xref: /netbsd/external/gpl3/gdb/dist/gdb/rs6000-tdep.c (revision 1424dfb3)
1 /* Target-dependent code for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45 
46 #include "coff/internal.h"	/* for libcoff.h */
47 #include "libcoff.h"		/* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50 
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54 
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58 
59 #include "dis-asm.h"
60 
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64 
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68 
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88 
89 /* Determine if regnum is an SPE pseudo-register.  */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91     && (regnum) >= (tdep)->ppc_ev0_regnum \
92     && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93 
94 /* Determine if regnum is a decimal float pseudo-register.  */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96     && (regnum) >= (tdep)->ppc_dl0_regnum \
97     && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98 
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100    registers.  */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102     (tdep)->ppc_v0_alias_regnum >= 0 \
103     && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104     && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105 
106 /* Determine if regnum is a POWER7 VSX register.  */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108     && (regnum) >= (tdep)->ppc_vsr0_regnum \
109     && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110 
111 /* Determine if regnum is a POWER7 Extended FP register.  */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113     && (regnum) >= (tdep)->ppc_efpr0_regnum \
114     && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115 
116 /* Determine if regnum is a checkpointed decimal float
117    pseudo-register.  */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119     && (regnum) >= (tdep)->ppc_cdl0_regnum \
120     && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121 
122 /* Determine if regnum is a Checkpointed POWER7 VSX register.  */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124     && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125     && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126 
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register.  */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129     && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130     && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131 
132 /* Holds the current set of options to be passed to the disassembler.  */
133 static char *powerpc_disassembler_options;
134 
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136    commands.  */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139 
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141 
142 /* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
143 static const char *const powerpc_vector_strings[] =
144 {
145   "auto",
146   "generic",
147   "altivec",
148   "spe",
149   NULL
150 };
151 
152 /* A variable that can be configured by the user.  */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155 
156 /* To be used by skip_prologue.  */
157 
158 struct rs6000_framedata
159   {
160     int offset;			/* total size of frame --- the distance
161 				   by which we decrement sp to allocate
162 				   the frame */
163     int saved_gpr;		/* smallest # of saved gpr */
164     unsigned int gpr_mask;	/* Each bit is an individual saved GPR.  */
165     int saved_fpr;		/* smallest # of saved fpr */
166     int saved_vr;               /* smallest # of saved vr */
167     int saved_ev;               /* smallest # of saved ev */
168     int alloca_reg;		/* alloca register number (frame ptr) */
169     char frameless;		/* true if frameless functions.  */
170     char nosavedpc;		/* true if pc not saved.  */
171     char used_bl;		/* true if link register clobbered */
172     int gpr_offset;		/* offset of saved gprs from prev sp */
173     int fpr_offset;		/* offset of saved fprs from prev sp */
174     int vr_offset;              /* offset of saved vrs from prev sp */
175     int ev_offset;              /* offset of saved evs from prev sp */
176     int lr_offset;		/* offset of saved lr */
177     int lr_register;		/* register of saved lr, if trustworthy */
178     int cr_offset;		/* offset of saved cr */
179     int vrsave_offset;          /* offset of saved vrsave register */
180   };
181 
182 
183 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
184 int
vsx_register_p(struct gdbarch * gdbarch,int regno)185 vsx_register_p (struct gdbarch *gdbarch, int regno)
186 {
187   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188   if (tdep->ppc_vsr0_regnum < 0)
189     return 0;
190   else
191     return (regno >= tdep->ppc_vsr0_upper_regnum && regno
192 	    <= tdep->ppc_vsr0_upper_regnum + 31);
193 }
194 
195 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
196 int
altivec_register_p(struct gdbarch * gdbarch,int regno)197 altivec_register_p (struct gdbarch *gdbarch, int regno)
198 {
199   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
200   if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
201     return 0;
202   else
203     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
204 }
205 
206 
207 /* Return true if REGNO is an SPE register, false otherwise.  */
208 int
spe_register_p(struct gdbarch * gdbarch,int regno)209 spe_register_p (struct gdbarch *gdbarch, int regno)
210 {
211   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212 
213   /* Is it a reference to EV0 -- EV31, and do we have those?  */
214   if (IS_SPE_PSEUDOREG (tdep, regno))
215     return 1;
216 
217   /* Is it a reference to one of the raw upper GPR halves?  */
218   if (tdep->ppc_ev0_upper_regnum >= 0
219       && tdep->ppc_ev0_upper_regnum <= regno
220       && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
221     return 1;
222 
223   /* Is it a reference to the 64-bit accumulator, and do we have that?  */
224   if (tdep->ppc_acc_regnum >= 0
225       && tdep->ppc_acc_regnum == regno)
226     return 1;
227 
228   /* Is it a reference to the SPE floating-point status and control register,
229      and do we have that?  */
230   if (tdep->ppc_spefscr_regnum >= 0
231       && tdep->ppc_spefscr_regnum == regno)
232     return 1;
233 
234   return 0;
235 }
236 
237 
238 /* Return non-zero if the architecture described by GDBARCH has
239    floating-point registers (f0 --- f31 and fpscr).  */
240 int
ppc_floating_point_unit_p(struct gdbarch * gdbarch)241 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
242 {
243   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 
245   return (tdep->ppc_fp0_regnum >= 0
246           && tdep->ppc_fpscr_regnum >= 0);
247 }
248 
249 /* Return non-zero if the architecture described by GDBARCH has
250    Altivec registers (vr0 --- vr31, vrsave and vscr).  */
251 int
ppc_altivec_support_p(struct gdbarch * gdbarch)252 ppc_altivec_support_p (struct gdbarch *gdbarch)
253 {
254   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 
256   return (tdep->ppc_vr0_regnum >= 0
257           && tdep->ppc_vrsave_regnum >= 0);
258 }
259 
260 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
261    set it to SIM_REGNO.
262 
263    This is a helper function for init_sim_regno_table, constructing
264    the table mapping GDB register numbers to sim register numbers; we
265    initialize every element in that table to -1 before we start
266    filling it in.  */
267 static void
set_sim_regno(int * table,int gdb_regno,int sim_regno)268 set_sim_regno (int *table, int gdb_regno, int sim_regno)
269 {
270   /* Make sure we don't try to assign any given GDB register a sim
271      register number more than once.  */
272   gdb_assert (table[gdb_regno] == -1);
273   table[gdb_regno] = sim_regno;
274 }
275 
276 
277 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
278    numbers to simulator register numbers, based on the values placed
279    in the ARCH->tdep->ppc_foo_regnum members.  */
280 static void
init_sim_regno_table(struct gdbarch * arch)281 init_sim_regno_table (struct gdbarch *arch)
282 {
283   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
284   int total_regs = gdbarch_num_regs (arch);
285   int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
286   int i;
287   static const char *const segment_regs[] = {
288     "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
289     "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
290   };
291 
292   /* Presume that all registers not explicitly mentioned below are
293      unavailable from the sim.  */
294   for (i = 0; i < total_regs; i++)
295     sim_regno[i] = -1;
296 
297   /* General-purpose registers.  */
298   for (i = 0; i < ppc_num_gprs; i++)
299     set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
300 
301   /* Floating-point registers.  */
302   if (tdep->ppc_fp0_regnum >= 0)
303     for (i = 0; i < ppc_num_fprs; i++)
304       set_sim_regno (sim_regno,
305                      tdep->ppc_fp0_regnum + i,
306                      sim_ppc_f0_regnum + i);
307   if (tdep->ppc_fpscr_regnum >= 0)
308     set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
309 
310   set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
311   set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
312   set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
313 
314   /* Segment registers.  */
315   for (i = 0; i < ppc_num_srs; i++)
316     {
317       int gdb_regno;
318 
319       gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
320       if (gdb_regno >= 0)
321 	set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
322     }
323 
324   /* Altivec registers.  */
325   if (tdep->ppc_vr0_regnum >= 0)
326     {
327       for (i = 0; i < ppc_num_vrs; i++)
328         set_sim_regno (sim_regno,
329                        tdep->ppc_vr0_regnum + i,
330                        sim_ppc_vr0_regnum + i);
331 
332       /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
333          we can treat this more like the other cases.  */
334       set_sim_regno (sim_regno,
335                      tdep->ppc_vr0_regnum + ppc_num_vrs,
336                      sim_ppc_vscr_regnum);
337     }
338   /* vsave is a special-purpose register, so the code below handles it.  */
339 
340   /* SPE APU (E500) registers.  */
341   if (tdep->ppc_ev0_upper_regnum >= 0)
342     for (i = 0; i < ppc_num_gprs; i++)
343       set_sim_regno (sim_regno,
344                      tdep->ppc_ev0_upper_regnum + i,
345                      sim_ppc_rh0_regnum + i);
346   if (tdep->ppc_acc_regnum >= 0)
347     set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
348   /* spefscr is a special-purpose register, so the code below handles it.  */
349 
350 #ifdef WITH_PPC_SIM
351   /* Now handle all special-purpose registers.  Verify that they
352      haven't mistakenly been assigned numbers by any of the above
353      code.  */
354   for (i = 0; i < sim_ppc_num_sprs; i++)
355     {
356       const char *spr_name = sim_spr_register_name (i);
357       int gdb_regno = -1;
358 
359       if (spr_name != NULL)
360 	gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
361 
362       if (gdb_regno != -1)
363 	set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
364     }
365 #endif
366 
367   /* Drop the initialized array into place.  */
368   tdep->sim_regno = sim_regno;
369 }
370 
371 
372 /* Given a GDB register number REG, return the corresponding SIM
373    register number.  */
374 static int
rs6000_register_sim_regno(struct gdbarch * gdbarch,int reg)375 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
376 {
377   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378   int sim_regno;
379 
380   if (tdep->sim_regno == NULL)
381     init_sim_regno_table (gdbarch);
382 
383   gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
384   sim_regno = tdep->sim_regno[reg];
385 
386   if (sim_regno >= 0)
387     return sim_regno;
388   else
389     return LEGACY_SIM_REGNO_IGNORE;
390 }
391 
392 
393 
394 /* Register set support functions.  */
395 
396 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
397    Write the register to REGCACHE.  */
398 
399 void
ppc_supply_reg(struct regcache * regcache,int regnum,const gdb_byte * regs,size_t offset,int regsize)400 ppc_supply_reg (struct regcache *regcache, int regnum,
401 		const gdb_byte *regs, size_t offset, int regsize)
402 {
403   if (regnum != -1 && offset != -1)
404     {
405       if (regsize > 4)
406 	{
407 	  struct gdbarch *gdbarch = regcache->arch ();
408 	  int gdb_regsize = register_size (gdbarch, regnum);
409 	  if (gdb_regsize < regsize
410 	      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
411 	    offset += regsize - gdb_regsize;
412 	}
413       regcache->raw_supply (regnum, regs + offset);
414     }
415 }
416 
417 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
418    in a field REGSIZE wide.  Zero pad as necessary.  */
419 
420 void
ppc_collect_reg(const struct regcache * regcache,int regnum,gdb_byte * regs,size_t offset,int regsize)421 ppc_collect_reg (const struct regcache *regcache, int regnum,
422 		 gdb_byte *regs, size_t offset, int regsize)
423 {
424   if (regnum != -1 && offset != -1)
425     {
426       if (regsize > 4)
427 	{
428 	  struct gdbarch *gdbarch = regcache->arch ();
429 	  int gdb_regsize = register_size (gdbarch, regnum);
430 	  if (gdb_regsize < regsize)
431 	    {
432 	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 		{
434 		  memset (regs + offset, 0, regsize - gdb_regsize);
435 		  offset += regsize - gdb_regsize;
436 		}
437 	      else
438 		memset (regs + offset + regsize - gdb_regsize, 0,
439 			regsize - gdb_regsize);
440 	    }
441 	}
442       regcache->raw_collect (regnum, regs + offset);
443     }
444 }
445 
446 static int
ppc_greg_offset(struct gdbarch * gdbarch,struct gdbarch_tdep * tdep,const struct ppc_reg_offsets * offsets,int regnum,int * regsize)447 ppc_greg_offset (struct gdbarch *gdbarch,
448 		 struct gdbarch_tdep *tdep,
449 		 const struct ppc_reg_offsets *offsets,
450 		 int regnum,
451 		 int *regsize)
452 {
453   *regsize = offsets->gpr_size;
454   if (regnum >= tdep->ppc_gp0_regnum
455       && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
456     return (offsets->r0_offset
457 	    + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
458 
459   if (regnum == gdbarch_pc_regnum (gdbarch))
460     return offsets->pc_offset;
461 
462   if (regnum == tdep->ppc_ps_regnum)
463     return offsets->ps_offset;
464 
465   if (regnum == tdep->ppc_lr_regnum)
466     return offsets->lr_offset;
467 
468   if (regnum == tdep->ppc_ctr_regnum)
469     return offsets->ctr_offset;
470 
471   *regsize = offsets->xr_size;
472   if (regnum == tdep->ppc_cr_regnum)
473     return offsets->cr_offset;
474 
475   if (regnum == tdep->ppc_xer_regnum)
476     return offsets->xer_offset;
477 
478   if (regnum == tdep->ppc_mq_regnum)
479     return offsets->mq_offset;
480 
481   return -1;
482 }
483 
484 static int
ppc_fpreg_offset(struct gdbarch_tdep * tdep,const struct ppc_reg_offsets * offsets,int regnum)485 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
486 		  const struct ppc_reg_offsets *offsets,
487 		  int regnum)
488 {
489   if (regnum >= tdep->ppc_fp0_regnum
490       && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
491     return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
492 
493   if (regnum == tdep->ppc_fpscr_regnum)
494     return offsets->fpscr_offset;
495 
496   return -1;
497 }
498 
499 /* Supply register REGNUM in the general-purpose register set REGSET
500    from the buffer specified by GREGS and LEN to register cache
501    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
502 
503 void
ppc_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t len)504 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
505 		    int regnum, const void *gregs, size_t len)
506 {
507   struct gdbarch *gdbarch = regcache->arch ();
508   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509   const struct ppc_reg_offsets *offsets
510     = (const struct ppc_reg_offsets *) regset->regmap;
511   size_t offset;
512   int regsize;
513 
514   if (regnum == -1)
515     {
516       int i;
517       int gpr_size = offsets->gpr_size;
518 
519       for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
520 	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
521 	   i++, offset += gpr_size)
522 	ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
523 			gpr_size);
524 
525       ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
526 		      (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
527       ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
528 		      (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
529       ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
530 		      (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
531       ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
532 		      (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
533       ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
534 		      (const gdb_byte *) gregs, offsets->cr_offset,
535 		      offsets->xr_size);
536       ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
537 		      (const gdb_byte *) gregs, offsets->xer_offset,
538 		      offsets->xr_size);
539       ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
540 		      (const gdb_byte *) gregs, offsets->mq_offset,
541 		      offsets->xr_size);
542       return;
543     }
544 
545   offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
546   ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
547 }
548 
549 /* Supply register REGNUM in the floating-point register set REGSET
550    from the buffer specified by FPREGS and LEN to register cache
551    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
552 
553 void
ppc_supply_fpregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * fpregs,size_t len)554 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
555 		     int regnum, const void *fpregs, size_t len)
556 {
557   struct gdbarch *gdbarch = regcache->arch ();
558   struct gdbarch_tdep *tdep;
559   const struct ppc_reg_offsets *offsets;
560   size_t offset;
561 
562   if (!ppc_floating_point_unit_p (gdbarch))
563     return;
564 
565   tdep = gdbarch_tdep (gdbarch);
566   offsets = (const struct ppc_reg_offsets *) regset->regmap;
567   if (regnum == -1)
568     {
569       int i;
570 
571       for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
572 	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
573 	   i++, offset += 8)
574 	ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
575 
576       ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
577 		      (const gdb_byte *) fpregs, offsets->fpscr_offset,
578 		      offsets->fpscr_size);
579       return;
580     }
581 
582   offset = ppc_fpreg_offset (tdep, offsets, regnum);
583   ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
584 		  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
585 }
586 
587 /* Collect register REGNUM in the general-purpose register set
588    REGSET from register cache REGCACHE into the buffer specified by
589    GREGS and LEN.  If REGNUM is -1, do this for all registers in
590    REGSET.  */
591 
592 void
ppc_collect_gregset(const struct regset * regset,const struct regcache * regcache,int regnum,void * gregs,size_t len)593 ppc_collect_gregset (const struct regset *regset,
594 		     const struct regcache *regcache,
595 		     int regnum, void *gregs, size_t len)
596 {
597   struct gdbarch *gdbarch = regcache->arch ();
598   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
599   const struct ppc_reg_offsets *offsets
600     = (const struct ppc_reg_offsets *) regset->regmap;
601   size_t offset;
602   int regsize;
603 
604   if (regnum == -1)
605     {
606       int i;
607       int gpr_size = offsets->gpr_size;
608 
609       for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
610 	   i < tdep->ppc_gp0_regnum + ppc_num_gprs;
611 	   i++, offset += gpr_size)
612 	ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
613 
614       ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
615 		       (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
616       ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
617 		       (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
618       ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
619 		       (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
620       ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
621 		       (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
622       ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
623 		       (gdb_byte *) gregs, offsets->cr_offset,
624 		       offsets->xr_size);
625       ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
626 		       (gdb_byte *) gregs, offsets->xer_offset,
627 		       offsets->xr_size);
628       ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
629 		       (gdb_byte *) gregs, offsets->mq_offset,
630 		       offsets->xr_size);
631       return;
632     }
633 
634   offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
635   ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
636 }
637 
638 /* Collect register REGNUM in the floating-point register set
639    REGSET from register cache REGCACHE into the buffer specified by
640    FPREGS and LEN.  If REGNUM is -1, do this for all registers in
641    REGSET.  */
642 
643 void
ppc_collect_fpregset(const struct regset * regset,const struct regcache * regcache,int regnum,void * fpregs,size_t len)644 ppc_collect_fpregset (const struct regset *regset,
645 		      const struct regcache *regcache,
646 		      int regnum, void *fpregs, size_t len)
647 {
648   struct gdbarch *gdbarch = regcache->arch ();
649   struct gdbarch_tdep *tdep;
650   const struct ppc_reg_offsets *offsets;
651   size_t offset;
652 
653   if (!ppc_floating_point_unit_p (gdbarch))
654     return;
655 
656   tdep = gdbarch_tdep (gdbarch);
657   offsets = (const struct ppc_reg_offsets *) regset->regmap;
658   if (regnum == -1)
659     {
660       int i;
661 
662       for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
663 	   i < tdep->ppc_fp0_regnum + ppc_num_fprs;
664 	   i++, offset += 8)
665 	ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
666 
667       ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
668 		       (gdb_byte *) fpregs, offsets->fpscr_offset,
669 		       offsets->fpscr_size);
670       return;
671     }
672 
673   offset = ppc_fpreg_offset (tdep, offsets, regnum);
674   ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
675 		   regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
676 }
677 
678 static int
insn_changes_sp_or_jumps(unsigned long insn)679 insn_changes_sp_or_jumps (unsigned long insn)
680 {
681   int opcode = (insn >> 26) & 0x03f;
682   int sd = (insn >> 21) & 0x01f;
683   int a = (insn >> 16) & 0x01f;
684   int subcode = (insn >> 1) & 0x3ff;
685 
686   /* Changes the stack pointer.  */
687 
688   /* NOTE: There are many ways to change the value of a given register.
689            The ways below are those used when the register is R1, the SP,
690            in a funtion's epilogue.  */
691 
692   if (opcode == 31 && subcode == 444 && a == 1)
693     return 1;  /* mr R1,Rn */
694   if (opcode == 14 && sd == 1)
695     return 1;  /* addi R1,Rn,simm */
696   if (opcode == 58 && sd == 1)
697     return 1;  /* ld R1,ds(Rn) */
698 
699   /* Transfers control.  */
700 
701   if (opcode == 18)
702     return 1;  /* b */
703   if (opcode == 16)
704     return 1;  /* bc */
705   if (opcode == 19 && subcode == 16)
706     return 1;  /* bclr */
707   if (opcode == 19 && subcode == 528)
708     return 1;  /* bcctr */
709 
710   return 0;
711 }
712 
713 /* Return true if we are in the function's epilogue, i.e. after the
714    instruction that destroyed the function's stack frame.
715 
716    1) scan forward from the point of execution:
717        a) If you find an instruction that modifies the stack pointer
718           or transfers control (except a return), execution is not in
719           an epilogue, return.
720        b) Stop scanning if you find a return instruction or reach the
721           end of the function or reach the hard limit for the size of
722           an epilogue.
723    2) scan backward from the point of execution:
724         a) If you find an instruction that modifies the stack pointer,
725             execution *is* in an epilogue, return.
726         b) Stop scanning if you reach an instruction that transfers
727            control or the beginning of the function or reach the hard
728            limit for the size of an epilogue.  */
729 
730 static int
rs6000_in_function_epilogue_frame_p(struct frame_info * curfrm,struct gdbarch * gdbarch,CORE_ADDR pc)731 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
732 				     struct gdbarch *gdbarch, CORE_ADDR pc)
733 {
734   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
736   bfd_byte insn_buf[PPC_INSN_SIZE];
737   CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
738   unsigned long insn;
739 
740   /* Find the search limits based on function boundaries and hard limit.  */
741 
742   if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
743     return 0;
744 
745   epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
746   if (epilogue_start < func_start) epilogue_start = func_start;
747 
748   epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
749   if (epilogue_end > func_end) epilogue_end = func_end;
750 
751   /* Scan forward until next 'blr'.  */
752 
753   for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
754     {
755       if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
756         return 0;
757       insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
758       if (insn == 0x4e800020)
759         break;
760       /* Assume a bctr is a tail call unless it points strictly within
761 	 this function.  */
762       if (insn == 0x4e800420)
763 	{
764 	  CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
765 						       tdep->ppc_ctr_regnum);
766 	  if (ctr > func_start && ctr < func_end)
767 	    return 0;
768 	  else
769 	    break;
770 	}
771       if (insn_changes_sp_or_jumps (insn))
772         return 0;
773     }
774 
775   /* Scan backward until adjustment to stack pointer (R1).  */
776 
777   for (scan_pc = pc - PPC_INSN_SIZE;
778        scan_pc >= epilogue_start;
779        scan_pc -= PPC_INSN_SIZE)
780     {
781       if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
782         return 0;
783       insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784       if (insn_changes_sp_or_jumps (insn))
785         return 1;
786     }
787 
788   return 0;
789 }
790 
791 /* Implement the stack_frame_destroyed_p gdbarch method.  */
792 
793 static int
rs6000_stack_frame_destroyed_p(struct gdbarch * gdbarch,CORE_ADDR pc)794 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796   return rs6000_in_function_epilogue_frame_p (get_current_frame (),
797 					      gdbarch, pc);
798 }
799 
800 /* Get the ith function argument for the current function.  */
801 static CORE_ADDR
rs6000_fetch_pointer_argument(struct frame_info * frame,int argi,struct type * type)802 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
803 			       struct type *type)
804 {
805   return get_frame_register_unsigned (frame, 3 + argi);
806 }
807 
808 /* Sequence of bytes for breakpoint instruction.  */
809 
810 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
811 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
812 
813 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
814   rs6000_breakpoint;
815 
816 /* Instruction masks for displaced stepping.  */
817 #define BRANCH_MASK 0xfc000000
818 #define BP_MASK 0xFC0007FE
819 #define B_INSN 0x48000000
820 #define BC_INSN 0x40000000
821 #define BXL_INSN 0x4c000000
822 #define BP_INSN 0x7C000008
823 
824 /* Instruction masks used during single-stepping of atomic
825    sequences.  */
826 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
827 #define LWARX_INSTRUCTION 0x7c000028
828 #define LDARX_INSTRUCTION 0x7c0000A8
829 #define LBARX_INSTRUCTION 0x7c000068
830 #define LHARX_INSTRUCTION 0x7c0000e8
831 #define LQARX_INSTRUCTION 0x7c000228
832 #define STORE_CONDITIONAL_MASK 0xfc0007ff
833 #define STWCX_INSTRUCTION 0x7c00012d
834 #define STDCX_INSTRUCTION 0x7c0001ad
835 #define STBCX_INSTRUCTION 0x7c00056d
836 #define STHCX_INSTRUCTION 0x7c0005ad
837 #define STQCX_INSTRUCTION 0x7c00016d
838 
839 /* Check if insn is one of the Load And Reserve instructions used for atomic
840    sequences.  */
841 #define IS_LOAD_AND_RESERVE_INSN(insn)	((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
842 					 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
843 					 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
844 					 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
845 					 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
846 /* Check if insn is one of the Store Conditional instructions used for atomic
847    sequences.  */
848 #define IS_STORE_CONDITIONAL_INSN(insn)	((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
849 					 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
850 					 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
851 					 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
852 					 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
853 
854 typedef buf_displaced_step_closure ppc_displaced_step_closure;
855 
856 /* We can't displaced step atomic sequences.  */
857 
858 static displaced_step_closure_up
ppc_displaced_step_copy_insn(struct gdbarch * gdbarch,CORE_ADDR from,CORE_ADDR to,struct regcache * regs)859 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
860 			      CORE_ADDR from, CORE_ADDR to,
861 			      struct regcache *regs)
862 {
863   size_t len = gdbarch_max_insn_length (gdbarch);
864   std::unique_ptr<ppc_displaced_step_closure> closure
865     (new ppc_displaced_step_closure (len));
866   gdb_byte *buf = closure->buf.data ();
867   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868   int insn;
869 
870   read_memory (from, buf, len);
871 
872   insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
873 
874   /* Assume all atomic sequences start with a Load and Reserve instruction.  */
875   if (IS_LOAD_AND_RESERVE_INSN (insn))
876     {
877       if (debug_displaced)
878 	{
879 	  fprintf_unfiltered (gdb_stdlog,
880 			      "displaced: can't displaced step "
881 			      "atomic sequence at %s\n",
882 			      paddress (gdbarch, from));
883 	}
884 
885       return NULL;
886     }
887 
888   write_memory (to, buf, len);
889 
890   if (debug_displaced)
891     {
892       fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
893                           paddress (gdbarch, from), paddress (gdbarch, to));
894       displaced_step_dump_bytes (gdb_stdlog, buf, len);
895     }
896 
897   /* This is a work around for a problem with g++ 4.8.  */
898   return displaced_step_closure_up (closure.release ());
899 }
900 
901 /* Fix up the state of registers and memory after having single-stepped
902    a displaced instruction.  */
903 static void
ppc_displaced_step_fixup(struct gdbarch * gdbarch,struct displaced_step_closure * closure_,CORE_ADDR from,CORE_ADDR to,struct regcache * regs)904 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
905 			  struct displaced_step_closure *closure_,
906 			  CORE_ADDR from, CORE_ADDR to,
907 			  struct regcache *regs)
908 {
909   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
910   /* Our closure is a copy of the instruction.  */
911   ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
912   ULONGEST insn  = extract_unsigned_integer (closure->buf.data (),
913 					     PPC_INSN_SIZE, byte_order);
914   ULONGEST opcode = 0;
915   /* Offset for non PC-relative instructions.  */
916   LONGEST offset = PPC_INSN_SIZE;
917 
918   opcode = insn & BRANCH_MASK;
919 
920   if (debug_displaced)
921     fprintf_unfiltered (gdb_stdlog,
922 			"displaced: (ppc) fixup (%s, %s)\n",
923 			paddress (gdbarch, from), paddress (gdbarch, to));
924 
925 
926   /* Handle PC-relative branch instructions.  */
927   if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
928     {
929       ULONGEST current_pc;
930 
931       /* Read the current PC value after the instruction has been executed
932 	 in a displaced location.  Calculate the offset to be applied to the
933 	 original PC value before the displaced stepping.  */
934       regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
935 				      &current_pc);
936       offset = current_pc - to;
937 
938       if (opcode != BXL_INSN)
939 	{
940 	  /* Check for AA bit indicating whether this is an absolute
941 	     addressing or PC-relative (1: absolute, 0: relative).  */
942 	  if (!(insn & 0x2))
943 	    {
944 	      /* PC-relative addressing is being used in the branch.  */
945 	      if (debug_displaced)
946 		fprintf_unfiltered
947 		  (gdb_stdlog,
948 		   "displaced: (ppc) branch instruction: %s\n"
949 		   "displaced: (ppc) adjusted PC from %s to %s\n",
950 		   paddress (gdbarch, insn), paddress (gdbarch, current_pc),
951 		   paddress (gdbarch, from + offset));
952 
953 	      regcache_cooked_write_unsigned (regs,
954 					      gdbarch_pc_regnum (gdbarch),
955 					      from + offset);
956 	    }
957 	}
958       else
959 	{
960 	  /* If we're here, it means we have a branch to LR or CTR.  If the
961 	     branch was taken, the offset is probably greater than 4 (the next
962 	     instruction), so it's safe to assume that an offset of 4 means we
963 	     did not take the branch.  */
964 	  if (offset == PPC_INSN_SIZE)
965 	    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
966 					    from + PPC_INSN_SIZE);
967 	}
968 
969       /* Check for LK bit indicating whether we should set the link
970 	 register to point to the next instruction
971 	 (1: Set, 0: Don't set).  */
972       if (insn & 0x1)
973 	{
974 	  /* Link register needs to be set to the next instruction's PC.  */
975 	  regcache_cooked_write_unsigned (regs,
976 					  gdbarch_tdep (gdbarch)->ppc_lr_regnum,
977 					  from + PPC_INSN_SIZE);
978 	  if (debug_displaced)
979 		fprintf_unfiltered (gdb_stdlog,
980 				    "displaced: (ppc) adjusted LR to %s\n",
981 				    paddress (gdbarch, from + PPC_INSN_SIZE));
982 
983 	}
984     }
985   /* Check for breakpoints in the inferior.  If we've found one, place the PC
986      right at the breakpoint instruction.  */
987   else if ((insn & BP_MASK) == BP_INSN)
988     regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
989   else
990   /* Handle any other instructions that do not fit in the categories above.  */
991     regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
992 				    from + offset);
993 }
994 
995 /* Always use hardware single-stepping to execute the
996    displaced instruction.  */
997 static int
ppc_displaced_step_hw_singlestep(struct gdbarch * gdbarch,struct displaced_step_closure * closure)998 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
999 				  struct displaced_step_closure *closure)
1000 {
1001   return 1;
1002 }
1003 
1004 /* Checks for an atomic sequence of instructions beginning with a
1005    Load And Reserve instruction and ending with a Store Conditional
1006    instruction.  If such a sequence is found, attempt to step through it.
1007    A breakpoint is placed at the end of the sequence.  */
1008 std::vector<CORE_ADDR>
ppc_deal_with_atomic_sequence(struct regcache * regcache)1009 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1010 {
1011   struct gdbarch *gdbarch = regcache->arch ();
1012   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1013   CORE_ADDR pc = regcache_read_pc (regcache);
1014   CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1015   CORE_ADDR loc = pc;
1016   CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
1017   int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1018   int insn_count;
1019   int index;
1020   int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
1021   const int atomic_sequence_length = 16; /* Instruction sequence length.  */
1022   int bc_insn_count = 0; /* Conditional branch instruction count.  */
1023 
1024   /* Assume all atomic sequences start with a Load And Reserve instruction.  */
1025   if (!IS_LOAD_AND_RESERVE_INSN (insn))
1026     return {};
1027 
1028   /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1029      instructions.  */
1030   for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1031     {
1032       loc += PPC_INSN_SIZE;
1033       insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1034 
1035       /* Assume that there is at most one conditional branch in the atomic
1036          sequence.  If a conditional branch is found, put a breakpoint in
1037          its destination address.  */
1038       if ((insn & BRANCH_MASK) == BC_INSN)
1039         {
1040           int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1041           int absolute = insn & 2;
1042 
1043           if (bc_insn_count >= 1)
1044             return {}; /* More than one conditional branch found, fallback
1045                           to the standard single-step code.  */
1046 
1047 	  if (absolute)
1048 	    breaks[1] = immediate;
1049 	  else
1050 	    breaks[1] = loc + immediate;
1051 
1052 	  bc_insn_count++;
1053 	  last_breakpoint++;
1054         }
1055 
1056       if (IS_STORE_CONDITIONAL_INSN (insn))
1057         break;
1058     }
1059 
1060   /* Assume that the atomic sequence ends with a Store Conditional
1061      instruction.  */
1062   if (!IS_STORE_CONDITIONAL_INSN (insn))
1063     return {};
1064 
1065   closing_insn = loc;
1066   loc += PPC_INSN_SIZE;
1067 
1068   /* Insert a breakpoint right after the end of the atomic sequence.  */
1069   breaks[0] = loc;
1070 
1071   /* Check for duplicated breakpoints.  Check also for a breakpoint
1072      placed (branch instruction's destination) anywhere in sequence.  */
1073   if (last_breakpoint
1074       && (breaks[1] == breaks[0]
1075 	  || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1076     last_breakpoint = 0;
1077 
1078   std::vector<CORE_ADDR> next_pcs;
1079 
1080   for (index = 0; index <= last_breakpoint; index++)
1081     next_pcs.push_back (breaks[index]);
1082 
1083   return next_pcs;
1084 }
1085 
1086 
1087 #define SIGNED_SHORT(x) 						\
1088   ((sizeof (short) == 2)						\
1089    ? ((int)(short)(x))							\
1090    : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1091 
1092 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1093 
1094 /* Limit the number of skipped non-prologue instructions, as the examining
1095    of the prologue is expensive.  */
1096 static int max_skip_non_prologue_insns = 10;
1097 
1098 /* Return nonzero if the given instruction OP can be part of the prologue
1099    of a function and saves a parameter on the stack.  FRAMEP should be
1100    set if one of the previous instructions in the function has set the
1101    Frame Pointer.  */
1102 
1103 static int
store_param_on_stack_p(unsigned long op,int framep,int * r0_contains_arg)1104 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1105 {
1106   /* Move parameters from argument registers to temporary register.  */
1107   if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
1108     {
1109       /* Rx must be scratch register r0.  */
1110       const int rx_regno = (op >> 16) & 31;
1111       /* Ry: Only r3 - r10 are used for parameter passing.  */
1112       const int ry_regno = GET_SRC_REG (op);
1113 
1114       if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1115         {
1116           *r0_contains_arg = 1;
1117           return 1;
1118         }
1119       else
1120         return 0;
1121     }
1122 
1123   /* Save a General Purpose Register on stack.  */
1124 
1125   if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
1126       (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
1127     {
1128       /* Rx: Only r3 - r10 are used for parameter passing.  */
1129       const int rx_regno = GET_SRC_REG (op);
1130 
1131       return (rx_regno >= 3 && rx_regno <= 10);
1132     }
1133 
1134   /* Save a General Purpose Register on stack via the Frame Pointer.  */
1135 
1136   if (framep &&
1137       ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
1138        (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
1139        (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
1140     {
1141       /* Rx: Usually, only r3 - r10 are used for parameter passing.
