles ()) 854 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o)) 855 return 1; 856 return 0; 857 } 858 859 860 /* Many places in gdb want to test just to see if we have any partial 861 symbols available. This function returns zero if none are currently 862 available, nonzero otherwise. */ 863 864 int 865 have_partial_symbols (void) 866 { 867 for (objfile *ofp : current_program_space->objfiles ()) 868 { 869 if (objfile_has_partial_symbols (ofp)) 870 return 1; 871 } 872 return 0; 873 } 874 875 /* Many places in gdb want to test just to see if we have any full 876 symbols available. This function returns zero if none are currently 877 available, nonzero otherwise. */ 878 879 int 880 have_full_symbols (void) 881 { 882 for (objfile *ofp : current_program_space->objfiles ()) 883 { 884 if (objfile_has_full_symbols (ofp)) 885 return 1; 886 } 887 return 0; 888 } 889 890 891 /* This operations deletes all objfile entries that represent solibs that 892 weren't explicitly loaded by the user, via e.g., the add-symbol-file 893 command. */ 894 895 void 896 objfile_purge_solibs (void) 897 { 898 for (objfile *objf : current_program_space->objfiles_safe ()) 899 { 900 /* We assume that the solib package has been purged already, or will 901 be soon. */ 902 903 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) 904 objf->unlink (); 905 } 906 } 907 908 909 /* Many places in gdb want to test just to see if we have any minimal 910 symbols available. This function returns zero if none are currently 911 available, nonzero otherwise. */ 912 913 int 914 have_minimal_symbols (void) 915 { 916 for (objfile *ofp : current_program_space->objfiles ()) 917 { 918 if (ofp->per_bfd->minimal_symbol_count > 0) 919 { 920 return 1; 921 } 922 } 923 return 0; 924 } 925 926 /* Qsort comparison function. */ 927 928 static bool 929 sort_cmp (const struct obj_section *sect1, const obj_section *sect2) 930 { 931 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 932 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 933 934 if (sect1_addr < sect2_addr) 935 return true; 936 else if (sect1_addr > sect2_addr) 937 return false; 938 else 939 { 940 /* Sections are at the same address. This could happen if 941 A) we have an objfile and a separate debuginfo. 942 B) we are confused, and have added sections without proper relocation, 943 or something like that. */ 944 945 const struct objfile *const objfile1 = sect1->objfile; 946 const struct objfile *const objfile2 = sect2->objfile; 947 948 if (objfile1->separate_debug_objfile == objfile2 949 || objfile2->separate_debug_objfile == objfile1) 950 { 951 /* Case A. The ordering doesn't matter: separate debuginfo files 952 will be filtered out later. */ 953 954 return false; 955 } 956 957 /* Case B. Maintain stable sort order, so bugs in GDB are easier to 958 triage. This section could be slow (since we iterate over all 959 objfiles in each call to sort_cmp), but this shouldn't happen 960 very often (GDB is already in a confused state; one hopes this 961 doesn't happen at all). If you discover that significant time is 962 spent in the loops below, do 'set complaints 100' and examine the 963 resulting complaints. */ 964 if (objfile1 == objfile2) 965 { 966 /* Both sections came from the same objfile. We are really 967 confused. Sort on sequence order of sections within the 968 objfile. The order of checks is important here, if we find a 969 match on SECT2 first then either SECT2 is before SECT1, or, 970 SECT2 == SECT1, in both cases we should return false. The 971 second case shouldn't occur during normal use, but std::sort 972 does check that '!