1 /* $NetBSD: machdep.c,v 1.9 2023/04/20 08:28:03 skrll Exp $ */
2 /*
3 * Copyright (c) 2012, 2013 KIYOHARA Takashi
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.9 2023/04/20 08:28:03 skrll Exp $");
30
31 #include "clpscom.h"
32 #include "clpslcd.h"
33 #include "wmcom.h"
34 #include "wmlcd.h"
35 #include "epockbd.h"
36 #include "ksyms.h"
37 #include "opt_ddb.h"
38 #include "opt_md.h"
39 #include "opt_modular.h"
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/kernel.h>
46 #include <sys/lwp.h>
47 #include <sys/pmf.h>
48 #include <sys/reboot.h>
49 #include <sys/termios.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include <dev/cons.h>
54 #include <dev/md.h>
55
56 #include <arm/locore.h>
57 #include <arm/undefined.h>
58 #include <arm/arm32/machdep.h>
59 #include <arm/arm32/pmap.h>
60
61 #include <machine/bootconfig.h>
62 #include <machine/bootinfo.h>
63 #include <machine/epoc32.h>
64
65 #include <arm/clps711x/clpssocvar.h>
66 #include <epoc32/windermere/windermerevar.h>
67 #include <epoc32/windermere/windermerereg.h>
68 #include <epoc32/dev/epockbdvar.h>
69
70 #include <machine/db_machdep.h>
71 #include <ddb/db_extern.h>
72
73 #define KERNEL_OFFSET 0x00030000
74 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET)
75 #ifndef KERNEL_VM_BASE
76 #define KERNEL_VM_BASE (KERNEL_BASE + 0x00300000)
77 #endif
78 #define KERNEL_VM_SIZE 0x04000000 /* XXXX 64M */
79
80 /* Define various stack sizes in pages */
81 #define IRQ_STACK_SIZE 1
82 #define ABT_STACK_SIZE 1
83 #define UND_STACK_SIZE 1
84
85
86 BootConfig bootconfig; /* Boot config storage */
87 static char bootargs[256];
88 char *boot_args = NULL;
89
90 vaddr_t physical_start;
91 vaddr_t physical_freestart;
92 vaddr_t physical_freeend;
93 vaddr_t physical_end;
94 u_int free_pages;
95
96 paddr_t msgbufphys;
97
98 enum {
99 KERNEL_PT_SYS = 0, /* Page table for mapping proc0 zero page */
100 KERNEL_PT_KERNEL, /* Page table for mapping kernel and VM */
101
102 NUM_KERNEL_PTS
103 };
104 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
105
106 char epoc32_model[256];
107 int epoc32_fb_width;
108 int epoc32_fb_height;
109 int epoc32_fb_addr;
110
111 /*
112 * Static device mappings. These peripheral registers are mapped at
113 * fixed virtual addresses very early in initarm() so that we can use
114 * them while booting the kernel, and stay at the same address
115 * throughout whole kernel's life time.
116 *
117 * We use this table twice; once with bootstrap page table, and once
118 * with kernel's page table which we build up in initarm().
119 *
120 * Since we map these registers into the bootstrap page table using
121 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
122 * registers segment-aligned and segment-rounded in order to avoid
123 * using the 2nd page tables.
124 */
125
126 static const struct pmap_devmap epoc32_devmap[] = {
127 DEVMAP_ENTRY(
128 ARM7XX_INTRREG_VBASE, /* included com, lcd-ctrl */
129 ARM7XX_INTRREG_BASE,
130 ARM7XX_INTRREG_SIZE
131 ),
132
133 DEVMAP_ENTRY_END
134 };
135 static const struct pmap_devmap epoc32_fb_devmap[] = {
136 DEVMAP_ENTRY(
137 ARM7XX_FB_VBASE,
138 ARM7XX_FB_BASE,
139 ARM7XX_FB_SIZE
140 ),
141
142 DEVMAP_ENTRY_END
143 };
144
145 /*
146 * vaddr_t initarm(...)
147 *
148 * Initial entry point on startup. This gets called before main() is
149 * entered.
150 * It should be responsible for setting up everything that must be
151 * in place when main is called.
152 * This includes
153 * Taking a copy of the boot configuration structure.
154 * Initialising the physical console so characters can be printed.
