xref: /netbsd/sys/arch/arm/ep93xx/epe.c (revision 71034770)
1 /*	$NetBSD: epe.c,v 1.50 2022/09/27 06:36:41 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Jesse Off
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.50 2022/09/27 06:36:41 skrll Exp $");
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ioctl.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/time.h>
39 #include <sys/device.h>
40 #include <uvm/uvm_extern.h>
41 
42 #include <sys/bus.h>
43 #include <machine/intr.h>
44 
45 #include <arm/cpufunc.h>
46 
47 #include <arm/ep93xx/epsocvar.h>
48 #include <arm/ep93xx/ep93xxvar.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_types.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 #include <net/bpf.h>
56 
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #include <netinet/if_inarp.h>
66 #endif
67 
68 #include <arm/ep93xx/ep93xxreg.h>
69 #include <arm/ep93xx/epereg.h>
70 #include <arm/ep93xx/epevar.h>
71 
72 #define DEFAULT_MDCDIV	32
73 
74 #ifndef EPE_FAST
75 #define EPE_FAST
76 #endif
77 
78 #ifndef EPE_FAST
79 #define EPE_READ(x) \
80 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
81 #define EPE_WRITE(x, y) \
82 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
83 #define CTRLPAGE_DMASYNC(x, y, z) \
84 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
85 #else
86 #define EPE_READ(x) *(volatile uint32_t *) \
87 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
88 #define EPE_WRITE(x, y) *(volatile uint32_t *) \
89 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
90 #define CTRLPAGE_DMASYNC(x, y, z)
91 #endif /* ! EPE_FAST */
92 
93 static int	epe_match(device_t , cfdata_t, void *);
94 static void	epe_attach(device_t, device_t, void *);
95 static void	epe_init(struct epe_softc *);
96 static int	epe_intr(void* arg);
97 static int	epe_gctx(struct epe_softc *);
98 int		epe_mii_readreg (device_t, int, int, uint16_t *);
99 int		epe_mii_writereg (device_t, int, int, uint16_t);
100 void		epe_statchg (struct ifnet *);
101 void		epe_tick (void *);
102 static int	epe_ifioctl (struct ifnet *, u_long, void *);
103 static void	epe_ifstart (struct ifnet *);
104 static void	epe_ifwatchdog (struct ifnet *);
105 static int	epe_ifinit (struct ifnet *);
106 static void	epe_ifstop (struct ifnet *, int);
107 static void	epe_setaddr (struct ifnet *);
108 
109 CFATTACH_DECL_NEW(epe, sizeof(struct epe_softc),
110     epe_match, epe_attach, NULL, NULL);
111 
112 static int
epe_match(device_t parent,cfdata_t match,void * aux)113 epe_match(device_t parent, cfdata_t match, void *aux)
114 {
115 	return 2;
116 }
117 
118 static void
epe_attach(device_t parent,device_t self,void * aux)119 epe_attach(device_t parent, device_t self, void *aux)
120 {
121 	struct epe_softc		*sc = device_private(self);
122 	struct epsoc_attach_args	*sa;
123 	prop_data_t			 enaddr;
124 
125 	aprint_normal("\n");
126 	sa = aux;
127 	sc->sc_dev = self;
128 	sc->sc_iot = sa->sa_iot;
129 	sc->sc_intr = sa->sa_intr;
130 	sc->sc_dmat = sa->sa_dmat;
131 
132 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
133 		0, &sc->sc_ioh))
134 		panic("%s: Cannot map registers", device_xname(self));
135 
136 	/* Fetch the Ethernet address from property if set. */
137 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
138 	if (enaddr != NULL) {