1142          However, the compiler sometimes uses r0 to hold an argument.  */
1143       const int rx_regno = GET_SRC_REG (op);
1144 
1145       return ((rx_regno >= 3 && rx_regno <= 10)
1146               || (rx_regno == 0 && *r0_contains_arg));
1147     }
1148 
1149   if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
1150     {
1151       /* Only f2 - f8 are used for parameter passing.  */
1152       const int src_regno = GET_SRC_REG (op);
1153 
1154       return (src_regno >= 2 && src_regno <= 8);
1155     }
1156 
1157   if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
1158     {
1159       /* Only f2 - f8 are used for parameter passing.  */
1160       const int src_regno = GET_SRC_REG (op);
1161 
1162       return (src_regno >= 2 && src_regno <= 8);
1163     }
1164 
1165   /* Not an insn that saves a parameter on stack.  */
1166   return 0;
1167 }
1168 
1169 /* Assuming that INSN is a "bl" instruction located at PC, return
1170    nonzero if the destination of the branch is a "blrl" instruction.
1171 
1172    This sequence is sometimes found in certain function prologues.
1173    It allows the function to load the LR register with a value that
1174    they can use to access PIC data using PC-relative offsets.  */
1175 
1176 static int
bl_to_blrl_insn_p(CORE_ADDR pc,int insn,enum bfd_endian byte_order)1177 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1178 {
1179   CORE_ADDR dest;
1180   int immediate;
1181   int absolute;
1182   int dest_insn;
1183 
1184   absolute = (int) ((insn >> 1) & 1);
1185   immediate = ((insn & ~3) << 6) >> 6;
1186   if (absolute)
1187     dest = immediate;
1188   else
1189     dest = pc + immediate;
1190 
1191   dest_insn = read_memory_integer (dest, 4, byte_order);
1192   if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1193     return 1;
1194 
1195   return 0;
1196 }
1197 
1198 /* Return true if OP is a stw or std instruction with
1199    register operands RS and RA and any immediate offset.
1200 
1201    If WITH_UPDATE is true, also return true if OP is
1202    a stwu or stdu instruction with the same operands.
1203 
1204    Return false otherwise.
1205    */
1206 static bool
store_insn_p(unsigned long op,unsigned long rs,unsigned long ra,bool with_update)1207 store_insn_p (unsigned long op, unsigned long rs,
1208 	      unsigned long ra, bool with_update)
1209 {
1210   rs = rs << 21;
1211   ra = ra << 16;
1212 
1213   if (/* std RS, SIMM(RA) */
1214       ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1215       /* stw RS, SIMM(RA) */
1216       ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1217     return true;
1218 
1219   if (with_update)
1220     {
1221       if (/* stdu RS, SIMM(RA) */
1222 	  ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1223 	  /* stwu RS, SIMM(RA) */
1224 	  ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1225 	return true;
1226     }
1227 
1228   return false;
1229 }
1230 
1231 /* Masks for decoding a branch-and-link (bl) instruction.
1232 
1233    BL_MASK and BL_INSTRUCTION are used in combination with each other.
1234    The former is anded with the opcode in question; if the result of
1235    this masking operation is equal to BL_INSTRUCTION, then the opcode in
1236    question is a ``bl'' instruction.
1237 
1238    BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1239    the branch displacement.  */
1240 
1241 #define BL_MASK 0xfc000001
1242 #define BL_INSTRUCTION 0x48000001
1243 #define BL_DISPLACEMENT_MASK 0x03fffffc
1244 
1245 static unsigned long
rs6000_fetch_instruction(struct gdbarch * gdbarch,const CORE_ADDR pc)1246 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1247 {
1248   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1249   gdb_byte buf[4];
1250   unsigned long op;
1251 
1252   /* Fetch the instruction and convert it to an integer.  */
1253   if (target_read_memory (pc, buf, 4))
1254     return 0;
1255   op = extract_unsigned_integer (buf, 4, byte_order);
1256 
1257   return op;
1258 }
1259 
1260 /* GCC generates several well-known sequences of instructions at the begining
1261    of each function prologue when compiling with -fstack-check.  If one of
1262    such sequences starts at START_PC, then return the address of the
1263    instruction immediately past this sequence.  Otherwise, return START_PC.  */
1264 
1265 static CORE_ADDR
rs6000_skip_stack_check(struct gdbarch * gdbarch,const CORE_ADDR start_pc)1266 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1267 {
1268   CORE_ADDR pc = start_pc;
1269   unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1270 
1271   /* First possible sequence: A small number of probes.
1272          stw 0, -<some immediate>(1)
1273          [repeat this instruction any (small) number of times].  */
1274 
1275   if ((op & 0xffff0000) == 0x90010000)
1276     {
1277       while ((op & 0xffff0000) == 0x90010000)
1278         {
1279           pc = pc + 4;
1280           op = rs6000_fetch_instruction (gdbarch, pc);
1281         }
1282       return pc;
1283     }
1284 
1285   /* Second sequence: A probing loop.
1286          addi 12,1,-<some immediate>
1287          lis 0,-<some immediate>
1288          [possibly ori 0,0,<some immediate>]
1289          add 0,12,0
1290          cmpw 0,12,0
1291          beq 0,<disp>
1292          addi 12,12,-<some immediate>
1293          stw 0,0(12)
1294          b <disp>
1295          [possibly one last probe: stw 0,<some immediate>(12)].  */
1296 
1297   while (1)
1298     {
1299       /* addi 12,1,-<some immediate> */
1300       if ((op & 0xffff0000) != 0x39810000)
1301         break;
1302 
1303       /* lis 0,-<some immediate> */
1304       pc = pc + 4;
1305       op = rs6000_fetch_instruction (gdbarch, pc);
1306       if ((op & 0xffff0000) != 0x3c000000)
1307         break;
1308 
1309       pc = pc + 4;
1310       op = rs6000_fetch_instruction (gdbarch, pc);
1311       /* [possibly ori 0,0,<some immediate>] */
1312       if ((op & 0xffff0000) == 0x60000000)
1313         {
1314           pc = pc + 4;
1315           op = rs6000_fetch_instruction (gdbarch, pc);
1316         }
1317       /* add 0,12,0 */
1318       if (op != 0x7c0c0214)
1319         break;
1320 
1321       /* cmpw 0,12,0 */
1322       pc = pc + 4;
1323       op = rs6000_fetch_instruction (gdbarch, pc);
1324       if (op != 0x7c0c0000)
1325         break;
1326 
1327       /* beq 0,<disp> */
1328       pc = pc + 4;
1329       op = rs6000_fetch_instruction (gdbarch, pc);
1330       if ((op & 0xff9f0001) != 0x41820000)
1331         break;
1332 
1333       /* addi 12,12,-<some immediate> */
1334       pc = pc + 4;
1335       op = rs6000_fetch_instruction (gdbarch, pc);
1336       if ((op & 0xffff0000) != 0x398c0000)
1337         break;
1338 
1339       /* stw 0,0(12) */
1340       pc = pc + 4;
1341       op = rs6000_fetch_instruction (gdbarch, pc);
1342       if (op != 0x900c0000)
1343         break;
1344 
1345       /* b <disp> */
1346       pc = pc + 4;
1347       op = rs6000_fetch_instruction (gdbarch, pc);
1348       if ((op & 0xfc000001) != 0x48000000)
1349         break;
1350 
1351       /* [possibly one last probe: stw 0,<some immediate>(12)].  */
1352       pc = pc + 4;
1353       op = rs6000_fetch_instruction (gdbarch, pc);
1354       if ((op & 0xffff0000) == 0x900c0000)
1355         {
1356           pc = pc + 4;
1357           op = rs6000_fetch_instruction (gdbarch, pc);
1358         }
1359 
1360       /* We found a valid stack-check sequence, return the new PC.  */
1361       return pc;
1362     }
1363 
1364   /* Third sequence: No probe; instead, a comparison between the stack size
1365      limit (saved in a run-time global variable) and the current stack
1366      pointer:
1367 
1368         addi 0,1,-<some immediate>
1369         lis 12,__gnat_stack_limit@ha
1370         lwz 12,__gnat_stack_limit@l(12)
1371         twllt 0,12
1372 
1373      or, with a small variant in the case of a bigger stack frame:
1374         addis 0,1,<some immediate>
1375         addic 0,0,-<some immediate>
1376         lis 12,__gnat_stack_limit@ha
1377         lwz 12,__gnat_stack_limit@l(12)
1378         twllt 0,12
1379   */
1380   while (1)
1381     {
1382       /* addi 0,1,-<some immediate> */
1383       if ((op & 0xffff0000) != 0x38010000)
1384         {
1385           /* small stack frame variant not recognized; try the
1386              big stack frame variant: */
1387 
1388           /* addis 0,1,<some immediate> */
1389           if ((op & 0xffff0000) != 0x3c010000)
1390             break;
1391 
1392           /* addic 0,0,-<some immediate> */
1393           pc = pc + 4;
1394           op = rs6000_fetch_instruction (gdbarch, pc);
1395           if ((op & 0xffff0000) != 0x30000000)
1396             break;
1397         }
1398 
1399       /* lis 12,<some immediate> */
1400       pc = pc + 4;
1401       op = rs6000_fetch_instruction (gdbarch, pc);
1402       if ((op & 0xffff0000) != 0x3d800000)
1403         break;
1404 
1405       /* lwz 12,<some immediate>(12) */
1406       pc = pc + 4;
1407       op = rs6000_fetch_instruction (gdbarch, pc);
1408       if ((op & 0xffff0000) != 0x818c0000)
1409         break;
1410 
1411       /* twllt 0,12 */
1412       pc = pc + 4;
1413       op = rs6000_fetch_instruction (gdbarch, pc);
1414       if ((op & 0xfffffffe) != 0x7c406008)
1415         break;
1416 
1417       /* We found a valid stack-check sequence, return the new PC.  */
1418       return pc;
1419     }
1420 
1421   /* No stack check code in our prologue, return the start_pc.  */
1422   return start_pc;
1423 }
1424 
1425 /* return pc value after skipping a function prologue and also return
1426    information about a function frame.
1427 
1428    in struct rs6000_framedata fdata:
1429    - frameless is TRUE, if function does not have a frame.
1430    - nosavedpc is TRUE, if function does not save %pc value in its frame.
1431    - offset is the initial size of this stack frame --- the amount by
1432    which we decrement the sp to allocate the frame.
1433    - saved_gpr is the number of the first saved gpr.
1434    - saved_fpr is the number of the first saved fpr.
1435    - saved_vr is the number of the first saved vr.
1436    - saved_ev is the number of the first saved ev.
1437    - alloca_reg is the number of the register used for alloca() handling.
1438    Otherwise -1.
1439    - gpr_offset is the offset of the first saved gpr from the previous frame.
1440    - fpr_offset is the offset of the first saved fpr from the previous frame.
1441    - vr_offset is the offset of the first saved vr from the previous frame.
1442    - ev_offset is the offset of the first saved ev from the previous frame.
1443    - lr_offset is the offset of the saved lr
1444    - cr_offset is the offset of the saved cr
1445    - vrsave_offset is the offset of the saved vrsave register.  */
1446 
1447 static CORE_ADDR
skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc,CORE_ADDR lim_pc,struct rs6000_framedata * fdata)1448 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1449 	       struct rs6000_framedata *fdata)
1450 {
1451   CORE_ADDR orig_pc = pc;
1452   CORE_ADDR last_prologue_pc = pc;
1453   CORE_ADDR li_found_pc = 0;
1454   gdb_byte buf[4];
1455   unsigned long op;
1456   long offset = 0;
1457   long alloca_reg_offset = 0;
1458   long vr_saved_offset = 0;
1459   int lr_reg = -1;
1460   int cr_reg = -1;
1461   int vr_reg = -1;
1462   int ev_reg = -1;
1463   long ev_offset = 0;
1464   int vrsave_reg = -1;
1465   int reg;
1466   int framep = 0;
1467   int minimal_toc_loaded = 0;
1468   int prev_insn_was_prologue_insn = 1;
1469   int num_skip_non_prologue_insns = 0;
1470   int r0_contains_arg = 0;
1471   const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1472   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1473   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1474 
1475   memset (fdata, 0, sizeof (struct rs6000_framedata));
1476   fdata->saved_gpr = -1;
1477   fdata->saved_fpr = -1;
1478   fdata->saved_vr = -1;
1479   fdata->saved_ev = -1;
1480   fdata->alloca_reg = -1;
1481   fdata->frameless = 1;
1482   fdata->nosavedpc = 1;
1483   fdata->lr_register = -1;
1484 
1485   pc = rs6000_skip_stack_check (gdbarch, pc);
1486   if (pc >= lim_pc)
1487     pc = lim_pc;
1488 
1489   for (;; pc += 4)
1490     {
1491       /* Sometimes it isn't clear if an instruction is a prologue
1492          instruction or not.  When we encounter one of these ambiguous
1493 	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1494 	 Otherwise, we'll assume that it really is a prologue instruction.  */
1495       if (prev_insn_was_prologue_insn)
1496 	last_prologue_pc = pc;
1497 
1498       /* Stop scanning if we've hit the limit.  */
1499       if (pc >= lim_pc)
1500 	break;
1501 
1502       prev_insn_was_prologue_insn = 1;
1503 
1504       /* Fetch the instruction and convert it to an integer.  */
1505       if (target_read_memory (pc, buf, 4))
1506 	break;
1507       op = extract_unsigned_integer (buf, 4, byte_order);
1508 
1509       if ((op & 0xfc1fffff) == 0x7c0802a6)
1510 	{			/* mflr Rx */
1511 	  /* Since shared library / PIC code, which needs to get its
1512 	     address at runtime, can appear to save more than one link
1513 	     register vis:
1514 
1515 	     *INDENT-OFF*
1516 	     stwu r1,-304(r1)
1517 	     mflr r3
1518 	     bl 0xff570d0 (blrl)
1519 	     stw r30,296(r1)
1520 	     mflr r30
1521 	     stw r31,300(r1)
1522 	     stw r3,308(r1);
1523 	     ...
1524 	     *INDENT-ON*
1525 
1526 	     remember just the first one, but skip over additional
1527 	     ones.  */
1528 	  if (lr_reg == -1)
1529 	    lr_reg = (op & 0x03e00000) >> 21;
1530           if (lr_reg == 0)
1531             r0_contains_arg = 0;
1532 	  continue;
1533 	}
1534       else if ((op & 0xfc1fffff) == 0x7c000026)
1535 	{			/* mfcr Rx */
1536 	  cr_reg = (op & 0x03e00000) >> 21;
1537           if (cr_reg == 0)
1538             r0_contains_arg = 0;
1539 	  continue;
1540 
1541 	}
1542       else if ((op & 0xfc1f0000) == 0xd8010000)
1543 	{			/* stfd Rx,NUM(r1) */
1544 	  reg = GET_SRC_REG (op);
1545 	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1546 	    {
1547 	      fdata->saved_fpr = reg;
1548 	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1549 	    }
1550 	  continue;
1551 
1552 	}
1553       else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
1554 	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
1555 		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
1556 		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
1557 	{
1558 
1559 	  reg = GET_SRC_REG (op);
1560 	  if ((op & 0xfc1f0000) == 0xbc010000)
1561 	    fdata->gpr_mask |= ~((1U << reg) - 1);
1562 	  else
1563 	    fdata->gpr_mask |= 1U << reg;
1564 	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1565 	    {
1566 	      fdata->saved_gpr = reg;
1567 	      if ((op & 0xfc1f0003) == 0xf8010000)
1568 		op &= ~3UL;
1569 	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1570 	    }
1571 	  continue;
1572 
1573 	}
1574       else if ((op & 0xffff0000) == 0x3c4c0000
1575 	       || (op & 0xffff0000) == 0x3c400000
1576 	       || (op & 0xffff0000) == 0x38420000)
1577 	{
1578 	  /* .	0:	addis 2,12,.TOC.-0b@ha
1579 	     .		addi 2,2,.TOC.-0b@l
1580 	     or
1581 	     .		lis 2,.TOC.@ha
1582 	     .		addi 2,2,.TOC.@l
1583 	     used by ELFv2 global entry points to set up r2.  */
1584 	  continue;
1585 	}
1586       else if (op == 0x60000000)
1587         {
1588 	  /* nop */
1589 	  /* Allow nops in the prologue, but do not consider them to
1590 	     be part of the prologue unless followed by other prologue
1591 	     instructions.  */
1592 	  prev_insn_was_prologue_insn = 0;
1593 	  continue;
1594 
1595 	}
1596       else if ((op & 0xffff0000) == 0x3c000000)
1597 	{			/* addis 0,0,NUM, used for >= 32k frames */
1598 	  fdata->offset = (op & 0x0000ffff) << 16;
1599 	  fdata->frameless = 0;
1600           r0_contains_arg = 0;
1601 	  continue;
1602 
1603 	}
1604       else if ((op & 0xffff0000) == 0x60000000)
1605 	{			/* ori 0,0,NUM, 2nd half of >= 32k frames */
1606 	  fdata->offset |= (op & 0x0000ffff);
1607 	  fdata->frameless = 0;
1608           r0_contains_arg = 0;
1609 	  continue;
1610 
1611 	}
1612       else if (lr_reg >= 0 &&
1613 	       ((store_insn_p (op, lr_reg, 1, true)) ||
1614 		(framep &&
1615 		 (store_insn_p (op, lr_reg,
1616 				fdata->alloca_reg - tdep->ppc_gp0_regnum,
1617 				false)))))
1618 	{
1619 	  if (store_insn_p (op, lr_reg, 1, true))
1620 	    fdata->lr_offset = offset;
1621 	  else /* LR save through frame pointer. */
1622 	    fdata->lr_offset = alloca_reg_offset;
1623 
1624 	  fdata->nosavedpc = 0;
1625 	  /* Invalidate lr_reg, but don't set it to -1.
1626 	     That would mean that it had never been set.  */
1627 	  lr_reg = -2;
1628 	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
1629 	      (op & 0xfc000000) == 0x90000000)		/* stw */
1630 	    {
1631 	      /* Does not update r1, so add displacement to lr_offset.  */
1632 	      fdata->lr_offset += SIGNED_SHORT (op);
1633 	    }
1634 	  continue;
1635 
1636 	}
1637       else if (cr_reg >= 0 &&
1638 	       (store_insn_p (op, cr_reg, 1, true)))
1639 	{
1640 	  fdata->cr_offset = offset;
1641 	  /* Invalidate cr_reg, but don't set it to -1.
1642 	     That would mean that it had never been set.  */
1643 	  cr_reg = -2;
1644 	  if ((op & 0xfc000003) == 0xf8000000 ||
1645 	      (op & 0xfc000000) == 0x90000000)
1646 	    {
1647 	      /* Does not update r1, so add displacement to cr_offset.  */
1648 	      fdata->cr_offset += SIGNED_SHORT (op);
1649 	    }
1650 	  continue;
1651 
1652 	}
1653       else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1654 	{
1655 	  /* bcl 20,xx,.+4 is used to get the current PC, with or without
1656 	     prediction bits.  If the LR has already been saved, we can
1657 	     skip it.  */
1658 	  continue;
1659 	}
1660       else if (op == 0x48000005)
1661 	{			/* bl .+4 used in
1662 				   -mrelocatable */
1663 	  fdata->used_bl = 1;
1664 	  continue;
1665 
1666 	}
1667       else if (op == 0x48000004)
1668 	{			/* b .+4 (xlc) */
1669 	  break;
1670 
1671 	}
1672       else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
1673 						      in V.4 -mminimal-toc */
1674 	       (op & 0xffff0000) == 0x3bde0000)
1675 	{			/* addi 30,30,foo@l */
1676 	  continue;
1677 
1678 	}
1679       else if ((op & 0xfc000001) == 0x48000001)
1680 	{			/* bl foo,
1681 				   to save fprs???  */
1682 
1683 	  fdata->frameless = 0;
1684 
1685 	  /* If the return address has already been saved, we can skip
1686 	     calls to blrl (for PIC).  */
1687           if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1688 	    {
1689 	      fdata->used_bl = 1;
1690 	      continue;
1691 	    }
1692 
1693 	  /* Don't skip over the subroutine call if it is not within
1694 	     the first three instructions of the prologue and either
1695 	     we have no line table information or the line info tells
1696 	     us that the subroutine call is not part of the line
1697 	     associated with the prologue.  */
1698 	  if ((pc - orig_pc) > 8)
1699 	    {
1700 	      struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1701 	      struct symtab_and_line this_sal = find_pc_line (pc, 0);
1702 
1703 	      if ((prologue_sal.line == 0)
1704 		  || (prologue_sal.line != this_sal.line))
1705 		break;
1706 	    }
1707 
1708 	  op = read_memory_integer (pc + 4, 4, byte_order);
1709 
1710 	  /* At this point, make sure this is not a trampoline
1711 	     function (a function that simply calls another functions,
1712 	     and nothing else).  If the next is not a nop, this branch
1713 	     was part of the function prologue.  */
1714 
1715 	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
1716 	    break;		/* Don't skip over
1717 				   this branch.  */
1718 
1719 	  fdata->used_bl = 1;
1720 	  continue;
1721 	}
1722       /* update stack pointer */
1723       else if ((op & 0xfc1f0000) == 0x94010000)
1724 	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
1725 	  fdata->frameless = 0;
1726 	  fdata->offset = SIGNED_SHORT (op);
1727 	  offset = fdata->offset;
1728 	  continue;
1729 	}
1730       else if ((op & 0xfc1f07fa) == 0x7c01016a)
1731 	{		/* stwux rX,r1,rY  || stdux rX,r1,rY */
1732 	  /* No way to figure out what r1 is going to be.  */
1733 	  fdata->frameless = 0;
1734 	  offset = fdata->offset;
1735 	  continue;
1736 	}
1737       else if ((op & 0xfc1f0003) == 0xf8010001)
1738 	{			/* stdu rX,NUM(r1) */
1739 	  fdata->frameless = 0;
1740 	  fdata->offset = SIGNED_SHORT (op & ~3UL);
1741 	  offset = fdata->offset;
1742 	  continue;
1743 	}
1744       else if ((op & 0xffff0000) == 0x38210000)
1745  	{			/* addi r1,r1,SIMM */
1746  	  fdata->frameless = 0;
1747  	  fdata->offset += SIGNED_SHORT (op);
1748  	  offset = fdata->offset;
1749  	  continue;
1750  	}
1751       /* Load up minimal toc pointer.  Do not treat an epilogue restore
1752 	 of r31 as a minimal TOC load.  */
1753       else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,...  */
1754 	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,...  */
1755 	       && !framep
1756 	       && !minimal_toc_loaded)
1757 	{
1758 	  minimal_toc_loaded = 1;
1759 	  continue;
1760 
1761 	  /* move parameters from argument registers to local variable
1762              registers */
1763  	}
1764       else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
1765                (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
1766                (((op >> 21) & 31) <= 10) &&
1767                ((long) ((op >> 16) & 31)
1768 		>= fdata->saved_gpr)) /* Rx: local var reg */
1769 	{
1770 	  continue;
1771 
1772 	  /* store parameters in stack */
1773 	}
1774       /* Move parameters from argument registers to temporary register.  */
1775       else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1776         {
1777 	  continue;
1778 
1779 	  /* Set up frame pointer */
1780 	}
1781       else if (op == 0x603d0000)       /* oril r29, r1, 0x0 */
1782 	{
1783 	  fdata->frameless = 0;
1784 	  framep = 1;
1785 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1786 	  alloca_reg_offset = offset;
1787 	  continue;
1788 
1789 	  /* Another way to set up the frame pointer.  */
1790 	}
1791       else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
1792 	       || op == 0x7c3f0b78)
1793 	{			/* mr r31, r1 */
1794 	  fdata->frameless = 0;
1795 	  framep = 1;
1796 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1797 	  alloca_reg_offset = offset;
1798 	  continue;
1799 
1800 	  /* Another way to set up the frame pointer.  */
1801 	}
1802       else if ((op & 0xfc1fffff) == 0x38010000)
1803 	{			/* addi rX, r1, 0x0 */
1804 	  fdata->frameless = 0;
1805 	  framep = 1;
1806 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
1807 			       + ((op & ~0x38010000) >> 21));
1808 	  alloca_reg_offset = offset;
1809 	  continue;
1810 	}
1811       /* AltiVec related instructions.  */
1812       /* Store the vrsave register (spr 256) in another register for
1813 	 later manipulation, or load a register into the vrsave
1814 	 register.  2 instructions are used: mfvrsave and
1815 	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
1816 	 and mtspr SPR256, Rn.  */
1817       /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1818 	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
1819       else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
1820 	{
1821           vrsave_reg = GET_SRC_REG (op);
1822 	  continue;
1823 	}
1824       else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
1825         {
1826           continue;
1827         }
1828       /* Store the register where vrsave was saved to onto the stack:
1829          rS is the register where vrsave was stored in a previous
1830 	 instruction.  */
1831       /* 100100 sssss 00001 dddddddd dddddddd */
1832       else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
1833         {
1834           if (vrsave_reg == GET_SRC_REG (op))
1835 	    {
1836 	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1837 	      vrsave_reg = -1;
1838 	    }
1839           continue;
1840         }
1841       /* Compute the new value of vrsave, by modifying the register
1842          where vrsave was saved to.  */
1843       else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
1844 	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1845 	{
1846 	  continue;
1847 	}
1848       /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
1849 	 in a pair of insns to save the vector registers on the
1850 	 stack.  */
1851       /* 001110 00000 00000 iiii iiii iiii iiii  */
1852       /* 001110 01110 00000 iiii iiii iiii iiii  */
1853       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
1854                || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
1855 	{
1856           if ((op & 0xffff0000) == 0x38000000)
1857             r0_contains_arg = 0;
1858 	  li_found_pc = pc;
1859 	  vr_saved_offset = SIGNED_SHORT (op);
1860 
1861           /* This insn by itself is not part of the prologue, unless
1862              if part of the pair of insns mentioned above.  So do not
1863              record this insn as part of the prologue yet.  */
1864           prev_insn_was_prologue_insn = 0;
1865 	}
1866       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */
1867       /* 011111 sssss 11111 00000 00111001110 */
1868       else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
1869         {
1870 	  if (pc == (li_found_pc + 4))
1871 	    {
1872 	      vr_reg = GET_SRC_REG (op);
1873 	      /* If this is the first vector reg to be saved, or if
1874 		 it has a lower number than others previously seen,
1875 		 reupdate the frame info.  */
1876 	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1877 		{
1878 		  fdata->saved_vr = vr_reg;
1879 		  fdata->vr_offset = vr_saved_offset + offset;
1880 		}
1881 	      vr_saved_offset = -1;
1882 	      vr_reg = -1;
1883 	      li_found_pc = 0;
1884 	    }
1885 	}
1886       /* End AltiVec related instructions.  */
1887 
1888       /* Start BookE related instructions.  */
1889       /* Store gen register S at (r31+uimm).
1890          Any register less than r13 is volatile, so we don't care.  */
1891       /* 000100 sssss 11111 iiiii 01100100001 */
1892       else if (arch_info->mach == bfd_mach_ppc_e500
1893 	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
1894 	{
1895           if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
1896 	    {
1897               unsigned int imm;
1898 	      ev_reg = GET_SRC_REG (op);
1899               imm = (op >> 11) & 0x1f;
1900 	      ev_offset = imm * 8;
1901 	      /* If this is the first vector reg to be saved, or if
1902 		 it has a lower number than others previously seen,
1903 		 reupdate the frame info.  */
1904 	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1905 		{
1906 		  fdata->saved_ev = ev_reg;
1907 		  fdata->ev_offset = ev_offset + offset;
1908 		}
1909 	    }
1910           continue;
1911         }
1912       /* Store gen register rS at (r1+rB).  */
1913       /* 000100 sssss 00001 bbbbb 01100100000 */
1914       else if (arch_info->mach == bfd_mach_ppc_e500
1915 	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
1916 	{
1917           if (pc == (li_found_pc + 4))
1918             {
1919               ev_reg = GET_SRC_REG (op);
1920 	      /* If this is the first vector reg to be saved, or if
1921                  it has a lower number than others previously seen,
1922                  reupdate the frame info.  */
1923               /* We know the contents of rB from the previous instruction.  */
1924 	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1925 		{
1926                   fdata->saved_ev = ev_reg;
1927                   fdata->ev_offset = vr_saved_offset + offset;
1928 		}
1929 	      vr_saved_offset = -1;
1930 	      ev_reg = -1;
1931 	      li_found_pc = 0;
1932             }
1933           continue;
1934         }
1935       /* Store gen register r31 at (rA+uimm).  */
1936       /* 000100 11111 aaaaa iiiii 01100100001 */
1937       else if (arch_info->mach == bfd_mach_ppc_e500
1938 	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
1939         {
1940           /* Wwe know that the source register is 31 already, but
1941              it can't hurt to compute it.  */
1942 	  ev_reg = GET_SRC_REG (op);
1943           ev_offset = ((op >> 11) & 0x1f) * 8;
1944 	  /* If this is the first vector reg to be saved, or if
1945 	     it has a lower number than others previously seen,
1946 	     reupdate the frame info.  */
1947 	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1948 	    {
1949 	      fdata->saved_ev = ev_reg;
1950 	      fdata->ev_offset = ev_offset + offset;
1951 	    }
1952 
1953 	  continue;
1954       	}
1955       /* Store gen register S at (r31+r0).
1956          Store param on stack when offset from SP bigger than 4 bytes.  */
1957       /* 000100 sssss 11111 00000 01100100000 */
1958       else if (arch_info->mach == bfd_mach_ppc_e500
1959 	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
1960 	{
1961           if (pc == (li_found_pc + 4))
1962             {
1963               if ((op & 0x03e00000) >= 0x01a00000)
1964 		{
1965 		  ev_reg = GET_SRC_REG (op);
1966 		  /* If this is the first vector reg to be saved, or if
1967 		     it has a lower number than others previously seen,
1968 		     reupdate the frame info.  */
1969                   /* We know the contents of r0 from the previous
1970                      instruction.  */
1971 		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1972 		    {
1973 		      fdata->saved_ev = ev_reg;
1974 		      fdata->ev_offset = vr_saved_offset + offset;
1975 		    }
1976 		  ev_reg = -1;
1977 		}
1978 	      vr_saved_offset = -1;
1979 	      li_found_pc = 0;
1980 	      continue;
1981             }
1982 	}
1983       /* End BookE related instructions.  */
1984 
1985       else
1986 	{
1987 	  /* Not a recognized prologue instruction.
1988 	     Handle optimizer code motions into the prologue by continuing
1989 	     the search if we have no valid frame yet or if the return
1990 	     address is not yet saved in the frame.  Also skip instructions
1991 	     if some of the GPRs expected to be saved are not yet saved.  */
1992 	  if (fdata->frameless == 0 && fdata->nosavedpc == 0
1993 	      && fdata->saved_gpr != -1)
1994 	    {
1995 	      unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1996 
1997 	      if ((fdata->gpr_mask & all_mask) == all_mask)
1998 		break;
1999 	    }
2000 
2001 	  if (op == 0x4e800020		/* blr */
2002 	      || op == 0x4e800420)	/* bctr */
2003 	    /* Do not scan past epilogue in frameless functions or
2004 	       trampolines.  */
2005 	    break;
2006 	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
2007 	    /* Never skip branches.  */
2008 	    break;
2009 
2010 	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2011 	    /* Do not scan too many insns, scanning insns is expensive with
2012 	       remote targets.  */
2013 	    break;
2014 
2015 	  /* Continue scanning.  */
2016 	  prev_insn_was_prologue_insn = 0;
2017 	  continue;
2018 	}
2019     }
2020 
2021 #if 0
2022 /* I have problems with skipping over __main() that I need to address
2023  * sometime.  Previously, I used to use misc_function_vector which
2024  * didn't work as well as I wanted to be.  -MGO */
2025 
2026   /* If the first thing after skipping a prolog is a branch to a function,
2027      this might be a call to an initializer in main(), introduced by gcc2.
