xref: /netbsd/sys/arch/powerpc/oea/cpu_subr.c (revision 06e24e05)
1 /*	$NetBSD: cpu_subr.c,v 1.93 2018/05/04 17:01:29 macallan Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 Matt Thomas.
5  * Copyright (c) 2001 Tsubai Masanari.
6  * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by
20  *	Internet Research Institute, Inc.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.93 2018/05/04 17:01:29 macallan Exp $");
38 
39 #include "opt_ppcparam.h"
40 #include "opt_ppccache.h"
41 #include "opt_multiprocessor.h"
42 #include "opt_altivec.h"
43 #include "sysmon_envsys.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/types.h>
49 #include <sys/lwp.h>
50 #include <sys/xcall.h>
51 
52 #include <uvm/uvm.h>
53 
54 #include <powerpc/pcb.h>
55 #include <powerpc/psl.h>
56 #include <powerpc/spr.h>
57 #include <powerpc/oea/hid.h>
58 #include <powerpc/oea/hid_601.h>
59 #include <powerpc/oea/spr.h>
60 #include <powerpc/oea/cpufeat.h>
61 
62 #include <dev/sysmon/sysmonvar.h>
63 
64 static void cpu_enable_l2cr(register_t);
65 static void cpu_enable_l3cr(register_t);
66 static void cpu_config_l2cr(int);
67 static void cpu_config_l3cr(int);
68 static void cpu_probe_speed(struct cpu_info *);
69 static void cpu_idlespin(void);
70 static void cpu_set_dfs_xcall(void *, void *);
71 #if NSYSMON_ENVSYS > 0
72 static void cpu_tau_setup(struct cpu_info *);
73 static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
74 #endif
75 
76 int cpu = -1;
77 int ncpus;
78 
79 struct fmttab {
80 	register_t fmt_mask;
81 	register_t fmt_value;
82 	const char *fmt_string;
83 };
84 
85 /*
86  * This should be one per CPU but since we only support it on 750 variants it
87  * doesn't really matter since none of them support SMP
88  */
89 envsys_data_t sensor;
90 
91 static const struct fmttab cpu_7450_l2cr_formats[] = {
92 	{ L2CR_L2E, 0, " disabled" },
93 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
94 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
95 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
96 	{ L2CR_L2E, ~0, " 256KB L2 cache" },
97 	{ L2CR_L2PE, 0, " no parity" },
98 	{ L2CR_L2PE, ~0, " parity enabled" },
99 	{ 0, 0, NULL }
100 };
101 
102 static const struct fmttab cpu_7448_l2cr_formats[] = {
103 	{ L2CR_L2E, 0, " disabled" },
104 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
105 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
106 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
107 	{ L2CR_L2E, ~0, " 1MB L2 cache" },
108 	{ L2CR_L2PE, 0, " no parity" },
109 	{ L2CR_L2PE, ~0, " parity enabled" },
110 	{ 0, 0, NULL }
111 };
112 
113 static const struct fmttab cpu_7457_l2cr_formats[] = {
114 	{ L2CR_L2E, 0, " disabled" },
115 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
116 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
117 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
118 	{ L2CR_L2E, ~0, " 512KB L2 cache" },
119 	{ L2CR_L2PE, 0, " no parity" },
120 	{ L2CR_L2PE, ~0, " parity enabled" },
121 	{ 0, 0, NULL }
122 };
123 
124 static const struct fmttab cpu_7450_l3cr_formats[] = {
125 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
126 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
127 	{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
128 	{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
129 	{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