155 * Setting up page tables for the kernel
156 * Relocating the kernel to the bottom of physical memory
157 */
158 vaddr_t
initarm(void * arg)159 initarm(void *arg)
160 {
161 extern char _end[];
162 extern vaddr_t startup_pagetable;
163 extern struct btinfo_common bootinfo;
164 struct btinfo_common *btinfo = &bootinfo;
165 struct btinfo_model *model = NULL;
166 struct btinfo_memory *memory = NULL;
167 struct btinfo_video *video = NULL;
168 struct btinfo_bootargs *args = NULL;
169 u_int l1pagetable, _end_physical;
170 int loop, loop1, n, i;
171
172 /*
173 * Heads up ... Setup the CPU / MMU / TLB functions
174 */
175 if (set_cpufuncs())
176 panic("cpu not recognized!");
177
178 /* map some peripheral registers at static I/O area. */
179 pmap_devmap_bootstrap(startup_pagetable, epoc32_devmap);
180
181 bootconfig.dramblocks = 0;
182 while (btinfo->type != BTINFO_NONE) {
183 switch (btinfo->type) {
184 case BTINFO_MODEL:
185 model = (struct btinfo_model *)btinfo;
186 btinfo = &(model + 1)->common;
187 strncpy(epoc32_model, model->model,
188 sizeof(epoc32_model));
189 break;
190
191 case BTINFO_MEMORY:
192 memory = (struct btinfo_memory *)btinfo;
193 btinfo = &(memory + 1)->common;
194
195 /*
196 * Fake bootconfig structure for the benefit of pmap.c
197 */
198 i = bootconfig.dramblocks;
199 bootconfig.dram[i].address = memory->address;
200 bootconfig.dram[i].pages = memory->size / PAGE_SIZE;
201 bootconfig.dramblocks++;
202 break;
203
204 case BTINFO_VIDEO:
205 video = (struct btinfo_video *)btinfo;
206 btinfo = &(video + 1)->common;
207 epoc32_fb_width = video->width;
208 epoc32_fb_height = video->height;
209 break;
210
211 case BTINFO_BOOTARGS:
212 args = (struct btinfo_bootargs *)btinfo;
213 btinfo = &(args + 1)->common;
214 memcpy(bootargs, args->bootargs,
215 uimin(sizeof(bootargs), sizeof(args->bootargs)));
216 bootargs[sizeof(bootargs) - 1] = '\0';
217 boot_args = bootargs;
218 break;
219
220 default:
221 #define NEXT_BOOTINFO(bi) (struct btinfo_common *)((char *)bi + (bi)->len)
222
223 btinfo = NEXT_BOOTINFO(btinfo);
224 }
225 }
226 if (bootconfig.dramblocks == 0)
227 panic("BTINFO_MEMORY not found");
228
229 consinit();
230
231 if (boot_args != NULL)
232 parse_mi_bootargs(boot_args);
233
234 physical_start = bootconfig.dram[0].address;
235 physical_freestart = bootconfig.dram[0].address;
236 physical_freeend = KERNEL_TEXT_BASE;
237
238 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
239
240 /* Define a macro to simplify memory allocation */
241 #define valloc_pages(var, np) \
242 alloc_pages((var).pv_pa, (np)); \
243 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
244
245 #define alloc_pages(var, np) \
246 physical_freeend -= ((np) * PAGE_SIZE); \
247 if (physical_freeend < physical_freestart) \
248 panic("initarm: out of memory"); \
249 (var) = physical_freeend; \
250 free_pages -= (np); \
251 memset((char *)(var), 0, ((np) * PAGE_SIZE));
252
253 loop1 = 0;
254 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
255 /* Are we 16KB aligned for an L1 ? */
256 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
257 && kernel_l1pt.pv_pa == 0) {
258 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
259 } else {
260 valloc_pages(kernel_pt_table[loop1],
261 L2_TABLE_SIZE / PAGE_SIZE);
262 ++loop1;
263 }
264 }
265
266 /* This should never be able to happen but better confirm that. */
267 if (!kernel_l1pt.pv_pa ||
268 (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
269 panic("initarm: Failed to align the kernel page directory");
270
271 /*
272 * Allocate a page for the system page mapped to V0x00000000
273 * This page will just contain the system vectors and can be
274 * shared by all processes.
275 */
276 alloc_pages(systempage.pv_pa, 1);
277
278 /* Allocate stacks for all modes */
279 valloc_pages(irqstack, IRQ_STACK_SIZE);
280 valloc_pages(abtstack, ABT_STACK_SIZE);
281 valloc_pages(undstack, UND_STACK_SIZE);
282 valloc_pages(kernelstack, UPAGES);
283
284 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
285
286 /*
287 * Now we start construction of the L1 page table
288 * We start by mapping the L2 page tables into the L1.
