1 /*- 2 * Copyright 2002 Niels Provos <provos@citi.umich.edu> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #ifndef UV_TREE_H_ 27 #define UV_TREE_H_ 28 29 #ifndef UV__UNUSED 30 # if __GNUC__ 31 # define UV__UNUSED __attribute__((unused)) 32 # else 33 # define UV__UNUSED 34 # endif 35 #endif 36 37 /* 38 * This file defines data structures for different types of trees: 39 * splay trees and red-black trees. 40 * 41 * A splay tree is a self-organizing data structure. Every operation 42 * on the tree causes a splay to happen. The splay moves the requested 43 * node to the root of the tree and partly rebalances it. 44 * 45 * This has the benefit that request locality causes faster lookups as 46 * the requested nodes move to the top of the tree. On the other hand, 47 * every lookup causes memory writes. 48 * 49 * The Balance Theorem bounds the total access time for m operations 50 * and n inserts on an initially empty tree as O((m + n)lg n). The 51 * amortized cost for a sequence of m accesses to a splay tree is O(lg n); 52 * 53 * A red-black tree is a binary search tree with the node color as an 54 * extra attribute. It fulfills a set of conditions: 55 * - every search path from the root to a leaf consists of the 56 * same number of black nodes, 57 * - each red node (except for the root) has a black parent, 58 * - each leaf node is black. 59 * 60 * Every operation on a red-black tree is bounded as O(lg n). 61 * The maximum height of a red-black tree is 2lg (n+1). 62 */ 63 64 #define SPLAY_HEAD(name, type) \ 65 struct name { \ 66 struct type *sph_root; /* root of the tree */ \ 67 } 68 69 #define SPLAY_INITIALIZER(root) \ 70 { NULL } 71 72 #define SPLAY_INIT(root) do { \ 73 (root)->sph_root = NULL; \ 74 } while (/*CONSTCOND*/ 0) 75 76 #define SPLAY_ENTRY(type) \ 77 struct { \ 78 struct type *spe_left; /* left element */ \ 79 struct type *spe_right; /* right element */ \ 80 } 81 82 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left 83 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right 84 #define SPLAY_ROOT(head) (head)->sph_root 85 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL) 86 87 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */ 88 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \ 89 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \ 90 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ 91 (head)->sph_root = tmp; \ 92 } while (/*CONSTCOND*/ 0) 93 94 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \ 95 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \ 96 SPLAY_LEFT(tmp, field) = (head)->sph_root; \ 97 (head)->sph_root = tmp; \ 98 } while (/*CONSTCOND*/ 0) 99 100 #define SPLAY_LINKLEFT(head, tmp, field) do { \ 101 SPLAY_LEFT(tmp, field) = (head)->sph_root; \ 102 tmp = (head)->sph_root; \ 103 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \ 104 } while (/*CONSTCOND*/ 0) 105 106 #define SPLAY_LINKRIGHT(head, tmp, field) do { \ 107 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ 108 tmp = (head)->sph_root; \ 109 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \ 110 } while (/*CONSTCOND*/ 0) 111 112 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \ 113 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \ 114 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field); \ 115 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \ 116 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \ 117 } while (/*CONSTCOND*/ 0) 118 119 /* Generates prototypes and inline functions */ 120 121 #define SPLAY_PROTOTYPE(name, type, field, cmp) \ 122 void name##_SPLAY(struct name *, struct type *); \ 123 void name##_SPLAY_MINMAX(struct name *, int); \ 124 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \ 125 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \ 126 \ 127 /* Finds the node with the same key as elm */ \ 128 static __inline struct type * \ 129 name##_SPLAY_FIND(struct name *head, struct type *elm) \ 130 { \ 131 if (SPLAY_EMPTY(head)) \ 132 return(NULL); \ 133 name##_SPLAY(head, elm); \ 134 if ((cmp)(elm, (head)->sph_root) == 0) \ 135 return (head->sph_root); \ 136 return (NULL); \ 137 } \ 138 \ 139 static __inline struct type * \ 140 name##_SPLAY_NEXT(struct name *head, struct type *elm) \ 141 { \ 142 name##_SPLAY(head, elm); \ 143 if (SPLAY_RIGHT(elm, field) != NULL) { \ 144 elm = SPLAY_RIGHT(elm, field); \ 145 while (SPLAY_LEFT(elm, field) != NULL) { \ 146 elm = SPLAY_LEFT(elm, field); \ 147 } \ 148 } else \ 149 elm = NULL; \ 150 return (elm); \ 151 } \ 152 \ 153 static __inline struct type * \ 154 name##_SPLAY_MIN_MAX(struct name *head, int val) \ 155 { \ 156 name##_SPLAY_MINMAX(head, val); \ 157 return (SPLAY_ROOT(head)); \ 158 } 159 160 /* Main splay operation. 161 * Moves node close to the key of elm to top 162 */ 163 #define SPLAY_GENERATE(name, type, field, cmp) \ 164 struct type * \ 165 name##_SPLAY_INSERT(struct name *head, struct type *elm) \ 166 { \ 167 if (SPLAY_EMPTY(head)) { \ 168 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \ 169 } else { \ 170 int __comp; \ 171 name##_SPLAY(head, elm); \ 172 __comp = (cmp)(elm, (head)->sph_root); \ 173 if(__comp < 0) { \ 174 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field); \ 175 SPLAY_RIGHT(elm, field) = (head)->sph_root; \ 176 SPLAY_LEFT((head)->sph_root, field) = NULL; \ 177 } else if (__comp > 0) { \ 178 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field); \ 179 SPLAY_LEFT(elm, field) = (head)->sph_root; \ 180 SPLAY_RIGHT((head)->sph_root, field) = NULL; \ 181 } else \ 182 return ((head)->sph_root); \ 183 } \ 184 (head)->sph_root = (elm); \ 185 return (NULL); \ 186 } \ 187 \ 188 struct type * \ 189 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \ 190 { \ 191 struct type *__tmp; \ 192 if (SPLAY_EMPTY(head)) \ 193 return (NULL); \ 194 name##_SPLAY(head, elm); \ 195 if ((cmp)(elm, (head)->sph_root) == 0) { \ 196 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \ 197 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \ 198 } else { \ 199 __tmp = SPLAY_RIGHT((head)->sph_root, field); \ 200 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \ 201 name##_SPLAY(head, elm); \ 202 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \ 203 } \ 204 return (elm); \ 205 } \ 206 return (NULL); \ 207 } \ 208 \ 209 void \ 210 name##_SPLAY(struct name *head, struct type *elm) \ 211 { \ 212 struct type __node, *__left, *__right, *__tmp; \ 213 int __comp; \ 214 \ 215 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL; \ 216 __left = __right = &__node; \ 217 \ 218 while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \ 219 if (__comp < 0) { \ 220 __tmp = SPLAY_LEFT((head)->sph_root, field); \ 221 if (__tmp == NULL) \ 222 break; \ 223 if ((cmp)(elm, __tmp) < 0){ \ 224 SPLAY_ROTATE_RIGHT(head, __tmp, field); \ 225 if (SPLAY_LEFT((head)->sph_root, field) == NULL) \ 226 break; \ 