2028      We'd like to skip over it as well.  Fortunately, xlc does some extra
2029      work before calling a function right after a prologue, thus we can
2030      single out such gcc2 behaviour.  */
2031 
2032 
2033   if ((op & 0xfc000001) == 0x48000001)
2034     {				/* bl foo, an initializer function?  */
2035       op = read_memory_integer (pc + 4, 4, byte_order);
2036 
2037       if (op == 0x4def7b82)
2038 	{			/* cror 0xf, 0xf, 0xf (nop) */
2039 
2040 	  /* Check and see if we are in main.  If so, skip over this
2041 	     initializer function as well.  */
2042 
2043 	  tmp = find_pc_misc_function (pc);
2044 	  if (tmp >= 0
2045 	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2046 	    return pc + 8;
2047 	}
2048     }
2049 #endif /* 0 */
2050 
2051   if (pc == lim_pc && lr_reg >= 0)
2052     fdata->lr_register = lr_reg;
2053 
2054   fdata->offset = -fdata->offset;
2055   return last_prologue_pc;
2056 }
2057 
2058 static CORE_ADDR
rs6000_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)2059 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2060 {
2061   struct rs6000_framedata frame;
2062   CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2063 
2064   /* See if we can determine the end of the prologue via the symbol table.
2065      If so, then return either PC, or the PC after the prologue, whichever
2066      is greater.  */
2067   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2068     {
2069       CORE_ADDR post_prologue_pc
2070 	= skip_prologue_using_sal (gdbarch, func_addr);
2071       if (post_prologue_pc != 0)
2072 	return std::max (pc, post_prologue_pc);
2073     }
2074 
2075   /* Can't determine prologue from the symbol table, need to examine
2076      instructions.  */
2077 
2078   /* Find an upper limit on the function prologue using the debug
2079      information.  If the debug information could not be used to provide
2080      that bound, then use an arbitrary large number as the upper bound.  */
2081   limit_pc = skip_prologue_using_sal (gdbarch, pc);
2082   if (limit_pc == 0)
2083     limit_pc = pc + 100;          /* Magic.  */
2084 
2085   /* Do not allow limit_pc to be past the function end, if we know
2086      where that end is...  */
2087   if (func_end_addr && limit_pc > func_end_addr)
2088     limit_pc = func_end_addr;
2089 
2090   pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2091   return pc;
2092 }
2093 
2094 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2095    in the prologue of main().
2096 
2097    The function below examines the code pointed at by PC and checks to
2098    see if it corresponds to a call to __eabi.  If so, it returns the
2099    address of the instruction following that call.  Otherwise, it simply
2100    returns PC.  */
2101 
2102 static CORE_ADDR
rs6000_skip_main_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)2103 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2104 {
2105   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2106   gdb_byte buf[4];
2107   unsigned long op;
2108 
2109   if (target_read_memory (pc, buf, 4))
2110     return pc;
2111   op = extract_unsigned_integer (buf, 4, byte_order);
2112 
2113   if ((op & BL_MASK) == BL_INSTRUCTION)
2114     {
2115       CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2116       CORE_ADDR call_dest = pc + 4 + displ;
2117       struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2118 
2119       /* We check for ___eabi (three leading underscores) in addition
2120          to __eabi in case the GCC option "-fleading-underscore" was
2121 	 used to compile the program.  */
2122       if (s.minsym != NULL
2123           && s.minsym->linkage_name () != NULL
2124 	  && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2125 	      || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2126 	pc += 4;
2127     }
2128   return pc;
2129 }
2130 
2131 /* All the ABI's require 16 byte alignment.  */
2132 static CORE_ADDR
rs6000_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)2133 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2134 {
2135   return (addr & -16);
2136 }
2137 
2138 /* Return whether handle_inferior_event() should proceed through code
2139    starting at PC in function NAME when stepping.
2140 
2141    The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2142    handle memory references that are too distant to fit in instructions
2143    generated by the compiler.  For example, if 'foo' in the following
2144    instruction:
2145 
2146      lwz r9,foo(r2)
2147 
2148    is greater than 32767, the linker might replace the lwz with a branch to
2149    somewhere in @FIX1 that does the load in 2 instructions and then branches
2150    back to where execution should continue.
2151 
2152    GDB should silently step over @FIX code, just like AIX dbx does.
2153    Unfortunately, the linker uses the "b" instruction for the
2154    branches, meaning that the link register doesn't get set.
2155    Therefore, GDB's usual step_over_function () mechanism won't work.
2156 
2157    Instead, use the gdbarch_skip_trampoline_code and
2158    gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2159    @FIX code.  */
2160 
2161 static int
rs6000_in_solib_return_trampoline(struct gdbarch * gdbarch,CORE_ADDR pc,const char * name)2162 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2163 				   CORE_ADDR pc, const char *name)
2164 {
2165   return name && startswith (name, "@FIX");
2166 }
2167 
2168 /* Skip code that the user doesn't want to see when stepping:
2169 
2170    1. Indirect function calls use a piece of trampoline code to do context
2171    switching, i.e. to set the new TOC table.  Skip such code if we are on
2172    its first instruction (as when we have single-stepped to here).
2173 
2174    2. Skip shared library trampoline code (which is different from
2175    indirect function call trampolines).
2176 
2177    3. Skip bigtoc fixup code.
2178 
2179    Result is desired PC to step until, or NULL if we are not in
2180    code that should be skipped.  */
2181 
2182 static CORE_ADDR
rs6000_skip_trampoline_code(struct frame_info * frame,CORE_ADDR pc)2183 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2184 {
2185   struct gdbarch *gdbarch = get_frame_arch (frame);
2186   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2187   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2188   unsigned int ii, op;
2189   int rel;
2190   CORE_ADDR solib_target_pc;
2191   struct bound_minimal_symbol msymbol;
2192 
2193   static unsigned trampoline_code[] =
2194   {
2195     0x800b0000,			/*     l   r0,0x0(r11)  */
2196     0x90410014,			/*    st   r2,0x14(r1)  */
2197     0x7c0903a6,			/* mtctr   r0           */
2198     0x804b0004,			/*     l   r2,0x4(r11)  */
2199     0x816b0008,			/*     l  r11,0x8(r11)  */
2200     0x4e800420,			/*  bctr                */
2201     0x4e800020,			/*    br                */
2202     0
2203   };
2204 
2205   /* Check for bigtoc fixup code.  */
2206   msymbol = lookup_minimal_symbol_by_pc (pc);
2207   if (msymbol.minsym
2208       && rs6000_in_solib_return_trampoline (gdbarch, pc,
2209 					    msymbol.minsym->linkage_name ()))
2210     {
2211       /* Double-check that the third instruction from PC is relative "b".  */
2212       op = read_memory_integer (pc + 8, 4, byte_order);
2213       if ((op & 0xfc000003) == 0x48000000)
2214 	{
2215 	  /* Extract bits 6-29 as a signed 24-bit relative word address and
2216 	     add it to the containing PC.  */
2217 	  rel = ((int)(op << 6) >> 6);
2218 	  return pc + 8 + rel;
2219 	}
2220     }
2221 
2222   /* If pc is in a shared library trampoline, return its target.  */
2223   solib_target_pc = find_solib_trampoline_target (frame, pc);
2224   if (solib_target_pc)
2225     return solib_target_pc;
2226 
2227   for (ii = 0; trampoline_code[ii]; ++ii)
2228     {
2229       op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2230       if (op != trampoline_code[ii])
2231 	return 0;
2232     }
2233   ii = get_frame_register_unsigned (frame, 11);	/* r11 holds destination
2234 						   addr.  */
2235   pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2236   return pc;
2237 }
2238 
2239 /* ISA-specific vector types.  */
2240 
2241 static struct type *
rs6000_builtin_type_vec64(struct gdbarch * gdbarch)2242 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2243 {
2244   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2245 
2246   if (!tdep->ppc_builtin_type_vec64)
2247     {
2248       const struct builtin_type *bt = builtin_type (gdbarch);
2249 
2250       /* The type we're building is this: */
2251 #if 0
2252       union __gdb_builtin_type_vec64
2253 	{
2254 	  int64_t uint64;
2255 	  float v2_float[2];
2256 	  int32_t v2_int32[2];
2257 	  int16_t v4_int16[4];
2258 	  int8_t v8_int8[8];
2259 	};
2260 #endif
2261 
2262       struct type *t;
2263 
2264       t = arch_composite_type (gdbarch,
2265 			       "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2266       append_composite_type_field (t, "uint64", bt->builtin_int64);
2267       append_composite_type_field (t, "v2_float",
2268 				   init_vector_type (bt->builtin_float, 2));
2269       append_composite_type_field (t, "v2_int32",
2270 				   init_vector_type (bt->builtin_int32, 2));
2271       append_composite_type_field (t, "v4_int16",
2272 				   init_vector_type (bt->builtin_int16, 4));
2273       append_composite_type_field (t, "v8_int8",
2274 				   init_vector_type (bt->builtin_int8, 8));
2275 
2276       TYPE_VECTOR (t) = 1;
2277       t->set_name ("ppc_builtin_type_vec64");
2278       tdep->ppc_builtin_type_vec64 = t;
2279     }
2280 
2281   return tdep->ppc_builtin_type_vec64;
2282 }
2283 
2284 /* Vector 128 type.  */
2285 
2286 static struct type *
rs6000_builtin_type_vec128(struct gdbarch * gdbarch)2287 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2288 {
2289   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2290 
2291   if (!tdep->ppc_builtin_type_vec128)
2292     {
2293       const struct builtin_type *bt = builtin_type (gdbarch);
2294 
2295       /* The type we're building is this
2296 
2297 	 type = union __ppc_builtin_type_vec128 {
2298 	     uint128_t uint128;
2299 	     double v2_double[2];
2300 	     float v4_float[4];
2301 	     int32_t v4_int32[4];
2302 	     int16_t v8_int16[8];
2303 	     int8_t v16_int8[16];
2304 	 }
2305       */
2306 
2307       struct type *t;
2308 
2309       t = arch_composite_type (gdbarch,
2310 			       "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2311       append_composite_type_field (t, "uint128", bt->builtin_uint128);
2312       append_composite_type_field (t, "v2_double",
2313 				   init_vector_type (bt->builtin_double, 2));
2314       append_composite_type_field (t, "v4_float",
2315 				   init_vector_type (bt->builtin_float, 4));
2316       append_composite_type_field (t, "v4_int32",
2317 				   init_vector_type (bt->builtin_int32, 4));
2318       append_composite_type_field (t, "v8_int16",
2319 				   init_vector_type (bt->builtin_int16, 8));
2320       append_composite_type_field (t, "v16_int8",
2321 				   init_vector_type (bt->builtin_int8, 16));
2322 
2323       TYPE_VECTOR (t) = 1;
2324       t->set_name ("ppc_builtin_type_vec128");
2325       tdep->ppc_builtin_type_vec128 = t;
2326     }
2327 
2328   return tdep->ppc_builtin_type_vec128;
2329 }
2330 
2331 /* Return the name of register number REGNO, or the empty string if it
2332    is an anonymous register.  */
2333 
2334 static const char *
rs6000_register_name(struct gdbarch * gdbarch,int regno)2335 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2336 {
2337   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2338 
2339   /* The upper half "registers" have names in the XML description,
2340      but we present only the low GPRs and the full 64-bit registers
2341      to the user.  */
2342   if (tdep->ppc_ev0_upper_regnum >= 0
2343       && tdep->ppc_ev0_upper_regnum <= regno
2344       && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2345     return "";
2346 
2347   /* Hide the upper halves of the vs0~vs31 registers.  */
2348   if (tdep->ppc_vsr0_regnum >= 0
2349       && tdep->ppc_vsr0_upper_regnum <= regno
2350       && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2351     return "";
2352 
2353   /* Hide the upper halves of the cvs0~cvs31 registers.  */
2354   if (PPC_CVSR0_UPPER_REGNUM <= regno
2355       && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2356     return "";
2357 
2358   /* Check if the SPE pseudo registers are available.  */
2359   if (IS_SPE_PSEUDOREG (tdep, regno))
2360     {
2361       static const char *const spe_regnames[] = {
2362 	"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2363 	"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2364 	"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2365 	"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2366       };
2367       return spe_regnames[regno - tdep->ppc_ev0_regnum];
2368     }
2369 
2370   /* Check if the decimal128 pseudo-registers are available.  */
2371   if (IS_DFP_PSEUDOREG (tdep, regno))
2372     {
2373       static const char *const dfp128_regnames[] = {
2374 	"dl0", "dl1", "dl2", "dl3",
2375 	"dl4", "dl5", "dl6", "dl7",
2376 	"dl8", "dl9", "dl10", "dl11",
2377 	"dl12", "dl13", "dl14", "dl15"
2378       };
2379       return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2380     }
2381 
2382   /* Check if this is a vX alias for a raw vrX vector register.  */
2383   if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2384     {
2385       static const char *const vector_alias_regnames[] = {
2386 	"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2387 	"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2388 	"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2389 	"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2390       };
2391       return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2392     }
2393 
2394   /* Check if this is a VSX pseudo-register.  */
2395   if (IS_VSX_PSEUDOREG (tdep, regno))
2396     {
2397       static const char *const vsx_regnames[] = {
2398 	"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2399 	"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2400 	"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2401 	"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2402 	"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2403 	"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2404 	"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2405 	"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2406 	"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2407       };
2408       return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2409     }
2410 
2411   /* Check if the this is a Extended FP pseudo-register.  */
2412   if (IS_EFP_PSEUDOREG (tdep, regno))
2413     {
2414       static const char *const efpr_regnames[] = {
2415 	"f32", "f33", "f34", "f35", "f36", "f37", "f38",
2416 	"f39", "f40", "f41", "f42", "f43", "f44", "f45",
2417 	"f46", "f47", "f48", "f49", "f50", "f51",
2418 	"f52", "f53", "f54", "f55", "f56", "f57",
2419 	"f58", "f59", "f60", "f61", "f62", "f63"
2420       };
2421       return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2422     }
2423 
2424   /* Check if this is a Checkpointed DFP pseudo-register.  */
2425   if (IS_CDFP_PSEUDOREG (tdep, regno))
2426     {
2427       static const char *const cdfp128_regnames[] = {
2428 	"cdl0", "cdl1", "cdl2", "cdl3",
2429 	"cdl4", "cdl5", "cdl6", "cdl7",
2430 	"cdl8", "cdl9", "cdl10", "cdl11",
2431 	"cdl12", "cdl13", "cdl14", "cdl15"
2432       };
2433       return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2434     }
2435 
2436   /* Check if this is a Checkpointed VSX pseudo-register.  */
2437   if (IS_CVSX_PSEUDOREG (tdep, regno))
2438     {
2439       static const char *const cvsx_regnames[] = {
2440 	"cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2441 	"cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2442 	"cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2443 	"cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2444 	"cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2445 	"cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2446 	"cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2447 	"cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2448 	"cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2449       };
2450       return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2451     }
2452 
2453   /* Check if the this is a Checkpointed Extended FP pseudo-register.  */
2454   if (IS_CEFP_PSEUDOREG (tdep, regno))
2455     {
2456       static const char *const cefpr_regnames[] = {
2457 	"cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2458 	"cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2459 	"cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2460 	"cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2461 	"cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2462       };
2463       return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2464     }
2465 
2466   return tdesc_register_name (gdbarch, regno);
2467 }
2468 
2469 /* Return the GDB type object for the "standard" data type of data in
2470    register N.  */
2471 
2472 static struct type *
rs6000_pseudo_register_type(struct gdbarch * gdbarch,int regnum)2473 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2474 {
2475   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2476 
2477   /* These are the e500 pseudo-registers.  */
2478   if (IS_SPE_PSEUDOREG (tdep, regnum))
2479     return rs6000_builtin_type_vec64 (gdbarch);
2480   else if (IS_DFP_PSEUDOREG (tdep, regnum)
2481 	   || IS_CDFP_PSEUDOREG (tdep, regnum))
2482     /* PPC decimal128 pseudo-registers.  */
2483     return builtin_type (gdbarch)->builtin_declong;
2484   else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2485     return gdbarch_register_type (gdbarch,
2486 				  tdep->ppc_vr0_regnum
2487 				  + (regnum
2488 				     - tdep->ppc_v0_alias_regnum));
2489   else if (IS_VSX_PSEUDOREG (tdep, regnum)
2490 	   || IS_CVSX_PSEUDOREG (tdep, regnum))
2491     /* POWER7 VSX pseudo-registers.  */
2492     return rs6000_builtin_type_vec128 (gdbarch);
2493   else if (IS_EFP_PSEUDOREG (tdep, regnum)
2494 	   || IS_CEFP_PSEUDOREG (tdep, regnum))
2495     /* POWER7 Extended FP pseudo-registers.  */
2496     return builtin_type (gdbarch)->builtin_double;
2497   else
2498     internal_error (__FILE__, __LINE__,
2499 		    _("rs6000_pseudo_register_type: "
2500 		      "called on unexpected register '%s' (%d)"),
2501 		    gdbarch_register_name (gdbarch, regnum), regnum);
2502 }
2503 
2504 /* Check if REGNUM is a member of REGGROUP.  We only need to handle
2505    the vX aliases for the vector registers by always returning false
2506    to avoid duplicated information in "info register vector/all",
2507    since the raw vrX registers will already show in these cases.  For
2508    other pseudo-registers we use the default membership function.  */
2509 
2510 static int
rs6000_pseudo_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)2511 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2512 				   struct reggroup *group)
2513 {
2514   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2515 
2516   if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2517     return 0;
2518   else
2519     return default_register_reggroup_p (gdbarch, regnum, group);
2520 }
2521 
2522 /* The register format for RS/6000 floating point registers is always
2523    double, we need a conversion if the memory format is float.  */
2524 
2525 static int
rs6000_convert_register_p(struct gdbarch * gdbarch,int regnum,struct type * type)2526 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2527 			   struct type *type)
2528 {
2529   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2530 
2531   return (tdep->ppc_fp0_regnum >= 0
2532 	  && regnum >= tdep->ppc_fp0_regnum
2533 	  && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2534 	  && type->code () == TYPE_CODE_FLT
2535 	  && TYPE_LENGTH (type)
2536 	     != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2537 }
2538 
2539 static int
rs6000_register_to_value(struct frame_info * frame,int regnum,struct type * type,gdb_byte * to,int * optimizedp,int * unavailablep)2540 rs6000_register_to_value (struct frame_info *frame,
2541                           int regnum,
2542                           struct type *type,
2543                           gdb_byte *to,
2544 			  int *optimizedp, int *unavailablep)
2545 {
2546   struct gdbarch *gdbarch = get_frame_arch (frame);
2547   gdb_byte from[PPC_MAX_REGISTER_SIZE];
2548 
2549   gdb_assert (type->code () == TYPE_CODE_FLT);
2550 
2551   if (!get_frame_register_bytes (frame, regnum, 0,
2552 				 register_size (gdbarch, regnum),
2553 				 from, optimizedp, unavailablep))
2554     return 0;
2555 
2556   target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2557 			to, type);
2558   *optimizedp = *unavailablep = 0;
2559   return 1;
2560 }
2561 
2562 static void
rs6000_value_to_register(struct frame_info * frame,int regnum,struct type * type,const gdb_byte * from)2563 rs6000_value_to_register (struct frame_info *frame,
2564                           int regnum,
2565                           struct type *type,
2566                           const gdb_byte *from)
2567 {
2568   struct gdbarch *gdbarch = get_frame_arch (frame);
2569   gdb_byte to[PPC_MAX_REGISTER_SIZE];
2570 
2571   gdb_assert (type->code () == TYPE_CODE_FLT);
2572 
2573   target_float_convert (from, type,
2574 			to, builtin_type (gdbarch)->builtin_double);
2575   put_frame_register (frame, regnum, to);
2576 }
2577 
2578  /* The type of a function that moves the value of REG between CACHE
2579     or BUF --- in either direction.  */
2580 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2581 						       int, void *);
2582 
2583 /* Move SPE vector register values between a 64-bit buffer and the two
2584    32-bit raw register halves in a regcache.  This function handles
2585    both splitting a 64-bit value into two 32-bit halves, and joining
2586    two halves into a whole 64-bit value, depending on the function
2587    passed as the MOVE argument.
2588 
2589    EV_REG must be the number of an SPE evN vector register --- a
2590    pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
2591    64-bit buffer.
2592 
2593    Call MOVE once for each 32-bit half of that register, passing
2594    REGCACHE, the number of the raw register corresponding to that
2595    half, and the address of the appropriate half of BUFFER.
2596 
2597    For example, passing 'regcache_raw_read' as the MOVE function will
2598    fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
2599    'regcache_raw_supply' will supply the contents of BUFFER to the
2600    appropriate pair of raw registers in REGCACHE.
2601 
2602    You may need to cast away some 'const' qualifiers when passing
2603    MOVE, since this function can't tell at compile-time which of
2604    REGCACHE or BUFFER is acting as the source of the data.  If C had
2605    co-variant type qualifiers, ...  */
2606 
2607 static enum register_status
2608 e500_move_ev_register (move_ev_register_func move,
2609 		       struct regcache *regcache, int ev_reg, void *buffer)
2610 {
2611   struct gdbarch *arch = regcache->arch ();
2612   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2613   int reg_index;
2614   gdb_byte *byte_buffer = (gdb_byte *) buffer;
2615   enum register_status status;
2616 
2617   gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2618 
2619   reg_index = ev_reg - tdep->ppc_ev0_regnum;
2620 
2621   if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2622     {
2623       status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2624 		     byte_buffer);
2625       if (status == REG_VALID)
2626 	status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2627 		       byte_buffer + 4);
2628     }
2629   else
2630     {
2631       status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2632       if (status == REG_VALID)
2633 	status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2634 		       byte_buffer + 4);
2635     }
2636 
2637   return status;
2638 }
2639 
2640 static enum register_status
2641 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2642 {
2643   regcache->raw_write (regnum, (const gdb_byte *) buffer);
2644 
2645   return REG_VALID;
2646 }
2647 
2648 static enum register_status
2649 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2650 			   int ev_reg, gdb_byte *buffer)
2651 {
2652   struct gdbarch *arch = regcache->arch ();
2653   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2654   int reg_index;
2655   enum register_status status;
2656 
2657   gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2658 
2659   reg_index = ev_reg - tdep->ppc_ev0_regnum;
2660 
2661   if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2662     {
2663       status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2664 				   buffer);
2665       if (status == REG_VALID)
2666 	status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2667 				     buffer + 4);
2668     }
2669   else
2670     {
2671       status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2672       if (status == REG_VALID)
2673 	status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2674 				     buffer + 4);
2675     }
2676 
2677   return status;
2678 
2679 }
2680 
2681 static void
2682 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2683 			    int reg_nr, const gdb_byte *buffer)
2684 {
2685   e500_move_ev_register (do_regcache_raw_write, regcache,
2686 			 reg_nr, (void *) buffer);
2687 }
2688 
2689 /* Read method for DFP pseudo-registers.  */
2690 static enum register_status
dfp_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int reg_nr,gdb_byte * buffer)2691 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2692 			   int reg_nr, gdb_byte *buffer)
2693 {
2694   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2695   int reg_index, fp0;
2696   enum register_status status;
2697 
2698   if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2699     {
2700       reg_index = reg_nr - tdep->ppc_dl0_regnum;
2701       fp0 = PPC_F0_REGNUM;
2702     }
2703   else
2704     {
2705       gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2706 
2707       reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2708       fp0 = PPC_CF0_REGNUM;
2709     }
2710 
2711   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2712     {
2713       /* Read two FP registers to form a whole dl register.  */
2714       status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2715       if (status == REG_VALID)
2716 	status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2717 				     buffer + 8);
2718     }
2719   else
2720     {
2721       status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2722       if (status == REG_VALID)
2723 	status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2724     }
2725 
2726   return status;
2727 }
2728 
2729 /* Write method for DFP pseudo-registers.  */
2730 static void
dfp_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const gdb_byte * buffer)2731 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2732 			    int reg_nr, const gdb_byte *buffer)
2733 {
2734   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2735   int reg_index, fp0;
2736 
2737   if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2738     {
2739       reg_index = reg_nr - tdep->ppc_dl0_regnum;
2740       fp0 = PPC_F0_REGNUM;
2741     }
2742   else
2743     {
2744       gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2745 
2746       reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2747       fp0 = PPC_CF0_REGNUM;
2748     }
2749 
2750   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2751     {
2752       /* Write each half of the dl register into a separate
2753 	 FP register.  */
2754       regcache->raw_write (fp0 + 2 * reg_index, buffer);
2755       regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2756     }
2757   else
2758     {
2759       regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2760       regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2761     }
2762 }
2763 
2764 /* Read method for the vX aliases for the raw vrX registers.  */
2765 
2766 static enum register_status
v_alias_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int reg_nr,gdb_byte * buffer)2767 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2768 			      readable_regcache *regcache, int reg_nr,
2769 			      gdb_byte *buffer)
2770 {
2771   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2772   gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2773 
2774   return regcache->raw_read (tdep->ppc_vr0_regnum
2775 			     + (reg_nr - tdep->ppc_v0_alias_regnum),
2776 			     buffer);
2777 }
2778 
2779 /* Write method for the vX aliases for the raw vrX registers.  */
2780 
2781 static void
v_alias_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const gdb_byte * buffer)2782 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2783 			       struct regcache *regcache,
2784 			       int reg_nr, const gdb_byte *buffer)
2785 {
2786   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2787   gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2788 
2789   regcache->raw_write (tdep->ppc_vr0_regnum
2790 		       + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2791 }
2792 
2793 /* Read method for POWER7 VSX pseudo-registers.  */
2794 static enum register_status
vsx_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int reg_nr,gdb_byte * buffer)2795 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2796 			   int reg_nr, gdb_byte *buffer)
2797 {
2798   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2799   int reg_index, vr0, fp0, vsr0_upper;
2800   enum register_status status;
2801 
2802   if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2803     {
2804       reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2805       vr0 = PPC_VR0_REGNUM;
2806       fp0 = PPC_F0_REGNUM;
2807       vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2808     }
2809   else
2810     {
2811       gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2812 
2813       reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2814       vr0 = PPC_CVR0_REGNUM;
2815       fp0 = PPC_CF0_REGNUM;
2816       vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2817     }
2818 
2819   /* Read the portion that overlaps the VMX registers.  */
2820   if (reg_index > 31)
2821     status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2822   else
2823     /* Read the portion that overlaps the FPR registers.  */
2824     if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2825       {
2826 	status = regcache->raw_read (fp0 + reg_index, buffer);
2827 	if (status == REG_VALID)
2828 	  status = regcache->raw_read (vsr0_upper + reg_index,
2829 				       buffer + 8);
2830       }
2831     else
2832       {
2833 	status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2834 	if (status == REG_VALID)
2835 	  status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2836       }
2837 
2838   return status;
2839 }
2840 
2841 /* Write method for POWER7 VSX pseudo-registers.  */
2842 static void
vsx_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const gdb_byte * buffer)2843 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2844 			    int reg_nr, const gdb_byte *buffer)
2845 {
2846   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2847   int reg_index, vr0, fp0, vsr0_upper;
2848 
2849   if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2850     {
2851       reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2852       vr0 = PPC_VR0_REGNUM;
2853       fp0 = PPC_F0_REGNUM;
2854       vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2855     }
2856   else
2857     {
2858       gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2859 
2860       reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2861       vr0 = PPC_CVR0_REGNUM;
2862       fp0 = PPC_CF0_REGNUM;
2863       vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2864     }
2865 
2866   /* Write the portion that overlaps the VMX registers.  */
2867   if (reg_index > 31)
2868     regcache->raw_write (vr0 + reg_index - 32, buffer);
2869   else
2870     /* Write the portion that overlaps the FPR registers.  */
2871     if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2872       {
2873 	regcache->raw_write (fp0 + reg_index, buffer);
2874 	regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2875       }
2876     else
2877       {
2878 	regcache->raw_write (fp0 + reg_index, buffer + 8);
2879 	regcache->raw_write (vsr0_upper + reg_index, buffer);
2880       }
2881 }
2882 
2883 /* Read method for POWER7 Extended FP pseudo-registers.  */
2884 static enum register_status
efp_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int reg_nr,gdb_byte * buffer)2885 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2886 			   int reg_nr, gdb_byte *buffer)
2887 {
2888   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2889   int reg_index, vr0;
2890 
2891   if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2892     {
2893       reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2894       vr0 = PPC_VR0_REGNUM;
2895     }
2896   else
2897     {
2898       gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2899 
2900       reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2901       vr0 = PPC_CVR0_REGNUM;
2902     }
2903 
2904   int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2905 
2906   /* Read the portion that overlaps the VMX register.  */
2907   return regcache->raw_read_part (vr0 + reg_index, offset,
2908 				  register_size (gdbarch, reg_nr),
2909 				  buffer);
2910 }
2911 
2912 /* Write method for POWER7 Extended FP pseudo-registers.  */
2913 static void
efp_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const gdb_byte * buffer)2914 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2915 			    int reg_nr, const gdb_byte *buffer)
2916 {
2917   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918   int reg_index, vr0;
2919   int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2920 
2921   if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2922     {
2923       reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2924       vr0 = PPC_VR0_REGNUM;
2925     }
2926   else
2927     {
2928       gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2929 
2930       reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2931       vr0 = PPC_CVR0_REGNUM;
2932 
2933       /* The call to raw_write_part fails silently if the initial read
2934 	 of the read-update-write sequence returns an invalid status,
2935 	 so we check this manually and throw an error if needed.  */
2936       regcache->raw_update (vr0 + reg_index);
2937       if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2938 	error (_("Cannot write to the checkpointed EFP register, "
2939 		 "the corresponding vector register is unavailable."));
2940     }
2941 
2942   /* Write the portion that overlaps the VMX register.  */
2943   regcache->raw_write_part (vr0 + reg_index, offset,
2944 			    register_size (gdbarch, reg_nr), buffer);
2945 }
2946 
2947 static enum register_status
rs6000_pseudo_register_read(struct gdbarch * gdbarch,readable_regcache * regcache,int reg_nr,gdb_byte * buffer)2948 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2949 			     readable_regcache *regcache,
2950 			     int reg_nr, gdb_byte *buffer)
2951 {
2952   struct gdbarch *regcache_arch = regcache->arch ();
2953   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2954 
2955   gdb_assert (regcache_arch == gdbarch);
2956 
2957   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2958     return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2959   else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2960 	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2961     return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2962   else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2963     return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
2964 					 buffer);
2965   else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2966 	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2967     return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2968   else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2969 	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2970     return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2971   else
2972     internal_error (__FILE__, __LINE__,
2973 		    _("rs6000_pseudo_register_read: "
2974 		    "called on unexpected register '%s' (%d)"),
2975 		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2976 }
2977 
2978 static void
rs6000_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const gdb_byte * buffer)2979 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2980 			      struct regcache *regcache,
2981 			      int reg_nr, const gdb_byte *buffer)
2982 {
2983   struct gdbarch *regcache_arch = regcache->arch ();
2984   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2985 
2986   gdb_assert (regcache_arch == gdbarch);
2987 
2988   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2989     e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2990   else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2991 	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2992     dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2993   else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2994     v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2995   else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2996 	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2997     vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2998   else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2999 	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3000     efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3001   else
3002     internal_error (__FILE__, __LINE__,
3003 		    _("rs6000_pseudo_register_write: "
3004 		    "called on unexpected register '%s' (%d)"),
3005 		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3006 }
3007 
3008 /* Set the register mask in AX with the registers that form the DFP or
3009    checkpointed DFP pseudo-register REG_NR.  */
3010 
3011 static void
dfp_ax_pseudo_register_collect(struct gdbarch * gdbarch,struct agent_expr * ax,int reg_nr)3012 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3013 				struct agent_expr *ax, int reg_nr)
3014 {
3015   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3016   int reg_index, fp0;
3017 
3018   if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3019     {
3020       reg_index = reg_nr - tdep->ppc_dl0_regnum;
3021       fp0 = PPC_F0_REGNUM;
3022     }
3023   else
3024     {
3025       gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3026 
3027       reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3028       fp0 = PPC_CF0_REGNUM;
3029     }
3030 
3031   ax_reg_mask (ax, fp0 + 2 * reg_index);
3032   ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3033 }
3034 
3035 /* Set the register mask in AX with the raw vector register that
3036    corresponds to its REG_NR alias.  */
3037 
3038 static void
v_alias_pseudo_register_collect(struct gdbarch * gdbarch,struct agent_expr * ax,int reg_nr)3039 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3040 				 struct agent_expr *ax, int reg_nr)
3041 {
3042   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043   gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3044 
3045   ax_reg_mask (ax, tdep->ppc_vr0_regnum
3046 	       + (reg_nr - tdep->ppc_v0_alias_regnum));
3047 }
3048 
3049 /* Set the register mask in AX with the registers that form the VSX or
3050    checkpointed VSX pseudo-register REG_NR.  */
3051 
3052 static void
vsx_ax_pseudo_register_collect(struct gdbarch * gdbarch,struct agent_expr * ax,int reg_nr)3053 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3054 				struct agent_expr *ax, int reg_nr)
3055 {
3056   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3057   int reg_index, vr0, fp0, vsr0_upper;
3058 
3059   if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3060     {
3061       reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3062       vr0 = PPC_VR0_REGNUM;
3063       fp0 = PPC_F0_REGNUM;
3064       vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3065     }
3066   else
3067     {
3068       gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3069 
3070       reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3071       vr0 = PPC_CVR0_REGNUM;
3072       fp0 = PPC_CF0_REGNUM;
3073       vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3074     }
3075 
3076   if (reg_index > 31)
3077     {
3078       ax_reg_mask (ax, vr0 + reg_index - 32);
3079     }
3080   else
3081     {
3082       ax_reg_mask (ax, fp0 + reg_index);
3083       ax_reg_mask (ax, vsr0_upper + reg_index);
3084     }
3085 }
3086 
3087 /* Set the register mask in AX with the register that corresponds to
3088    the EFP or checkpointed EFP pseudo-register REG_NR.  */
3089 
3090 static void
efp_ax_pseudo_register_collect(struct gdbarch * gdbarch,struct agent_expr * ax,int reg_nr)3091 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3092 				struct agent_expr *ax, int reg_nr)
3093 {
3094   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3095   int reg_index, vr0;
3096 
3097   if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3098     {
3099       reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3100       vr0 = PPC_VR0_REGNUM;
3101     }
3102   else
3103     {
3104       gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3105 
3106       reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3107       vr0 = PPC_CVR0_REGNUM;
3108     }
3109 
3110   ax_reg_mask (ax, vr0 + reg_index);
3111 }
3112 
3113 static int
rs6000_ax_pseudo_register_collect(struct gdbarch * gdbarch,struct agent_expr * ax,int reg_nr)3114 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3115 				   struct agent_expr *ax, int reg_nr)
3116 {
3117   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3118   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3119     {
3120       int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3121       ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3122       ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3123     }
3124   else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3125 	   || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3126     {
3127       dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3128     }
3129   else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3130     {
3131       v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3132     }
3133   else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3134 	   || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3135     {
3136       vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3137     }
3138   else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3139 	   || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3140     {
3141       efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3142     }
3143   else
3144     internal_error (__FILE__, __LINE__,
3145 		    _("rs6000_pseudo_register_collect: "
3146 		    "called on unexpected register '%s' (%d)"),
3147 		    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3148   return 0;
3149 }
3150 
3151 
3152 static void
rs6000_gen_return_address(struct gdbarch * gdbarch,struct agent_expr * ax,struct axs_value * value,CORE_ADDR scope)3153 rs6000_gen_return_address (struct gdbarch *gdbarch,
3154 			   struct agent_expr *ax, struct axs_value *value,
3155 			   CORE_ADDR scope)
3156 {
3157   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3158   value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3159   value->kind = axs_lvalue_register;
3160   value->u.reg = tdep->ppc_lr_regnum;
3161 }
3162 
3163 
3164 /* Convert a DBX STABS register number to a GDB register number.  */
3165 static int
rs6000_stab_reg_to_regnum(struct gdbarch * gdbarch,int num)3166 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3167 {
3168   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3169 
3170   if (0 <= num && num <= 31)
3171     return tdep->ppc_gp0_regnum + num;
3172   else if (32 <= num && num <= 63)
3173     /* FIXME: jimb/2004-05-05: What should we do when the debug info
3174        specifies registers the architecture doesn't have?  Our
3175        callers don't check the value we return.  */
3176     return tdep->ppc_fp0_regnum + (num - 32);
3177   else if (77 <= num && num <= 108)
3178     return tdep->ppc_vr0_regnum + (num - 77);
3179   else if (1200 <= num && num < 1200 + 32)
3180     return tdep->ppc_ev0_upper_regnum + (num - 1200);
3181   else
3182     switch (num)
3183       {
3184       case 64:
3185         return tdep->ppc_mq_regnum;
3186       case 65:
3187         return tdep->ppc_lr_regnum;
3188       case 66:
3189         return tdep->ppc_ctr_regnum;
3190       case 76:
3191         return tdep->ppc_xer_regnum;
3192       case 109:
3193         return tdep->ppc_vrsave_regnum;
3194       case 110:
3195         return tdep->ppc_vrsave_regnum - 1; /* vscr */
3196       case 111:
3197         return tdep->ppc_acc_regnum;
3198       case 112:
3199         return tdep->ppc_spefscr_regnum;
3200       default:
3201         return num;
3202       }
3203 }
3204 
3205 
3206 /* Convert a Dwarf 2 register number to a GDB register number.  */
3207 static int
rs6000_dwarf2_reg_to_regnum(struct gdbarch * gdbarch,int num)3208 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3209 {
3210   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3211 
3212   if (0 <= num && num <= 31)
3213     return tdep->ppc_gp0_regnum + num;
3214   else if (32 <= num && num <= 63)
3215     /* FIXME: jimb/2004-05-05: What should we do when the debug info
3216        specifies registers the architecture doesn't have?  Our
3217        callers don't check the value we return.  */
3218     return tdep->ppc_fp0_regnum + (num - 32);
3219   else if (1124 <= num && num < 1124 + 32)
3220     return tdep->ppc_vr0_regnum + (num - 1124);
3221   else if (1200 <= num && num < 1200 + 32)
3222     return tdep->ppc_ev0_upper_regnum + (num - 1200);
3223   else
3224     switch (num)
3225       {
3226       case 64:
3227 	return tdep->ppc_cr_regnum;
3228       case 67:
3229         return tdep->ppc_vrsave_regnum - 1; /* vscr */
3230       case 99:
3231         return tdep->ppc_acc_regnum;
3232       case 100:
3233         return tdep->ppc_mq_regnum;
3234       case 101:
3235         return tdep->ppc_xer_regnum;
3236       case 108:
3237         return tdep->ppc_lr_regnum;
3238       case 109:
3239         return tdep->ppc_ctr_regnum;
3240       case 356:
3241         return tdep->ppc_vrsave_regnum;
3242       case 612:
3243         return tdep->ppc_spefscr_regnum;
3244       default:
3245         return num;
3246       }
3247 }
3248 
3249 /* Translate a .eh_frame register to DWARF register, or adjust a
3250    .debug_frame register.  */
3251 
3252 static int
rs6000_adjust_frame_regnum(struct gdbarch * gdbarch,int num,int eh_frame_p)3253 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3254 {
3255   /* GCC releases before 3.4 use GCC internal register numbering in
3256      .debug_frame (and .debug_info, et cetera).  The numbering is
3257      different from the standard SysV numbering for everything except
3258      for GPRs and FPRs.  We can not detect this problem in most cases
3259      - to get accurate debug info for variables living in lr, ctr, v0,
3260      et cetera, use a newer version of GCC.  But we must detect
3261      one important case - lr is in column 65 in .debug_frame output,
3262      instead of 108.