289 * This means that we can replace L1 mappings later on if necessary
290 */
291 l1pagetable = kernel_l1pt.pv_va;
292
293 /* Map the L2 pages tables in the L1 page table */
294 pmap_link_l2pt(l1pagetable, 0x00000000,
295 &kernel_pt_table[KERNEL_PT_SYS]);
296 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
297 &kernel_pt_table[KERNEL_PT_KERNEL]);
298
299 /* update the top of the kernel VM */
300 pmap_curmaxkvaddr = KERNEL_VM_BASE;
301
302 /* Now we fill in the L2 pagetable for the kernel static code/data */
303 {
304 extern char etext[];
305 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
306 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
307 size_t datasize;
308 PhysMem *dram = bootconfig.dram;
309 u_int logical, physical, size;
310
311 textsize = (textsize + PGOFSET) & ~PGOFSET;
312 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
313 datasize = totalsize - textsize; /* data and bss */
314
315 logical = KERNEL_OFFSET; /* offset of kernel in RAM */
316 physical = KERNEL_OFFSET;
317 i = 0;
318 size = dram[i].pages * PAGE_SIZE - physical;
319 /* Map kernel text section. */
320 while (1 /*CONSTINT*/) {
321 size = pmap_map_chunk(l1pagetable,
322 KERNEL_BASE + logical, dram[i].address + physical,
323 textsize < size ? textsize : size,
324 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
325 logical += size;
326 physical += size;
327 textsize -= size;
328 if (physical >= dram[i].pages * PAGE_SIZE) {
329 i++;
330 size = dram[i].pages * PAGE_SIZE;
331 physical = 0;
332 }
333 if (textsize == 0)
334 break;
335 }
336 size = dram[i].pages * PAGE_SIZE - physical;
337 /* Map data and bss section. */
338 while (1 /*CONSTINT*/) {
339 size = pmap_map_chunk(l1pagetable,
340 KERNEL_BASE + logical, dram[i].address + physical,
341 datasize < size ? datasize : size,
342 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
343 logical += size;
344 physical += size;
345 datasize -= size;
346 if (physical >= dram[i].pages * PAGE_SIZE) {
347 i++;
348 size = dram[i].pages * PAGE_SIZE;
349 physical = 0;
350 }
351 if (datasize == 0)
352 break;
353 }
354 _end_physical = dram[i].address + physical;
355 n = i;
356 physical_end = dram[n].address + dram[n].pages * PAGE_SIZE;
357 n++;
358 }
359
360 /* Map the stack pages */
361 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
362 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
363 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
364 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
365 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
366 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
367 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
368 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
369
370 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
371 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
372
373 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop)
374 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
375 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
376 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
377
378 /* Map the vector page. */
379 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
380 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
381
382 pmap_devmap_bootstrap(l1pagetable, epoc32_devmap);
383 pmap_devmap_bootstrap(l1pagetable, epoc32_fb_devmap);
384 epoc32_fb_addr = ARM7XX_FB_VBASE;
385
386 /*
387 * Now we have the real page tables in place so we can switch to them.
388 * Once this is done we will be running with the REAL kernel page
389 * tables.
390 */
391
392 /* Switch tables */
393 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
394 cpu_setttb(kernel_l1pt.pv_pa, true);
395 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
396
397 /*
398 * Moved from cpu_startup() as data_abort_handler() references
399 * this during uvm init
400 */
401 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
402
403 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
404
405 /*
406 * Pages were allocated during the secondary bootstrap for the
407 * stacks for different CPU modes.
408 * We must now set the r13 registers in the different CPU modes to
409 * point to these stacks.
410 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
411 * of the stack memory.
412 */
413
414 set_stackptr(PSR_IRQ32_MODE,
415 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
416 set_stackptr(PSR_ABT32_MODE,
417 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
418 set_stackptr(PSR_UND32_MODE,
419 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
420
421 /*
422 * Well we should set a data abort handler.
423 * Once things get going this will change as we will need a proper
424 * handler. Until then we will use a handler that just panics but
425 * tells us why.
426 * Initialisation of the vectors will just panic on a data abort.
427 * This just fills in a slightly better one.