227 } \ 228 SPLAY_LINKLEFT(head, __right, field); \ 229 } else if (__comp > 0) { \ 230 __tmp = SPLAY_RIGHT((head)->sph_root, field); \ 231 if (__tmp == NULL) \ 232 break; \ 233 if ((cmp)(elm, __tmp) > 0){ \ 234 SPLAY_ROTATE_LEFT(head, __tmp, field); \ 235 if (SPLAY_RIGHT((head)->sph_root, field) == NULL) \ 236 break; \ 237 } \ 238 SPLAY_LINKRIGHT(head, __left, field); \ 239 } \ 240 } \ 241 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \ 242 } \ 243 \ 244 /* Splay with either the minimum or the maximum element \ 245 * Used to find minimum or maximum element in tree. \ 246 */ \ 247 void name##_SPLAY_MINMAX(struct name *head, int __comp) \ 248 { \ 249 struct type __node, *__left, *__right, *__tmp; \ 250 \ 251 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL; \ 252 __left = __right = &__node; \ 253 \ 254 for (;;) { \ 255 if (__comp < 0) { \ 256 __tmp = SPLAY_LEFT((head)->sph_root, field); \ 257 if (__tmp == NULL) \ 258 break; \ 259 if (__comp < 0){ \ 260 SPLAY_ROTATE_RIGHT(head, __tmp, field); \ 261 if (SPLAY_LEFT((head)->sph_root, field) == NULL) \ 262 break; \ 263 } \ 264 SPLAY_LINKLEFT(head, __right, field); \ 265 } else if (__comp > 0) { \ 266 __tmp = SPLAY_RIGHT((head)->sph_root, field); \ 267 if (__tmp == NULL) \ 268 break; \ 269 if (__comp > 0) { \ 270 SPLAY_ROTATE_LEFT(head, __tmp, field); \ 271 if (SPLAY_RIGHT((head)->sph_root, field) == NULL) \ 272 break; \ 273 } \ 274 SPLAY_LINKRIGHT(head, __left, field); \ 275 } \ 276 } \ 277 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \ 278 } 279 280 #define SPLAY_NEGINF -1 281 #define SPLAY_INF 1 282 283 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y) 284 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y) 285 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y) 286 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y) 287 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \ 288 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF)) 289 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \ 290 : name##_SPLAY_MIN_MAX(x, SPLAY_INF)) 291 292 #define SPLAY_FOREACH(x, name, head) \ 293 for ((x) = SPLAY_MIN(name, head); \ 294 (x) != NULL; \ 295 (x) = SPLAY_NEXT(name, head, x)) 296 297 /* Macros that define a red-black tree */ 298 #define RB_HEAD(name, type) \ 299 struct name { \ 300 struct type *rbh_root; /* root of the tree */ \ 301 } 302 303 #define RB_INITIALIZER(root) \ 304 { NULL } 305 306 #define RB_INIT(root) do { \ 307 (root)->rbh_root = NULL; \ 308 } while (/*CONSTCOND*/ 0) 309 310 #define RB_BLACK 0 311 #define RB_RED 1 312 #define RB_ENTRY(type) \ 313 struct { \ 314 struct type *rbe_left; /* left element */ \ 315 struct type *rbe_right; /* right element */ \ 316 struct type *rbe_parent; /* parent element */ \ 317 int rbe_color; /* node color */ \ 318 } 319 320 #define RB_LEFT(elm, field) (elm)->field.rbe_left 321 #define RB_RIGHT(elm, field) (elm)->field.rbe_right 322 #define RB_PARENT(elm, field) (elm)->field.rbe_parent 323 #define RB_COLOR(elm, field) (elm)->field.rbe_color 324 #define RB_ROOT(head) (head)->rbh_root 325 #define RB_EMPTY(head) (RB_ROOT(head) == NULL) 326 327 #define RB_SET(elm, parent, field) do { \ 328 RB_PARENT(elm, field) = parent; \ 329 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \ 330 RB_COLOR(elm, field) = RB_RED; \ 331 } while (/*CONSTCOND*/ 0) 332 333 #define RB_SET_BLACKRED(black, red, field) do { \ 334 RB_COLOR(black, field) = RB_BLACK; \ 