3263 
3264      GCC 3.4, and the "hammer" branch, have a related problem.  They
3265      record lr register saves in .debug_frame as 108, but still record
3266      the return column as 65.  We fix that up too.
3267 
3268      We can do this because 65 is assigned to fpsr, and GCC never
3269      generates debug info referring to it.  To add support for
3270      handwritten debug info that restores fpsr, we would need to add a
3271      producer version check to this.  */
3272   if (!eh_frame_p)
3273     {
3274       if (num == 65)
3275 	return 108;
3276       else
3277 	return num;
3278     }
3279 
3280   /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
3281      internal register numbering; translate that to the standard DWARF2
3282      register numbering.  */
3283   if (0 <= num && num <= 63)	/* r0-r31,fp0-fp31 */
3284     return num;
3285   else if (68 <= num && num <= 75) /* cr0-cr8 */
3286     return num - 68 + 86;
3287   else if (77 <= num && num <= 108) /* vr0-vr31 */
3288     return num - 77 + 1124;
3289   else
3290     switch (num)
3291       {
3292       case 64: /* mq */
3293 	return 100;
3294       case 65: /* lr */
3295 	return 108;
3296       case 66: /* ctr */
3297 	return 109;
3298       case 76: /* xer */
3299 	return 101;
3300       case 109: /* vrsave */
3301 	return 356;
3302       case 110: /* vscr */
3303 	return 67;
3304       case 111: /* spe_acc */
3305 	return 99;
3306       case 112: /* spefscr */
3307 	return 612;
3308       default:
3309 	return num;
3310       }
3311 }
3312 
3313 
3314 /* Handling the various POWER/PowerPC variants.  */
3315 
3316 /* Information about a particular processor variant.  */
3317 
3318 struct ppc_variant
3319   {
3320     /* Name of this variant.  */
3321     const char *name;
3322 
3323     /* English description of the variant.  */
3324     const char *description;
3325 
3326     /* bfd_arch_info.arch corresponding to variant.  */
3327     enum bfd_architecture arch;
3328 
3329     /* bfd_arch_info.mach corresponding to variant.  */
3330     unsigned long mach;
3331 
3332     /* Target description for this variant.  */
3333     struct target_desc **tdesc;
3334   };
3335 
3336 static struct ppc_variant variants[] =
3337 {
3338   {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3339    bfd_mach_ppc, &tdesc_powerpc_altivec32},
3340   {"power", "POWER user-level", bfd_arch_rs6000,
3341    bfd_mach_rs6k, &tdesc_rs6000},
3342   {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3343    bfd_mach_ppc_403, &tdesc_powerpc_403},
3344   {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3345    bfd_mach_ppc_405, &tdesc_powerpc_405},
3346   {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3347    bfd_mach_ppc_601, &tdesc_powerpc_601},
3348   {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3349    bfd_mach_ppc_602, &tdesc_powerpc_602},
3350   {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3351    bfd_mach_ppc_603, &tdesc_powerpc_603},
3352   {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3353    604, &tdesc_powerpc_604},
3354   {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3355    bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3356   {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3357    bfd_mach_ppc_505, &tdesc_powerpc_505},
3358   {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3359    bfd_mach_ppc_860, &tdesc_powerpc_860},
3360   {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3361    bfd_mach_ppc_750, &tdesc_powerpc_750},
3362   {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3363    bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3364   {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3365    bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3366 
3367   /* 64-bit */
3368   {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3369    bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3370   {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3371    bfd_mach_ppc_620, &tdesc_powerpc_64},
3372   {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3373    bfd_mach_ppc_630, &tdesc_powerpc_64},
3374   {"a35", "PowerPC A35", bfd_arch_powerpc,
3375    bfd_mach_ppc_a35, &tdesc_powerpc_64},
3376   {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3377    bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3378   {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3379    bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3380 
3381   /* FIXME: I haven't checked the register sets of the following.  */
3382   {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3383    bfd_mach_rs6k_rs1, &tdesc_rs6000},
3384   {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3385    bfd_mach_rs6k_rsc, &tdesc_rs6000},
3386   {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3387    bfd_mach_rs6k_rs2, &tdesc_rs6000},
3388 
3389   {0, 0, (enum bfd_architecture) 0, 0, 0}
3390 };
3391 
3392 /* Return the variant corresponding to architecture ARCH and machine number
3393    MACH.  If no such variant exists, return null.  */
3394 
3395 static const struct ppc_variant *
find_variant_by_arch(enum bfd_architecture arch,unsigned long mach)3396 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3397 {
3398   const struct ppc_variant *v;
3399 
3400   for (v = variants; v->name; v++)
3401     if (arch == v->arch && mach == v->mach)
3402       return v;
3403 
3404   return NULL;
3405 }
3406 
3407 
3408 
3409 struct rs6000_frame_cache
3410 {
3411   CORE_ADDR base;
3412   CORE_ADDR initial_sp;
3413   struct trad_frame_saved_reg *saved_regs;
3414 
3415   /* Set BASE_P to true if this frame cache is properly initialized.
3416      Otherwise set to false because some registers or memory cannot
3417      collected.  */
3418   int base_p;
3419   /* Cache PC for building unavailable frame.  */
3420   CORE_ADDR pc;
3421 };
3422 
3423 static struct rs6000_frame_cache *
rs6000_frame_cache(struct frame_info * this_frame,void ** this_cache)3424 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3425 {
3426   struct rs6000_frame_cache *cache;
3427   struct gdbarch *gdbarch = get_frame_arch (this_frame);
3428   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3429   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3430   struct rs6000_framedata fdata;
3431   int wordsize = tdep->wordsize;
3432   CORE_ADDR func = 0, pc = 0;
3433 
3434   if ((*this_cache) != NULL)
3435     return (struct rs6000_frame_cache *) (*this_cache);
3436   cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3437   (*this_cache) = cache;
3438   cache->pc = 0;
3439   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3440 
3441   try
3442     {
3443       func = get_frame_func (this_frame);
3444       cache->pc = func;
3445       pc = get_frame_pc (this_frame);
3446       skip_prologue (gdbarch, func, pc, &fdata);
3447 
3448       /* Figure out the parent's stack pointer.  */
3449 
3450       /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3451 	 address of the current frame.  Things might be easier if the
3452 	 ->frame pointed to the outer-most address of the frame.  In
3453 	 the mean time, the address of the prev frame is used as the
3454 	 base address of this frame.  */
3455       cache->base = get_frame_register_unsigned
3456 	(this_frame, gdbarch_sp_regnum (gdbarch));
3457     }
3458   catch (const gdb_exception_error &ex)
3459     {
3460       if (ex.error != NOT_AVAILABLE_ERROR)
3461 	throw;
3462       return (struct rs6000_frame_cache *) (*this_cache);
3463     }
3464 
3465   /* If the function appears to be frameless, check a couple of likely
3466      indicators that we have simply failed to find the frame setup.
3467      Two common cases of this are missing symbols (i.e.
3468      get_frame_func returns the wrong address or 0), and assembly
3469      stubs which have a fast exit path but set up a frame on the slow
3470      path.
3471 
3472      If the LR appears to return to this function, then presume that
3473      we have an ABI compliant frame that we failed to find.  */
3474   if (fdata.frameless && fdata.lr_offset == 0)
3475     {
3476       CORE_ADDR saved_lr;
3477       int make_frame = 0;
3478 
3479       saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3480       if (func == 0 && saved_lr == pc)
3481 	make_frame = 1;
3482       else if (func != 0)
3483 	{
3484 	  CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3485 	  if (func == saved_func)
3486 	    make_frame = 1;
3487 	}
3488 
3489       if (make_frame)
3490 	{
3491 	  fdata.frameless = 0;
3492 	  fdata.lr_offset = tdep->lr_frame_offset;
3493 	}
3494     }
3495 
3496   if (!fdata.frameless)
3497     {
3498       /* Frameless really means stackless.  */
3499       ULONGEST backchain;
3500 
3501       if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3502 					     byte_order, &backchain))
3503         cache->base = (CORE_ADDR) backchain;
3504     }
3505 
3506   trad_frame_set_value (cache->saved_regs,
3507 			gdbarch_sp_regnum (gdbarch), cache->base);
3508 
3509   /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3510      All fpr's from saved_fpr to fp31 are saved.  */
3511 
3512   if (fdata.saved_fpr >= 0)
3513     {
3514       int i;
3515       CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3516 
3517       /* If skip_prologue says floating-point registers were saved,
3518          but the current architecture has no floating-point registers,
3519          then that's strange.  But we have no indices to even record
3520          the addresses under, so we just ignore it.  */
3521       if (ppc_floating_point_unit_p (gdbarch))
3522         for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3523           {
3524             cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3525             fpr_addr += 8;
3526           }
3527     }
3528 
3529   /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3530      All gpr's from saved_gpr to gpr31 are saved (except during the
3531      prologue).  */
3532 
3533   if (fdata.saved_gpr >= 0)
3534     {
3535       int i;
3536       CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3537       for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3538 	{
3539 	  if (fdata.gpr_mask & (1U << i))
3540 	    cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3541 	  gpr_addr += wordsize;
3542 	}
3543     }
3544 
3545   /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3546      All vr's from saved_vr to vr31 are saved.  */
3547   if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3548     {
3549       if (fdata.saved_vr >= 0)
3550 	{
3551 	  int i;
3552 	  CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3553 	  for (i = fdata.saved_vr; i < 32; i++)
3554 	    {
3555 	      cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3556 	      vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3557 	    }
3558 	}
3559     }
3560 
3561   /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3562      All vr's from saved_ev to ev31 are saved. ?????  */
3563   if (tdep->ppc_ev0_regnum != -1)
3564     {
3565       if (fdata.saved_ev >= 0)
3566 	{
3567 	  int i;
3568 	  CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3569 	  CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3570 
3571 	  for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3572 	    {
3573 	      cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3574 	      cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3575 	      ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3576 	    }
3577 	}
3578     }
3579 
3580   /* If != 0, fdata.cr_offset is the offset from the frame that
3581      holds the CR.  */
3582   if (fdata.cr_offset != 0)
3583     cache->saved_regs[tdep->ppc_cr_regnum].addr
3584       = cache->base + fdata.cr_offset;
3585 
3586   /* If != 0, fdata.lr_offset is the offset from the frame that
3587      holds the LR.  */
3588   if (fdata.lr_offset != 0)
3589     cache->saved_regs[tdep->ppc_lr_regnum].addr
3590       = cache->base + fdata.lr_offset;
3591   else if (fdata.lr_register != -1)
3592     cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3593   /* The PC is found in the link register.  */
3594   cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3595     cache->saved_regs[tdep->ppc_lr_regnum];
3596 
3597   /* If != 0, fdata.vrsave_offset is the offset from the frame that
3598      holds the VRSAVE.  */
3599   if (fdata.vrsave_offset != 0)
3600     cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3601       = cache->base + fdata.vrsave_offset;
3602 
3603   if (fdata.alloca_reg < 0)
3604     /* If no alloca register used, then fi->frame is the value of the
3605        %sp for this frame, and it is good enough.  */
3606     cache->initial_sp
3607       = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3608   else
3609     cache->initial_sp
3610       = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3611 
3612   cache->base_p = 1;
3613   return cache;
3614 }
3615 
3616 static void
rs6000_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)3617 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3618 		      struct frame_id *this_id)
3619 {
3620   struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3621 							this_cache);
3622 
3623   if (!info->base_p)
3624     {
3625       (*this_id) = frame_id_build_unavailable_stack (info->pc);
3626       return;
3627     }
3628 
3629   /* This marks the outermost frame.  */
3630   if (info->base == 0)
3631     return;
3632 
3633   (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3634 }
3635 
3636 static struct value *
rs6000_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)3637 rs6000_frame_prev_register (struct frame_info *this_frame,
3638 			    void **this_cache, int regnum)
3639 {
3640   struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3641 							this_cache);
3642   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3643 }
3644 
3645 static const struct frame_unwind rs6000_frame_unwind =
3646 {
3647   NORMAL_FRAME,
3648   default_frame_unwind_stop_reason,
3649   rs6000_frame_this_id,
3650   rs6000_frame_prev_register,
3651   NULL,
3652   default_frame_sniffer
3653 };
3654 
3655 /* Allocate and initialize a frame cache for an epilogue frame.
3656    SP is restored and prev-PC is stored in LR.  */
3657 
3658 static struct rs6000_frame_cache *
rs6000_epilogue_frame_cache(struct frame_info * this_frame,void ** this_cache)3659 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3660 {
3661   struct rs6000_frame_cache *cache;
3662   struct gdbarch *gdbarch = get_frame_arch (this_frame);
3663   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3664 
3665   if (*this_cache)
3666     return (struct rs6000_frame_cache *) *this_cache;
3667 
3668   cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3669   (*this_cache) = cache;
3670   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3671 
3672   try
3673     {
3674       /* At this point the stack looks as if we just entered the
3675 	 function, and the return address is stored in LR.  */
3676       CORE_ADDR sp, lr;
3677 
3678       sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3679       lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3680 
3681       cache->base = sp;
3682       cache->initial_sp = sp;
3683 
3684       trad_frame_set_value (cache->saved_regs,
3685 			    gdbarch_pc_regnum (gdbarch), lr);
3686     }
3687   catch (const gdb_exception_error &ex)
3688     {
3689       if (ex.error != NOT_AVAILABLE_ERROR)
3690 	throw;
3691     }
3692 
3693   return cache;
3694 }
3695 
3696 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3697    Return the frame ID of an epilogue frame.  */
3698 
3699 static void
rs6000_epilogue_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)3700 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3701 			       void **this_cache, struct frame_id *this_id)
3702 {
3703   CORE_ADDR pc;
3704   struct rs6000_frame_cache *info =
3705     rs6000_epilogue_frame_cache (this_frame, this_cache);
3706 
3707   pc = get_frame_func (this_frame);
3708   if (info->base == 0)
3709     (*this_id) = frame_id_build_unavailable_stack (pc);
3710   else
3711     (*this_id) = frame_id_build (info->base, pc);
3712 }
3713 
3714 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3715    Return the register value of REGNUM in previous frame.  */
3716 
3717 static struct value *
rs6000_epilogue_frame_prev_register(struct frame_info * this_frame,void ** this_cache,int regnum)3718 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3719 				     void **this_cache, int regnum)
3720 {
3721   struct rs6000_frame_cache *info =
3722     rs6000_epilogue_frame_cache (this_frame, this_cache);
3723   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3724 }
3725 
3726 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3727    Check whether this an epilogue frame.  */
3728 
3729 static int
rs6000_epilogue_frame_sniffer(const struct frame_unwind * self,struct frame_info * this_frame,void ** this_prologue_cache)3730 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3731 			       struct frame_info *this_frame,
3732 			       void **this_prologue_cache)
3733 {
3734   if (frame_relative_level (this_frame) == 0)
3735     return rs6000_in_function_epilogue_frame_p (this_frame,
3736 						get_frame_arch (this_frame),
3737 						get_frame_pc (this_frame));
3738   else
3739     return 0;
3740 }
3741 
3742 /* Frame unwinder for epilogue frame.  This is required for reverse step-over
3743    a function without debug information.  */
3744 
3745 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3746 {
3747   NORMAL_FRAME,
3748   default_frame_unwind_stop_reason,
3749   rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3750   NULL,
3751   rs6000_epilogue_frame_sniffer
3752 };
3753 
3754 
3755 static CORE_ADDR
rs6000_frame_base_address(struct frame_info * this_frame,void ** this_cache)3756 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3757 {
3758   struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3759 							this_cache);
3760   return info->initial_sp;
3761 }
3762 
3763 static const struct frame_base rs6000_frame_base = {
3764   &rs6000_frame_unwind,
3765   rs6000_frame_base_address,
3766   rs6000_frame_base_address,
3767   rs6000_frame_base_address
3768 };
3769 
3770 static const struct frame_base *
rs6000_frame_base_sniffer(struct frame_info * this_frame)3771 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3772 {
3773   return &rs6000_frame_base;
3774 }
3775 
3776 /* DWARF-2 frame support.  Used to handle the detection of
3777   clobbered registers during function calls.  */
3778 
3779 static void
ppc_dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg,struct frame_info * this_frame)3780 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3781 			    struct dwarf2_frame_state_reg *reg,
3782 			    struct frame_info *this_frame)
3783 {
3784   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3785 
3786   /* PPC32 and PPC64 ABI's are the same regarding volatile and
3787      non-volatile registers.  We will use the same code for both.  */
3788 
3789   /* Call-saved GP registers.  */
3790   if ((regnum >= tdep->ppc_gp0_regnum + 14
3791       && regnum <= tdep->ppc_gp0_regnum + 31)
3792       || (regnum == tdep->ppc_gp0_regnum + 1))
3793     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3794 
3795   /* Call-clobbered GP registers.  */
3796   if ((regnum >= tdep->ppc_gp0_regnum + 3
3797       && regnum <= tdep->ppc_gp0_regnum + 12)
3798       || (regnum == tdep->ppc_gp0_regnum))
3799     reg->how = DWARF2_FRAME_REG_UNDEFINED;
3800 
3801   /* Deal with FP registers, if supported.  */
3802   if (tdep->ppc_fp0_regnum >= 0)
3803     {
3804       /* Call-saved FP registers.  */
3805       if ((regnum >= tdep->ppc_fp0_regnum + 14
3806 	  && regnum <= tdep->ppc_fp0_regnum + 31))
3807 	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3808 
3809       /* Call-clobbered FP registers.  */
3810       if ((regnum >= tdep->ppc_fp0_regnum
3811 	  && regnum <= tdep->ppc_fp0_regnum + 13))
3812 	reg->how = DWARF2_FRAME_REG_UNDEFINED;
3813     }
3814 
3815   /* Deal with ALTIVEC registers, if supported.  */
3816   if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3817     {
3818       /* Call-saved Altivec registers.  */
3819       if ((regnum >= tdep->ppc_vr0_regnum + 20
3820 	  && regnum <= tdep->ppc_vr0_regnum + 31)
3821 	  || regnum == tdep->ppc_vrsave_regnum)
3822 	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3823 
3824       /* Call-clobbered Altivec registers.  */
3825       if ((regnum >= tdep->ppc_vr0_regnum
3826 	  && regnum <= tdep->ppc_vr0_regnum + 19))
3827 	reg->how = DWARF2_FRAME_REG_UNDEFINED;
3828     }
3829 
3830   /* Handle PC register and Stack Pointer correctly.  */
3831   if (regnum == gdbarch_pc_regnum (gdbarch))
3832     reg->how = DWARF2_FRAME_REG_RA;
3833   else if (regnum == gdbarch_sp_regnum (gdbarch))
3834     reg->how = DWARF2_FRAME_REG_CFA;
3835 }
3836 
3837 
3838 /* Return true if a .gnu_attributes section exists in BFD and it
3839    indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3840    section exists in BFD and it indicates that SPE extensions are in
3841    use.  Check the .gnu.attributes section first, as the binary might be
3842    compiled for SPE, but not actually using SPE instructions.  */
3843 
3844 static int
bfd_uses_spe_extensions(bfd * abfd)3845 bfd_uses_spe_extensions (bfd *abfd)
3846 {
3847   asection *sect;
3848   gdb_byte *contents = NULL;
3849   bfd_size_type size;
3850   gdb_byte *ptr;
3851   int success = 0;
3852 
3853   if (!abfd)
3854     return 0;
3855 
3856 #ifdef HAVE_ELF
3857   /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3858      could be using the SPE vector abi without actually using any spe
3859      bits whatsoever.  But it's close enough for now.  */
3860   int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3861 					     Tag_GNU_Power_ABI_Vector);
3862   if (vector_abi == 3)
3863     return 1;
3864 #endif
3865 
3866   sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3867   if (!sect)
3868     return 0;
3869 
3870   size = bfd_section_size (sect);
3871   contents = (gdb_byte *) xmalloc (size);
3872   if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3873     {
3874       xfree (contents);
3875       return 0;
3876     }
3877 
3878   /* Parse the .PPC.EMB.apuinfo section.  The layout is as follows:
3879 
3880      struct {
3881        uint32 name_len;
3882        uint32 data_len;
3883        uint32 type;
3884        char name[name_len rounded up to 4-byte alignment];
3885        char data[data_len];
3886      };
3887 
3888      Technically, there's only supposed to be one such structure in a
3889      given apuinfo section, but the linker is not always vigilant about
3890      merging apuinfo sections from input files.  Just go ahead and parse
3891      them all, exiting early when we discover the binary uses SPE
3892      insns.
3893 
3894      It's not specified in what endianness the information in this
3895      section is stored.  Assume that it's the endianness of the BFD.  */
3896   ptr = contents;
3897   while (1)
3898     {
3899       unsigned int name_len;
3900       unsigned int data_len;
3901       unsigned int type;
3902 
3903       /* If we can't read the first three fields, we're done.  */
3904       if (size < 12)
3905 	break;
3906 
3907       name_len = bfd_get_32 (abfd, ptr);
3908       name_len = (name_len + 3) & ~3U; /* Round to 4 bytes.  */
3909       data_len = bfd_get_32 (abfd, ptr + 4);
3910       type = bfd_get_32 (abfd, ptr + 8);
3911       ptr += 12;
3912 
3913       /* The name must be "APUinfo\0".  */
3914       if (name_len != 8
3915 	  && strcmp ((const char *) ptr, "APUinfo") != 0)
3916 	break;
3917       ptr += name_len;
3918 
3919       /* The type must be 2.  */
3920       if (type != 2)
3921 	break;
3922 
3923       /* The data is stored as a series of uint32.  The upper half of
3924 	 each uint32 indicates the particular APU used and the lower
3925 	 half indicates the revision of that APU.  We just care about
3926 	 the upper half.  */
3927 
3928       /* Not 4-byte quantities.  */
3929       if (data_len & 3U)
3930 	break;
3931 
3932       while (data_len)
3933 	{
3934 	  unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3935 	  unsigned int apu = apuinfo >> 16;
3936 	  ptr += 4;
3937 	  data_len -= 4;
3938 
3939 	  /* The SPE APU is 0x100; the SPEFP APU is 0x101.  Accept
3940 	     either.  */
3941 	  if (apu == 0x100 || apu == 0x101)
3942 	    {
3943 	      success = 1;
3944 	      data_len = 0;
3945 	    }
3946 	}
3947 
3948       if (success)
3949 	break;
3950     }
3951 
3952   xfree (contents);
3953   return success;
3954 }
3955 
3956 /* These are macros for parsing instruction fields (I.1.6.28)  */
3957 
3958 #define PPC_FIELD(value, from, len) \
3959 	(((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3960 #define PPC_SEXT(v, bs) \
3961 	((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3962 	  ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3963 	 - ((CORE_ADDR) 1 << ((bs) - 1)))
3964 #define PPC_OP6(insn)	PPC_FIELD (insn, 0, 6)
3965 #define PPC_EXTOP(insn)	PPC_FIELD (insn, 21, 10)
3966 #define PPC_RT(insn)	PPC_FIELD (insn, 6, 5)
3967 #define PPC_RS(insn)	PPC_FIELD (insn, 6, 5)
3968 #define PPC_RA(insn)	PPC_FIELD (insn, 11, 5)
3969 #define PPC_RB(insn)	PPC_FIELD (insn, 16, 5)
3970 #define PPC_NB(insn)	PPC_FIELD (insn, 16, 5)
3971 #define PPC_VRT(insn)	PPC_FIELD (insn, 6, 5)
3972 #define PPC_FRT(insn)	PPC_FIELD (insn, 6, 5)
3973 #define PPC_SPR(insn)	(PPC_FIELD (insn, 11, 5) \
3974 			| (PPC_FIELD (insn, 16, 5) << 5))
3975 #define PPC_BO(insn)	PPC_FIELD (insn, 6, 5)
3976 #define PPC_T(insn)	PPC_FIELD (insn, 6, 5)
3977 #define PPC_D(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3978 #define PPC_DS(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3979 #define PPC_DQ(insn)	PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3980 #define PPC_BIT(insn,n)	((insn & (1 << (31 - (n)))) ? 1 : 0)
3981 #define PPC_OE(insn)	PPC_BIT (insn, 21)
3982 #define PPC_RC(insn)	PPC_BIT (insn, 31)
3983 #define PPC_Rc(insn)	PPC_BIT (insn, 21)
3984 #define PPC_LK(insn)	PPC_BIT (insn, 31)
3985 #define PPC_TX(insn)	PPC_BIT (insn, 31)
3986 #define PPC_LEV(insn)	PPC_FIELD (insn, 20, 7)
3987 
3988 #define PPC_XT(insn)	((PPC_TX (insn) << 5) | PPC_T (insn))
3989 #define PPC_XER_NB(xer)	(xer & 0x7f)
3990 
3991 /* Record Vector-Scalar Registers.
3992    For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3993    Otherwise, it's just a VR register.  Record them accordingly.  */
3994 
3995 static int
ppc_record_vsr(struct regcache * regcache,struct gdbarch_tdep * tdep,int vsr)3996 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3997 {
3998   if (vsr < 0 || vsr >= 64)
3999     return -1;
4000 
4001   if (vsr >= 32)
4002     {
4003       if (tdep->ppc_vr0_regnum >= 0)
4004 	record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4005     }
4006   else
4007     {
4008       if (tdep->ppc_fp0_regnum >= 0)
4009 	record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4010       if (tdep->ppc_vsr0_upper_regnum >= 0)
4011 	record_full_arch_list_add_reg (regcache,
4012 				       tdep->ppc_vsr0_upper_regnum + vsr);
4013     }
4014 
4015   return 0;
4016 }
4017 
4018 /* Parse and record instructions primary opcode-4 at ADDR.