130 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
131 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
132 	{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
133 	{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
134 	{ L3CR_L3SIZ, ~0, " L3 cache" },
135 	{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
136 	{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
137 	{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
138 	{ L3CR_L3CLK, ~0, " at" },
139 	{ L3CR_L3CLK, L3CLK_20, " 2:1" },
140 	{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
141 	{ L3CR_L3CLK, L3CLK_30, " 3:1" },
142 	{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
143 	{ L3CR_L3CLK, L3CLK_40, " 4:1" },
144 	{ L3CR_L3CLK, L3CLK_50, " 5:1" },
145 	{ L3CR_L3CLK, L3CLK_60, " 6:1" },
146 	{ L3CR_L3CLK, ~0, " ratio" },
147 	{ 0, 0, NULL },
148 };
149 
150 static const struct fmttab cpu_ibm750_l2cr_formats[] = {
151 	{ L2CR_L2E, 0, " disabled" },
152 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
153 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
154 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
155 	{ 0, ~0, " 512KB" },
156 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
157 	{ L2CR_L2WT, 0, " WB" },
158 	{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
159 	{ 0, ~0, " L2 cache" },
160 	{ 0, 0, NULL }
161 };
162 
163 static const struct fmttab cpu_l2cr_formats[] = {
164 	{ L2CR_L2E, 0, " disabled" },
165 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
166 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
167 	{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
168 	{ L2CR_L2PE, L2CR_L2PE, " parity" },
169 	{ L2CR_L2PE, 0, " no-parity" },
170 	{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
171 	{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
172 	{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
173 	{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
174 	{ L2CR_L2WT, L2CR_L2WT, " WT" },
175 	{ L2CR_L2WT, 0, " WB" },
176 	{ L2CR_L2E, ~0, " L2 cache" },
177 	{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
178 	{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
179 	{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
180 	{ L2CR_L2CLK, ~0, " at" },
181 	{ L2CR_L2CLK, L2CLK_10, " 1:1" },
182 	{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
183 	{ L2CR_L2CLK, L2CLK_20, " 2:1" },
184 	{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
185 	{ L2CR_L2CLK, L2CLK_30, " 3:1" },
186 	{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
187 	{ L2CR_L2CLK, L2CLK_40, " 4:1" },
188 	{ L2CR_L2CLK, ~0, " ratio" },
189 	{ 0, 0, NULL }
190 };
191 
192 static void cpu_fmttab_print(const struct fmttab *, register_t);
193 
194 struct cputab {
195 	const char name[8];
196 	uint16_t version;
197 	uint16_t revfmt;
198 };
199 #define	REVFMT_MAJMIN	1		/* %u.%u */
200 #define	REVFMT_HEX	2		/* 0x%04x */
201 #define	REVFMT_DEC	3		/* %u */
202 static const struct cputab models[] = {
203 	{ "601",	MPC601,		REVFMT_DEC },
204 	{ "602",	MPC602,		REVFMT_DEC },
205 	{ "603",	MPC603,		REVFMT_MAJMIN },
206 	{ "603e",	MPC603e,	REVFMT_MAJMIN },
207 	{ "603ev",	MPC603ev,	REVFMT_MAJMIN },
208 	{ "G2",		MPCG2,		REVFMT_MAJMIN },
209 	{ "604",	MPC604,		REVFMT_MAJMIN },
210 	{ "604e",	MPC604e,	REVFMT_MAJMIN },
211 	{ "604ev",	MPC604ev,	REVFMT_MAJMIN },
212 	{ "620",	MPC620,  	REVFMT_HEX },