335 RB_COLOR(red, field) = RB_RED; \ 336 } while (/*CONSTCOND*/ 0) 337 338 #ifndef RB_AUGMENT 339 #define RB_AUGMENT(x) do {} while (0) 340 #endif 341 342 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \ 343 (tmp) = RB_RIGHT(elm, field); \ 344 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \ 345 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \ 346 } \ 347 RB_AUGMENT(elm); \ 348 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \ 349 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \ 350 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \ 351 else \ 352 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \ 353 } else \ 354 (head)->rbh_root = (tmp); \ 355 RB_LEFT(tmp, field) = (elm); \ 356 RB_PARENT(elm, field) = (tmp); \ 357 RB_AUGMENT(tmp); \ 358 if ((RB_PARENT(tmp, field))) \ 359 RB_AUGMENT(RB_PARENT(tmp, field)); \ 360 } while (/*CONSTCOND*/ 0) 361 362 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \ 363 (tmp) = RB_LEFT(elm, field); \ 364 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \ 365 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \ 366 } \ 367 RB_AUGMENT(elm); \ 368 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \ 369 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \ 370 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \ 371 else \ 372 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \ 373 } else \ 374 (head)->rbh_root = (tmp); \ 375 RB_RIGHT(tmp, field) = (elm); \ 376 RB_PARENT(elm, field) = (tmp); \ 377 RB_AUGMENT(tmp); \ 378 if ((RB_PARENT(tmp, field))) \ 379 RB_AUGMENT(RB_PARENT(tmp, field)); \ 380 } while (/*CONSTCOND*/ 0) 381 382 /* Generates prototypes and inline functions */ 383 #define RB_PROTOTYPE(name, type, field, cmp) \ 384 RB_PROTOTYPE_INTERNAL(name, type, field, cmp,) 385 #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \ 386 RB_PROTOTYPE_INTERNAL(name, type, field, cmp, UV__UNUSED static) 387 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \ 388 attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \ 389 attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\ 390 attr struct type *name##_RB_REMOVE(struct name *, struct type *); \ 391 attr struct type *name##_RB_INSERT(struct name *, struct type *); \ 392 attr struct type *name##_RB_FIND(struct name *, struct type *); \ 393 attr struct type *name##_RB_NFIND(struct name *, struct type *); \ 394 attr struct type *name##_RB_NEXT(struct type *); \ 395 attr struct type *name##_RB_PREV(struct type *); \ 396 attr struct type *name##_RB_MINMAX(struct name *, int); \ 397 \ 398 399 /* Main rb operation. 400 * Moves node close to the key of elm to top 401 */ 402 #define RB_GENERATE(name, type, field, cmp) \ 403 RB_GENERATE_INTERNAL(name, type, field, cmp,) 404 #define RB_GENERATE_STATIC(name, type, field, cmp) \ 405 RB_GENERATE_INTERNAL(name, type, field, cmp, UV__UNUSED static) 406 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \ 407 attr void \ 408 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \ 409 { \ 410 struct type *parent, *gparent, *tmp; \ 411 while ((parent = RB_PARENT(elm, field)) != NULL && \ 412 RB_COLOR(parent, field) == RB_RED) { \ 413 gparent = RB_PARENT(parent, field); \ 414 if (parent == RB_LEFT(gparent, field)) { \ 415 tmp = RB_RIGHT(gparent, field); \ 416 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \ 417 RB_COLOR(tmp, field) = RB_BLACK; \ 418 RB_SET_BLACKRED(parent, gparent, field); \ 