(a < a)' when compiled in debug mode. */ 973 974 const struct obj_section *osect; 975 976 ALL_OBJFILE_OSECTIONS (objfile1, osect) 977 if (osect == sect2) 978 return false; 979 else if (osect == sect1) 980 return true; 981 982 /* We should have found one of the sections before getting here. */ 983 gdb_assert_not_reached ("section not found"); 984 } 985 else 986 { 987 /* Sort on sequence number of the objfile in the chain. */ 988 989 for (objfile *objfile : current_program_space->objfiles ()) 990 if (objfile == objfile1) 991 return true; 992 else if (objfile == objfile2) 993 return false; 994 995 /* We should have found one of the objfiles before getting here. */ 996 gdb_assert_not_reached ("objfile not found"); 997 } 998 } 999 1000 /* Unreachable. */ 1001 gdb_assert_not_reached ("unexpected code path"); 1002 return false; 1003 } 1004 1005 /* Select "better" obj_section to keep. We prefer the one that came from 1006 the real object, rather than the one from separate debuginfo. 1007 Most of the time the two sections are exactly identical, but with 1008 prelinking the .rel.dyn section in the real object may have different 1009 size. */ 1010 1011 static struct obj_section * 1012 preferred_obj_section (struct obj_section *a, struct obj_section *b) 1013 { 1014 gdb_assert (obj_section_addr (a) == obj_section_addr (b)); 1015 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile) 1016 || (b->objfile->separate_debug_objfile == a->objfile)); 1017 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile) 1018 || (b->objfile->separate_debug_objfile_backlink == a->objfile)); 1019 1020 if (a->objfile->separate_debug_objfile != NULL) 1021 return a; 1022 return b; 1023 } 1024 1025 /* Return 1 if SECTION should be inserted into the section map. 1026 We want to insert only non-overlay and non-TLS section. */ 1027 1028 static int 1029 insert_section_p (const struct bfd *abfd, 1030 const struct bfd_section *section) 1031 { 1032 const bfd_vma lma = bfd_section_lma (section); 1033 1034 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section) 1035 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0) 1036 /* This is an overlay section. IN_MEMORY check is needed to avoid 1037 discarding sections from the "system supplied DSO" (aka vdso) 1038 on some Linux systems (e.g. Fedora 11). */ 1039 return 0; 1040 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0) 1041 /* This is a TLS section. */ 1042 return 0; 1043 1044 return 1; 1045 } 1046 1047 /* Filter out overlapping sections where one section came from the real 1048 objfile, and the other from a separate debuginfo file. 1049 Return the size of table after redundant sections have been eliminated. */ 1050 1051 static int 1052 filter_debuginfo_sections (struct obj_section **map, int map_size) 1053 { 1054 int i, j; 1055 1056 for (i = 0, j = 0; i < map_size - 1; i++) 1057 { 1058 struct obj_section *const sect1 = map[i]; 1059 struct obj_section *const sect2 = map[i + 1]; 1060 const struct objfile *const objfile1 = sect1->objfile; 1061 const struct objfile *const objfile2 = sect2->objfile; 1062 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1063 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1064 1065 if (sect1_addr == sect2_addr 1066 && (objfile1->separate_debug_objfile == objfile2 1067 || objfile2->separate_debug_objfile == objfile1)) 1068 { 1069 map[j++] = preferred_obj_section (sect1, sect2); 1070 ++i; 1071 } 1072 else 1073 map[j++] = sect1; 1074 } 1075 1076 if (i < map_size) 1077 { 1078 gdb_assert (i == map_size - 1); 1079 map[j++] = map[i]; 1080 } 1081 1082 /* The map should not have shrunk to less than half the original size. */ 1083 gdb_assert (map_size / 2 <= j); 1084 1085 return j; 1086 } 1087 1088 /* Filter out overlapping sections, issuing a warning if any are found. 1089 Overlapping sections could really be overlay sections which we didn't 1090 classify as such in insert_section_p, or we could be dealing with a 1091 corrupt binary. */ 1092 1093 static int 1094 filter_overlapping_sections (struct obj_section **map, int map_size) 1095 { 1096 int i, j; 1097 1098 for (i = 0, j = 0; i < map_size - 1; ) 1099 { 1100 int k; 1101 1102 map[j++] = map[i]; 1103 for (k = i + 1; k < map_size; k++) 1104 { 1105 struct obj_section *const sect1 = map[i]; 1106 struct obj_section *const sect2 = map[k]; 1107 const CORE_ADDR sect1_addr = obj_section_addr (sect1); 1108 const