213 	{ "750",	MPC750,		REVFMT_MAJMIN },
214 	{ "750FX",	IBM750FX,	REVFMT_MAJMIN },
215 	{ "750GX",	IBM750GX,	REVFMT_MAJMIN },
216 	{ "7400",	MPC7400,	REVFMT_MAJMIN },
217 	{ "7410",	MPC7410,	REVFMT_MAJMIN },
218 	{ "7450",	MPC7450,	REVFMT_MAJMIN },
219 	{ "7455",	MPC7455,	REVFMT_MAJMIN },
220 	{ "7457",	MPC7457,	REVFMT_MAJMIN },
221 	{ "7447A",	MPC7447A,	REVFMT_MAJMIN },
222 	{ "7448",	MPC7448,	REVFMT_MAJMIN },
223 	{ "8240",	MPC8240,	REVFMT_MAJMIN },
224 	{ "8245",	MPC8245,	REVFMT_MAJMIN },
225 	{ "970",	IBM970,		REVFMT_MAJMIN },
226 	{ "970FX",	IBM970FX,	REVFMT_MAJMIN },
227 	{ "970MP",	IBM970MP,	REVFMT_MAJMIN },
228 	{ "POWER3II",   IBMPOWER3II,    REVFMT_MAJMIN },
229 	{ "",		0,		REVFMT_HEX }
230 };
231 
232 #ifdef MULTIPROCESSOR
233 struct cpu_info cpu_info[CPU_MAXNUM] = {
234     [0] = {
235 	.ci_curlwp = &lwp0,
236     },
237 };
238 volatile struct cpu_hatch_data *cpu_hatch_data;
239 volatile int cpu_hatch_stack;
240 #define HATCH_STACK_SIZE 0x1000
241 extern int ticks_per_intr;
242 #include <powerpc/oea/bat.h>
243 #include <powerpc/pic/picvar.h>
244 #include <powerpc/pic/ipivar.h>
245 extern struct bat battable[];
246 #else
247 struct cpu_info cpu_info[1] = {
248     [0] = {
249 	.ci_curlwp = &lwp0,
250     },
251 };
252 #endif /*MULTIPROCESSOR*/
253 
254 int cpu_altivec;
255 register_t cpu_psluserset;
256 register_t cpu_pslusermod;
257 register_t cpu_pslusermask = 0xffff;
258 
259 /* This is to be called from locore.S, and nowhere else. */
260 
261 void
262 cpu_model_init(void)
263 {
264 	u_int pvr, vers;
265 
266 	pvr = mfpvr();
267 	vers = pvr >> 16;
268 
269 	oeacpufeat = 0;
270 
271 	if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
272 		vers == IBMCELL || vers == IBMPOWER6P5) {
273 		oeacpufeat |= OEACPU_64;
274 		oeacpufeat |= OEACPU_64_BRIDGE;
275 		oeacpufeat |= OEACPU_NOBAT;
276 
277 	} else if (vers == MPC601) {
278 		oeacpufeat |= OEACPU_601;
279 
280 	} else if (MPC745X_P(vers)) {
281 		register_t hid1 = mfspr(SPR_HID1);
282 
283 		if (vers != MPC7450) {
284 			register_t hid0 = mfspr(SPR_HID0);
285 
286 			/* Enable more SPRG registers */
287 			oeacpufeat |= OEACPU_HIGHSPRG;
288 
289 			/* Enable more BAT registers */
290 			oeacpufeat |= OEACPU_HIGHBAT;
291 			hid0 |= HID0_HIGH_BAT_EN;
292 
293 			/* Enable larger BAT registers */
294 			oeacpufeat |= OEACPU_XBSEN;
295 			hid0 |= HID0_XBSEN;
296 
297 			mtspr(SPR_HID0, hid0);
298 			__asm volatile("sync;isync");
299 		}
300 
301 		/* Enable address broadcasting for MP systems */
302 		hid1 |= HID1_SYNCBE | HID1_ABE;
303 
304 		mtspr(SPR_HID1, hid1);
305 		__asm volatile("sync;isync");
306 
307 	} else if (vers == IBM750FX || vers == IBM750GX) {
308 		oeacpufeat |= OEACPU_HIGHBAT;
309 	}
310 }
311 
312 void
313 cpu_fmttab_print(const struct fmttab *fmt, register_t data)
314 {
315 	for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
316 		if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
317 		    (data & fmt->fmt_mask) == fmt->fmt_value)
318 			aprint_normal("%s", fmt->fmt_string);
319 	}
320 }
321 
322 void
323 cpu_idlespin(void)
324 {
325 	register_t msr;
326 
327 	if (powersave <= 0)
328 		return;
329 
330 	__asm volatile(
331 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
332 		"dssall;"
333 #endif
334 		"sync;"
335 		"mfmsr	%0;"
336 		"oris	%0,%0,%1@h;"	/* enter power saving mode */
337 		"mtmsr	%0;"