419 elm = gparent; \ 420 continue; \ 421 } \ 422 if (RB_RIGHT(parent, field) == elm) { \ 423 RB_ROTATE_LEFT(head, parent, tmp, field); \ 424 tmp = parent; \ 425 parent = elm; \ 426 elm = tmp; \ 427 } \ 428 RB_SET_BLACKRED(parent, gparent, field); \ 429 RB_ROTATE_RIGHT(head, gparent, tmp, field); \ 430 } else { \ 431 tmp = RB_LEFT(gparent, field); \ 432 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \ 433 RB_COLOR(tmp, field) = RB_BLACK; \ 434 RB_SET_BLACKRED(parent, gparent, field); \ 435 elm = gparent; \ 436 continue; \ 437 } \ 438 if (RB_LEFT(parent, field) == elm) { \ 439 RB_ROTATE_RIGHT(head, parent, tmp, field); \ 440 tmp = parent; \ 441 parent = elm; \ 442 elm = tmp; \ 443 } \ 444 RB_SET_BLACKRED(parent, gparent, field); \ 445 RB_ROTATE_LEFT(head, gparent, tmp, field); \ 446 } \ 447 } \ 448 RB_COLOR(head->rbh_root, field) = RB_BLACK; \ 449 } \ 450 \ 451 attr void \ 452 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, \ 453 struct type *elm) \ 454 { \ 455 struct type *tmp; \ 456 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \ 457 elm != RB_ROOT(head)) { \ 458 if (RB_LEFT(parent, field) == elm) { \ 459 tmp = RB_RIGHT(parent, field); \ 460 if (RB_COLOR(tmp, field) == RB_RED) { \ 461 RB_SET_BLACKRED(tmp, parent, field); \ 462 RB_ROTATE_LEFT(head, parent, tmp, field); \ 463 tmp = RB_RIGHT(parent, field); \ 464 } \ 465 if ((RB_LEFT(tmp, field) == NULL || \ 466 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \ 467 (RB_RIGHT(tmp, field) == NULL || \ 468 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \ 469 RB_COLOR(tmp, field) = RB_RED; \ 470 elm = parent; \ 471 parent = RB_PARENT(elm, field); \ 472 } else { \ 473 if (RB_RIGHT(tmp, field) == NULL || \ 474 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) { \ 475 struct type *oleft; \ 476 if ((oleft = RB_LEFT(tmp, field)) \ 477 != NULL) \ 478 RB_COLOR(oleft, field) = RB_BLACK; \ 479 RB_COLOR(tmp, field) = RB_RED; \ 480 RB_ROTATE_RIGHT(head, tmp, oleft, field); \ 481 tmp = RB_RIGHT(parent, field); \ 482 } \ 483 RB_COLOR(tmp, field) = RB_COLOR(parent, field); \ 484 RB_COLOR(parent, field) = RB_BLACK; \ 485 if (RB_RIGHT(tmp, field)) \ 486 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK; \ 487 RB_ROTATE_LEFT(head, parent, tmp, field); \ 488 elm = RB_ROOT(head); \ 489 break; \ 490 } \ 491 } else { \ 492 tmp = RB_LEFT(parent, field); \ 493 if (RB_COLOR(tmp, field) == RB_RED) { \ 494 RB_SET_BLACKRED(tmp, parent, field); \ 495 RB_ROTATE_RIGHT(head, parent, tmp, field); \ 496 tmp = RB_LEFT(parent, field); \ 497 } \ 498 if ((RB_LEFT(tmp, field) == NULL || \ 499 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) && \ 500 (RB_RIGHT(tmp, field) == NULL || \ 501 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) { \ 502 RB_COLOR(tmp, field) = RB_RED; \ 503 elm = parent; \ 504 parent = RB_PARENT(elm, field); \ 505 } else { \ 506 if (RB_LEFT(tmp, field) == NULL || \ 507 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) { \ 508 struct type *oright; \ 509 if ((oright = RB_RIGHT(tmp, field)) \ 510 != NULL) \ 511 RB_COLOR(oright, field) = RB_BLACK; \ 512 RB_COLOR(tmp, field) = RB_RED; \ 513 RB_ROTATE_LEFT(head, tmp, oright, field); \ 514 tmp = RB_LEFT(parent, field); \ 515 } \ 516 RB_COLOR(tmp, field) = RB_COLOR(parent, field); \ 517 RB_COLOR(parent, field) = RB_BLACK; \ 518 if (RB_LEFT(tmp, field)) \ 519 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK; \ 520 