139 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
140 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
141 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
142 		       ETHER_ADDR_LEN);
143 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
144 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
145 					 sc->sc_enaddr, ETHER_ADDR_LEN);
146 	}
147 
148 	ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
149 	epe_init(sc);
150 }
151 
152 static int
epe_gctx(struct epe_softc * sc)153 epe_gctx(struct epe_softc *sc)
154 {
155 	struct ifnet * ifp = &sc->sc_ec.ec_if;
156 	uint32_t *cur, ndq = 0;
157 
158 	/* Handle transmit completions */
159 	cur = (uint32_t *)(EPE_READ(TXStsQCurAdd) -
160 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
161 
162 	if (sc->TXStsQ_cur != cur) {
163 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(uint32_t),
164 			TX_QLEN * sizeof(uint32_t), BUS_DMASYNC_PREREAD);
165 	} else
166 		return 0;
167 
168 	do {
169 		uint32_t tbi = *sc->TXStsQ_cur & 0x7fff;
170 		struct mbuf *m = sc->txq[tbi].m;
171 
172 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0)
173 			if_statinc(ifp, if_oerrors);
174 
175 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
176 		m_freem(m);
177 		do {
178 			sc->txq[tbi].m = NULL;
179 			ndq++;
180 			tbi = (tbi + 1) % TX_QLEN;
181 		} while (sc->txq[tbi].m == m);
182 
183 		if_statinc(ifp, if_opackets);
184 		sc->TXStsQ_cur++;
185 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
186 			sc->TXStsQ_cur = sc->TXStsQ;
187 		}
188 	} while (sc->TXStsQ_cur != cur);
189 
190 	sc->TXDQ_avail += ndq;
191 	if (sc->tx_busy) {
192 		sc->tx_busy = false;
193 		/* Disable end-of-tx-chain interrupt */
194 		EPE_WRITE(IntEn, IntEn_REOFIE);
195 	}
196 	return ndq;
197 }
198 
199 static int
epe_intr(void * arg)200 epe_intr(void *arg)
201 {
202 	struct epe_softc *sc = (struct epe_softc *)arg;
203 	struct ifnet * ifp = &sc->sc_ec.ec_if;
204 	uint32_t ndq = 0, irq, *cur;
205 
206 	irq = EPE_READ(IntStsC);
207 begin:
208 	cur = (uint32_t *)(EPE_READ(RXStsQCurAdd) -
209 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
210 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
211 		RX_QLEN * 4 * sizeof(uint32_t),
212 		BUS_DMASYNC_PREREAD);
213 	while (sc->RXStsQ_cur != cur) {
214 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE | RXStsQ_RFP |RXStsQ_EOB))
215 		    == (RXStsQ_RWE | RXStsQ_RFP | RXStsQ_EOB)) {
216 			uint32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
217 			uint32_t fl = sc->RXStsQ_cur[1] & 0xffff;
218 			struct mbuf *m;
219 
220 			MGETHDR(m, M_DONTWAIT, MT_DATA);
221 			if (m != NULL) MCLGET(m, M_DONTWAIT);
222 			if (m != NULL && (m->m_flags & M_EXT)) {
223 				bus_dmamap_unload(sc->sc_dmat,
224 					sc->rxq[bi].m_dmamap);
225 				m_set_rcvif(sc->rxq[bi].m, ifp);
226 				sc->rxq[bi].m->m_pkthdr.len =
227 					sc->rxq[bi].m->m_len = fl;
228 				if_percpuq_enqueue(ifp->if_percpuq,
229 				    sc->rxq[bi].m);
230 				sc->rxq[bi].m = m;
231 				bus_dmamap_load(sc->sc_dmat,
232 					sc->rxq[bi].m_dmamap,
233 					m->m_ext.ext_buf, MCLBYTES,
234 					NULL, BUS_DMA_NOWAIT);
235 				sc->RXDQ[bi * 2] =
236 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
237 			} else {
238 				/* Drop packets until we can get replacement
239 				 * empty mbufs for the RXDQ.