4019    Return 0 if successful.  */
4020 
4021 static int
ppc_process_record_op4(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)4022 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4023 			CORE_ADDR addr, uint32_t insn)
4024 {
4025   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4026   int ext = PPC_FIELD (insn, 21, 11);
4027   int vra = PPC_FIELD (insn, 11, 5);
4028 
4029   switch (ext & 0x3f)
4030     {
4031     case 32:		/* Vector Multiply-High-Add Signed Halfword Saturate */
4032     case 33:		/* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4033     case 39:		/* Vector Multiply-Sum Unsigned Halfword Saturate */
4034     case 41:		/* Vector Multiply-Sum Signed Halfword Saturate */
4035       record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4036       /* FALL-THROUGH */
4037     case 42:		/* Vector Select */
4038     case 43:		/* Vector Permute */
4039     case 59:		/* Vector Permute Right-indexed */
4040     case 44:		/* Vector Shift Left Double by Octet Immediate */
4041     case 45:		/* Vector Permute and Exclusive-OR */
4042     case 60:		/* Vector Add Extended Unsigned Quadword Modulo */
4043     case 61:		/* Vector Add Extended & write Carry Unsigned Quadword */
4044     case 62:		/* Vector Subtract Extended Unsigned Quadword Modulo */
4045     case 63:		/* Vector Subtract Extended & write Carry Unsigned Quadword */
4046     case 34:		/* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4047     case 35:		/* Vector Multiply-Sum Unsigned Doubleword Modulo */
4048     case 36:		/* Vector Multiply-Sum Unsigned Byte Modulo */
4049     case 37:		/* Vector Multiply-Sum Mixed Byte Modulo */
4050     case 38:		/* Vector Multiply-Sum Unsigned Halfword Modulo */
4051     case 40:		/* Vector Multiply-Sum Signed Halfword Modulo */
4052     case 46:		/* Vector Multiply-Add Single-Precision */
4053     case 47:		/* Vector Negative Multiply-Subtract Single-Precision */
4054       record_full_arch_list_add_reg (regcache,
4055 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4056       return 0;
4057 
4058     case 48:		/* Multiply-Add High Doubleword */
4059     case 49:		/* Multiply-Add High Doubleword Unsigned */
4060     case 51:		/* Multiply-Add Low Doubleword */
4061       record_full_arch_list_add_reg (regcache,
4062 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4063       return 0;
4064     }
4065 
4066   switch ((ext & 0x1ff))
4067     {
4068     case 385:
4069       if (vra != 0	/* Decimal Convert To Signed Quadword */
4070 	  && vra != 2	/* Decimal Convert From Signed Quadword */
4071 	  && vra != 4	/* Decimal Convert To Zoned */
4072 	  && vra != 5	/* Decimal Convert To National */
4073 	  && vra != 6	/* Decimal Convert From Zoned */
4074 	  && vra != 7	/* Decimal Convert From National */
4075 	  && vra != 31)	/* Decimal Set Sign */
4076 	break;
4077       /* Fall through.  */
4078 			/* 5.16 Decimal Integer Arithmetic Instructions */
4079     case 1:		/* Decimal Add Modulo */
4080     case 65:		/* Decimal Subtract Modulo */
4081 
4082     case 193:		/* Decimal Shift */
4083     case 129:		/* Decimal Unsigned Shift */
4084     case 449:		/* Decimal Shift and Round */
4085 
4086     case 257:		/* Decimal Truncate */
4087     case 321:		/* Decimal Unsigned Truncate */
4088 
4089       /* Bit-21 should be set.  */
4090       if (!PPC_BIT (insn, 21))
4091 	break;
4092 
4093       record_full_arch_list_add_reg (regcache,
4094 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4095       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4096       return 0;
4097     }
4098 
4099   /* Bit-21 is used for RC */
4100   switch (ext & 0x3ff)
4101     {
4102     case 6:		/* Vector Compare Equal To Unsigned Byte */
4103     case 70:		/* Vector Compare Equal To Unsigned Halfword */
4104     case 134:		/* Vector Compare Equal To Unsigned Word */
4105     case 199:		/* Vector Compare Equal To Unsigned Doubleword */
4106     case 774:		/* Vector Compare Greater Than Signed Byte */
4107     case 838:		/* Vector Compare Greater Than Signed Halfword */
4108     case 902:		/* Vector Compare Greater Than Signed Word */
4109     case 967:		/* Vector Compare Greater Than Signed Doubleword */
4110     case 518:		/* Vector Compare Greater Than Unsigned Byte */
4111     case 646:		/* Vector Compare Greater Than Unsigned Word */
4112     case 582:		/* Vector Compare Greater Than Unsigned Halfword */
4113     case 711:		/* Vector Compare Greater Than Unsigned Doubleword */
4114     case 966:		/* Vector Compare Bounds Single-Precision */
4115     case 198:		/* Vector Compare Equal To Single-Precision */
4116     case 454:		/* Vector Compare Greater Than or Equal To Single-Precision */
4117     case 710:		/* Vector Compare Greater Than Single-Precision */
4118     case 7:		/* Vector Compare Not Equal Byte */
4119     case 71:		/* Vector Compare Not Equal Halfword */
4120     case 135:		/* Vector Compare Not Equal Word */
4121     case 263:		/* Vector Compare Not Equal or Zero Byte */
4122     case 327:		/* Vector Compare Not Equal or Zero Halfword */
4123     case 391:		/* Vector Compare Not Equal or Zero Word */
4124       if (PPC_Rc (insn))
4125 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4126       record_full_arch_list_add_reg (regcache,
4127 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4128       return 0;
4129     }
4130 
4131   if (ext  == 1538)
4132     {
4133       switch (vra)
4134 	{
4135 	case 0:		/* Vector Count Leading Zero Least-Significant Bits
4136 			   Byte */
4137 	case 1:		/* Vector Count Trailing Zero Least-Significant Bits
4138 			   Byte */
4139 	  record_full_arch_list_add_reg (regcache,
4140 					 tdep->ppc_gp0_regnum + PPC_RT (insn));
4141 	  return 0;
4142 
4143 	case 6:		/* Vector Negate Word */
4144 	case 7:		/* Vector Negate Doubleword */
4145 	case 8:		/* Vector Parity Byte Word */
4146 	case 9:		/* Vector Parity Byte Doubleword */
4147 	case 10:	/* Vector Parity Byte Quadword */
4148 	case 16:	/* Vector Extend Sign Byte To Word */
4149 	case 17:	/* Vector Extend Sign Halfword To Word */
4150 	case 24:	/* Vector Extend Sign Byte To Doubleword */
4151 	case 25:	/* Vector Extend Sign Halfword To Doubleword */
4152 	case 26:	/* Vector Extend Sign Word To Doubleword */
4153 	case 28:	/* Vector Count Trailing Zeros Byte */
4154 	case 29:	/* Vector Count Trailing Zeros Halfword */
4155 	case 30:	/* Vector Count Trailing Zeros Word */
4156 	case 31:	/* Vector Count Trailing Zeros Doubleword */
4157 	  record_full_arch_list_add_reg (regcache,
4158 					 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4159 	  return 0;
4160 	}
4161     }
4162 
4163   switch (ext)
4164     {
4165     case 142:		/* Vector Pack Unsigned Halfword Unsigned Saturate */
4166     case 206:		/* Vector Pack Unsigned Word Unsigned Saturate */
4167     case 270:		/* Vector Pack Signed Halfword Unsigned Saturate */
4168     case 334:		/* Vector Pack Signed Word Unsigned Saturate */
4169     case 398:		/* Vector Pack Signed Halfword Signed Saturate */
4170     case 462:		/* Vector Pack Signed Word Signed Saturate */
4171     case 1230:		/* Vector Pack Unsigned Doubleword Unsigned Saturate */
4172     case 1358:		/* Vector Pack Signed Doubleword Unsigned Saturate */
4173     case 1486:		/* Vector Pack Signed Doubleword Signed Saturate */
4174     case 512:		/* Vector Add Unsigned Byte Saturate */
4175     case 576:		/* Vector Add Unsigned Halfword Saturate */
4176     case 640:		/* Vector Add Unsigned Word Saturate */
4177     case 768:		/* Vector Add Signed Byte Saturate */
4178     case 832:		/* Vector Add Signed Halfword Saturate */
4179     case 896:		/* Vector Add Signed Word Saturate */
4180     case 1536:		/* Vector Subtract Unsigned Byte Saturate */
4181     case 1600:		/* Vector Subtract Unsigned Halfword Saturate */
4182     case 1664:		/* Vector Subtract Unsigned Word Saturate */
4183     case 1792:		/* Vector Subtract Signed Byte Saturate */
4184     case 1856:		/* Vector Subtract Signed Halfword Saturate */
4185     case 1920:		/* Vector Subtract Signed Word Saturate */
4186 
4187     case 1544:		/* Vector Sum across Quarter Unsigned Byte Saturate */
4188     case 1800:		/* Vector Sum across Quarter Signed Byte Saturate */
4189     case 1608:		/* Vector Sum across Quarter Signed Halfword Saturate */
4190     case 1672:		/* Vector Sum across Half Signed Word Saturate */
4191     case 1928:		/* Vector Sum across Signed Word Saturate */
4192     case 970:		/* Vector Convert To Signed Fixed-Point Word Saturate */
4193     case 906:		/* Vector Convert To Unsigned Fixed-Point Word Saturate */
4194       record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4195       /* FALL-THROUGH */
4196     case 12:		/* Vector Merge High Byte */
4197     case 14:		/* Vector Pack Unsigned Halfword Unsigned Modulo */
4198     case 76:		/* Vector Merge High Halfword */
4199     case 78:		/* Vector Pack Unsigned Word Unsigned Modulo */
4200     case 140:		/* Vector Merge High Word */
4201     case 268:		/* Vector Merge Low Byte */
4202     case 332:		/* Vector Merge Low Halfword */
4203     case 396:		/* Vector Merge Low Word */
4204     case 526:		/* Vector Unpack High Signed Byte */
4205     case 590:		/* Vector Unpack High Signed Halfword */
4206     case 654:		/* Vector Unpack Low Signed Byte */
4207     case 718:		/* Vector Unpack Low Signed Halfword */
4208     case 782:		/* Vector Pack Pixel */
4209     case 846:		/* Vector Unpack High Pixel */
4210     case 974:		/* Vector Unpack Low Pixel */
4211     case 1102:		/* Vector Pack Unsigned Doubleword Unsigned Modulo */
4212     case 1614:		/* Vector Unpack High Signed Word */
4213     case 1676:		/* Vector Merge Odd Word */
4214     case 1742:		/* Vector Unpack Low Signed Word */
4215     case 1932:		/* Vector Merge Even Word */
4216     case 524:		/* Vector Splat Byte */
4217     case 588:		/* Vector Splat Halfword */
4218     case 652:		/* Vector Splat Word */
4219     case 780:		/* Vector Splat Immediate Signed Byte */
4220     case 844:		/* Vector Splat Immediate Signed Halfword */
4221     case 908:		/* Vector Splat Immediate Signed Word */
4222     case 452:		/* Vector Shift Left */
4223     case 708:		/* Vector Shift Right */
4224     case 1036:		/* Vector Shift Left by Octet */
4225     case 1100:		/* Vector Shift Right by Octet */
4226     case 0:		/* Vector Add Unsigned Byte Modulo */
4227     case 64:		/* Vector Add Unsigned Halfword Modulo */
4228     case 128:		/* Vector Add Unsigned Word Modulo */
4229     case 192:		/* Vector Add Unsigned Doubleword Modulo */
4230     case 256:		/* Vector Add Unsigned Quadword Modulo */
4231     case 320:		/* Vector Add & write Carry Unsigned Quadword */
4232     case 384:		/* Vector Add and Write Carry-Out Unsigned Word */
4233     case 8:		/* Vector Multiply Odd Unsigned Byte */
4234     case 72:		/* Vector Multiply Odd Unsigned Halfword */
4235     case 136:		/* Vector Multiply Odd Unsigned Word */
4236     case 264:		/* Vector Multiply Odd Signed Byte */
4237     case 328:		/* Vector Multiply Odd Signed Halfword */
4238     case 392:		/* Vector Multiply Odd Signed Word */
4239     case 520:		/* Vector Multiply Even Unsigned Byte */
4240     case 584:		/* Vector Multiply Even Unsigned Halfword */
4241     case 648:		/* Vector Multiply Even Unsigned Word */
4242     case 776:		/* Vector Multiply Even Signed Byte */
4243     case 840:		/* Vector Multiply Even Signed Halfword */
4244     case 904:		/* Vector Multiply Even Signed Word */
4245     case 137:		/* Vector Multiply Unsigned Word Modulo */
4246     case 1024:		/* Vector Subtract Unsigned Byte Modulo */
4247     case 1088:		/* Vector Subtract Unsigned Halfword Modulo */
4248     case 1152:		/* Vector Subtract Unsigned Word Modulo */
4249     case 1216:		/* Vector Subtract Unsigned Doubleword Modulo */
4250     case 1280:		/* Vector Subtract Unsigned Quadword Modulo */
4251     case 1344:		/* Vector Subtract & write Carry Unsigned Quadword */
4252     case 1408:		/* Vector Subtract and Write Carry-Out Unsigned Word */
4253     case 1282:		/* Vector Average Signed Byte */
4254     case 1346:		/* Vector Average Signed Halfword */
4255     case 1410:		/* Vector Average Signed Word */
4256     case 1026:		/* Vector Average Unsigned Byte */
4257     case 1090:		/* Vector Average Unsigned Halfword */
4258     case 1154:		/* Vector Average Unsigned Word */
4259     case 258:		/* Vector Maximum Signed Byte */
4260     case 322:		/* Vector Maximum Signed Halfword */
4261     case 386:		/* Vector Maximum Signed Word */
4262     case 450:		/* Vector Maximum Signed Doubleword */
4263     case 2:		/* Vector Maximum Unsigned Byte */
4264     case 66:		/* Vector Maximum Unsigned Halfword */
4265     case 130:		/* Vector Maximum Unsigned Word */
4266     case 194:		/* Vector Maximum Unsigned Doubleword */
4267     case 770:		/* Vector Minimum Signed Byte */
4268     case 834:		/* Vector Minimum Signed Halfword */
4269     case 898:		/* Vector Minimum Signed Word */
4270     case 962:		/* Vector Minimum Signed Doubleword */
4271     case 514:		/* Vector Minimum Unsigned Byte */
4272     case 578:		/* Vector Minimum Unsigned Halfword */
4273     case 642:		/* Vector Minimum Unsigned Word */
4274     case 706:		/* Vector Minimum Unsigned Doubleword */
4275     case 1028:		/* Vector Logical AND */
4276     case 1668:		/* Vector Logical Equivalent */
4277     case 1092:		/* Vector Logical AND with Complement */
4278     case 1412:		/* Vector Logical NAND */
4279     case 1348:		/* Vector Logical OR with Complement */
4280     case 1156:		/* Vector Logical OR */
4281     case 1284:		/* Vector Logical NOR */
4282     case 1220:		/* Vector Logical XOR */
4283     case 4:		/* Vector Rotate Left Byte */
4284     case 132:		/* Vector Rotate Left Word VX-form */
4285     case 68:		/* Vector Rotate Left Halfword */
4286     case 196:		/* Vector Rotate Left Doubleword */
4287     case 260:		/* Vector Shift Left Byte */
4288     case 388:		/* Vector Shift Left Word */
4289     case 324:		/* Vector Shift Left Halfword */
4290     case 1476:		/* Vector Shift Left Doubleword */
4291     case 516:		/* Vector Shift Right Byte */
4292     case 644:		/* Vector Shift Right Word */
4293     case 580:		/* Vector Shift Right Halfword */
4294     case 1732:		/* Vector Shift Right Doubleword */
4295     case 772:		/* Vector Shift Right Algebraic Byte */
4296     case 900:		/* Vector Shift Right Algebraic Word */
4297     case 836:		/* Vector Shift Right Algebraic Halfword */
4298     case 964:		/* Vector Shift Right Algebraic Doubleword */
4299     case 10:		/* Vector Add Single-Precision */
4300     case 74:		/* Vector Subtract Single-Precision */
4301     case 1034:		/* Vector Maximum Single-Precision */
4302     case 1098:		/* Vector Minimum Single-Precision */
4303     case 842:		/* Vector Convert From Signed Fixed-Point Word */
4304     case 778:		/* Vector Convert From Unsigned Fixed-Point Word */
4305     case 714:		/* Vector Round to Single-Precision Integer toward -Infinity */
4306     case 522:		/* Vector Round to Single-Precision Integer Nearest */
4307     case 650:		/* Vector Round to Single-Precision Integer toward +Infinity */
4308     case 586:		/* Vector Round to Single-Precision Integer toward Zero */
4309     case 394:		/* Vector 2 Raised to the Exponent Estimate Floating-Point */
4310     case 458:		/* Vector Log Base 2 Estimate Floating-Point */
4311     case 266:		/* Vector Reciprocal Estimate Single-Precision */
4312     case 330:		/* Vector Reciprocal Square Root Estimate Single-Precision */
4313     case 1288:		/* Vector AES Cipher */
4314     case 1289:		/* Vector AES Cipher Last */
4315     case 1352:		/* Vector AES Inverse Cipher */
4316     case 1353:		/* Vector AES Inverse Cipher Last */
4317     case 1480:		/* Vector AES SubBytes */
4318     case 1730:		/* Vector SHA-512 Sigma Doubleword */
4319     case 1666:		/* Vector SHA-256 Sigma Word */
4320     case 1032:		/* Vector Polynomial Multiply-Sum Byte */
4321     case 1160:		/* Vector Polynomial Multiply-Sum Word */
4322     case 1096:		/* Vector Polynomial Multiply-Sum Halfword */
4323     case 1224:		/* Vector Polynomial Multiply-Sum Doubleword */
4324     case 1292:		/* Vector Gather Bits by Bytes by Doubleword */
4325     case 1794:		/* Vector Count Leading Zeros Byte */
4326     case 1858:		/* Vector Count Leading Zeros Halfword */
4327     case 1922:		/* Vector Count Leading Zeros Word */
4328     case 1986:		/* Vector Count Leading Zeros Doubleword */
4329     case 1795:		/* Vector Population Count Byte */
4330     case 1859:		/* Vector Population Count Halfword */
4331     case 1923:		/* Vector Population Count Word */
4332     case 1987:		/* Vector Population Count Doubleword */
4333     case 1356:		/* Vector Bit Permute Quadword */
4334     case 1484:		/* Vector Bit Permute Doubleword */
4335     case 513:		/* Vector Multiply-by-10 Unsigned Quadword */
4336     case 1:		/* Vector Multiply-by-10 & write Carry Unsigned
4337 			   Quadword */
4338     case 577:		/* Vector Multiply-by-10 Extended Unsigned Quadword */
4339     case 65:		/* Vector Multiply-by-10 Extended & write Carry
4340 			   Unsigned Quadword */
4341     case 1027:		/* Vector Absolute Difference Unsigned Byte */
4342     case 1091:		/* Vector Absolute Difference Unsigned Halfword */
4343     case 1155:		/* Vector Absolute Difference Unsigned Word */
4344     case 1796:		/* Vector Shift Right Variable */
4345     case 1860:		/* Vector Shift Left Variable */
4346     case 133:		/* Vector Rotate Left Word then Mask Insert */
4347     case 197:		/* Vector Rotate Left Doubleword then Mask Insert */
4348     case 389:		/* Vector Rotate Left Word then AND with Mask */
4349     case 453:		/* Vector Rotate Left Doubleword then AND with Mask */
4350     case 525:		/* Vector Extract Unsigned Byte */
4351     case 589:		/* Vector Extract Unsigned Halfword */
4352     case 653:		/* Vector Extract Unsigned Word */
4353     case 717:		/* Vector Extract Doubleword */
4354     case 781:		/* Vector Insert Byte */
4355     case 845:		/* Vector Insert Halfword */
4356     case 909:		/* Vector Insert Word */
4357     case 973:		/* Vector Insert Doubleword */
4358       record_full_arch_list_add_reg (regcache,
4359 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4360       return 0;
4361 
4362     case 1549:		/* Vector Extract Unsigned Byte Left-Indexed */
4363     case 1613:		/* Vector Extract Unsigned Halfword Left-Indexed */
4364     case 1677:		/* Vector Extract Unsigned Word Left-Indexed */
4365     case 1805:		/* Vector Extract Unsigned Byte Right-Indexed */
4366     case 1869:		/* Vector Extract Unsigned Halfword Right-Indexed */
4367     case 1933:		/* Vector Extract Unsigned Word Right-Indexed */
4368       record_full_arch_list_add_reg (regcache,
4369 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4370       return 0;
4371 
4372     case 1604:		/* Move To Vector Status and Control Register */
4373       record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4374       return 0;
4375     case 1540:		/* Move From Vector Status and Control Register */
4376       record_full_arch_list_add_reg (regcache,
4377 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4378       return 0;
4379     case 833:		/* Decimal Copy Sign */
4380       record_full_arch_list_add_reg (regcache,
4381 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4382       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4383       return 0;
4384     }
4385 
4386   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4387 		      "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4388   return -1;
4389 }
4390 
4391 /* Parse and record instructions of primary opcode-19 at ADDR.
4392    Return 0 if successful.  */
4393 
4394 static int
ppc_process_record_op19(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)4395 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4396 			   CORE_ADDR addr, uint32_t insn)
4397 {
4398   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4399   int ext = PPC_EXTOP (insn);
4400 
4401   switch (ext & 0x01f)
4402     {
4403     case 2:		/* Add PC Immediate Shifted */
4404       record_full_arch_list_add_reg (regcache,
4405 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4406       return 0;
4407     }
4408 
4409   switch (ext)
4410     {
4411     case 0:		/* Move Condition Register Field */
4412     case 33:		/* Condition Register NOR */
4413     case 129:		/* Condition Register AND with Complement */
4414     case 193:		/* Condition Register XOR */
4415     case 225:		/* Condition Register NAND */
4416     case 257:		/* Condition Register AND */
4417     case 289:		/* Condition Register Equivalent */
4418     case 417:		/* Condition Register OR with Complement */
4419     case 449:		/* Condition Register OR */
4420       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4421       return 0;
4422 
4423     case 16:		/* Branch Conditional */
4424     case 560:		/* Branch Conditional to Branch Target Address Register */
4425       if ((PPC_BO (insn) & 0x4) == 0)
4426 	record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4427       /* FALL-THROUGH */
4428     case 528:		/* Branch Conditional to Count Register */
4429       if (PPC_LK (insn))
4430 	record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4431       return 0;
4432 
4433     case 150:		/* Instruction Synchronize */
4434       /* Do nothing.  */
4435       return 0;
4436     }
4437 
4438   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4439 		      "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4440   return -1;
4441 }
4442 
4443 /* Parse and record instructions of primary opcode-31 at ADDR.
4444    Return 0 if successful.  */
4445 
4446 static int
ppc_process_record_op31(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)4447 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4448 			   CORE_ADDR addr, uint32_t insn)
4449 {
4450   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4451   int ext = PPC_EXTOP (insn);
4452   int tmp, nr, nb, i;
4453   CORE_ADDR at_dcsz, ea = 0;
4454   ULONGEST rb, ra, xer;
4455   int size = 0;
4456 
4457   /* These instructions have OE bit.  */
4458   switch (ext & 0x1ff)
4459     {
4460     /* These write RT and XER.  Update CR if RC is set.  */
4461     case 8:		/* Subtract from carrying */
4462     case 10:		/* Add carrying */
4463     case 136:		/* Subtract from extended */
4464     case 138:		/* Add extended */
4465     case 200:		/* Subtract from zero extended */
4466     case 202:		/* Add to zero extended */
4467     case 232:		/* Subtract from minus one extended */
4468     case 234:		/* Add to minus one extended */
4469       /* CA is always altered, but SO/OV are only altered when OE=1.