CORE_ADDR sect2_addr = obj_section_addr (sect2); 1109 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1); 1110 1111 gdb_assert (sect1_addr <= sect2_addr); 1112 1113 if (sect1_endaddr <= sect2_addr) 1114 break; 1115 else 1116 { 1117 /* We have an overlap. Report it. */ 1118 1119 struct objfile *const objf1 = sect1->objfile; 1120 struct objfile *const objf2 = sect2->objfile; 1121 1122 const struct bfd_section *const bfds1 = sect1->the_bfd_section; 1123 const struct bfd_section *const bfds2 = sect2->the_bfd_section; 1124 1125 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2); 1126 1127 struct gdbarch *const gdbarch = objf1->arch (); 1128 1129 complaint (_("unexpected overlap between:\n" 1130 " (A) section `%s' from `%s' [%s, %s)\n" 1131 " (B) section `%s' from `%s' [%s, %s).\n" 1132 "Will ignore section B"), 1133 bfd_section_name (bfds1), objfile_name (objf1), 1134 paddress (gdbarch, sect1_addr), 1135 paddress (gdbarch, sect1_endaddr), 1136 bfd_section_name (bfds2), objfile_name (objf2), 1137 paddress (gdbarch, sect2_addr), 1138 paddress (gdbarch, sect2_endaddr)); 1139 } 1140 } 1141 i = k; 1142 } 1143 1144 if (i < map_size) 1145 { 1146 gdb_assert (i == map_size - 1); 1147 map[j++] = map[i]; 1148 } 1149 1150 return j; 1151 } 1152 1153 1154 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any 1155 TLS, overlay and overlapping sections. */ 1156 1157 static void 1158 update_section_map (struct program_space *pspace, 1159 struct obj_section ***pmap, int *pmap_size) 1160 { 1161 struct objfile_pspace_info *pspace_info; 1162 int alloc_size, map_size, i; 1163 struct obj_section *s, **map; 1164 1165 pspace_info = get_objfile_pspace_data (pspace); 1166 gdb_assert (pspace_info->section_map_dirty != 0 1167 || pspace_info->new_objfiles_available != 0); 1168 1169 map = *pmap; 1170 xfree (map); 1171 1172 alloc_size = 0; 1173 for (objfile *objfile : pspace->objfiles ()) 1174 ALL_OBJFILE_OSECTIONS (objfile, s) 1175 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1176 alloc_size += 1; 1177 1178 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */ 1179 if (alloc_size == 0) 1180 { 1181 *pmap = NULL; 1182 *pmap_size = 0; 1183 return; 1184 } 1185 1186 map = XNEWVEC (struct obj_section *, alloc_size); 1187 1188 i = 0; 1189 for (objfile *objfile : pspace->objfiles ()) 1190 ALL_OBJFILE_OSECTIONS (objfile, s) 1191 if (insert_section_p (objfile->obfd, s->the_bfd_section)) 1192 map[i++] = s; 1193 1194 std::sort (map, map + alloc_size, sort_cmp); 1195 map_size = filter_debuginfo_sections(map, alloc_size); 1196 map_size = filter_overlapping_sections(map, map_size); 1197 1198 if (map_size < alloc_size) 1199 /* Some sections were eliminated. Trim excess space. */ 1200 map = XRESIZEVEC (struct obj_section *, map, map_size); 1201 else 1202 gdb_assert (alloc_size == map_size); 1203 1204 *pmap = map; 1205 *pmap_size = map_size; 1206 } 1207 1208 /* Bsearch comparison function. */ 1209 1210 static int 1211 bsearch_cmp (const void *key, const void *elt) 1212 { 1213 const CORE_ADDR pc = *(CORE_ADDR *) key; 1214 const struct obj_section *section = *(const struct obj_section **) elt; 1215 1216 if (pc < obj_section_addr (section)) 1217 return -1; 1218 if (pc < obj_section_endaddr (section)) 1219 return 0; 1220 return 1; 1221 } 1222 1223 /* Returns a section whose range includes PC or NULL if none found. */ 1224 1225 struct obj_section * 1226 find_pc_section (CORE_ADDR pc) 1227 { 1228 struct objfile_pspace_info *pspace_info; 1229 struct obj_section *s, **sp; 1230 1231 /* Check for mapped overlay section first. */ 1232 s = find_pc_mapped_section (pc); 1233 if (s) 1234 return s; 1235 1236 pspace_info = get_objfile_pspace_data (current_program_space); 1237 if (pspace_info->section_map_dirty 1238 || (pspace_info->new_objfiles_available 1239 && !pspace_info->inhibit_updates)) 1240 { 1241 update_section_map (current_program_space, 1242 &pspace_info->sections, 1243 &pspace_info->num_sections); 1244 1245 /* Don't need updates to section map until objfiles are added, 