240 				 */
241 				if (m != NULL)
242 					m_freem(m);
243 
244 				if_statinc(ifp, if_ierrors);
245 			}
246 		} else
247 			if_statinc(ifp, if_ierrors);
248 
249 		ndq++;
250 
251 		sc->RXStsQ_cur += 2;
252 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2))
253 			sc->RXStsQ_cur = sc->RXStsQ;
254 	}
255 
256 	if (ndq > 0) {
257 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
258 			RX_QLEN * 4 * sizeof(uint32_t),
259 			BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
260 		EPE_WRITE(RXStsEnq, ndq);
261 		EPE_WRITE(RXDEnq, ndq);
262 		ndq = 0;
263 	}
264 
265 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
266 		if_schedule_deferred_start(ifp);
267 	}
268 
269 	irq = EPE_READ(IntStsC);
270 	if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
271 		goto begin;
272 
273 	return 1;
274 }
275 
276 
277 static void
epe_init(struct epe_softc * sc)278 epe_init(struct epe_softc *sc)
279 {
280 	bus_dma_segment_t segs;
281 	char *addr;
282 	int rsegs, err, i;
283 	struct ifnet * ifp = &sc->sc_ec.ec_if;
284 	struct mii_data *mii = &sc->sc_mii;
285 	int mdcdiv = DEFAULT_MDCDIV;
286 
287 	callout_init(&sc->epe_tick_ch, 0);
288 
289 	/* Select primary Individual Address in Address Filter Pointer */
290 	EPE_WRITE(AFP, 0);
291 	/* Read ethernet MAC, should already be set by bootrom */
292 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
293 		sc->sc_enaddr, ETHER_ADDR_LEN);
294 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
295 		ether_sprintf(sc->sc_enaddr));
296 
297 	/* Soft Reset the MAC */
298 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
299 	while (EPE_READ(SelfCtl) & SelfCtl_RESET)
300 		;
301 
302 	/* suggested magic initialization values from datasheet */
303 	EPE_WRITE(RXBufThrshld, 0x800040);
304 	EPE_WRITE(TXBufThrshld, 0x200010);
305 	EPE_WRITE(RXStsThrshld, 0x40002);
306 	EPE_WRITE(TXStsThrshld, 0x40002);
307 	EPE_WRITE(RXDThrshld, 0x40002);
308 	EPE_WRITE(TXDThrshld, 0x40002);
309 
310 	/* Allocate a page of memory for descriptor and status queues */
311 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
312 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
313 	if (err == 0) {
314 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
315 			&sc->ctrlpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
316 	}
317 	if (err == 0) {
318 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
319 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
320 	}
321 	if (err == 0) {
322 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
323 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
324 	}
325 	if (err != 0) {
326 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
327 	}
328 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
329 	memset(sc->ctrlpage, 0, PAGE_SIZE);
330 
331 	/* Set up pointers to start of each queue in kernel addr space.
332 	 * Each descriptor queue or status queue entry uses 2 words
333 	 */
334 	sc->TXDQ = (uint32_t *)sc->ctrlpage;
335 	sc->TXDQ_cur = sc->TXDQ;
336 	sc->TXDQ_avail = TX_QLEN - 1;
337 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
338 	sc->TXStsQ_cur = sc->TXStsQ;
339 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
340 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
341 	sc->RXStsQ_cur = sc->RXStsQ;
342 
343 	/* Program each queue's start addr, cur addr, and len registers
344 	 * with the physical addresses.
345 	 */
346 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
347 	EPE_WRITE(TXDQBAdd, (uint32_t)addr);
348 	EPE_WRITE(TXDQCurAdd, (uint32_t)addr);
349 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(uint32_t));
350 
351 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(uint32_t);
352 	EPE_WRITE(TXStsQBAdd, (uint32_t)addr);
353 	EPE_WRITE(TXStsQCurAdd, (uint32_t)addr);
354 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(uint32_t));
355 
356 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(uint32_t);
357 	EPE_WRITE(RXDQBAdd, (uint32_t)addr);
358 	EPE_WRITE(RXDCurAdd, (uint32_t)addr);
359 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(uint32_t));
360 
361 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(uint32_t);
362 	EPE_WRITE(RXStsQBAdd, (uint32_t)addr);
363 	EPE_WRITE(RXStsQCurAdd, (uint32_t)addr);
364 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(uint32_t));
365 
366 	/* Populate the RXDQ with mbufs */
367 	for (i = 0; i < RX_QLEN; i++) {
368 		struct mbuf *m;
369 
370 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES,
371 		    0, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
372 		MGETHDR(m, M_WAIT, MT_DATA);
373 		MCLGET(m, M_WAIT);
374 		sc->rxq[i].m = m;
375 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
376 			m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_WAITOK);
377 
378 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
379 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
380 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
381 			MCLBYTES, BUS_DMASYNC_PREREAD);
382 	}
383 
384 	for (i = 0; i < TX_QLEN; i++) {
385 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
386 			(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
387 			&sc->txq[i].m_dmamap);
388 		sc->txq[i].m = NULL;
389 		sc->TXDQ[i * 2 + 1] = (i << 16);
390 	}
391 
392 	/* Divide HCLK by 32 for MDC clock */
393 	if (device_cfdata(sc->sc_dev)->cf_flags)
394 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
395 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv) | SelfCtl_PSPRS));
396 
397 	mii->mii_ifp = ifp;
398 	mii->mii_readreg = epe_mii_readreg;
399 	mii->mii_writereg = epe_mii_writereg;
400 	mii->mii_statchg = epe_statchg;
401 	sc->sc_ec.ec_mii = mii;
402 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
403 		ether_mediastatus);
404 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
405 	    MII_OFFSET_ANY, 0);
406 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
407 
408 	EPE_WRITE(BMCtl, BMCtl_RxEn | BMCtl_TxEn);
409 	EPE_WRITE(IntEn, IntEn_REOFIE);
410 	/* maximum valid max frame length */
411 	EPE_WRITE(MaxFrmLen, (0x7ff << 16) | MHLEN);
412 	/* wait for receiver ready */
413 	while ((EPE_READ(BMSts) & BMSts_RxAct) == 0)
414 		continue;
415 	/* enqueue the entries in RXStsQ and RXDQ */
416 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
417 		BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
418 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
419 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
420 
421 	/*
422 	 * We can support 802.1Q VLAN-sized frames.