4470 	 In any case, XER is always altered.  */
4471       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4472       if (PPC_RC (insn))
4473 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4474       record_full_arch_list_add_reg (regcache,
4475 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4476       return 0;
4477 
4478     /* These write RT.  Update CR if RC is set and update XER if OE is set.  */
4479     case 40:		/* Subtract from */
4480     case 104:		/* Negate */
4481     case 233:		/* Multiply low doubleword */
4482     case 235:		/* Multiply low word */
4483     case 266:		/* Add */
4484     case 393:		/* Divide Doubleword Extended Unsigned */
4485     case 395:		/* Divide Word Extended Unsigned */
4486     case 425:		/* Divide Doubleword Extended */
4487     case 427:		/* Divide Word Extended */
4488     case 457:		/* Divide Doubleword Unsigned */
4489     case 459:		/* Divide Word Unsigned */
4490     case 489:		/* Divide Doubleword */
4491     case 491:		/* Divide Word */
4492       if (PPC_OE (insn))
4493 	record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4494       /* FALL-THROUGH */
4495     case 9:		/* Multiply High Doubleword Unsigned */
4496     case 11:		/* Multiply High Word Unsigned */
4497     case 73:		/* Multiply High Doubleword */
4498     case 75:		/* Multiply High Word */
4499       if (PPC_RC (insn))
4500 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4501       record_full_arch_list_add_reg (regcache,
4502 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4503       return 0;
4504     }
4505 
4506   if ((ext & 0x1f) == 15)
4507     {
4508       /* Integer Select. bit[16:20] is used for BC.  */
4509       record_full_arch_list_add_reg (regcache,
4510 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4511       return 0;
4512     }
4513 
4514   if ((ext & 0xff) == 170)
4515     {
4516       /* Add Extended using alternate carry bits */
4517       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4518       record_full_arch_list_add_reg (regcache,
4519 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4520       return 0;
4521     }
4522 
4523   switch (ext)
4524     {
4525     case 78:		/* Determine Leftmost Zero Byte */
4526       if (PPC_RC (insn))
4527 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4528       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4529       record_full_arch_list_add_reg (regcache,
4530 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4531       return 0;
4532 
4533     /* These only write RT.  */
4534     case 19:		/* Move from condition register */
4535 			/* Move From One Condition Register Field */
4536     case 74:		/* Add and Generate Sixes */
4537     case 74 | 0x200:	/* Add and Generate Sixes (bit-21 dont-care) */
4538     case 302:		/* Move From Branch History Rolling Buffer */
4539     case 339:		/* Move From Special Purpose Register */
4540     case 371:		/* Move From Time Base [Phased-Out]  */
4541     case 309:		/* Load Doubleword Monitored Indexed  */
4542     case 128:		/* Set Boolean */
4543     case 755:		/* Deliver A Random Number */
4544       record_full_arch_list_add_reg (regcache,
4545 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4546       return 0;
4547 
4548     /* These only write to RA.  */
4549     case 51:		/* Move From VSR Doubleword */
4550     case 115:		/* Move From VSR Word and Zero */
4551     case 122:		/* Population count bytes */
4552     case 378:		/* Population count words */
4553     case 506:		/* Population count doublewords */
4554     case 154:		/* Parity Word */
4555     case 186:		/* Parity Doubleword */
4556     case 252:		/* Bit Permute Doubleword */
4557     case 282:		/* Convert Declets To Binary Coded Decimal */
4558     case 314:		/* Convert Binary Coded Decimal To Declets */
4559     case 508:		/* Compare bytes */
4560     case 307:		/* Move From VSR Lower Doubleword */
4561       record_full_arch_list_add_reg (regcache,
4562 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4563       return 0;
4564 
4565     /* These write CR and optional RA.  */
4566     case 792:		/* Shift Right Algebraic Word */
4567     case 794:		/* Shift Right Algebraic Doubleword */
4568     case 824:		/* Shift Right Algebraic Word Immediate */
4569     case 826:		/* Shift Right Algebraic Doubleword Immediate (413) */
4570     case 826 | 1:	/* Shift Right Algebraic Doubleword Immediate (413) */
4571       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4572       record_full_arch_list_add_reg (regcache,
4573 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4574       /* FALL-THROUGH */
4575     case 0:		/* Compare */
4576     case 32:		/* Compare logical */
4577     case 144:		/* Move To Condition Register Fields */
4578 			/* Move To One Condition Register Field */
4579     case 192:		/* Compare Ranged Byte */
4580     case 224:		/* Compare Equal Byte */
4581     case 576:		/* Move XER to CR Extended */
4582     case 902:		/* Paste (should always fail due to single-stepping and
4583 			   the memory location might not be accessible, so
4584 			   record only CR) */
4585       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4586       return 0;
4587 
4588     /* These write to RT.  Update RA if 'update indexed.'  */
4589     case 53:		/* Load Doubleword with Update Indexed */
4590     case 119:		/* Load Byte and Zero with Update Indexed */
4591     case 311:		/* Load Halfword and Zero with Update Indexed */
4592     case 55:		/* Load Word and Zero with Update Indexed */
4593     case 375:		/* Load Halfword Algebraic with Update Indexed */
4594     case 373:		/* Load Word Algebraic with Update Indexed */
4595       record_full_arch_list_add_reg (regcache,
4596 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4597       /* FALL-THROUGH */
4598     case 21:		/* Load Doubleword Indexed */
4599     case 52:		/* Load Byte And Reserve Indexed */
4600     case 116:		/* Load Halfword And Reserve Indexed */
4601     case 20:		/* Load Word And Reserve Indexed */
4602     case 84:		/* Load Doubleword And Reserve Indexed */
4603     case 87:		/* Load Byte and Zero Indexed */
4604     case 279:		/* Load Halfword and Zero Indexed */
4605     case 23:		/* Load Word and Zero Indexed */
4606     case 343:		/* Load Halfword Algebraic Indexed */
4607     case 341:		/* Load Word Algebraic Indexed */
4608     case 790:		/* Load Halfword Byte-Reverse Indexed */
4609     case 534:		/* Load Word Byte-Reverse Indexed */
4610     case 532:		/* Load Doubleword Byte-Reverse Indexed */
4611     case 582:		/* Load Word Atomic */
4612     case 614:		/* Load Doubleword Atomic */
4613     case 265:		/* Modulo Unsigned Doubleword */
4614     case 777:		/* Modulo Signed Doubleword */
4615     case 267:		/* Modulo Unsigned Word */
4616     case 779:		/* Modulo Signed Word */
4617       record_full_arch_list_add_reg (regcache,
4618 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
4619       return 0;
4620 
4621     case 597:		/* Load String Word Immediate */
4622     case 533:		/* Load String Word Indexed */
4623       if (ext == 597)
4624 	{
4625 	nr = PPC_NB (insn);
4626 	if (nr == 0)
4627 	  nr = 32;
4628 	}
4629       else
4630 	{
4631 	  regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4632 	  nr = PPC_XER_NB (xer);
4633 	}
4634 
4635       nr = (nr + 3) >> 2;
4636 
4637       /* If n=0, the contents of register RT are undefined.  */
4638       if (nr == 0)
4639 	nr = 1;
4640 
4641       for (i = 0; i < nr; i++)
4642 	record_full_arch_list_add_reg (regcache,
4643 				       tdep->ppc_gp0_regnum
4644 				       + ((PPC_RT (insn) + i) & 0x1f));
4645       return 0;
4646 
4647     case 276:		/* Load Quadword And Reserve Indexed */
4648       tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4649       record_full_arch_list_add_reg (regcache, tmp);
4650       record_full_arch_list_add_reg (regcache, tmp + 1);
4651       return 0;
4652 
4653     /* These write VRT.  */
4654     case 6:		/* Load Vector for Shift Left Indexed */
4655     case 38:		/* Load Vector for Shift Right Indexed */
4656     case 7:		/* Load Vector Element Byte Indexed */
4657     case 39:		/* Load Vector Element Halfword Indexed */
4658     case 71:		/* Load Vector Element Word Indexed */
4659     case 103:		/* Load Vector Indexed */
4660     case 359:		/* Load Vector Indexed LRU */
4661       record_full_arch_list_add_reg (regcache,
4662 				     tdep->ppc_vr0_regnum + PPC_VRT (insn));
4663       return 0;
4664 
4665     /* These write FRT.  Update RA if 'update indexed.'  */
4666     case 567:		/* Load Floating-Point Single with Update Indexed */
4667     case 631:		/* Load Floating-Point Double with Update Indexed */
4668       record_full_arch_list_add_reg (regcache,
4669 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4670       /* FALL-THROUGH */
4671     case 535:		/* Load Floating-Point Single Indexed */
4672     case 599:		/* Load Floating-Point Double Indexed */
4673     case 855:		/* Load Floating-Point as Integer Word Algebraic Indexed */
4674     case 887:		/* Load Floating-Point as Integer Word and Zero Indexed */
4675       record_full_arch_list_add_reg (regcache,
4676 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
4677       return 0;
4678 
4679     case 791:		/* Load Floating-Point Double Pair Indexed */
4680       tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4681       record_full_arch_list_add_reg (regcache, tmp);
4682       record_full_arch_list_add_reg (regcache, tmp + 1);
4683       return 0;
4684 
4685     case 179:		/* Move To VSR Doubleword */
4686     case 211:		/* Move To VSR Word Algebraic */
4687     case 243:		/* Move To VSR Word and Zero */
4688     case 588:		/* Load VSX Scalar Doubleword Indexed */
4689     case 524:		/* Load VSX Scalar Single-Precision Indexed */
4690     case 76:		/* Load VSX Scalar as Integer Word Algebraic Indexed */
4691     case 12:		/* Load VSX Scalar as Integer Word and Zero Indexed */
4692     case 844:		/* Load VSX Vector Doubleword*2 Indexed */
4693     case 332:		/* Load VSX Vector Doubleword & Splat Indexed */
4694     case 780:		/* Load VSX Vector Word*4 Indexed */
4695     case 268:		/* Load VSX Vector Indexed */
4696     case 364:		/* Load VSX Vector Word & Splat Indexed */
4697     case 812:		/* Load VSX Vector Halfword*8 Indexed */
4698     case 876:		/* Load VSX Vector Byte*16 Indexed */
4699     case 269:		/* Load VSX Vector with Length */
4700     case 301:		/* Load VSX Vector Left-justified with Length */
4701     case 781:		/* Load VSX Scalar as Integer Byte & Zero Indexed */
4702     case 813:		/* Load VSX Scalar as Integer Halfword & Zero Indexed */
4703     case 403:		/* Move To VSR Word & Splat */
4704     case 435:		/* Move To VSR Double Doubleword */
4705       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4706       return 0;
4707 
4708     /* These write RA.  Update CR if RC is set.  */
4709     case 24:		/* Shift Left Word */
4710     case 26:		/* Count Leading Zeros Word */
4711     case 27:		/* Shift Left Doubleword */
4712     case 28:		/* AND */
4713     case 58:		/* Count Leading Zeros Doubleword */
4714     case 60:		/* AND with Complement */
4715     case 124:		/* NOR */
4716     case 284:		/* Equivalent */
4717     case 316:		/* XOR */
4718     case 476:		/* NAND */
4719     case 412:		/* OR with Complement */
4720     case 444:		/* OR */
4721     case 536:		/* Shift Right Word */
4722     case 539:		/* Shift Right Doubleword */
4723     case 922:		/* Extend Sign Halfword */
4724     case 954:		/* Extend Sign Byte */
4725     case 986:		/* Extend Sign Word */
4726     case 538:		/* Count Trailing Zeros Word */
4727     case 570:		/* Count Trailing Zeros Doubleword */
4728     case 890:		/* Extend-Sign Word and Shift Left Immediate (445) */
4729     case 890 | 1:	/* Extend-Sign Word and Shift Left Immediate (445) */
4730 
4731       if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4732 	  && (PPC_RS (insn) == PPC_RA (insn))
4733 	  && (PPC_RA (insn) == PPC_RB (insn))
4734 	  && !PPC_RC (insn))
4735 	{
4736 	  /* or Rx,Rx,Rx alters PRI in PPR.  */
4737 	  record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4738 	  return 0;
4739 	}
4740 
4741       if (PPC_RC (insn))
4742 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4743       record_full_arch_list_add_reg (regcache,
4744 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4745       return 0;
4746 
4747     /* Store memory.  */
4748     case 181:		/* Store Doubleword with Update Indexed */
4749     case 183:		/* Store Word with Update Indexed */
4750     case 247:		/* Store Byte with Update Indexed */
4751     case 439:		/* Store Half Word with Update Indexed */
4752     case 695:		/* Store Floating-Point Single with Update Indexed */
4753     case 759:		/* Store Floating-Point Double with Update Indexed */
4754       record_full_arch_list_add_reg (regcache,
4755 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
4756       /* FALL-THROUGH */
4757     case 135:		/* Store Vector Element Byte Indexed */
4758     case 167:		/* Store Vector Element Halfword Indexed */
4759     case 199:		/* Store Vector Element Word Indexed */
4760     case 231:		/* Store Vector Indexed */
4761     case 487:		/* Store Vector Indexed LRU */
4762     case 716:		/* Store VSX Scalar Doubleword Indexed */
4763     case 140:		/* Store VSX Scalar as Integer Word Indexed */
4764     case 652:		/* Store VSX Scalar Single-Precision Indexed */
4765     case 972:		/* Store VSX Vector Doubleword*2 Indexed */
4766     case 908:		/* Store VSX Vector Word*4 Indexed */
4767     case 149:		/* Store Doubleword Indexed */
4768     case 151:		/* Store Word Indexed */
4769     case 215:		/* Store Byte Indexed */
4770     case 407:		/* Store Half Word Indexed */
4771     case 694:		/* Store Byte Conditional Indexed */
4772     case 726:		/* Store Halfword Conditional Indexed */
4773     case 150:		/* Store Word Conditional Indexed */
4774     case 214:		/* Store Doubleword Conditional Indexed */
4775     case 182:		/* Store Quadword Conditional Indexed */
4776     case 662:		/* Store Word Byte-Reverse Indexed */
4777     case 918:		/* Store Halfword Byte-Reverse Indexed */
4778     case 660:		/* Store Doubleword Byte-Reverse Indexed */
4779     case 663:		/* Store Floating-Point Single Indexed */
4780     case 727:		/* Store Floating-Point Double Indexed */
4781     case 919:		/* Store Floating-Point Double Pair Indexed */
4782     case 983:		/* Store Floating-Point as Integer Word Indexed */
4783     case 396:		/* Store VSX Vector Indexed */
4784     case 940:		/* Store VSX Vector Halfword*8 Indexed */
4785     case 1004:		/* Store VSX Vector Byte*16 Indexed */
4786     case 909:		/* Store VSX Scalar as Integer Byte Indexed */
4787     case 941:		/* Store VSX Scalar as Integer Halfword Indexed */
4788       if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4789 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4790 
4791       ra = 0;
4792       if (PPC_RA (insn) != 0)
4793 	regcache_raw_read_unsigned (regcache,
4794 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4795       regcache_raw_read_unsigned (regcache,
4796 				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4797       ea = ra + rb;
4798 
4799       switch (ext)
4800 	{
4801 	case 183:	/* Store Word with Update Indexed */
4802 	case 199:	/* Store Vector Element Word Indexed */
4803 	case 140:	/* Store VSX Scalar as Integer Word Indexed */
4804 	case 652:	/* Store VSX Scalar Single-Precision Indexed */
4805 	case 151:	/* Store Word Indexed */
4806 	case 150:	/* Store Word Conditional Indexed */
4807 	case 662:	/* Store Word Byte-Reverse Indexed */
4808 	case 663:	/* Store Floating-Point Single Indexed */
4809 	case 695:	/* Store Floating-Point Single with Update Indexed */
4810 	case 983:	/* Store Floating-Point as Integer Word Indexed */
4811 	  size = 4;
4812 	  break;
4813 	case 247:	/* Store Byte with Update Indexed */
4814 	case 135:	/* Store Vector Element Byte Indexed */
4815 	case 215:	/* Store Byte Indexed */
4816 	case 694:	/* Store Byte Conditional Indexed */
4817 	case 909:	/* Store VSX Scalar as Integer Byte Indexed */
4818 	  size = 1;
4819 	  break;
4820 	case 439:	/* Store Halfword with Update Indexed */
4821 	case 167:	/* Store Vector Element Halfword Indexed */
4822 	case 407:	/* Store Halfword Indexed */
4823 	case 726:	/* Store Halfword Conditional Indexed */
4824 	case 918:	/* Store Halfword Byte-Reverse Indexed */
4825 	case 941:	/* Store VSX Scalar as Integer Halfword Indexed */
4826 	  size = 2;
4827 	  break;
4828 	case 181:	/* Store Doubleword with Update Indexed */
4829 	case 716:	/* Store VSX Scalar Doubleword Indexed */
4830 	case 149:	/* Store Doubleword Indexed */
4831 	case 214:	/* Store Doubleword Conditional Indexed */
4832 	case 660:	/* Store Doubleword Byte-Reverse Indexed */
4833 	case 727:	/* Store Floating-Point Double Indexed */
4834 	case 759:	/* Store Floating-Point Double with Update Indexed */
4835 	  size = 8;
4836 	  break;
4837 	case 972:	/* Store VSX Vector Doubleword*2 Indexed */
4838 	case 908:	/* Store VSX Vector Word*4 Indexed */
4839 	case 182:	/* Store Quadword Conditional Indexed */
4840 	case 231:	/* Store Vector Indexed */
4841 	case 487:	/* Store Vector Indexed LRU */
4842 	case 919:	/* Store Floating-Point Double Pair Indexed */
4843 	case 396:	/* Store VSX Vector Indexed */
4844 	case 940:	/* Store VSX Vector Halfword*8 Indexed */
4845 	case 1004:	/* Store VSX Vector Byte*16 Indexed */
4846 	  size = 16;
4847 	  break;
4848 	default:
4849 	  gdb_assert (0);
4850 	}
4851 
4852       /* Align address for Store Vector instructions.  */
4853       switch (ext)
4854 	{
4855 	case 167:	/* Store Vector Element Halfword Indexed */
4856 	  addr = addr & ~0x1ULL;
4857 	  break;
4858 
4859 	case 199:	/* Store Vector Element Word Indexed */
4860 	  addr = addr & ~0x3ULL;
4861 	  break;
4862 
4863 	case 231:	/* Store Vector Indexed */
4864 	case 487:	/* Store Vector Indexed LRU */
4865 	  addr = addr & ~0xfULL;
4866 	  break;
4867 	}
4868 
4869       record_full_arch_list_add_mem (addr, size);
4870       return 0;
4871 
4872     case 397:		/* Store VSX Vector with Length */
4873     case 429:		/* Store VSX Vector Left-justified with Length */
4874       ra = 0;
4875       if (PPC_RA (insn) != 0)
4876 	regcache_raw_read_unsigned (regcache,
4877 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4878       ea = ra;
4879       regcache_raw_read_unsigned (regcache,
4880 				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4881       /* Store up to 16 bytes.  */
4882       nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4883       if (nb > 0)
4884 	record_full_arch_list_add_mem (ea, nb);
4885       return 0;
4886 
4887     case 710:		/* Store Word Atomic */
4888     case 742:		/* Store Doubleword Atomic */
4889       ra = 0;
4890       if (PPC_RA (insn) != 0)
4891 	regcache_raw_read_unsigned (regcache,
4892 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4893       ea = ra;
4894       switch (ext)
4895 	{
4896 	case 710:	/* Store Word Atomic */
4897 	  size = 8;
4898 	  break;
4899 	case 742:	/* Store Doubleword Atomic */
4900 	  size = 16;
4901 	  break;
4902 	default:
4903 	  gdb_assert (0);
4904 	}
4905       record_full_arch_list_add_mem (ea, size);
4906       return 0;
4907 
4908     case 725:		/* Store String Word Immediate */
4909       ra = 0;
4910       if (PPC_RA (insn) != 0)
4911 	regcache_raw_read_unsigned (regcache,
4912 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4913       ea += ra;
4914 
4915       nb = PPC_NB (insn);
4916       if (nb == 0)
4917 	nb = 32;
4918 
4919       record_full_arch_list_add_mem (ea, nb);
4920 
4921       return 0;
4922 
4923     case 661:		/* Store String Word Indexed */
4924       ra = 0;
4925       if (PPC_RA (insn) != 0)
4926 	regcache_raw_read_unsigned (regcache,
4927 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4928       ea += ra;
4929 
4930       regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4931       nb = PPC_XER_NB (xer);
4932 
4933       if (nb != 0)
4934 	{
4935 	  regcache_raw_read_unsigned (regcache,
4936 				      tdep->ppc_gp0_regnum + PPC_RB (insn),
4937 				      &rb);
4938 	  ea += rb;
4939 	  record_full_arch_list_add_mem (ea, nb);
4940 	}
4941 
4942       return 0;
4943 
4944     case 467:		/* Move To Special Purpose Register */
4945       switch (PPC_SPR (insn))
4946 	{
4947 	case 1:			/* XER */
4948 	  record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4949 	  return 0;
4950 	case 3:			/* DSCR */
4951 	  if (tdep->ppc_dscr_regnum >= 0)
4952 	    record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
4953 	  return 0;
4954 	case 8:			/* LR */
4955 	  record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4956 	  return 0;
4957 	case 9:			/* CTR */
4958 	  record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4959 	  return 0;
4960 	case 256:		/* VRSAVE */
4961 	  record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4962 	  return 0;
4963 	case 815:		/* TAR */
4964 	  if (tdep->ppc_tar_regnum >= 0)
4965 	    record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
4966 	  return 0;
4967 	case 896:
4968 	case 898:		/* PPR */
4969 	  if (tdep->ppc_ppr_regnum >= 0)
4970 	    record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4971 	  return 0;
4972 	}
4973 
4974       goto UNKNOWN_OP;
4975 
4976     case 147:		/* Move To Split Little Endian */
4977       record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4978       return 0;
4979 
4980     case 512:		/* Move to Condition Register from XER */
4981       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4982       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4983       return 0;
4984 
4985     case 4:		/* Trap Word */
4986     case 68:		/* Trap Doubleword */
4987     case 430:		/* Clear BHRB */
4988     case 598:		/* Synchronize */
4989     case 62:		/* Wait for Interrupt */
4990     case 30:		/* Wait */
4991     case 22:		/* Instruction Cache Block Touch */
4992     case 854:		/* Enforce In-order Execution of I/O */
4993     case 246:		/* Data Cache Block Touch for Store */
4994     case 54:		/* Data Cache Block Store */
4995     case 86:		/* Data Cache Block Flush */
4996     case 278:		/* Data Cache Block Touch */
4997     case 758:		/* Data Cache Block Allocate */
4998     case 982:		/* Instruction Cache Block Invalidate */
4999     case 774:		/* Copy */
5000     case 838:		/* CP_Abort */
5001       return 0;
5002 
5003     case 654:		/* Transaction Begin */
5004     case 686:		/* Transaction End */
5005     case 750:		/* Transaction Suspend or Resume */
5006     case 782:		/* Transaction Abort Word Conditional */
5007     case 814:		/* Transaction Abort Doubleword Conditional */
5008     case 846:		/* Transaction Abort Word Conditional Immediate */
5009     case 878:		/* Transaction Abort Doubleword Conditional Immediate */
5010     case 910:		/* Transaction Abort */
5011       record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5012       /* FALL-THROUGH */
5013     case 718:		/* Transaction Check */
5014       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5015       return 0;
5016 
5017     case 1014:		/* Data Cache Block set to Zero */
5018       if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
5019 	  || at_dcsz == 0)
5020 	at_dcsz = 128; /* Assume 128-byte cache line size (POWER8)  */
5021 
5022       ra = 0;
5023       if (PPC_RA (insn) != 0)
5024 	regcache_raw_read_unsigned (regcache,
5025 				    tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5026       regcache_raw_read_unsigned (regcache,
5027 				  tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5028       ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5029       record_full_arch_list_add_mem (ea, at_dcsz);
5030       return 0;
5031     }
5032 
5033 UNKNOWN_OP:
5034   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5035 		      "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5036   return -1;
5037 }
5038 
5039 /* Parse and record instructions of primary opcode-59 at ADDR.
5040    Return 0 if successful.  */
5041 
5042 static int
ppc_process_record_op59(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)5043 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5044 			   CORE_ADDR addr, uint32_t insn)
5045 {
5046   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5047   int ext = PPC_EXTOP (insn);
5048 
5049   switch (ext & 0x1f)
5050     {
5051     case 18:		/* Floating Divide */
5052     case 20:		/* Floating Subtract */
5053     case 21:		/* Floating Add */
5054     case 22:		/* Floating Square Root */
5055     case 24:		/* Floating Reciprocal Estimate */
5056     case 25:		/* Floating Multiply */
5057     case 26:		/* Floating Reciprocal Square Root Estimate */
5058     case 28:		/* Floating Multiply-Subtract */
5059     case 29:		/* Floating Multiply-Add */
5060     case 30:		/* Floating Negative Multiply-Subtract */
5061     case 31:		/* Floating Negative Multiply-Add */
5062       record_full_arch_list_add_reg (regcache,
5063 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5064       if (PPC_RC (insn))
5065 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5066       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5067 
5068       return 0;
5069     }
5070 
5071   switch (ext)
5072     {
5073     case 2:		/* DFP Add */
5074     case 3:		/* DFP Quantize */
5075     case 34:		/* DFP Multiply */
5076     case 35:		/* DFP Reround */
5077     case 67:		/* DFP Quantize Immediate */
5078     case 99:		/* DFP Round To FP Integer With Inexact */
5079     case 227:		/* DFP Round To FP Integer Without Inexact */
5080     case 258:		/* DFP Convert To DFP Long! */
5081     case 290:		/* DFP Convert To Fixed */
5082     case 514:		/* DFP Subtract */
5083     case 546:		/* DFP Divide */
5084     case 770:		/* DFP Round To DFP Short! */
5085     case 802:		/* DFP Convert From Fixed */
5086     case 834:		/* DFP Encode BCD To DPD */
5087       if (PPC_RC (insn))
5088 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5089       record_full_arch_list_add_reg (regcache,
5090 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5091       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5092       return 0;
5093 
5094     case 130:		/* DFP Compare Ordered */
5095     case 162:		/* DFP Test Exponent */
5096     case 194:		/* DFP Test Data Class */
5097     case 226:		/* DFP Test Data Group */
5098     case 642:		/* DFP Compare Unordered */
5099     case 674:		/* DFP Test Significance */
5100     case 675:		/* DFP Test Significance Immediate */
5101       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5102       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5103       return 0;
5104 
5105     case 66:		/* DFP Shift Significand Left Immediate */
5106     case 98:		/* DFP Shift Significand Right Immediate */
5107     case 322:		/* DFP Decode DPD To BCD */
5108     case 354:		/* DFP Extract Biased Exponent */
5109     case 866:		/* DFP Insert Biased Exponent */
5110       record_full_arch_list_add_reg (regcache,
5111 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5112       if (PPC_RC (insn))
5113 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5114       return 0;
5115 
5116     case 846:		/* Floating Convert From Integer Doubleword Single */
5117     case 974:		/* Floating Convert From Integer Doubleword Unsigned
5118 			   Single */
5119       record_full_arch_list_add_reg (regcache,
5120 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5121       if (PPC_RC (insn))
5122 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5123       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5124 
5125       return 0;
5126     }
5127 
5128   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5129 		      "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5130   return -1;
5131 }
5132 
5133 /* Parse and record instructions of primary opcode-60 at ADDR.
5134    Return 0 if successful.  */
5135 
5136 static int
ppc_process_record_op60(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)5137 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5138 			   CORE_ADDR addr, uint32_t insn)
5139 {
5140   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5141   int ext = PPC_EXTOP (insn);
5142 
5143   switch (ext >> 2)
5144     {
5145     case 0:		/* VSX Scalar Add Single-Precision */
5146     case 32:		/* VSX Scalar Add Double-Precision */
5147     case 24:		/* VSX Scalar Divide Single-Precision */
5148     case 56:		/* VSX Scalar Divide Double-Precision */
5149     case 176:		/* VSX Scalar Copy Sign Double-Precision */
5150     case 33:		/* VSX Scalar Multiply-Add Double-Precision */
5151     case 41:		/* ditto */
5152     case 1:		/* VSX Scalar Multiply-Add Single-Precision */
5153     case 9:		/* ditto */
5154     case 160:		/* VSX Scalar Maximum Double-Precision */
5155     case 168:		/* VSX Scalar Minimum Double-Precision */
5156     case 49:		/* VSX Scalar Multiply-Subtract Double-Precision */
5157     case 57:		/* ditto */
5158     case 17:		/* VSX Scalar Multiply-Subtract Single-Precision */
5159     case 25:		/* ditto */
5160     case 48:		/* VSX Scalar Multiply Double-Precision */
5161     case 16:		/* VSX Scalar Multiply Single-Precision */
5162     case 161:		/* VSX Scalar Negative Multiply-Add Double-Precision */
5163     case 169:		/* ditto */
5164     case 129:		/* VSX Scalar Negative Multiply-Add Single-Precision */
5165     case 137:		/* ditto */
5166     case 177:		/* VSX Scalar Negative Multiply-Subtract Double-Precision */
5167     case 185:		/* ditto */
5168     case 145:		/* VSX Scalar Negative Multiply-Subtract Single-Precision */
5169     case 153:		/* ditto */
5170     case 40:		/* VSX Scalar Subtract Double-Precision */
5171     case 8:		/* VSX Scalar Subtract Single-Precision */
5172     case 96:		/* VSX Vector Add Double-Precision */
5173     case 64:		/* VSX Vector Add Single-Precision */
5174     case 120:		/* VSX Vector Divide Double-Precision */
5175     case 88:		/* VSX Vector Divide Single-Precision */
5176     case 97:		/* VSX Vector Multiply-Add Double-Precision */
5177     case 105:		/* ditto */
5178     case 65:		/* VSX Vector Multiply-Add Single-Precision */
5179     case 73:		/* ditto */
5180     case 224:		/* VSX Vector Maximum Double-Precision */
5181     case 192:		/* VSX Vector Maximum Single-Precision */
5182     case 232:		/* VSX Vector Minimum Double-Precision */
5183     case 200:		/* VSX Vector Minimum Single-Precision */
5184     case 113:		/* VSX Vector Multiply-Subtract Double-Precision */
5185     case 121:		/* ditto */
5186     case 81:		/* VSX Vector Multiply-Subtract Single-Precision */
5187     case 89:		/* ditto */
5188     case 112:		/* VSX Vector Multiply Double-Precision */
5189     case 80:		/* VSX Vector Multiply Single-Precision */
5190     case 225:		/* VSX Vector Negative Multiply-Add Double-Precision */
5191     case 233:		/* ditto */
5192     case 193:		/* VSX Vector Negative Multiply-Add Single-Precision */
5193     case 201:		/* ditto */
5194     case 241:		/* VSX Vector Negative Multiply-Subtract Double-Precision */
5195     case 249:		/* ditto */
5196     case 209:		/* VSX Vector Negative Multiply-Subtract Single-Precision */
5197     case 217:		/* ditto */
5198     case 104:		/* VSX Vector Subtract Double-Precision */
5199     case 72:		/* VSX Vector Subtract Single-Precision */
5200     case 128:		/* VSX Scalar Maximum Type-C Double-Precision */
5201     case 136:		/* VSX Scalar Minimum Type-C Double-Precision */
5202     case 144:		/* VSX Scalar Maximum Type-J Double-Precision */
5203     case 152:		/* VSX Scalar Minimum Type-J Double-Precision */
5204     case 3:		/* VSX Scalar Compare Equal Double-Precision */
5205     case 11:		/* VSX Scalar Compare Greater Than Double-Precision */
5206     case 19:		/* VSX Scalar Compare Greater Than or Equal
5207 			   Double-Precision */
5208       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5209       /* FALL-THROUGH */
5210     case 240:		/* VSX Vector Copy Sign Double-Precision */
5211     case 208:		/* VSX Vector Copy Sign Single-Precision */
5212     case 130:		/* VSX Logical AND */
5213     case 138:		/* VSX Logical AND with Complement */
5214     case 186:		/* VSX Logical Equivalence */
5215     case 178:		/* VSX Logical NAND */
5216     case 170:		/* VSX Logical OR with Complement */
5217     case 162:		/* VSX Logical NOR */
5218     case 146:		/* VSX Logical OR */
5219     case 154:		/* VSX Logical XOR */
5220     case 18:		/* VSX Merge High Word */
5221     case 50:		/* VSX Merge Low Word */
5222     case 10:		/* VSX Permute Doubleword Immediate (DM=0) */
5223     case 10 | 0x20:	/* VSX Permute Doubleword Immediate (DM=1) */
5224     case 10 | 0x40:	/* VSX Permute Doubleword Immediate (DM=2) */
5225     case 10 | 0x60:	/* VSX Permute Doubleword Immediate (DM=3) */
5226     case 2:		/* VSX Shift Left Double by Word Immediate (SHW=0) */
5227     case 2 | 0x20:	/* VSX Shift Left Double by Word Immediate (SHW=1) */
5228     case 2 | 0x40:	/* VSX Shift Left Double by Word Immediate (SHW=2) */
5229     case 2 | 0x60:	/* VSX Shift Left Double by Word Immediate (SHW=3) */
5230     case 216:		/* VSX Vector Insert Exponent Single-Precision */
5231     case 248:		/* VSX Vector Insert Exponent Double-Precision */
5232     case 26:		/* VSX Vector Permute */
5233     case 58:		/* VSX Vector Permute Right-indexed */
5234     case 213:		/* VSX Vector Test Data Class Single-Precision (DC=0) */
5235     case 213 | 0x8:	/* VSX Vector Test Data Class Single-Precision (DC=1) */
5236     case 245:		/* VSX Vector Test Data Class Double-Precision (DC=0) */
5237     case 245 | 0x8:	/* VSX Vector Test Data Class Double-Precision (DC=1) */
5238       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5239       return 0;
5240 
5241     case 61:		/* VSX Scalar Test for software Divide Double-Precision */
5242     case 125:		/* VSX Vector Test for software Divide Double-Precision */
5243     case 93:		/* VSX Vector Test for software Divide Single-Precision */
5244       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5245       return 0;
5246 
5247     case 35:		/* VSX Scalar Compare Unordered Double-Precision */
5248     case 43:		/* VSX Scalar Compare Ordered Double-Precision */
5249     case 59:		/* VSX Scalar Compare Exponents Double-Precision */
5250       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5251       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5252       return 0;
5253     }
5254 
5255   switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit.  */
5256     {
5257     case 99:		/* VSX Vector Compare Equal To Double-Precision */
5258     case 67:		/* VSX Vector Compare Equal To Single-Precision */
5259     case 115:		/* VSX Vector Compare Greater Than or
5260 			   Equal To Double-Precision */
5261     case 83:		/* VSX Vector Compare Greater Than or
5262 			   Equal To Single-Precision */
5263     case 107:		/* VSX Vector Compare Greater Than Double-Precision */
5264     case 75:		/* VSX Vector Compare Greater Than Single-Precision */
5265       if (PPC_Rc (insn))
5266 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5267       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5268       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5269       return 0;
5270     }
5271 
5272   switch (ext >> 1)
5273     {
5274     case 265:		/* VSX Scalar round Double-Precision to
5275 			   Single-Precision and Convert to
5276 			   Single-Precision format */
5277     case 344:		/* VSX Scalar truncate Double-Precision to
5278 			   Integer and Convert to Signed Integer
5279 			   Doubleword format with Saturate */
5280     case 88:		/* VSX Scalar truncate Double-Precision to
5281 			   Integer and Convert to Signed Integer Word
5282 			   Format with Saturate */
5283     case 328:		/* VSX Scalar truncate Double-Precision integer
5284 			   and Convert to Unsigned Integer Doubleword
5285 			   Format with Saturate */
5286     case 72:		/* VSX Scalar truncate Double-Precision to
5287 			   Integer and Convert to Unsigned Integer Word
5288 			   Format with Saturate */
5289     case 329:		/* VSX Scalar Convert Single-Precision to
5290 			   Double-Precision format */
5291     case 376:		/* VSX Scalar Convert Signed Integer
5292 			   Doubleword to floating-point format and
5293 			   Round to Double-Precision format */
5294     case 312:		/* VSX Scalar Convert Signed Integer
5295 			   Doubleword to floating-point format and
5296 			   round to Single-Precision */
5297     case 360:		/* VSX Scalar Convert Unsigned Integer
5298 			   Doubleword to floating-point format and
5299 			   Round to Double-Precision format */
5300     case 296:		/* VSX Scalar Convert Unsigned Integer
5301 			   Doubleword to floating-point format and
5302 			   Round to Single-Precision */
5303     case 73:		/* VSX Scalar Round to Double-Precision Integer
5304 			   Using Round to Nearest Away */
5305     case 107:		/* VSX Scalar Round to Double-Precision Integer
5306 			   Exact using Current rounding mode */
5307     case 121:		/* VSX Scalar Round to Double-Precision Integer
5308 			   Using Round toward -Infinity */
5309     case 105:		/* VSX Scalar Round to Double-Precision Integer
5310 			   Using Round toward +Infinity */
5311     case 89:		/* VSX Scalar Round to Double-Precision Integer
5312 			   Using Round toward Zero */
5313     case 90:		/* VSX Scalar Reciprocal Estimate Double-Precision */
5314     case 26:		/* VSX Scalar Reciprocal Estimate Single-Precision */
5315     case 281:		/* VSX Scalar Round to Single-Precision */
5316     case 74:		/* VSX Scalar Reciprocal Square Root Estimate
5317 			   Double-Precision */
5318     case 10:		/* VSX Scalar Reciprocal Square Root Estimate
5319 			   Single-Precision */
5320     case 75:		/* VSX Scalar Square Root Double-Precision */
5321     case 11:		/* VSX Scalar Square Root Single-Precision */
5322     case 393:		/* VSX Vector round Double-Precision to
5323 			   Single-Precision and Convert to
5324 			   Single-Precision format */
5325     case 472:		/* VSX Vector truncate Double-Precision to
5326 			   Integer and Convert to Signed Integer
5327 			   Doubleword format with Saturate */
5328     case 216:		/* VSX Vector truncate Double-Precision to
5329 			   Integer and Convert to Signed Integer Word
5330 			   Format with Saturate */
5331     case 456:		/* VSX Vector truncate Double-Precision to
5332 			   Integer and Convert to Unsigned Integer
5333 			   Doubleword format with Saturate */
5334     case 200:		/* VSX Vector truncate Double-Precision to
5335 			   Integer and Convert to Unsigned Integer Word
5336 			   Format with Saturate */
5337     case 457:		/* VSX Vector Convert Single-Precision to
5338 			   Double-Precision format */
5339     case 408:		/* VSX Vector truncate Single-Precision to
5340 			   Integer and Convert to Signed Integer
5341 			   Doubleword format with Saturate */
5342     case 152:		/* VSX Vector truncate Single-Precision to
5343 			   Integer and Convert to Signed Integer Word
5344 			   Format with Saturate */
5345     case 392:		/* VSX Vector truncate Single-Precision to
5346 			   Integer and Convert to Unsigned Integer
5347 			   Doubleword format with Saturate */
5348     case 136:		/* VSX Vector truncate Single-Precision to
5349 			   Integer and Convert to Unsigned Integer Word
5350 			   Format with Saturate */
5351     case 504:		/* VSX Vector Convert and round Signed Integer
5352 			   Doubleword to Double-Precision format */
5353     case 440:		/* VSX Vector Convert and round Signed Integer
5354 			   Doubleword to Single-Precision format */
5355     case 248:		/* VSX Vector Convert Signed Integer Word to
5356 			   Double-Precision format */
5357     case 184:		/* VSX Vector Convert and round Signed Integer
5358 			   Word to Single-Precision format */
5359     case 488:		/* VSX Vector Convert and round Unsigned
5360 			   Integer Doubleword to Double-Precision format */
5361     case 424:		/* VSX Vector Convert and round Unsigned
5362 			   Integer Doubleword to Single-Precision format */
5363     case 232:		/* VSX Vector Convert and round Unsigned
5364 			   Integer Word to Double-Precision format */
5365     case 168:		/* VSX Vector Convert and round Unsigned
5366 			   Integer Word to Single-Precision format */
5367     case 201:		/* VSX Vector Round to Double-Precision
5368 			   Integer using round to Nearest Away */
5369     case 235:		/* VSX Vector Round to Double-Precision
5370 			   Integer Exact using Current rounding mode */
5371     case 249:		/* VSX Vector Round to Double-Precision
5372 			   Integer using round toward -Infinity */
5373     case 233:		/* VSX Vector Round to Double-Precision
5374 			   Integer using round toward +Infinity */
5375     case 217:		/* VSX Vector Round to Double-Precision
5376 			   Integer using round toward Zero */
5377     case 218:		/* VSX Vector Reciprocal Estimate Double-Precision */
5378     case 154:		/* VSX Vector Reciprocal Estimate Single-Precision */
5379     case 137:		/* VSX Vector Round to Single-Precision Integer
5380 			   Using Round to Nearest Away */
5381     case 171:		/* VSX Vector Round to Single-Precision Integer
5382 			   Exact Using Current rounding mode */
5383     case 185:		/* VSX Vector Round to Single-Precision Integer
5384 			   Using Round toward -Infinity */
5385     case 169:		/* VSX Vector Round to Single-Precision Integer
5386 			   Using Round toward +Infinity */
5387     case 153:		/* VSX Vector Round to Single-Precision Integer
5388 			   Using round toward Zero */
5389     case 202:		/* VSX Vector Reciprocal Square Root Estimate
5390 			   Double-Precision */
5391     case 138:		/* VSX Vector Reciprocal Square Root Estimate
5392 			   Single-Precision */
5393     case 203:		/* VSX Vector Square Root Double-Precision */
5394     case 139:		/* VSX Vector Square Root Single-Precision */
5395       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5396       /* FALL-THROUGH */
5397     case 345:		/* VSX Scalar Absolute Value Double-Precision */
5398     case 267:		/* VSX Scalar Convert Scalar Single-Precision to
5399 			   Vector Single-Precision format Non-signalling */
5400     case 331:		/* VSX Scalar Convert Single-Precision to
5401 			   Double-Precision format Non-signalling */
5402     case 361:		/* VSX Scalar Negative Absolute Value Double-Precision */
5403     case 377:		/* VSX Scalar Negate Double-Precision */
5404     case 473:		/* VSX Vector Absolute Value Double-Precision */
5405     case 409:		/* VSX Vector Absolute Value Single-Precision */
5406     case 489:		/* VSX Vector Negative Absolute Value Double-Precision */
5407     case 425:		/* VSX Vector Negative Absolute Value Single-Precision */
5408     case 505:		/* VSX Vector Negate Double-Precision */
5409     case 441:		/* VSX Vector Negate Single-Precision */
5410     case 164:		/* VSX Splat Word */
5411     case 165:		/* VSX Vector Extract Unsigned Word */
5412     case 181:		/* VSX Vector Insert Word */
5413       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5414       return 0;
5415 
5416     case 298:		/* VSX Scalar Test Data Class Single-Precision */
5417     case 362:		/* VSX Scalar Test Data Class Double-Precision */
5418       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5419       /* FALL-THROUGH */
5420     case 106:		/* VSX Scalar Test for software Square Root
5421 			   Double-Precision */
5422     case 234:		/* VSX Vector Test for software Square Root
5423 			   Double-Precision */
5424     case 170:		/* VSX Vector Test for software Square Root
5425 			   Single-Precision */
5426       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5427       return 0;
5428 
5429     case 347:
5430       switch (PPC_FIELD (insn, 11, 5))
5431 	{
5432 	case 0:		/* VSX Scalar Extract Exponent Double-Precision */
5433 	case 1:		/* VSX Scalar Extract Significand Double-Precision */
5434           record_full_arch_list_add_reg (regcache,
5435 					 tdep->ppc_gp0_regnum + PPC_RT (insn));
5436 	  return 0;
5437 	case 16:	/* VSX Scalar Convert Half-Precision format to
5438 			   Double-Precision format */
5439 	case 17:	/* VSX Scalar round & Convert Double-Precision format
5440 			   to Half-Precision format */
5441 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5442 	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5443 	  return 0;
5444 	}
5445       break;
5446 
5447     case 475:
5448       switch (PPC_FIELD (insn, 11, 5))
5449 	{
5450 	case 24:	/* VSX Vector Convert Half-Precision format to
5451 			   Single-Precision format */
5452 	case 25:	/* VSX Vector round and Convert Single-Precision format
5453 			   to Half-Precision format */
5454 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5455 	  /* FALL-THROUGH */
5456 	case 0:		/* VSX Vector Extract Exponent Double-Precision */
5457 	case 1:		/* VSX Vector Extract Significand Double-Precision */
5458 	case 7:		/* VSX Vector Byte-Reverse Halfword */
5459 	case 8:		/* VSX Vector Extract Exponent Single-Precision */
5460 	case 9:		/* VSX Vector Extract Significand Single-Precision */
5461 	case 15:	/* VSX Vector Byte-Reverse Word */
5462 	case 23:	/* VSX Vector Byte-Reverse Doubleword */
5463 	case 31:	/* VSX Vector Byte-Reverse Quadword */
5464 	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5465 	  return 0;
5466 	}
5467       break;
5468     }
5469 
5470   switch (ext)
5471     {
5472     case 360:		/* VSX Vector Splat Immediate Byte */
5473       if (PPC_FIELD (insn, 11, 2) == 0)
5474 	{
5475 	  ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5476 	  return 0;
5477 	}
5478       break;
5479     case 918:		/* VSX Scalar Insert Exponent Double-Precision */
5480       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5481       return 0;
5482     }
5483 
5484   if (((ext >> 3) & 0x3) == 3)	/* VSX Select */
5485     {
5486       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5487       return 0;
5488     }
5489 
5490   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5491 		      "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5492   return -1;
5493 }
5494 
5495 /* Parse and record instructions of primary opcode-61 at ADDR.