428 */
429 data_abort_handler_address = (u_int)data_abort_handler;
430 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
431 undefined_handler_address = (u_int)undefinedinstruction_bounce;
432
433 /* Initialise the undefined instruction handlers */
434 undefined_init();
435
436 /* Load memory into UVM. */
437 uvm_md_init();
438 uvm_page_physload(
439 atop(_end_physical), atop(physical_end),
440 atop(_end_physical), atop(physical_end),
441 VM_FREELIST_DEFAULT);
442 physmem = bootconfig.dram[0].pages;
443 for (i = 1; i < n; i++)
444 physmem += bootconfig.dram[i].pages;
445 if (physmem < 0x400000)
446 physical_end = 0;
447 for (loop = n; loop < bootconfig.dramblocks; loop++) {
448 size_t start = bootconfig.dram[loop].address;
449 size_t size = bootconfig.dram[loop].pages * PAGE_SIZE;
450
451 uvm_page_physload(atop(start), atop(start + size),
452 atop(start), atop(start + size), VM_FREELIST_DEFAULT);
453 physmem += bootconfig.dram[loop].pages;
454
455 if (physical_end == 0 && physmem >= 0x400000 / PAGE_SIZE)
456 /* Fixup physical_end for Series5. */
457 physical_end = start + size;
458 }
459
460 /* Boot strap pmap telling it where managed kernel virtual memory is */
461 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
462
463 #ifdef __HAVE_MEMORY_DISK__
464 md_root_setconf(memory_disk, sizeof memory_disk);
465 #endif
466
467 #if NKSYMS || defined(DDB) || defined(MODULAR)
468 /* Firmware doesn't load symbols. */
469 ddb_init(0, NULL, NULL);
470 #endif
471
472 #ifdef DDB
473 db_machine_init();
474 if (boothowto & RB_KDB)
475 Debugger();
476 #endif
477
478 /* We return the new stack pointer address */
479 return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
480 }
481
482 void
cpu_reboot(int howto,char * bootstr)483 cpu_reboot(int howto, char *bootstr)
484 {
485
486 #ifdef DIAGNOSTIC
487 /* info */
488 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
489 #endif
490
491 /*
492 * If we are still cold then hit the air brakes
493 * and crash to earth fast
494 */
495 if (cold) {
496 doshutdownhooks();
497 pmf_system_shutdown(boothowto);
498 printf("The operating system has halted.\n");
499 printf("Please press any key to reboot.\n\n");
500 cngetc();
501 printf("rebooting...\n");
502 cpu_reset();
503 /*NOTREACHED*/
504 }
505
506 /*
507 * If RB_NOSYNC was not specified sync the discs.
508 * Note: Unless cold is set to 1 here, syslogd will die during the
509 * unmount. It looks like syslogd is getting woken up only to find
510 * that it cannot page part of the binary in as the filesystem has
511 * been unmounted.
512 */
513 if (!(howto & RB_NOSYNC))
514 bootsync();
515
516 /* Say NO to interrupts */
517 splhigh();
518
519 /* Do a dump if requested. */
520 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
521 dumpsys();
522
523 /* Run any shutdown hooks */
524 doshutdownhooks();
525
526 pmf_system_shutdown(boothowto);
527
528 /* Make sure IRQ's are disabled */
529 IRQdisable;
530
531 if (howto & RB_HALT) {
532 printf("The operating system has halted.\n");
533 printf("Please press any key to reboot.\n\n");
534 cngetc();
535 }
536
537 printf("rebooting...\n");
538 cpu_reset();
539 /*NOTREACHED*/
540 }
541
542 void
consinit(void)543 consinit(void)
544 {
545 static int consinit_called = 0;
546 #if (NWMCOM + NCLPSCOM) > 0
547 const tcflag_t mode = (TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8;
548 #endif
549
550 if (consinit_called)
551 return;
552 consinit_called = 1;
553
554 if (strcmp(epoc32_model, "SERIES5 R1") == 0) {
555 #if NCLPSLCD > 0
556 if (clpslcd_cnattach() == 0) {
557 #if NEPOCKBD > 0
558 epockbd_cnattach();
559 #endif
560 return;
561 }
562 #endif
563 #if NCLPSCOM > 0
564 if (clpscom_cnattach(ARM7XX_INTRREG_VBASE, 115200, mode) == 0)
565 return;
566 #endif
567 }
568 if (strcmp(epoc32_model, "SERIES5mx") == 0) {
569 vaddr_t vbase = ARM7XX_INTRREG_VBASE;
570 #if NWMCOM > 0
571 vaddr_t offset;
572 volatile uint8_t *gpio;
573 int irda;
574 #endif
575
576 #if NWMLCD > 0
577 if (wmlcd_cnattach() == 0) {
578 #if NEPOCKBD > 0
579 epockbd_cnattach();
580 #endif
581 return;
582 }
583 #endif
584 #if NWMCOM > 0
585 gpio = (uint8_t *)ARM7XX_INTRREG_VBASE + WINDERMERE_GPIO_OFFSET;
586 if (0) {
587 /* Enable UART0 to PCDR */
588 *(gpio + 0x08) |= 1 << 5;
589 offset = WINDERMERE_COM0_OFFSET;
590 irda = 1; /* IrDA */
591 } else {
592 /* Enable UART1 to PCDR */
593 *(gpio + 0x08) |= 1 << 3;
594 offset = WINDERMERE_COM1_OFFSET;
595 irda = 0; /* UART */
596 }
597
598 if (wmcom_cnattach(vbase + offset, 115200, mode, irda) == 0)
599 return;
600 #endif
601 }
602 if (strcmp(epoc32_model, "SERIES7") == 0) {
603 }
604 panic("can't init console");
605 }
606