423 	 */
424 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
425 
426 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
427 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
428 	ifp->if_ioctl = epe_ifioctl;
429 	ifp->if_start = epe_ifstart;
430 	ifp->if_watchdog = epe_ifwatchdog;
431 	ifp->if_init = epe_ifinit;
432 	ifp->if_stop = epe_ifstop;
433 	ifp->if_timer = 0;
434 	ifp->if_softc = sc;
435 	IFQ_SET_READY(&ifp->if_snd);
436 	if_attach(ifp);
437 	if_deferred_start_init(ifp, NULL);
438 	ether_ifattach(ifp, (sc)->sc_enaddr);
439 }
440 
441 int
epe_mii_readreg(device_t self,int phy,int reg,uint16_t * val)442 epe_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
443 {
444 	uint32_t d;
445 
446 	d = EPE_READ(SelfCtl);
447 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
448 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
449 	while (EPE_READ(MIISts) & MIISts_BUSY)
450 		;
451 	*val = EPE_READ(MIIData) & 0xffff;
452 	EPE_WRITE(SelfCtl, d); /* restore old value */
453 	return 0;
454 }
455 
456 int
epe_mii_writereg(device_t self,int phy,int reg,uint16_t val)457 epe_mii_writereg(device_t self, int phy, int reg, uint16_t val)
458 {
459 	uint32_t d;
460 
461 	d = EPE_READ(SelfCtl);
462 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
463 	EPE_WRITE(MIIData, val);
464 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
465 	while (EPE_READ(MIISts) & MIISts_BUSY)
466 		;
467 	EPE_WRITE(SelfCtl, d); /* restore old value */
468 
469 	return 0;
470 }
471 
472 void
epe_statchg(struct ifnet * ifp)473 epe_statchg(struct ifnet *ifp)
474 {
475 	struct epe_softc *sc = ifp->if_softc;
476 	uint32_t reg;
477 
478 	/*
479 	 * We must keep the MAC and the PHY in sync as
480 	 * to the status of full-duplex!