338 		"isync;"
339 	    :	"=r"(msr)
340 	    :	"J"(PSL_POW));
341 }
342 
343 void
344 cpu_probe_cache(void)
345 {
346 	u_int assoc, pvr, vers;
347 
348 	pvr = mfpvr();
349 	vers = pvr >> 16;
350 
351 
352 	/* Presently common across almost all implementations. */
353 	curcpu()->ci_ci.dcache_line_size = 32;
354 	curcpu()->ci_ci.icache_line_size = 32;
355 
356 
357 	switch (vers) {
358 #define	K	*1024
359 	case IBM750FX:
360 	case IBM750GX:
361 	case MPC601:
362 	case MPC750:
363 	case MPC7400:
364 	case MPC7447A:
365 	case MPC7448:
366 	case MPC7450:
367 	case MPC7455:
368 	case MPC7457:
369 		curcpu()->ci_ci.dcache_size = 32 K;
370 		curcpu()->ci_ci.icache_size = 32 K;
371 		assoc = 8;
372 		break;
373 	case MPC603:
374 		curcpu()->ci_ci.dcache_size = 8 K;
375 		curcpu()->ci_ci.icache_size = 8 K;
376 		assoc = 2;
377 		break;
378 	case MPC603e:
379 	case MPC603ev:
380 	case MPC604:
381 	case MPC8240:
382 	case MPC8245:
383 	case MPCG2:
384 		curcpu()->ci_ci.dcache_size = 16 K;
385 		curcpu()->ci_ci.icache_size = 16 K;
386 		assoc = 4;
387 		break;
388 	case MPC604e:
389 	case MPC604ev:
390 		curcpu()->ci_ci.dcache_size = 32 K;
391 		curcpu()->ci_ci.icache_size = 32 K;
392 		assoc = 4;
393 		break;
394 	case IBMPOWER3II:
395 		curcpu()->ci_ci.dcache_size = 64 K;
396 		curcpu()->ci_ci.icache_size = 32 K;
397 		curcpu()->ci_ci.dcache_line_size = 128;
398 		curcpu()->ci_ci.icache_line_size = 128;
399 		assoc = 128; /* not a typo */
400 		break;
401 	case IBM970:
402 	case IBM970FX:
403 	case IBM970MP:
404 		curcpu()->ci_ci.dcache_size = 32 K;
405 		curcpu()->ci_ci.icache_size = 64 K;
406 		curcpu()->ci_ci.dcache_line_size = 128;
407 		curcpu()->ci_ci.icache_line_size = 128;
408 		assoc = 2;
409 		break;
410 
411 	default:
412 		curcpu()->ci_ci.dcache_size = PAGE_SIZE;
413 		curcpu()->ci_ci.icache_size = PAGE_SIZE;
414 		assoc = 1;
415 #undef	K
416 	}
417 
418 	/*
419 	 * Possibly recolor.
420 	 */
421 	uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
422 }
423 
424 struct cpu_info *
425 cpu_attach_common(device_t self, int id)
426 {
427 	struct cpu_info *ci;
428 	u_int pvr, vers;
429 
430 	ci = &cpu_info[id];
431 #ifndef MULTIPROCESSOR
432 	/*
433 	 * If this isn't the primary CPU, print an error message
434 	 * and just bail out.
435 	 */
436 	if (id != 0) {
437 		aprint_naive("\n");
438 		aprint_normal(": ID %d\n", id);
439 		aprint_normal_dev(self,
440 		    "processor off-line; "
441 		    "multiprocessor support not present in kernel\n");
442 		return (NULL);
443 	}
444 #endif
445 
446 	ci->ci_cpuid = id;
447 	ci->ci_idepth = -1;
448 	ci->ci_dev = self;
449 	ci->ci_idlespin = cpu_idlespin;
450 
451 	pvr = mfpvr();
452 	vers = (pvr >> 16) & 0xffff;
453 
454 	switch (id) {
455 	case 0:
456 		/* load my cpu_number to PIR */
457 		switch (vers) {
458 		case MPC601:
459 		case MPC604:
460 		case MPC604e:
461 		case MPC604ev:
462 		case MPC7400:
463 		case MPC7410:
464 		case MPC7447A:
465 		case MPC7448:
466 		case MPC7450:
467 		case MPC7455:
468 		case MPC7457:
469 			mtspr(SPR_PIR, id);
470 		}
471 		cpu_setup(self, ci);
472 		break;
473 	default:
474 		aprint_naive("\n");
475 		if (id >= CPU_MAXNUM) {
476 			aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
477 			panic("cpuattach");
478 		}
479 #ifndef MULTIPROCESSOR
480 		aprint_normal(" not configured\n");
481 		return NULL;
482 #else
483 		mi_cpu_attach(ci);