5496    Return 0 if successful.  */
5497 
5498 static int
ppc_process_record_op61(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)5499 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5500 			   CORE_ADDR addr, uint32_t insn)
5501 {
5502   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5503   ULONGEST ea = 0;
5504   int size;
5505 
5506   switch (insn & 0x3)
5507     {
5508     case 0:		/* Store Floating-Point Double Pair */
5509     case 2:		/* Store VSX Scalar Doubleword */
5510     case 3:		/* Store VSX Scalar Single */
5511       if (PPC_RA (insn) != 0)
5512 	regcache_raw_read_unsigned (regcache,
5513 				    tdep->ppc_gp0_regnum + PPC_RA (insn),
5514 				    &ea);
5515       ea += PPC_DS (insn) << 2;
5516       switch (insn & 0x3)
5517 	{
5518 	case 0:		/* Store Floating-Point Double Pair */
5519 	  size = 16;
5520 	  break;
5521 	case 2:		/* Store VSX Scalar Doubleword */
5522 	  size = 8;
5523 	  break;
5524 	case 3:		/* Store VSX Scalar Single */
5525 	  size = 4;
5526 	  break;
5527 	default:
5528 	  gdb_assert (0);
5529 	}
5530       record_full_arch_list_add_mem (ea, size);
5531       return 0;
5532     }
5533 
5534   switch (insn & 0x7)
5535     {
5536     case 1:		/* Load VSX Vector */
5537       ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5538       return 0;
5539     case 5:		/* Store VSX Vector */
5540       if (PPC_RA (insn) != 0)
5541 	regcache_raw_read_unsigned (regcache,
5542 				    tdep->ppc_gp0_regnum + PPC_RA (insn),
5543 				    &ea);
5544       ea += PPC_DQ (insn) << 4;
5545       record_full_arch_list_add_mem (ea, 16);
5546       return 0;
5547     }
5548 
5549   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5550 		      "at %s.\n", insn, paddress (gdbarch, addr));
5551   return -1;
5552 }
5553 
5554 /* Parse and record instructions of primary opcode-63 at ADDR.
5555    Return 0 if successful.  */
5556 
5557 static int
ppc_process_record_op63(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr,uint32_t insn)5558 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5559 			   CORE_ADDR addr, uint32_t insn)
5560 {
5561   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5562   int ext = PPC_EXTOP (insn);
5563   int tmp;
5564 
5565   switch (ext & 0x1f)
5566     {
5567     case 18:		/* Floating Divide */
5568     case 20:		/* Floating Subtract */
5569     case 21:		/* Floating Add */
5570     case 22:		/* Floating Square Root */
5571     case 24:		/* Floating Reciprocal Estimate */
5572     case 25:		/* Floating Multiply */
5573     case 26:		/* Floating Reciprocal Square Root Estimate */
5574     case 28:		/* Floating Multiply-Subtract */
5575     case 29:		/* Floating Multiply-Add */
5576     case 30:		/* Floating Negative Multiply-Subtract */
5577     case 31:		/* Floating Negative Multiply-Add */
5578       record_full_arch_list_add_reg (regcache,
5579 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5580       if (PPC_RC (insn))
5581 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5582       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5583       return 0;
5584 
5585     case 23:		/* Floating Select */
5586       record_full_arch_list_add_reg (regcache,
5587 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5588       if (PPC_RC (insn))
5589 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5590       return 0;
5591     }
5592 
5593   switch (ext & 0xff)
5594     {
5595     case 5:		/* VSX Scalar Round to Quad-Precision Integer */
5596     case 37:		/* VSX Scalar Round Quad-Precision to Double-Extended
5597 			   Precision */
5598       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5599       ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5600       return 0;
5601     }
5602 
5603   switch (ext)
5604     {
5605     case 2:		/* DFP Add Quad */
5606     case 3:		/* DFP Quantize Quad */
5607     case 34:		/* DFP Multiply Quad */
5608     case 35:		/* DFP Reround Quad */
5609     case 67:		/* DFP Quantize Immediate Quad */
5610     case 99:		/* DFP Round To FP Integer With Inexact Quad */
5611     case 227:		/* DFP Round To FP Integer Without Inexact Quad */
5612     case 258:		/* DFP Convert To DFP Extended Quad */
5613     case 514:		/* DFP Subtract Quad */
5614     case 546:		/* DFP Divide Quad */
5615     case 770:		/* DFP Round To DFP Long Quad */
5616     case 802:		/* DFP Convert From Fixed Quad */
5617     case 834:		/* DFP Encode BCD To DPD Quad */
5618       if (PPC_RC (insn))
5619 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5620       tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5621       record_full_arch_list_add_reg (regcache, tmp);
5622       record_full_arch_list_add_reg (regcache, tmp + 1);
5623       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5624       return 0;
5625 
5626     case 130:		/* DFP Compare Ordered Quad */
5627     case 162:		/* DFP Test Exponent Quad */
5628     case 194:		/* DFP Test Data Class Quad */
5629     case 226:		/* DFP Test Data Group Quad */
5630     case 642:		/* DFP Compare Unordered Quad */
5631     case 674:		/* DFP Test Significance Quad */
5632     case 675:		/* DFP Test Significance Immediate Quad */
5633       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5634       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5635       return 0;
5636 
5637     case 66:		/* DFP Shift Significand Left Immediate Quad */
5638     case 98:		/* DFP Shift Significand Right Immediate Quad */
5639     case 322:		/* DFP Decode DPD To BCD Quad */
5640     case 866:		/* DFP Insert Biased Exponent Quad */
5641       tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5642       record_full_arch_list_add_reg (regcache, tmp);
5643       record_full_arch_list_add_reg (regcache, tmp + 1);
5644       if (PPC_RC (insn))
5645 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5646       return 0;
5647 
5648     case 290:		/* DFP Convert To Fixed Quad */
5649       record_full_arch_list_add_reg (regcache,
5650 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5651       if (PPC_RC (insn))
5652 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5653       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5654       return 0;
5655 
5656     case 354:		/* DFP Extract Biased Exponent Quad */
5657       record_full_arch_list_add_reg (regcache,
5658 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5659       if (PPC_RC (insn))
5660 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5661       return 0;
5662 
5663     case 12:		/* Floating Round to Single-Precision */
5664     case 14:		/* Floating Convert To Integer Word */
5665     case 15:		/* Floating Convert To Integer Word
5666 			   with round toward Zero */
5667     case 142:		/* Floating Convert To Integer Word Unsigned */
5668     case 143:		/* Floating Convert To Integer Word Unsigned
5669 			   with round toward Zero */
5670     case 392:		/* Floating Round to Integer Nearest */
5671     case 424:		/* Floating Round to Integer Toward Zero */
5672     case 456:		/* Floating Round to Integer Plus */
5673     case 488:		/* Floating Round to Integer Minus */
5674     case 814:		/* Floating Convert To Integer Doubleword */
5675     case 815:		/* Floating Convert To Integer Doubleword
5676 			   with round toward Zero */
5677     case 846:		/* Floating Convert From Integer Doubleword */
5678     case 942:		/* Floating Convert To Integer Doubleword Unsigned */
5679     case 943:		/* Floating Convert To Integer Doubleword Unsigned
5680 			   with round toward Zero */
5681     case 974:		/* Floating Convert From Integer Doubleword Unsigned */
5682       record_full_arch_list_add_reg (regcache,
5683 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5684       if (PPC_RC (insn))
5685 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5686       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5687       return 0;
5688 
5689     case 583:
5690       switch (PPC_FIELD (insn, 11, 5))
5691         {
5692 	  case 1:	/* Move From FPSCR & Clear Enables */
5693 	  case 20:	/* Move From FPSCR Control & set DRN */
5694 	  case 21:	/* Move From FPSCR Control & set DRN Immediate */
5695 	  case 22:	/* Move From FPSCR Control & set RN */
5696 	  case 23:	/* Move From FPSCR Control & set RN Immediate */
5697 	    record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5698 	    /* Fall through.  */
5699 	  case 0:	/* Move From FPSCR */
5700 	  case 24:	/* Move From FPSCR Lightweight */
5701 	    if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5702 	      record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5703 	    record_full_arch_list_add_reg (regcache,
5704 					   tdep->ppc_fp0_regnum
5705 					   + PPC_FRT (insn));
5706 	    return 0;
5707         }
5708       break;
5709 
5710     case 8:		/* Floating Copy Sign */
5711     case 40:		/* Floating Negate */
5712     case 72:		/* Floating Move Register */
5713     case 136:		/* Floating Negative Absolute Value */
5714     case 264:		/* Floating Absolute Value */
5715       record_full_arch_list_add_reg (regcache,
5716 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5717       if (PPC_RC (insn))
5718 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5719       return 0;
5720 
5721     case 838:		/* Floating Merge Odd Word */
5722     case 966:		/* Floating Merge Even Word */
5723       record_full_arch_list_add_reg (regcache,
5724 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5725       return 0;
5726 
5727     case 38:		/* Move To FPSCR Bit 1 */
5728     case 70:		/* Move To FPSCR Bit 0 */
5729     case 134:		/* Move To FPSCR Field Immediate */
5730     case 711:		/* Move To FPSCR Fields */
5731       if (PPC_RC (insn))
5732 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5733       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5734       return 0;
5735 
5736     case 0:		/* Floating Compare Unordered */
5737     case 32:		/* Floating Compare Ordered */
5738     case 64:		/* Move to Condition Register from FPSCR */
5739     case 132:		/* VSX Scalar Compare Ordered Quad-Precision */
5740     case 164:		/* VSX Scalar Compare Exponents Quad-Precision */
5741     case 644:		/* VSX Scalar Compare Unordered Quad-Precision */
5742     case 708:		/* VSX Scalar Test Data Class Quad-Precision */
5743       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5744       /* FALL-THROUGH */
5745     case 128:		/* Floating Test for software Divide */
5746     case 160:		/* Floating Test for software Square Root */
5747       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5748       return 0;
5749 
5750     case 4:		/* VSX Scalar Add Quad-Precision */
5751     case 36:		/* VSX Scalar Multiply Quad-Precision */
5752     case 388:		/* VSX Scalar Multiply-Add Quad-Precision */
5753     case 420:		/* VSX Scalar Multiply-Subtract Quad-Precision */
5754     case 452:		/* VSX Scalar Negative Multiply-Add Quad-Precision */
5755     case 484:		/* VSX Scalar Negative Multiply-Subtract
5756 			   Quad-Precision */
5757     case 516:		/* VSX Scalar Subtract Quad-Precision */
5758     case 548:		/* VSX Scalar Divide Quad-Precision */
5759       record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5760       /* FALL-THROUGH */
5761     case 100:		/* VSX Scalar Copy Sign Quad-Precision */
5762     case 868:		/* VSX Scalar Insert Exponent Quad-Precision */
5763       ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5764       return 0;
5765 
5766     case 804:
5767       switch (PPC_FIELD (insn, 11, 5))
5768 	{
5769 	case 27:	/* VSX Scalar Square Root Quad-Precision */
5770 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5771 	  /* FALL-THROUGH */
5772 	case 0:		/* VSX Scalar Absolute Quad-Precision */
5773 	case 2:		/* VSX Scalar Extract Exponent Quad-Precision */
5774 	case 8:		/* VSX Scalar Negative Absolute Quad-Precision */
5775 	case 16:	/* VSX Scalar Negate Quad-Precision */
5776 	case 18:	/* VSX Scalar Extract Significand Quad-Precision */
5777 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5778 	  return 0;
5779 	}
5780       break;
5781 
5782     case 836:
5783       switch (PPC_FIELD (insn, 11, 5))
5784 	{
5785 	case 1:		/* VSX Scalar truncate & Convert Quad-Precision format
5786 			   to Unsigned Word format */
5787 	case 2:		/* VSX Scalar Convert Unsigned Doubleword format to
5788 			   Quad-Precision format */
5789 	case 9:		/* VSX Scalar truncate & Convert Quad-Precision format
5790 			   to Signed Word format */
5791 	case 10:	/* VSX Scalar Convert Signed Doubleword format to
5792 			   Quad-Precision format */
5793 	case 17:	/* VSX Scalar truncate & Convert Quad-Precision format
5794 			   to Unsigned Doubleword format */
5795 	case 20:	/* VSX Scalar round & Convert Quad-Precision format to
5796 			   Double-Precision format */
5797 	case 22:	/* VSX Scalar Convert Double-Precision format to
5798 			   Quad-Precision format */
5799 	case 25:	/* VSX Scalar truncate & Convert Quad-Precision format
5800 			   to Signed Doubleword format */
5801 	  record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5802 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5803 	  return 0;
5804 	}
5805     }
5806 
5807   fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5808 		      "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5809   return -1;
5810 }
5811 
5812 /* Parse the current instruction and record the values of the registers and
5813    memory that will be changed in current instruction to "record_arch_list".
5814    Return -1 if something wrong.  */
5815 
5816 int
ppc_process_record(struct gdbarch * gdbarch,struct regcache * regcache,CORE_ADDR addr)5817 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5818 		      CORE_ADDR addr)
5819 {
5820   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5821   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5822   uint32_t insn;
5823   int op6, tmp, i;
5824 
5825   insn = read_memory_unsigned_integer (addr, 4, byte_order);
5826   op6 = PPC_OP6 (insn);
5827 
5828   switch (op6)
5829     {
5830     case 2:		/* Trap Doubleword Immediate */
5831     case 3:		/* Trap Word Immediate */
5832       /* Do nothing.  */
5833       break;
5834 
5835     case 4:
5836       if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5837 	return -1;
5838       break;
5839 
5840     case 17:		/* System call */
5841       if (PPC_LEV (insn) != 0)
5842 	goto UNKNOWN_OP;
5843 
5844       if (tdep->ppc_syscall_record != NULL)
5845 	{
5846 	  if (tdep->ppc_syscall_record (regcache) != 0)
5847 	    return -1;
5848 	}
5849       else
5850 	{
5851 	  printf_unfiltered (_("no syscall record support\n"));
5852 	  return -1;
5853 	}
5854       break;
5855 
5856     case 7:		/* Multiply Low Immediate */
5857       record_full_arch_list_add_reg (regcache,
5858 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
5859       break;
5860 
5861     case 8:		/* Subtract From Immediate Carrying */
5862       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5863       record_full_arch_list_add_reg (regcache,
5864 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
5865       break;
5866 
5867     case 10:		/* Compare Logical Immediate  */
5868     case 11:		/* Compare Immediate */
5869       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5870       break;
5871 
5872     case 13:		/* Add Immediate Carrying and Record */
5873       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5874       /* FALL-THROUGH */
5875     case 12:		/* Add Immediate Carrying */
5876       record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5877       /* FALL-THROUGH */
5878     case 14:		/* Add Immediate */
5879     case 15:		/* Add Immediate Shifted */
5880       record_full_arch_list_add_reg (regcache,
5881 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
5882       break;
5883 
5884     case 16:		/* Branch Conditional */
5885       if ((PPC_BO (insn) & 0x4) == 0)
5886 	record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5887       /* FALL-THROUGH */
5888     case 18:		/* Branch */
5889       if (PPC_LK (insn))
5890 	record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5891       break;
5892 
5893     case 19:
5894       if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5895 	return -1;
5896       break;
5897 
5898     case 20:		/* Rotate Left Word Immediate then Mask Insert */
5899     case 21:		/* Rotate Left Word Immediate then AND with Mask */
5900     case 23:		/* Rotate Left Word then AND with Mask */
5901     case 30:		/* Rotate Left Doubleword Immediate then Clear Left */
5902 			/* Rotate Left Doubleword Immediate then Clear Right */
5903 			/* Rotate Left Doubleword Immediate then Clear */
5904 			/* Rotate Left Doubleword then Clear Left */
5905 			/* Rotate Left Doubleword then Clear Right */
5906 			/* Rotate Left Doubleword Immediate then Mask Insert */
5907       if (PPC_RC (insn))
5908 	record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5909       record_full_arch_list_add_reg (regcache,
5910 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5911       break;
5912 
5913     case 28:		/* AND Immediate */
5914     case 29:		/* AND Immediate Shifted */
5915       record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5916       /* FALL-THROUGH */
5917     case 24:		/* OR Immediate */
5918     case 25:		/* OR Immediate Shifted */
5919     case 26:		/* XOR Immediate */
5920     case 27:		/* XOR Immediate Shifted */
5921       record_full_arch_list_add_reg (regcache,
5922 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5923       break;
5924 
5925     case 31:
5926       if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5927 	return -1;
5928       break;
5929 
5930     case 33:		/* Load Word and Zero with Update */
5931     case 35:		/* Load Byte and Zero with Update */
5932     case 41:		/* Load Halfword and Zero with Update */
5933     case 43:		/* Load Halfword Algebraic with Update */
5934       record_full_arch_list_add_reg (regcache,
5935 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5936       /* FALL-THROUGH */
5937     case 32:		/* Load Word and Zero */
5938     case 34:		/* Load Byte and Zero */
5939     case 40:		/* Load Halfword and Zero */
5940     case 42:		/* Load Halfword Algebraic */
5941       record_full_arch_list_add_reg (regcache,
5942 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
5943       break;
5944 
5945     case 46:		/* Load Multiple Word */
5946       for (i = PPC_RT (insn); i < 32; i++)
5947 	record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5948       break;
5949 
5950     case 56:		/* Load Quadword */
5951       tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5952       record_full_arch_list_add_reg (regcache, tmp);
5953       record_full_arch_list_add_reg (regcache, tmp + 1);
5954       break;
5955 
5956     case 49:		/* Load Floating-Point Single with Update */
5957     case 51:		/* Load Floating-Point Double with Update */
5958       record_full_arch_list_add_reg (regcache,
5959 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5960       /* FALL-THROUGH */
5961     case 48:		/* Load Floating-Point Single */
5962     case 50:		/* Load Floating-Point Double */
5963       record_full_arch_list_add_reg (regcache,
5964 				     tdep->ppc_fp0_regnum + PPC_FRT (insn));
5965       break;
5966 
5967     case 47:		/* Store Multiple Word */
5968 	{
5969 	  ULONGEST iaddr = 0;
5970 
5971 	  if (PPC_RA (insn) != 0)
5972 	    regcache_raw_read_unsigned (regcache,
5973 					tdep->ppc_gp0_regnum + PPC_RA (insn),
5974 					&iaddr);
5975 
5976 	  iaddr += PPC_D (insn);
5977 	  record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
5978 	}
5979       break;
5980 
5981     case 37:		/* Store Word with Update */
5982     case 39:		/* Store Byte with Update */
5983     case 45:		/* Store Halfword with Update */
5984     case 53:		/* Store Floating-Point Single with Update */
5985     case 55:		/* Store Floating-Point Double with Update */
5986       record_full_arch_list_add_reg (regcache,
5987 				     tdep->ppc_gp0_regnum + PPC_RA (insn));
5988       /* FALL-THROUGH */
5989     case 36:		/* Store Word */
5990     case 38:		/* Store Byte */
5991     case 44:		/* Store Halfword */
5992     case 52:		/* Store Floating-Point Single */
5993     case 54:		/* Store Floating-Point Double */
5994 	{
5995 	  ULONGEST iaddr = 0;
5996 	  int size = -1;
5997 
5998 	  if (PPC_RA (insn) != 0)
5999 	    regcache_raw_read_unsigned (regcache,
6000 					tdep->ppc_gp0_regnum + PPC_RA (insn),
6001 					&iaddr);
6002 	  iaddr += PPC_D (insn);
6003 
6004 	  if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6005 	    size = 4;
6006 	  else if (op6 == 54 || op6 == 55)
6007 	    size = 8;
6008 	  else if (op6 == 44 || op6 == 45)
6009 	    size = 2;
6010 	  else if (op6 == 38 || op6 == 39)
6011 	    size = 1;
6012 	  else
6013 	    gdb_assert (0);
6014 
6015 	  record_full_arch_list_add_mem (iaddr, size);
6016 	}
6017       break;
6018 
6019     case 57:
6020       switch (insn & 0x3)
6021         {
6022 	case 0:		/* Load Floating-Point Double Pair */
6023 	  tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6024 	  record_full_arch_list_add_reg (regcache, tmp);
6025 	  record_full_arch_list_add_reg (regcache, tmp + 1);
6026 	  break;
6027 	case 2:		/* Load VSX Scalar Doubleword */
6028 	case 3:		/* Load VSX Scalar Single */
6029 	  ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6030 	  break;
6031 	default:
6032 	  goto UNKNOWN_OP;
6033 	}
6034       break;
6035 
6036     case 58:		/* Load Doubleword */
6037 			/* Load Doubleword with Update */
6038 			/* Load Word Algebraic */
6039       if (PPC_FIELD (insn, 30, 2) > 2)
6040 	goto UNKNOWN_OP;
6041 
6042       record_full_arch_list_add_reg (regcache,
6043 				     tdep->ppc_gp0_regnum + PPC_RT (insn));
6044       if (PPC_BIT (insn, 31))
6045 	record_full_arch_list_add_reg (regcache,
6046 				       tdep->ppc_gp0_regnum + PPC_RA (insn));
6047       break;
6048 
6049     case 59:
6050       if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6051 	return -1;
6052       break;
6053 
6054     case 60:
6055       if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6056 	return -1;
6057       break;
6058 
6059     case 61:
6060       if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6061 	return -1;
6062       break;
6063 
6064     case 62:		/* Store Doubleword */
6065 			/* Store Doubleword with Update */
6066 			/* Store Quadword with Update */
6067 	{
6068 	  ULONGEST iaddr = 0;
6069 	  int size;
6070 	  int sub2 = PPC_FIELD (insn, 30, 2);
6071 
6072 	  if (sub2 > 2)
6073 	    goto UNKNOWN_OP;
6074 
6075 	  if (PPC_RA (insn) != 0)
6076 	    regcache_raw_read_unsigned (regcache,
6077 					tdep->ppc_gp0_regnum + PPC_RA (insn),
6078 					&iaddr);
6079 
6080 	  size = (sub2 == 2) ? 16 : 8;
6081 
6082 	  iaddr += PPC_DS (insn) << 2;
6083 	  record_full_arch_list_add_mem (iaddr, size);
6084 
6085 	  if (op6 == 62 && sub2 == 1)
6086 	    record_full_arch_list_add_reg (regcache,
6087 					   tdep->ppc_gp0_regnum +
6088 					   PPC_RA (insn));
6089 
6090 	  break;
6091 	}
6092 
6093     case 63:
6094       if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6095 	return -1;
6096       break;
6097 
6098     default:
6099 UNKNOWN_OP:
6100       fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6101 			  "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6102       return -1;
6103     }
6104 
6105   if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6106     return -1;
6107   if (record_full_arch_list_add_end ())
6108     return -1;
6109   return 0;
6110 }
6111 
6112 /* Initialize the current architecture based on INFO.  If possible, re-use an
6113    architecture from ARCHES, which is a list of architectures already created
6114    during this debugging session.
6115 
6116    Called e.g. at program startup, when reading a core file, and when reading
6117    a binary file.  */
6118 
6119 static struct gdbarch *
rs6000_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)6120 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6121 {
6122   struct gdbarch *gdbarch;
6123   struct gdbarch_tdep *tdep;
6124   int wordsize, from_xcoff_exec, from_elf_exec;
6125   enum bfd_architecture arch;
6126   unsigned long mach;
6127   bfd abfd;
6128   enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6129   int soft_float;
6130   enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6131   enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6132   enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6133   int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6134   int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6135   int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6136   int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6137   int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6138   int have_htm_tar = 0;
6139   int tdesc_wordsize = -1;
6140   const struct target_desc *tdesc = info.target_desc;
6141   struct tdesc_arch_data *tdesc_data = NULL;
6142   int num_pseudoregs = 0;
6143   int cur_reg;
6144 
6145   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6146     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6147 
6148   from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6149     bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6150 
6151   /* Check word size.  If INFO is from a binary file, infer it from
6152      that, else choose a likely default.  */
6153   if (from_xcoff_exec)
6154     {
6155       if (bfd_xcoff_is_xcoff64 (info.abfd))
6156 	wordsize = 8;
6157       else
6158 	wordsize = 4;
6159     }
6160   else if (from_elf_exec)
6161     {
6162       if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6163 	wordsize = 8;
6164       else
6165 	wordsize = 4;
6166     }
6167   else if (tdesc_has_registers (tdesc))
6168     wordsize = -1;
6169   else
6170     {
6171       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6172 	wordsize = (info.bfd_arch_info->bits_per_word
6173 		    / info.bfd_arch_info->bits_per_byte);
6174       else
6175 	wordsize = 4;
6176     }
6177 
6178   /* Get the architecture and machine from the BFD.  */
6179   arch = info.bfd_arch_info->arch;
6180   mach = info.bfd_arch_info->mach;
6181 
6182   /* For e500 executables, the apuinfo section is of help here.  Such
6183      section contains the identifier and revision number of each
6184      Application-specific Processing Unit that is present on the
6185      chip.  The content of the section is determined by the assembler
6186      which looks at each instruction and determines which unit (and
6187      which version of it) can execute it.  Grovel through the section
6188      looking for relevant e500 APUs.  */
6189 
6190   if (bfd_uses_spe_extensions (info.abfd))
6191     {
6192       arch = info.bfd_arch_info->arch;
6193       mach = bfd_mach_ppc_e500;
6194       bfd_default_set_arch_mach (&abfd, arch, mach);
6195       info.bfd_arch_info = bfd_get_arch_info (&abfd);
6196     }
6197 
6198   /* Find a default target description which describes our register
6199      layout, if we do not already have one.  */
6200   if (! tdesc_has_registers (tdesc))
6201     {
6202       const struct ppc_variant *v;
6203 
6204       /* Choose variant.  */
6205       v = find_variant_by_arch (arch, mach);
6206       if (!v)
6207 	return NULL;
6208 
6209       tdesc = *v->tdesc;
6210     }
6211 
6212   gdb_assert (tdesc_has_registers (tdesc));
6213 
6214   /* Check any target description for validity.  */
6215   if (tdesc_has_registers (tdesc))
6216     {
6217       static const char *const gprs[] = {
6218 	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6219 	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6220 	"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6221 	"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6222       };
6223       const struct tdesc_feature *feature;
6224       int i, valid_p;
6225       static const char *const msr_names[] = { "msr", "ps" };
6226       static const char *const cr_names[] = { "cr", "cnd" };
6227       static const char *const ctr_names[] = { "ctr", "cnt" };
6228 
6229       feature = tdesc_find_feature (tdesc,
6230 				    "org.gnu.gdb.power.core");
6231       if (feature == NULL)
6232 	return NULL;
6233 
6234       tdesc_data = tdesc_data_alloc ();
6235 
6236       valid_p = 1;
6237       for (i = 0; i < ppc_num_gprs; i++)
6238 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6239       valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6240 					  "pc");
6241       valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6242 					  "lr");
6243       valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6244 					  "xer");
6245 
6246       /* Allow alternate names for these registers, to accomodate GDB's
6247 	 historic naming.  */
6248       valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6249 						  PPC_MSR_REGNUM, msr_names);
6250       valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6251 						  PPC_CR_REGNUM, cr_names);
6252       valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6253 						  PPC_CTR_REGNUM, ctr_names);
6254 
6255       if (!valid_p)
6256 	{
6257 	  tdesc_data_cleanup (tdesc_data);
6258 	  return NULL;
6259 	}
6260 
6261       have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6262 					 "mq");
6263 
6264       tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6265       if (wordsize == -1)
6266 	wordsize = tdesc_wordsize;
6267 
6268       feature = tdesc_find_feature (tdesc,
6269 				    "org.gnu.gdb.power.fpu");
6270       if (feature != NULL)
6271 	{
6272 	  static const char *const fprs[] = {
6273 	    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6274 	    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6275 	    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6276 	    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6277 	  };
6278 	  valid_p = 1;
6279 	  for (i = 0; i < ppc_num_fprs; i++)
6280 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6281 						PPC_F0_REGNUM + i, fprs[i]);
6282 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6283 					      PPC_FPSCR_REGNUM, "fpscr");
6284 
6285 	  if (!valid_p)
6286 	    {
6287 	      tdesc_data_cleanup (tdesc_data);
6288 	      return NULL;
6289 	    }
6290 	  have_fpu = 1;
6291 
6292 	  /* The fpscr register was expanded in isa 2.05 to 64 bits
6293 	     along with the addition of the decimal floating point
6294 	     facility.  */
6295 	  if (tdesc_register_bitsize (feature, "fpscr") > 32)
6296 	    have_dfp = 1;
6297 	}
6298       else
6299 	have_fpu = 0;
6300 
6301       feature = tdesc_find_feature (tdesc,
6302 				    "org.gnu.gdb.power.altivec");
6303       if (feature != NULL)
6304 	{
6305 	  static const char *const vector_regs[] = {
6306 	    "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6307 	    "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6308 	    "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6309 	    "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6310 	  };
6311 
6312 	  valid_p = 1;
6313 	  for (i = 0; i < ppc_num_gprs; i++)
6314 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6315 						PPC_VR0_REGNUM + i,
6316 						vector_regs[i]);
6317 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6318 					      PPC_VSCR_REGNUM, "vscr");
6319 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6320 					      PPC_VRSAVE_REGNUM, "vrsave");
6321 
6322 	  if (have_spe || !valid_p)
6323 	    {
6324 	      tdesc_data_cleanup (tdesc_data);
6325 	      return NULL;
6326 	    }
6327 	  have_altivec = 1;
6328 	}
6329       else
6330 	have_altivec = 0;
6331 
6332       /* Check for POWER7 VSX registers support.  */
6333       feature = tdesc_find_feature (tdesc,
6334 				    "org.gnu.gdb.power.vsx");
6335 
6336       if (feature != NULL)
6337 	{
6338 	  static const char *const vsx_regs[] = {
6339 	    "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6340 	    "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6341 	    "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6342 	    "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6343 	    "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6344 	    "vs30h", "vs31h"
6345 	  };
6346 
6347 	  valid_p = 1;
6348 
6349 	  for (i = 0; i < ppc_num_vshrs; i++)
6350 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6351 						PPC_VSR0_UPPER_REGNUM + i,
6352 						vsx_regs[i]);
6353 
6354 	  if (!valid_p || !have_fpu || !have_altivec)
6355 	    {
6356 	      tdesc_data_cleanup (tdesc_data);
6357 	      return NULL;
6358 	    }
6359 
6360 	  have_vsx = 1;
6361 	}
6362       else
6363 	have_vsx = 0;
6364 
6365       /* On machines supporting the SPE APU, the general-purpose registers
6366 	 are 64 bits long.  There are SIMD vector instructions to treat them
6367 	 as pairs of floats, but the rest of the instruction set treats them
6368 	 as 32-bit registers, and only operates on their lower halves.