481 	 */
482 	reg = EPE_READ(TestCtl);
483 	if (sc->sc_mii.mii_media_active & IFM_FDX)
484 		reg |= TestCtl_MFDX;
485 	else
486 		reg &= ~TestCtl_MFDX;
487 	EPE_WRITE(TestCtl, reg);
488 }
489 
490 void
epe_tick(void * arg)491 epe_tick(void *arg)
492 {
493 	struct epe_softc* sc = (struct epe_softc *)arg;
494 	struct ifnet * ifp = &sc->sc_ec.ec_if;
495 	int s;
496 	uint32_t misses;
497 
498 	if_statadd(ifp, if_collisions, EPE_READ(TXCollCnt));
499 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
500 	misses = EPE_READ(RXMissCnt);
501 	if (misses > 0)
502 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
503 
504 	s = splnet();
505 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
506 		epe_ifstart(ifp);
507 	}
508 	splx(s);
509 
510 	mii_tick(&sc->sc_mii);
511 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
512 }
513 
514 
515 static int
epe_ifioctl(struct ifnet * ifp,u_long cmd,void * data)516 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
517 {
518 	int s, error;
519 
520 	s = splnet();
521 	error = ether_ioctl(ifp, cmd, data);
522 	if (error == ENETRESET) {
523 		if (ifp->if_flags & IFF_RUNNING)
524 			epe_setaddr(ifp);
525 		error = 0;
526 	}
527 	splx(s);
528 	return error;
529 }
530 
531 static void
epe_ifstart(struct ifnet * ifp)532 epe_ifstart(struct ifnet *ifp)
533 {
534 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
535 	struct mbuf *m;
536 	bus_dma_segment_t *segs;
537 	int s, bi, err, nsegs, ndq;
538 
539 	s = splnet();
540 start:
541 	ndq = 0;
542 	if (sc->TXDQ_avail == 0) {
543 		if (epe_gctx(sc) == 0) {
544 			/* Enable End-Of-TX-Chain interrupt */
545 			EPE_WRITE(IntEn, IntEn_REOFIE | IntEn_ECIE);
546 			sc->tx_busy = true;
547 			ifp->if_timer = 10;
548 			splx(s);
549 			return;
550 		}
551 	}
552 
553 	bi = sc->TXDQ_cur - sc->TXDQ;
554 
555 	IFQ_POLL(&ifp->if_snd, m);
556 	if (m == NULL) {
557 		splx(s);
558 		return;
559 	}
560 more:
561 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
562 		BUS_DMA_NOWAIT)) ||
563 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
564 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
565 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
566 		struct mbuf *mn;
567 
568 		if (err == 0)
569 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
570 
571 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
572 		if (mn == NULL) goto stop;
573 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
574 			MCLGET(mn, M_DONTWAIT);
575 			if ((mn->m_flags & M_EXT) == 0) {
576 				m_freem(mn);
577 				goto stop;
578 			}
579 		}
580 		mn->m_data = (void *)(((uint32_t)mn->m_data + 0x3) & (~0x3));
581 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
582 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
583 		IFQ_DEQUEUE(&ifp->if_snd, m);
584 		m_freem(m);
585 		m = mn;
586 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
587 			BUS_DMA_NOWAIT);
588 	} else {
589 		IFQ_DEQUEUE(&ifp->if_snd, m);
590 	}
591 
592 	bpf_mtap(ifp, m, BPF_D_OUT);
593 
594 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
595 	segs = sc->txq[bi].m_dmamap->dm_segs;
596 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
597 		sc->txq[bi].m_dmamap->dm_mapsize,
598 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
599 
600 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
601 	while (nsegs > 0) {
602 		nsegs--;
603 		sc->txq[bi].m = m;
604 		sc->TXDQ[bi * 2] = segs->ds_addr;
605 		if (nsegs == 0)
606 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
607 				(1 << 31);
608 		else
609 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
610 		segs++;
611 		bi = (bi + 1) % TX_QLEN;
612 		ndq++;
613 	}
614 
615 
616 	/*
617 	 * Enqueue another.  Don't do more than half the available
618 	 * descriptors before telling the MAC about them
619 	 */
620 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
621 		IFQ_POLL(&ifp->if_snd, m);
622 		if (m != NULL)
623 			goto more;
624 	}
625 stop:
626 	if (ndq > 0) {
627 		sc->TXDQ_avail -= ndq;
628 		sc->TXDQ_cur = &sc->TXDQ[bi];
629 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(uint32_t),
630 			BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
631 		EPE_WRITE(TXDEnq, ndq);