484 		break;
485 #endif
486 	}
487 	return (ci);
488 }
489 
490 void
491 cpu_setup(device_t self, struct cpu_info *ci)
492 {
493 	u_int pvr, vers;
494 	const char * const xname = device_xname(self);
495 	const char *bitmask;
496 	char hidbuf[128];
497 	char model[80];
498 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
499 	char hidbuf_u[128];
500 	const char *bitmasku = NULL;
501 	volatile uint64_t hid64_0, hid64_0_save;
502 #endif
503 #if !defined(_ARCH_PPC64)
504 	register_t hid0 = 0, hid0_save = 0;
505 #endif
506 
507 	pvr = mfpvr();
508 	vers = (pvr >> 16) & 0xffff;
509 
510 	cpu_identify(model, sizeof(model));
511 	aprint_naive("\n");
512 	aprint_normal(": %s, ID %d%s\n", model,  cpu_number(),
513 	    cpu_number() == 0 ? " (primary)" : "");
514 
515 	/* set the cpu number */
516 	ci->ci_cpuid = cpu_number();
517 #if defined(_ARCH_PPC64)
518 	__asm volatile("mfspr %0,%1" : "=r"(hid64_0) : "K"(SPR_HID0));
519 	hid64_0_save = hid64_0;
520 #else
521 #if defined(PPC_OEA64_BRIDGE)
522 	if ((oeacpufeat & OEACPU_64_BRIDGE) != 0)
523 		hid64_0_save = hid64_0 = mfspr(SPR_HID0);
524 	else
525 #endif
526 		hid0_save = hid0 = mfspr(SPR_HID0);
527 #endif
528 
529 
530 	cpu_probe_cache();
531 
532 	/*
533 	 * Configure power-saving mode.
534 	 */
535 	switch (vers) {
536 #if !defined(_ARCH_PPC64)
537 	case MPC604:
538 	case MPC604e:
539 	case MPC604ev:
540 		/*
541 		 * Do not have HID0 support settings, but can support
542 		 * MSR[POW] off
543 		 */
544 		powersave = 1;
545 		break;
546 
547 	case MPC603:
548 	case MPC603e:
549 	case MPC603ev:
550 	case MPC7400:
551 	case MPC7410:
552 	case MPC8240:
553 	case MPC8245:
554 	case MPCG2:
555 		/* Select DOZE mode. */
556 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
557 		hid0 |= HID0_DOZE | HID0_DPM;
558 		powersave = 1;
559 		break;
560 
561 	case MPC750:
562 	case IBM750FX:
563 	case IBM750GX:
564 		/* Select NAP mode. */
565 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
566 		hid0 |= HID0_NAP | HID0_DPM;
567 		powersave = 1;
568 		break;
569 
570 	case MPC7447A:
571 	case MPC7448:
572 	case MPC7457:
573 	case MPC7455:
574 	case MPC7450:
575 		/* Enable the 7450 branch caches */
576 		hid0 |= HID0_SGE | HID0_BTIC;
577 		hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
578 		/* Disable BTIC on 7450 Rev 2.0 or earlier */
579 		if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
580 			hid0 &= ~HID0_BTIC;
581 		/* Select NAP mode. */
582 		hid0 &= ~HID0_SLEEP;
583 		hid0 |= HID0_NAP | HID0_DPM;
584 		powersave = 1;
585 		break;
586 #endif
587 
588 	case IBM970:
589 	case IBM970FX:
590 	case IBM970MP:
591 #if defined(_ARCH_PPC64) || defined (PPC_OEA64_BRIDGE)
592 #if !defined(_ARCH_PPC64)
593 		KASSERT((oeacpufeat & OEACPU_64_BRIDGE) != 0);
594 #endif
595 		hid64_0 &= ~(HID0_64_DOZE | HID0_64_NAP | HID0_64_DEEPNAP);
596 		hid64_0 |= HID0_64_NAP | HID0_64_DPM | HID0_64_EX_TBEN |
597 			   HID0_64_TB_CTRL | HID0_64_EN_MCHK;
598 		powersave = 1;
599 		break;
600 #endif
601 	case IBMPOWER3II:
602 	default:
603 		/* No power-saving mode is available. */ ;
604 	}
605 
606 #ifdef NAPMODE
607 	switch (vers) {
608 	case IBM750FX:
609 	case IBM750GX:
610 	case MPC750:
611 	case MPC7400:
612 		/* Select NAP mode. */
613 		hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
614 		hid0 |= HID0_NAP;
615 		break;
616 	}
617 #endif
618 
619 	switch (vers) {