RB_ROTATE_RIGHT(head, parent, tmp, field); \ 521 elm = RB_ROOT(head); \ 522 break; \ 523 } \ 524 } \ 525 } \ 526 if (elm) \ 527 RB_COLOR(elm, field) = RB_BLACK; \ 528 } \ 529 \ 530 attr struct type * \ 531 name##_RB_REMOVE(struct name *head, struct type *elm) \ 532 { \ 533 struct type *child, *parent, *old = elm; \ 534 int color; \ 535 if (RB_LEFT(elm, field) == NULL) \ 536 child = RB_RIGHT(elm, field); \ 537 else if (RB_RIGHT(elm, field) == NULL) \ 538 child = RB_LEFT(elm, field); \ 539 else { \ 540 struct type *left; \ 541 elm = RB_RIGHT(elm, field); \ 542 while ((left = RB_LEFT(elm, field)) != NULL) \ 543 elm = left; \ 544 child = RB_RIGHT(elm, field); \ 545 parent = RB_PARENT(elm, field); \ 546 color = RB_COLOR(elm, field); \ 547 if (child) \ 548 RB_PARENT(child, field) = parent; \ 549 if (parent) { \ 550 if (RB_LEFT(parent, field) == elm) \ 551 RB_LEFT(parent, field) = child; \ 552 else \ 553 RB_RIGHT(parent, field) = child; \ 554 RB_AUGMENT(parent); \ 555 } else \ 556 RB_ROOT(head) = child; \ 557 if (RB_PARENT(elm, field) == old) \ 558 parent = elm; \ 559 (elm)->field = (old)->field; \ 560 if (RB_PARENT(old, field)) { \ 561 if (RB_LEFT(RB_PARENT(old, field), field) == old) \ 562 RB_LEFT(RB_PARENT(old, field), field) = elm; \ 563 else \ 564 RB_RIGHT(RB_PARENT(old, field), field) = elm; \ 565 RB_AUGMENT(RB_PARENT(old, field)); \ 566 } else \ 567 RB_ROOT(head) = elm; \ 568 RB_PARENT(RB_LEFT(old, field), field) = elm; \ 569 if (RB_RIGHT(old, field)) \ 570 RB_PARENT(RB_RIGHT(old, field), field) = elm; \ 571 if (parent) { \ 572 left = parent; \ 573 do { \ 574 RB_AUGMENT(left); \ 575 } while ((left = RB_PARENT(left, field)) != NULL); \ 576 } \ 577 goto color; \ 578 } \ 579 parent = RB_PARENT(elm, field); \ 580 color = RB_COLOR(elm, field); \ 581 if (child) \ 582 RB_PARENT(child, field) = parent; \ 583 if (parent) { \ 584 if (RB_LEFT(parent, field) == elm) \ 585 RB_LEFT(parent, field) = child; \ 586 else \ 587 RB_RIGHT(parent, field) = child; \ 588 RB_AUGMENT(parent); \ 589 } else \ 590 RB_ROOT(head) = child; \ 591 color: \ 592 if (color == RB_BLACK) \ 593 name##_RB_REMOVE_COLOR(head, parent, child); \ 594 return (old); \ 595 } \ 596 \ 597 /* Inserts a node into the RB tree */ \ 598 attr struct type * \ 599 name##_RB_INSERT(struct name *head, struct type *elm) \ 600 { \ 601 struct type *tmp; \ 602 struct type *parent = NULL; \ 603 int comp = 0; \ 604 tmp = RB_ROOT(head); \ 605 while (tmp) { \ 606 parent = tmp; \ 607 comp = (cmp)(elm, parent); \ 608 if (comp < 0) \ 609 tmp = RB_LEFT(tmp, field); \ 610 else if (comp > 0) \ 611 tmp = RB_RIGHT(tmp, field); \ 612 else \ 613 return (tmp); \ 614 } \ 615 RB_SET(elm, parent, field); \ 616 if (parent != NULL) { \ 617 if (comp < 0) \ 618 RB_LEFT(parent, field) = elm; \ 619 else \ 620 RB_RIGHT(parent, field) = elm; \ 621 RB_AUGMENT(parent); \ 622 } else \ 623 RB_ROOT(head) = elm; \ 624 name##_RB_INSERT_COLOR(head, elm); \ 625 return (NULL); \ 626 } \ 627 \ 628 /* Finds the node with the same key as elm */ \ 629 attr struct type * \ 630 name##_RB_FIND(struct name *head, struct type *elm) \ 631 { \ 632 struct type *tmp = RB_ROOT(head); \ 633 int comp; \ 634 while (tmp) { \ 635 comp = cmp(elm, tmp); \ 636 if (comp < 0) \ 637 tmp = RB_LEFT(tmp, field); \ 638 else if (comp > 0) \ 639 tmp = RB_RIGHT(tmp, field); \ 640 else \ 641 return (tmp); \ 642 } \ 643 return (NULL); \ 644 } \ 645 \ 646 /* Finds the first node greater than or equal to the