632 	}
633 
634 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
635 		goto start;
636 
637 	splx(s);
638 	return;
639 }
640 
641 static void
epe_ifwatchdog(struct ifnet * ifp)642 epe_ifwatchdog(struct ifnet *ifp)
643 {
644 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
645 
646 	if ((ifp->if_flags & IFF_RUNNING) == 0)
647 		return;
648 	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
649 		device_xname(sc->sc_dev), EPE_READ(BMCtl), EPE_READ(BMSts));
650 }
651 
652 static int
epe_ifinit(struct ifnet * ifp)653 epe_ifinit(struct ifnet *ifp)
654 {
655 	struct epe_softc *sc = ifp->if_softc;
656 	int rc, s = splnet();
657 
658 	callout_stop(&sc->epe_tick_ch);
659 	EPE_WRITE(RXCtl, RXCtl_IA0 | RXCtl_BA | RXCtl_RCRCA | RXCtl_SRxON);
660 	EPE_WRITE(TXCtl, TXCtl_STxON);
661 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
662 
663 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
664 		rc = 0;
665 	else if (rc != 0)
666 		goto out;
667 
668 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
669 	ifp->if_flags |= IFF_RUNNING;
670 out:
671 	splx(s);
672 	return 0;
673 }
674 
675 static void
epe_ifstop(struct ifnet * ifp,int disable)676 epe_ifstop(struct ifnet *ifp, int disable)
677 {
678 	struct epe_softc *sc = ifp->if_softc;
679 
680 
681 	EPE_WRITE(RXCtl, 0);
682 	EPE_WRITE(TXCtl, 0);
683 	EPE_WRITE(GIIntMsk, 0);
684 	callout_stop(&sc->epe_tick_ch);
685 
686 	/* Down the MII. */
687 	mii_down(&sc->sc_mii);
688 
689 	ifp->if_flags &= ~IFF_RUNNING;
690 	ifp->if_timer = 0;
691 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
692 }
693 
694 static void
epe_setaddr(struct ifnet * ifp)695 epe_setaddr(struct ifnet *ifp)
696 {
697 	struct epe_softc *sc = ifp->if_softc;
698 	struct ethercom *ec = &sc->sc_ec;
699 	struct ether_multi *enm;
700 	struct ether_multistep step;
701 	uint8_t ias[2][ETHER_ADDR_LEN];
702 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
703 	uint32_t rxctl = EPE_READ(RXCtl);
704 
705 	/* disable receiver temporarily */
706 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
707 
708 	rxctl &= ~(RXCtl_MA | RXCtl_PA | RXCtl_IA2 | RXCtl_IA3);
709 
710 	if (ifp->if_flags & IFF_PROMISC)
711 		rxctl |= RXCtl_PA;
712 
713 	ifp->if_flags &= ~IFF_ALLMULTI;
714 
715 	ETHER_LOCK(ec);
716 	ETHER_FIRST_MULTI(step, ec, enm);
717 	while (enm != NULL) {
718 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
719 			/*
720 			 * We must listen to a range of multicast addresses.
721 			 * For now, just accept all multicasts, rather than
722 			 * trying to set only those filter bits needed to match
723 			 * the range.  (At this time, the only use of address
724 			 * ranges is for IP multicast routing, for which the
725 			 * range is big enough to require all bits set.)
726 			 */
727 			rxctl &= ~(RXCtl_IA2 | RXCtl_IA3);
728 			rxctl |= RXCtl_MA;
729 			hashes[0] = 0xffffffffUL;
730 			hashes[1] = 0xffffffffUL;
731 			ifp->if_flags |= IFF_ALLMULTI;
732 			break;
733 		}
734 
735 		if (nma < 2) {
736 			/* We can program 2 perfect address filters for mcast */
737 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
738 			rxctl |= (1 << (nma + 2));
739 		} else {
740 			/*
741 			 * XXX: Datasheet is not very clear here, I'm not sure
742 			 * if I'm doing this right.  --joff
743 			 */
744 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
745 
746 			/* Just want the 6 most-significant bits. */
747 			h = h >> 26;
748 
749 			hashes[ h / 32 ] |=  (1 << (h % 32));
750 			rxctl |= RXCtl_MA;
751 		}
752 		ETHER_NEXT_MULTI(step, enm);
753 		nma++;
754 	}
755 	ETHER_UNLOCK(ec);
756 
757 	EPE_WRITE(AFP, 0);
758 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
759 		sc->sc_enaddr, ETHER_ADDR_LEN);
760 	if (rxctl & RXCtl_IA2) {
761 		EPE_WRITE(AFP, 2);
762 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
763 			ias[0], ETHER_ADDR_LEN);
764 	}
765 	if (rxctl & RXCtl_IA3) {
766 		EPE_WRITE(AFP, 3);
767 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
768 			ias[1], ETHER_ADDR_LEN);
769 	}
770 	if (hashes[0] != 0 && hashes[1] != 0) {
771 		EPE_WRITE(AFP, 7);
772 		EPE_WRITE(HashTbl, hashes[0]);
773 		EPE_WRITE(HashTbl + 4, hashes[1]);
774 	}
775 	EPE_WRITE(RXCtl, rxctl);
776 }
777