620 	case IBM750FX:
621 	case IBM750GX:
622 	case MPC750:
623 		hid0 &= ~HID0_DBP;		/* XXX correct? */
624 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
625 		break;
626 
627 	case MPC7400:
628 	case MPC7410:
629 		hid0 &= ~HID0_SPD;
630 		hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
631 		hid0 |= HID0_EIEC;
632 		break;
633 	}
634 
635 	/*
636 	 * according to the 603e manual this is necessary for an external L2
637 	 * cache to work properly
638 	 */
639 	switch (vers) {
640 	case MPC603e:
641 		hid0 |= HID0_ABE;
642 	}
643 
644 #if defined(_ARCH_PPC64) || defined(PPC_OEA64_BRIDGE)
645 #if defined(PPC_OEA64_BRIDGE)
646 	if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
647 #endif
648 		if (hid64_0 != hid64_0_save) {
649 			mtspr64(SPR_HID0, hid64_0);
650 		}
651 #if defined(PPC_OEA64_BRIDGE)
652 	} else {
653 #endif
654 #endif
655 
656 #if !defined(_ARCH_PPC64)
657 		if (hid0 != hid0_save) {
658 			mtspr(SPR_HID0, hid0);
659 			__asm volatile("sync;isync");
660 		}
661 #endif
662 #if defined(PPC_OEA64_BRIDGE)
663 	}
664 #endif
665 
666 	switch (vers) {
667 	case MPC601:
668 		bitmask = HID0_601_BITMASK;
669 		break;
670 	case MPC7447A:
671 	case MPC7448:
672 	case MPC7450:
673 	case MPC7455:
674 	case MPC7457:
675 		bitmask = HID0_7450_BITMASK;
676 		break;
677 	case IBM970:
678 	case IBM970FX:
679 	case IBM970MP:
680 		bitmask = HID0_970_BITMASK;
681 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
682 		bitmasku = HID0_970_BITMASK_U;
683 #endif
684 		break;
685 	default:
686 		bitmask = HID0_BITMASK;
687 		break;
688 	}
689 
690 #if defined(PPC_OEA64_BRIDGE) || defined(_ARCH_PPC64)
691 	if (bitmasku != NULL) {
692 		snprintb(hidbuf, sizeof hidbuf, bitmask, hid64_0 & 0xffffffff);
693 		snprintb(hidbuf_u, sizeof hidbuf_u, bitmasku, hid64_0 >> 32);
694 		aprint_normal_dev(self, "HID0 %s %s, powersave: %d\n",
695 		    hidbuf_u, hidbuf, powersave);
696 	} else
697 #endif
698 	{
699 		snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
700 		aprint_normal_dev(self, "HID0 %s, powersave: %d\n",
701 		    hidbuf, powersave);
702 	}
703 
704 	ci->ci_khz = 0;
705 
706 	/*
707 	 * Display speed and cache configuration.
708 	 */
709 	switch (vers) {
710 	case MPC604:
711 	case MPC604e:
712 	case MPC604ev:
713 	case MPC750:
714 	case IBM750FX:
715 	case IBM750GX:
716 	case MPC7400:
717 	case MPC7410:
718 	case MPC7447A:
719 	case MPC7448:
720 	case MPC7450:
721 	case MPC7455:
722 	case MPC7457:
723 		aprint_normal_dev(self, "");
724 		cpu_probe_speed(ci);
725 		aprint_normal("%u.%02u MHz",
726 			      ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
727 		switch (vers) {
728 		case MPC7450: /* 7441 does not have L3! */
729 		case MPC7455: /* 7445 does not have L3! */
730 		case MPC7457: /* 7447 does not have L3! */
731 			cpu_config_l3cr(vers);
732 			break;
733 		case IBM750FX:
734 		case IBM750GX:
735 		case MPC750:
736 		case MPC7400:
737 		case MPC7410:
738 		case MPC7447A:
739 		case MPC7448:
740 			cpu_config_l2cr(pvr);
741 			break;
742 		default:
743 			break;
744 		}
745 		aprint_normal("\n");
746 		break;
747 	}
748 
749 #if NSYSMON_ENVSYS > 0
750 	/*
751 	 * Attach MPC750 temperature sensor to the envsys subsystem.
752 	 * XXX the 74xx series also has this sensor, but it is not
753 	 * XXX supported by Motorola and may return values that are off by
754 	 * XXX 35-55 degrees C.