search key */ \ 647 attr struct type * \ 648 name##_RB_NFIND(struct name *head, struct type *elm) \ 649 { \ 650 struct type *tmp = RB_ROOT(head); \ 651 struct type *res = NULL; \ 652 int comp; \ 653 while (tmp) { \ 654 comp = cmp(elm, tmp); \ 655 if (comp < 0) { \ 656 res = tmp; \ 657 tmp = RB_LEFT(tmp, field); \ 658 } \ 659 else if (comp > 0) \ 660 tmp = RB_RIGHT(tmp, field); \ 661 else \ 662 return (tmp); \ 663 } \ 664 return (res); \ 665 } \ 666 \ 667 /* ARGSUSED */ \ 668 attr struct type * \ 669 name##_RB_NEXT(struct type *elm) \ 670 { \ 671 if (RB_RIGHT(elm, field)) { \ 672 elm = RB_RIGHT(elm, field); \ 673 while (RB_LEFT(elm, field)) \ 674 elm = RB_LEFT(elm, field); \ 675 } else { \ 676 if (RB_PARENT(elm, field) && \ 677 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \ 678 elm = RB_PARENT(elm, field); \ 679 else { \ 680 while (RB_PARENT(elm, field) && \ 681 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \ 682 elm = RB_PARENT(elm, field); \ 683 elm = RB_PARENT(elm, field); \ 684 } \ 685 } \ 686 return (elm); \ 687 } \ 688 \ 689 /* ARGSUSED */ \ 690 attr struct type * \ 691 name##_RB_PREV(struct type *elm) \ 692 { \ 693 if (RB_LEFT(elm, field)) { \ 694 elm = RB_LEFT(elm, field); \ 695 while (RB_RIGHT(elm, field)) \ 696 elm = RB_RIGHT(elm, field); \ 697 } else { \ 698 if (RB_PARENT(elm, field) && \ 699 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \ 700 elm = RB_PARENT(elm, field); \ 701 else { \ 702 while (RB_PARENT(elm, field) && \ 703 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \ 704 elm = RB_PARENT(elm, field); \ 705 elm = RB_PARENT(elm, field); \ 706 } \ 707 } \ 708 return (elm); \ 709 } \ 710 \ 711 attr struct type * \ 712 name##_RB_MINMAX(struct name *head, int val) \ 713 { \ 714 struct type *tmp = RB_ROOT(head); \ 715 struct type *parent = NULL; \ 716 while (tmp) { \ 717 parent = tmp; \ 718 if (val < 0) \ 719 tmp = RB_LEFT(tmp, field); \ 720 else \ 721 tmp = RB_RIGHT(tmp, field); \ 722 } \ 723 return (parent); \ 724 } 725 726 #define RB_NEGINF -1 727 #define RB_INF 1 728 729 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y) 730 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y) 731 #define RB_FIND(name, x, y) name##_RB_FIND(x, y) 732 #define RB_NFIND(name, x, y) name##_RB_NFIND(x, y) 733 #define RB_NEXT(name, x, y) name##_RB_NEXT(y) 734 #define RB_PREV(name, x, y) name##_RB_PREV(y) 735 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF) 736 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF) 737 738 #define RB_FOREACH(x, name, head) \ 739 for ((x) = RB_MIN(name, head); \ 740 (x) != NULL; \ 741 (x) = name##_RB_NEXT(x)) 742 743 #define RB_FOREACH_FROM(x, name, y) \ 744 for ((x) = (y); \ 745 ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \ 746 (x) = (y)) 747 748 #define RB_FOREACH_SAFE(x, name, head, y) \ 749 for ((x) = RB_MIN(name, head); \ 750 ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \ 751 (x) = (y)) 752 753 #define RB_FOREACH_REVERSE(x, name, head) \ 754 for ((x) = RB_MAX(name, head); \ 755 (x) != NULL; \ 756 (x) = name##_RB_PREV(x)) 757 758 #define RB_FOREACH_REVERSE_FROM(x, name, y) \ 759 for ((x) = (y); \ 760 ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \ 761 (x) = (y)) 762 763 #define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \ 764 for ((x) = RB_MAX(name, head); \ 765 ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \ 766 (x) = (y)) 767 768 #endif /* UV_TREE_H_ */ 769