1246 removed or relocated. */ 1247 pspace_info->new_objfiles_available = 0; 1248 pspace_info->section_map_dirty = 0; 1249 } 1250 1251 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1252 bsearch be non-NULL. */ 1253 if (pspace_info->sections == NULL) 1254 { 1255 gdb_assert (pspace_info->num_sections == 0); 1256 return NULL; 1257 } 1258 1259 sp = (struct obj_section **) bsearch (&pc, 1260 pspace_info->sections, 1261 pspace_info->num_sections, 1262 sizeof (*pspace_info->sections), 1263 bsearch_cmp); 1264 if (sp != NULL) 1265 return *sp; 1266 return NULL; 1267 } 1268 1269 1270 /* Return non-zero if PC is in a section called NAME. */ 1271 1272 int 1273 pc_in_section (CORE_ADDR pc, const char *name) 1274 { 1275 struct obj_section *s; 1276 int retval = 0; 1277 1278 s = find_pc_section (pc); 1279 1280 retval = (s != NULL 1281 && s->the_bfd_section->name != NULL 1282 && strcmp (s->the_bfd_section->name, name) == 0); 1283 return (retval); 1284 } 1285 1286 1287 /* Set section_map_dirty so section map will be rebuilt next time it 1288 is used. Called by reread_symbols. */ 1289 1290 void 1291 objfiles_changed (void) 1292 { 1293 /* Rebuild section map next time we need it. */ 1294 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1; 1295 } 1296 1297 /* See comments in objfiles.h. */ 1298 1299 scoped_restore_tmpl<int> 1300 inhibit_section_map_updates (struct program_space *pspace) 1301 { 1302 return scoped_restore_tmpl<int> 1303 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1); 1304 } 1305 1306 /* See objfiles.h. */ 1307 1308 bool 1309 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile) 1310 { 1311 struct obj_section *osect; 1312 1313 if (objfile == NULL) 1314 return false; 1315 1316 ALL_OBJFILE_OSECTIONS (objfile, osect) 1317 { 1318 if (section_is_overlay (osect) && !section_is_mapped (osect)) 1319 continue; 1320 1321 if (obj_section_addr (osect) <= addr 1322 && addr < obj_section_endaddr (osect)) 1323 return true; 1324 } 1325 return false; 1326 } 1327 1328 /* See objfiles.h. */ 1329 1330 bool 1331 shared_objfile_contains_address_p (struct program_space *pspace, 1332 CORE_ADDR address) 1333 { 1334 for (objfile *objfile : pspace->objfiles ()) 1335 { 1336 if ((objfile->flags & OBJF_SHARED) != 0 1337 && is_addr_in_objfile (address, objfile)) 1338 return true; 1339 } 1340 1341 return false; 1342 } 1343 1344 /* The default implementation for the "iterate_over_objfiles_in_search_order" 1345 gdbarch method. It is equivalent to use the objfiles iterable, 1346 searching the objfiles in the order they are stored internally, 1347 ignoring CURRENT_OBJFILE. 1348 1349 On most platforms, it should be close enough to doing the best 1350 we can without some knowledge specific to the architecture. */ 1351 1352 void 1353 default_iterate_over_objfiles_in_search_order 1354 (struct gdbarch *gdbarch, 1355 iterate_over_objfiles_in_search_order_cb_ftype *cb, 1356 void *cb_data, struct objfile *current_objfile) 1357 { 1358 int stop = 0; 1359 1360 for (objfile *objfile : current_program_space->objfiles ()) 1361 { 1362 stop = cb (objfile, cb_data); 1363 if (stop) 1364 return; 1365 } 1366 } 1367 1368 /* See objfiles.h. */ 1369 1370 const char * 1371 objfile_name (const struct objfile *objfile) 1372 { 1373 if (objfile->obfd != NULL) 1374 return bfd_get_filename (objfile->obfd); 1375 1376 return objfile->original_name; 1377 } 1378 1379 /* See objfiles.h. */ 1380 1381 const char * 1382 objfile_filename (const struct objfile *objfile) 1383 { 1384 if (objfile->obfd != NULL) 1385 return bfd_get_filename (objfile->obfd); 1386 1387 return NULL; 1388 } 1389 1390 /* See objfiles.h. */ 1391 1392 const char * 1393 objfile_debug_name (const struct objfile *objfile) 1394 { 1395 return lbasename (objfile->original_name); 1396 } 1397 1398 /* See objfiles.h. */ 1399 1400 const char * 1401 objfile_flavour_name (struct objfile *objfile) 1402 { 1403 if (objfile->obfd != NULL) 1404 return bfd_flavour_name (bfd_get_flavour (objfile->obfd)); 1405 return NULL; 1406 } 1407