6369 
6370 	 In the GDB regcache, we treat their high and low halves as separate
6371 	 registers.  The low halves we present as the general-purpose
6372 	 registers, and then we have pseudo-registers that stitch together
6373 	 the upper and lower halves and present them as pseudo-registers.
6374 
6375 	 Thus, the target description is expected to supply the upper
6376 	 halves separately.  */
6377 
6378       feature = tdesc_find_feature (tdesc,
6379 				    "org.gnu.gdb.power.spe");
6380       if (feature != NULL)
6381 	{
6382 	  static const char *const upper_spe[] = {
6383 	    "ev0h", "ev1h", "ev2h", "ev3h",
6384 	    "ev4h", "ev5h", "ev6h", "ev7h",
6385 	    "ev8h", "ev9h", "ev10h", "ev11h",
6386 	    "ev12h", "ev13h", "ev14h", "ev15h",
6387 	    "ev16h", "ev17h", "ev18h", "ev19h",
6388 	    "ev20h", "ev21h", "ev22h", "ev23h",
6389 	    "ev24h", "ev25h", "ev26h", "ev27h",
6390 	    "ev28h", "ev29h", "ev30h", "ev31h"
6391 	  };
6392 
6393 	  valid_p = 1;
6394 	  for (i = 0; i < ppc_num_gprs; i++)
6395 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6396 						PPC_SPE_UPPER_GP0_REGNUM + i,
6397 						upper_spe[i]);
6398 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6399 					      PPC_SPE_ACC_REGNUM, "acc");
6400 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6401 					      PPC_SPE_FSCR_REGNUM, "spefscr");
6402 
6403 	  if (have_mq || have_fpu || !valid_p)
6404 	    {
6405 	      tdesc_data_cleanup (tdesc_data);
6406 	      return NULL;
6407 	    }
6408 	  have_spe = 1;
6409 	}
6410       else
6411 	have_spe = 0;
6412 
6413       /* Program Priority Register.  */
6414       feature = tdesc_find_feature (tdesc,
6415 				    "org.gnu.gdb.power.ppr");
6416       if (feature != NULL)
6417 	{
6418 	  valid_p = 1;
6419 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6420 					      PPC_PPR_REGNUM, "ppr");
6421 
6422 	  if (!valid_p)
6423 	    {
6424 	      tdesc_data_cleanup (tdesc_data);
6425 	      return NULL;
6426 	    }
6427 	  have_ppr = 1;
6428 	}
6429       else
6430 	have_ppr = 0;
6431 
6432       /* Data Stream Control Register.  */
6433       feature = tdesc_find_feature (tdesc,
6434 				    "org.gnu.gdb.power.dscr");
6435       if (feature != NULL)
6436 	{
6437 	  valid_p = 1;
6438 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6439 					      PPC_DSCR_REGNUM, "dscr");
6440 
6441 	  if (!valid_p)
6442 	    {
6443 	      tdesc_data_cleanup (tdesc_data);
6444 	      return NULL;
6445 	    }
6446 	  have_dscr = 1;
6447 	}
6448       else
6449 	have_dscr = 0;
6450 
6451       /* Target Address Register.  */
6452       feature = tdesc_find_feature (tdesc,
6453 				    "org.gnu.gdb.power.tar");
6454       if (feature != NULL)
6455 	{
6456 	  valid_p = 1;
6457 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6458 					      PPC_TAR_REGNUM, "tar");
6459 
6460 	  if (!valid_p)
6461 	    {
6462 	      tdesc_data_cleanup (tdesc_data);
6463 	      return NULL;
6464 	    }
6465 	  have_tar = 1;
6466 	}
6467       else
6468 	have_tar = 0;
6469 
6470       /* Event-based Branching Registers.  */
6471       feature = tdesc_find_feature (tdesc,
6472 				    "org.gnu.gdb.power.ebb");
6473       if (feature != NULL)
6474 	{
6475 	  static const char *const ebb_regs[] = {
6476 	    "bescr", "ebbhr", "ebbrr"
6477 	  };
6478 
6479 	  valid_p = 1;
6480 	  for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6481 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6482 						PPC_BESCR_REGNUM + i,
6483 						ebb_regs[i]);
6484 	  if (!valid_p)
6485 	    {
6486 	      tdesc_data_cleanup (tdesc_data);
6487 	      return NULL;
6488 	    }
6489 	  have_ebb = 1;
6490 	}
6491       else
6492 	have_ebb = 0;
6493 
6494       /* Subset of the ISA 2.07 Performance Monitor Registers provided
6495 	 by Linux.  */
6496       feature = tdesc_find_feature (tdesc,
6497 				    "org.gnu.gdb.power.linux.pmu");
6498       if (feature != NULL)
6499 	{
6500 	  valid_p = 1;
6501 
6502 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6503 					      PPC_MMCR0_REGNUM,
6504 					      "mmcr0");
6505 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6506 					      PPC_MMCR2_REGNUM,
6507 					      "mmcr2");
6508 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6509 					      PPC_SIAR_REGNUM,
6510 					      "siar");
6511 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6512 					      PPC_SDAR_REGNUM,
6513 					      "sdar");
6514 	  valid_p &= tdesc_numbered_register (feature, tdesc_data,
6515 					      PPC_SIER_REGNUM,
6516 					      "sier");
6517 
6518 	  if (!valid_p)
6519 	    {
6520 	      tdesc_data_cleanup (tdesc_data);
6521 	      return NULL;
6522 	    }
6523 	  have_pmu = 1;
6524 	}
6525       else
6526 	have_pmu = 0;
6527 
6528       /* Hardware Transactional Memory Registers.  */
6529       feature = tdesc_find_feature (tdesc,
6530 				    "org.gnu.gdb.power.htm.spr");
6531       if (feature != NULL)
6532 	{
6533 	  static const char *const tm_spr_regs[] = {
6534 	    "tfhar", "texasr", "tfiar"
6535 	  };
6536 
6537 	  valid_p = 1;
6538 	  for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6539 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6540 						PPC_TFHAR_REGNUM + i,
6541 						tm_spr_regs[i]);
6542 	  if (!valid_p)
6543 	    {
6544 	      tdesc_data_cleanup (tdesc_data);
6545 	      return NULL;
6546 	    }
6547 
6548 	  have_htm_spr = 1;
6549 	}
6550       else
6551 	have_htm_spr = 0;
6552 
6553       feature = tdesc_find_feature (tdesc,
6554 				    "org.gnu.gdb.power.htm.core");
6555       if (feature != NULL)
6556 	{
6557 	  static const char *const cgprs[] = {
6558 	    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6559 	    "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6560 	    "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6561 	    "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6562 	    "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6563 	  };
6564 
6565 	  valid_p = 1;
6566 
6567 	  for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6568 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6569 						PPC_CR0_REGNUM + i,
6570 						cgprs[i]);
6571 	  if (!valid_p)
6572 	    {
6573 	      tdesc_data_cleanup (tdesc_data);
6574 	      return NULL;
6575 	    }
6576 
6577 	  have_htm_core = 1;
6578 	}
6579       else
6580 	have_htm_core = 0;
6581 
6582       feature = tdesc_find_feature (tdesc,
6583 				    "org.gnu.gdb.power.htm.fpu");
6584       if (feature != NULL)
6585 	{
6586 	  valid_p = 1;
6587 
6588 	  static const char *const cfprs[] = {
6589 	    "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6590 	    "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6591 	    "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6592 	    "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6593 	    "cf30", "cf31", "cfpscr"
6594 	  };
6595 
6596 	  for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6597 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6598 						PPC_CF0_REGNUM + i,
6599 						cfprs[i]);
6600 
6601 	  if (!valid_p)
6602 	    {
6603 	      tdesc_data_cleanup (tdesc_data);
6604 	      return NULL;
6605 	    }
6606 	  have_htm_fpu = 1;
6607 	}
6608       else
6609 	have_htm_fpu = 0;
6610 
6611       feature = tdesc_find_feature (tdesc,
6612 				    "org.gnu.gdb.power.htm.altivec");
6613       if (feature != NULL)
6614 	{
6615 	  valid_p = 1;
6616 
6617 	  static const char *const cvmx[] = {
6618 	    "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6619 	    "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6620 	    "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6621 	    "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6622 	    "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6623 	    "cvrsave"
6624 	  };
6625 
6626 	  for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6627 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6628 						PPC_CVR0_REGNUM + i,
6629 						cvmx[i]);
6630 
6631 	  if (!valid_p)
6632 	    {
6633 	      tdesc_data_cleanup (tdesc_data);
6634 	      return NULL;
6635 	    }
6636 	  have_htm_altivec = 1;
6637 	}
6638       else
6639 	have_htm_altivec = 0;
6640 
6641       feature = tdesc_find_feature (tdesc,
6642 				    "org.gnu.gdb.power.htm.vsx");
6643       if (feature != NULL)
6644 	{
6645 	  valid_p = 1;
6646 
6647 	  static const char *const cvsx[] = {
6648 	    "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6649 	    "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6650 	    "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6651 	    "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6652 	    "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6653 	    "cvs30h", "cvs31h"
6654 	  };
6655 
6656 	  for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6657 	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
6658 						(PPC_CVSR0_UPPER_REGNUM
6659 						 + i),
6660 						cvsx[i]);
6661 
6662 	  if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6663 	    {
6664 	      tdesc_data_cleanup (tdesc_data);
6665 	      return NULL;
6666 	    }
6667 	  have_htm_vsx = 1;
6668 	}
6669       else
6670 	have_htm_vsx = 0;
6671 
6672       feature = tdesc_find_feature (tdesc,
6673 				    "org.gnu.gdb.power.htm.ppr");
6674       if (feature != NULL)
6675 	{
6676 	  valid_p = tdesc_numbered_register (feature, tdesc_data,
6677 					     PPC_CPPR_REGNUM, "cppr");
6678 
6679 	  if (!valid_p)
6680 	    {
6681 	      tdesc_data_cleanup (tdesc_data);
6682 	      return NULL;
6683 	    }
6684 	  have_htm_ppr = 1;
6685 	}
6686       else
6687 	have_htm_ppr = 0;
6688 
6689       feature = tdesc_find_feature (tdesc,
6690 				    "org.gnu.gdb.power.htm.dscr");
6691       if (feature != NULL)
6692 	{
6693 	  valid_p = tdesc_numbered_register (feature, tdesc_data,
6694 					     PPC_CDSCR_REGNUM, "cdscr");
6695 
6696 	  if (!valid_p)
6697 	    {
6698 	      tdesc_data_cleanup (tdesc_data);
6699 	      return NULL;
6700 	    }
6701 	  have_htm_dscr = 1;
6702 	}
6703       else
6704 	have_htm_dscr = 0;
6705 
6706       feature = tdesc_find_feature (tdesc,
6707 				    "org.gnu.gdb.power.htm.tar");
6708       if (feature != NULL)
6709 	{
6710 	  valid_p = tdesc_numbered_register (feature, tdesc_data,
6711 					     PPC_CTAR_REGNUM, "ctar");
6712 
6713 	  if (!valid_p)
6714 	    {
6715 	      tdesc_data_cleanup (tdesc_data);
6716 	      return NULL;
6717 	    }
6718 	  have_htm_tar = 1;
6719 	}
6720       else
6721 	have_htm_tar = 0;
6722     }
6723 
6724   /* If we have a 64-bit binary on a 32-bit target, complain.  Also
6725      complain for a 32-bit binary on a 64-bit target; we do not yet
6726      support that.  For instance, the 32-bit ABI routines expect
6727      32-bit GPRs.
6728 
6729      As long as there isn't an explicit target description, we'll
6730      choose one based on the BFD architecture and get a word size
6731      matching the binary (probably powerpc:common or
6732      powerpc:common64).  So there is only trouble if a 64-bit target
6733      supplies a 64-bit description while debugging a 32-bit
6734      binary.  */
6735   if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6736     {
6737       tdesc_data_cleanup (tdesc_data);
6738       return NULL;
6739     }
6740 
6741 #ifdef HAVE_ELF
6742   if (from_elf_exec)
6743     {
6744       switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6745 	{
6746 	case 1:
6747 	  elf_abi = POWERPC_ELF_V1;
6748 	  break;
6749 	case 2:
6750 	  elf_abi = POWERPC_ELF_V2;
6751 	  break;
6752 	default:
6753 	  break;
6754 	}
6755     }
6756 
6757   if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6758     {
6759       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6760 					Tag_GNU_Power_ABI_FP) & 3)
6761 	{
6762 	case 1:
6763 	  soft_float_flag = AUTO_BOOLEAN_FALSE;
6764 	  break;
6765 	case 2:
6766 	  soft_float_flag = AUTO_BOOLEAN_TRUE;
6767 	  break;
6768 	default:
6769 	  break;
6770 	}
6771     }
6772 
6773   if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6774     {
6775       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6776 					Tag_GNU_Power_ABI_FP) >> 2)
6777 	{
6778 	case 1:
6779 	  long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6780 	  break;
6781 	case 3:
6782 	  long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6783 	  break;
6784 	default:
6785 	  break;
6786 	}
6787     }
6788 
6789   if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6790     {
6791       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6792 					Tag_GNU_Power_ABI_Vector))
6793 	{
6794 	case 1:
6795 	  vector_abi = POWERPC_VEC_GENERIC;
6796 	  break;
6797 	case 2:
6798 	  vector_abi = POWERPC_VEC_ALTIVEC;
6799 	  break;
6800 	case 3:
6801 	  vector_abi = POWERPC_VEC_SPE;
6802 	  break;
6803 	default:
6804 	  break;
6805 	}
6806     }
6807 #endif
6808 
6809   /* At this point, the only supported ELF-based 64-bit little-endian
6810      operating system is GNU/Linux, and this uses the ELFv2 ABI by
6811      default.  All other supported ELF-based operating systems use the
6812      ELFv1 ABI by default.  Therefore, if the ABI marker is missing,
6813      e.g. because we run a legacy binary, or have attached to a process
6814      and have not found any associated binary file, set the default
6815      according to this heuristic.  */
6816   if (elf_abi == POWERPC_ELF_AUTO)
6817     {
6818       if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6819         elf_abi = POWERPC_ELF_V2;
6820       else
6821         elf_abi = POWERPC_ELF_V1;
6822     }
6823 
6824   if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6825     soft_float = 1;
6826   else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6827     soft_float = 0;
6828   else
6829     soft_float = !have_fpu;
6830 
6831   /* If we have a hard float binary or setting but no floating point
6832      registers, downgrade to soft float anyway.  We're still somewhat
6833      useful in this scenario.  */
6834   if (!soft_float && !have_fpu)
6835     soft_float = 1;
6836 
6837   /* Similarly for vector registers.  */
6838   if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6839     vector_abi = POWERPC_VEC_GENERIC;
6840 
6841   if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6842     vector_abi = POWERPC_VEC_GENERIC;
6843 
6844   if (vector_abi == POWERPC_VEC_AUTO)
6845     {
6846       if (have_altivec)
6847 	vector_abi = POWERPC_VEC_ALTIVEC;
6848       else if (have_spe)
6849 	vector_abi = POWERPC_VEC_SPE;
6850       else
6851 	vector_abi = POWERPC_VEC_GENERIC;
6852     }
6853 
6854   /* Do not limit the vector ABI based on available hardware, since we
6855      do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */
6856 
6857   /* Find a candidate among extant architectures.  */
6858   for (arches = gdbarch_list_lookup_by_info (arches, &info);
6859        arches != NULL;
6860        arches = gdbarch_list_lookup_by_info (arches->next, &info))
6861     {
6862       /* Word size in the various PowerPC bfd_arch_info structs isn't
6863          meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
6864          separate word size check.  */
6865       tdep = gdbarch_tdep (arches->gdbarch);
6866       if (tdep && tdep->elf_abi != elf_abi)
6867 	continue;
6868       if (tdep && tdep->soft_float != soft_float)
6869 	continue;
6870       if (tdep && tdep->long_double_abi != long_double_abi)
6871 	continue;
6872       if (tdep && tdep->vector_abi != vector_abi)
6873 	continue;
6874       if (tdep && tdep->wordsize == wordsize)
6875 	{
6876 	  if (tdesc_data != NULL)
6877 	    tdesc_data_cleanup (tdesc_data);
6878 	  return arches->gdbarch;
6879 	}
6880     }
6881 
6882   /* None found, create a new architecture from INFO, whose bfd_arch_info
6883      validity depends on the source:
6884        - executable		useless
6885        - rs6000_host_arch()	good
6886        - core file		good
6887        - "set arch"		trust blindly
6888        - GDB startup		useless but harmless */
6889 
6890   tdep = XCNEW (struct gdbarch_tdep);
6891   tdep->wordsize = wordsize;
6892   tdep->elf_abi = elf_abi;
6893   tdep->soft_float = soft_float;
6894   tdep->long_double_abi = long_double_abi;
6895   tdep->vector_abi = vector_abi;
6896 
6897   gdbarch = gdbarch_alloc (&info, tdep);
6898 
6899   tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6900   tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6901   tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6902   tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6903   tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6904   tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6905   tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6906   tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6907 
6908   tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6909   tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6910   tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6911   tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6912   tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6913   tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6914   tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6915   tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6916   tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6917   tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6918   tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6919   tdep->have_ebb = have_ebb;
6920 
6921   /* If additional pmu registers are added, care must be taken when
6922      setting new fields in the tdep below, to maintain compatibility
6923      with features that only provide some of the registers.  Currently
6924      gdb access to the pmu registers is only supported in linux, and
6925      linux only provides a subset of the pmu registers defined in the
6926      architecture.  */
6927 
6928   tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6929   tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6930   tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6931   tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6932   tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6933 
6934   tdep->have_htm_spr = have_htm_spr;
6935   tdep->have_htm_core = have_htm_core;
6936   tdep->have_htm_fpu = have_htm_fpu;
6937   tdep->have_htm_altivec = have_htm_altivec;
6938   tdep->have_htm_vsx = have_htm_vsx;
6939   tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6940   tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6941   tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6942 
6943   set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6944   set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6945   set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6946   set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6947 
6948   /* The XML specification for PowerPC sensibly calls the MSR "msr".
6949      GDB traditionally called it "ps", though, so let GDB add an
6950      alias.  */
6951   set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6952 
6953   if (wordsize == 8)
6954     set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6955   else
6956     set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6957 
6958   /* Set lr_frame_offset.  */
6959   if (wordsize == 8)
6960     tdep->lr_frame_offset = 16;
6961   else
6962     tdep->lr_frame_offset = 4;
6963 
6964   if (have_spe || have_dfp || have_altivec
6965       || have_vsx || have_htm_fpu || have_htm_vsx)
6966     {
6967       set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6968       set_gdbarch_pseudo_register_write (gdbarch,
6969 					 rs6000_pseudo_register_write);
6970       set_gdbarch_ax_pseudo_register_collect (gdbarch,
6971 	      rs6000_ax_pseudo_register_collect);
6972     }
6973 
6974   set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6975 
6976   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6977 
6978   set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6979 
6980   if (have_spe)
6981     num_pseudoregs += 32;
6982   if (have_dfp)
6983     num_pseudoregs += 16;
6984   if (have_altivec)
6985     num_pseudoregs += 32;
6986   if (have_vsx)
6987     /* Include both VSX and Extended FP registers.  */
6988     num_pseudoregs += 96;
6989   if (have_htm_fpu)
6990     num_pseudoregs += 16;
6991   /* Include both checkpointed VSX and EFP registers.  */
6992   if (have_htm_vsx)
6993     num_pseudoregs += 64 + 32;
6994 
6995   set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6996 
6997   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6998   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6999   set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7000   set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7001   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7002   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7003   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7004   set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7005   set_gdbarch_char_signed (gdbarch, 0);
7006 
7007   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7008   if (wordsize == 8)
7009     /* PPC64 SYSV.  */
7010     set_gdbarch_frame_red_zone_size (gdbarch, 288);
7011 
7012   set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7013   set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7014   set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7015 
7016   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7017   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7018 
7019   if (wordsize == 4)
7020     set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7021   else if (wordsize == 8)
7022     set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7023 
7024   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7025   set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7026   set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7027 
7028   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7029 
7030   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7031 				       rs6000_breakpoint::kind_from_pc);
7032   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7033 				       rs6000_breakpoint::bp_from_kind);
7034 
7035   /* The value of symbols of type N_SO and N_FUN maybe null when
7036      it shouldn't be.  */
7037   set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7038 
7039   /* Handles single stepping of atomic sequences.  */
7040   set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7041 
7042   /* Not sure on this.  FIXMEmgo */
7043   set_gdbarch_frame_args_skip (gdbarch, 8);
7044 
7045   /* Helpers for function argument information.  */
7046   set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7047 
7048   /* Trampoline.  */
7049   set_gdbarch_in_solib_return_trampoline
7050     (gdbarch, rs6000_in_solib_return_trampoline);
7051   set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7052 
7053   /* Hook in the DWARF CFI frame unwinder.  */
7054   dwarf2_append_unwinders (gdbarch);
7055   dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7056 
7057   /* Frame handling.  */
7058   dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7059 
7060   /* Setup displaced stepping.  */
7061   set_gdbarch_displaced_step_copy_insn (gdbarch,
7062 					ppc_displaced_step_copy_insn);
7063   set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7064 					    ppc_displaced_step_hw_singlestep);
7065   set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7066   set_gdbarch_displaced_step_location (gdbarch,
7067 				       displaced_step_at_entry_point);
7068 
7069   set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7070 
7071   /* Hook in ABI-specific overrides, if they have been registered.  */
7072   info.target_desc = tdesc;
7073   info.tdesc_data = tdesc_data;
7074   gdbarch_init_osabi (info, gdbarch);
7075 
7076   switch (info.osabi)
7077     {
7078     case GDB_OSABI_LINUX:
7079     case GDB_OSABI_NETBSD:
7080     case GDB_OSABI_UNKNOWN:
7081       frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7082       frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7083       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7084       break;
7085     default:
7086       set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7087 
7088       frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7089       frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7090       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7091     }
7092 
7093   set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7094   set_tdesc_pseudo_register_reggroup_p (gdbarch,
7095 					rs6000_pseudo_register_reggroup_p);
7096   tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7097 
7098   /* Override the normal target description method to make the SPE upper
7099      halves anonymous.  */
7100   set_gdbarch_register_name (gdbarch, rs6000_register_name);
7101 
7102   /* Choose register numbers for all supported pseudo-registers.  */
7103   tdep->ppc_ev0_regnum = -1;
7104   tdep->ppc_dl0_regnum = -1;
7105   tdep->ppc_v0_alias_regnum = -1;
7106   tdep->ppc_vsr0_regnum = -1;
7107   tdep->ppc_efpr0_regnum = -1;
7108   tdep->ppc_cdl0_regnum = -1;
7109   tdep->ppc_cvsr0_regnum = -1;
7110   tdep->ppc_cefpr0_regnum = -1;
7111 
7112   cur_reg = gdbarch_num_regs (gdbarch);
7113 
7114   if (have_spe)
7115     {
7116       tdep->ppc_ev0_regnum = cur_reg;
7117       cur_reg += 32;
7118     }
7119   if (have_dfp)
7120     {
7121       tdep->ppc_dl0_regnum = cur_reg;
7122       cur_reg += 16;
7123     }
7124   if (have_altivec)
7125     {
7126       tdep->ppc_v0_alias_regnum = cur_reg;
7127       cur_reg += 32;
7128     }
7129   if (have_vsx)
7130     {
7131       tdep->ppc_vsr0_regnum = cur_reg;
7132       cur_reg += 64;
7133       tdep->ppc_efpr0_regnum = cur_reg;
7134       cur_reg += 32;
7135     }
7136   if (have_htm_fpu)
7137     {
7138       tdep->ppc_cdl0_regnum = cur_reg;
7139       cur_reg += 16;
7140     }
7141   if (have_htm_vsx)
7142     {
7143       tdep->ppc_cvsr0_regnum = cur_reg;
7144       cur_reg += 64;
7145       tdep->ppc_cefpr0_regnum = cur_reg;
7146       cur_reg += 32;
7147     }
7148 
7149   gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7150 
7151   /* Register the ravenscar_arch_ops.  */
7152   if (mach == bfd_mach_ppc_e500)
7153     register_e500_ravenscar_ops (gdbarch);
7154   else
7155     register_ppc_ravenscar_ops (gdbarch);
7156 
7157   set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7158   set_gdbarch_valid_disassembler_options (gdbarch,
7159 					  disassembler_options_powerpc ());
7160 
7161   return gdbarch;
7162 }
7163 
7164 static void
rs6000_dump_tdep(struct gdbarch * gdbarch,struct ui_file * file)7165 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7166 {
7167   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7168 
7169   if (tdep == NULL)
7170     return;
7171 
7172   /* FIXME: Dump gdbarch_tdep.  */
7173 }
7174 
7175 static void
powerpc_set_soft_float(const char * args,int from_tty,struct cmd_list_element * c)7176 powerpc_set_soft_float (const char *args, int from_tty,
7177 			struct cmd_list_element *c)
7178 {
7179   struct gdbarch_info info;
7180 
7181   /* Update the architecture.  */
7182   gdbarch_info_init (&info);
7183   if (!gdbarch_update_p (info))
7184     internal_error (__FILE__, __LINE__, _("could not update architecture"));
7185 }
7186 
7187 static void
powerpc_set_vector_abi(const char * args,int from_tty,struct cmd_list_element * c)7188 powerpc_set_vector_abi (const char *args, int from_tty,
7189 			struct cmd_list_element *c)
7190 {
7191   struct gdbarch_info info;
7192   int vector_abi;
7193 
7194   for (vector_abi = POWERPC_VEC_AUTO;
7195        vector_abi != POWERPC_VEC_LAST;
7196        vector_abi++)
7197     if (strcmp (powerpc_vector_abi_string,
7198 		powerpc_vector_strings[vector_abi]) == 0)
7199       {
7200 	powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7201 	break;
7202       }
7203 
7204   if (vector_abi == POWERPC_VEC_LAST)
7205     internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7206 		    powerpc_vector_abi_string);
7207 
7208   /* Update the architecture.  */
7209   gdbarch_info_init (&info);
7210   if (!gdbarch_update_p (info))
7211     internal_error (__FILE__, __LINE__, _("could not update architecture"));
7212 }
7213 
7214 /* Show the current setting of the exact watchpoints flag.  */
7215 
7216 static void
show_powerpc_exact_watchpoints(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)7217 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7218 				struct cmd_list_element *c,
7219 				const char *value)
7220 {
7221   fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7222 }
7223 
7224 /* Read a PPC instruction from memory.  */
7225 
7226 static unsigned int
read_insn(struct frame_info * frame,CORE_ADDR pc)7227 read_insn (struct frame_info *frame, CORE_ADDR pc)
7228 {
7229   struct gdbarch *gdbarch = get_frame_arch (frame);
7230   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7231 
7232   return read_memory_unsigned_integer (pc, 4, byte_order);
7233 }
7234 
7235 /* Return non-zero if the instructions at PC match the series
7236    described in PATTERN, or zero otherwise.  PATTERN is an array of
7237    'struct ppc_insn_pattern' objects, terminated by an entry whose
7238    mask is zero.
7239 
7240    When the match is successful, fill INSNS[i] with what PATTERN[i]
7241    matched.  If PATTERN[i] is optional, and the instruction wasn't
7242    present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7243    INSNS should have as many elements as PATTERN, minus the terminator.
7244    Note that, if PATTERN contains optional instructions which aren't
7245    present in memory, then INSNS will have holes, so INSNS[i] isn't
7246    necessarily the i'th instruction in memory.  */
7247 
7248 int
ppc_insns_match_pattern(struct frame_info * frame,CORE_ADDR pc,const struct ppc_insn_pattern * pattern,unsigned int * insns)7249 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7250 			 const struct ppc_insn_pattern *pattern,
7251 			 unsigned int *insns)
7252 {
7253   int i;
7254   unsigned int insn;
7255 
7256   for (i = 0, insn = 0; pattern[i].mask; i++)
7257     {
7258       if (insn == 0)
7259 	insn = read_insn (frame, pc);
7260       insns[i] = 0;
7261       if ((insn & pattern[i].mask) == pattern[i].data)
7262 	{
7263 	  insns[i] = insn;
7264 	  pc += 4;
7265 	  insn = 0;
7266 	}
7267       else if (!pattern[i].optional)
7268 	return 0;
7269     }
7270 
7271   return 1;
7272 }
7273 
7274 /* Return the 'd' field of the d-form instruction INSN, properly
7275    sign-extended.  */
7276 
7277 CORE_ADDR
ppc_insn_d_field(unsigned int insn)7278 ppc_insn_d_field (unsigned int insn)
7279 {
7280   return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7281 }
7282 
7283 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7284    zero bits concatenated at the right, and properly
7285    sign-extended.  */
7286 
7287 CORE_ADDR
ppc_insn_ds_field(unsigned int insn)7288 ppc_insn_ds_field (unsigned int insn)
7289 {
7290   return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7291 }
7292 
7293 /* Initialization code.  */
7294 
7295 void _initialize_rs6000_tdep ();
7296 void
_initialize_rs6000_tdep()7297 _initialize_rs6000_tdep ()
7298 {
7299   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7300   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7301 
7302   /* Initialize the standard target descriptions.  */
7303   initialize_tdesc_powerpc_32 ();
7304   initialize_tdesc_powerpc_altivec32 ();
7305   initialize_tdesc_powerpc_vsx32 ();
7306   initialize_tdesc_powerpc_403 ();
7307   initialize_tdesc_powerpc_403gc ();
7308   initialize_tdesc_powerpc_405 ();
7309   initialize_tdesc_powerpc_505 ();
7310   initialize_tdesc_powerpc_601 ();
7311   initialize_tdesc_powerpc_602 ();
7312   initialize_tdesc_powerpc_603 ();
7313   initialize_tdesc_powerpc_604 ();
7314   initialize_tdesc_powerpc_64 ();
7315   initialize_tdesc_powerpc_altivec64 ();
7316   initialize_tdesc_powerpc_vsx64 ();
7317   initialize_tdesc_powerpc_7400 ();
7318   initialize_tdesc_powerpc_750 ();
7319   initialize_tdesc_powerpc_860 ();
7320   initialize_tdesc_powerpc_e500 ();
7321   initialize_tdesc_rs6000 ();
7322 
7323   /* Add root prefix command for all "set powerpc"/"show powerpc"
7324      commands.  */
7325   add_basic_prefix_cmd ("powerpc", no_class,
7326 			_("Various PowerPC-specific commands."),
7327 			&setpowerpccmdlist, "set powerpc ", 0, &setlist);
7328 
7329   add_show_prefix_cmd ("powerpc", no_class,
7330 		       _("Various PowerPC-specific commands."),
7331 		       &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7332 
7333   /* Add a command to allow the user to force the ABI.  */
7334   add_setshow_auto_boolean_cmd ("soft-float", class_support,
7335 				&powerpc_soft_float_global,
7336 				_("Set whether to use a soft-float ABI."),
7337 				_("Show whether to use a soft-float ABI."),
7338 				NULL,
7339 				powerpc_set_soft_float, NULL,
7340 				&setpowerpccmdlist, &showpowerpccmdlist);
7341 
7342   add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7343 			&powerpc_vector_abi_string,
7344 			_("Set the vector ABI."),
7345 			_("Show the vector ABI."),
7346 			NULL, powerpc_set_vector_abi, NULL,
7347 			&setpowerpccmdlist, &showpowerpccmdlist);
7348 
7349   add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7350 			   &target_exact_watchpoints,
7351 			   _("\
7352 Set whether to use just one debug register for watchpoints on scalars."),
7353 			   _("\
7354 Show whether to use just one debug register for watchpoints on scalars."),
7355 			   _("\
7356 If true, GDB will use only one debug register when watching a variable of\n\
7357 scalar type, thus assuming that the variable is accessed through the address\n\
7358 of its first byte."),
7359 			   NULL, show_powerpc_exact_watchpoints,
7360 			   &setpowerpccmdlist, &showpowerpccmdlist);
7361 }
7362