755 	 */
756 	if (vers == MPC750 || vers == IBM750FX || vers == IBM750GX)
757 		cpu_tau_setup(ci);
758 #endif
759 
760 	evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
761 		NULL, xname, "clock");
762 	evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
763 		NULL, xname, "traps");
764 	evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
765 		&ci->ci_ev_traps, xname, "kernel DSI traps");
766 	evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
767 		&ci->ci_ev_traps, xname, "user DSI traps");
768 	evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
769 		&ci->ci_ev_udsi, xname, "user DSI failures");
770 	evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
771 		&ci->ci_ev_traps, xname, "kernel ISI traps");
772 	evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
773 		&ci->ci_ev_traps, xname, "user ISI traps");
774 	evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
775 		&ci->ci_ev_isi, xname, "user ISI failures");
776 	evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
777 		&ci->ci_ev_traps, xname, "system call traps");
778 	evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
779 		&ci->ci_ev_traps, xname, "PGM traps");
780 	evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
781 		&ci->ci_ev_traps, xname, "FPU unavailable traps");
782 	evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
783 		&ci->ci_ev_fpu, xname, "FPU context switches");
784 	evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
785 		&ci->ci_ev_traps, xname, "user alignment traps");
786 	evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
787 		&ci->ci_ev_ali, xname, "user alignment traps");
788 	evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
789 		&ci->ci_ev_umchk, xname, "user MCHK failures");
790 	evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
791 		&ci->ci_ev_traps, xname, "AltiVec unavailable");
792 #ifdef ALTIVEC
793 	if (cpu_altivec) {
794 		evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
795 		    &ci->ci_ev_vec, xname, "AltiVec context switches");
796 	}
797 #endif
798 	evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
799 		NULL, xname, "IPIs");
800 }
801 
802 /*
803  * According to a document labeled "PVR Register Settings":
804  ** For integrated microprocessors the PVR register inside the device
805  ** will identify the version of the microprocessor core. You must also
806  ** read the Device ID, PCI register 02, to identify the part and the
807  ** Revision ID, PCI register 08, to identify the revision of the
808  ** integrated microprocessor.
809  * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
810  */
811 
812 void
813 cpu_identify(char *str, size_t len)
814 {
815 	u_int pvr, major, minor;
816 	uint16_t vers, rev, revfmt;
817 	const struct cputab *cp;
818 	size_t n;
819 
820 	pvr = mfpvr();
821 	vers = pvr >> 16;
822 	rev = pvr;
823 
824 	switch (vers) {
825 	case MPC7410:
826 		minor = (pvr >> 0) & 0xff;
827 		major = minor <= 4 ? 1 : 2;
828 		break;
829 	case MPCG2: /*XXX see note above */
830 		major = (pvr >> 4) & 0xf;
831 		minor = (pvr >> 0) & 0xf;
832 		break;
833 	default:
834 		major = (pvr >>  8) & 0xf;
835 		minor = (pvr >>  0) & 0xf;
836 	}
837 
838 	for (cp = models; cp->name[0] != '\0'; cp++) {
839 		if (cp->version == vers)
840 			break;
841 	}
842 
843 	if (cpu == -1)
844 		cpu = vers;
845 
846 	revfmt = cp->revfmt;
847 	if (rev == MPC750 && pvr == 15) {
848 		revfmt = REVFMT_HEX;
849 	}
850 
851 	if (cp->name[0] != '\0') {
852 		n = snprintf(str, len, "%s (Revision ", cp->name);
853 	} else {
854 		n = snprintf(str, len, "Version %#x (Revision ", vers);
855 	}
856 	if (len > n) {
857 		switch (revfmt) {
858 		case REVFMT_MAJMIN:
859 			snprintf(str + n, len - n, "%u.%u)", major, minor);
860 			break;
861 		case REVFMT_HEX:
862 			snprintf(str + n, len - n, "0x%04x)", rev);
863 			break;
864 		case REVFMT_DEC:
865 			snprintf(str + n, len - n, "%u)", rev);
866 			break;
867 		}
868 	}
869 }
870 
871 #ifdef L2CR_CONFIG
872 u_int l2cr_config = L2CR_CONFIG;
873 #else
874 u_int l2cr_config = 0;
875 #endif
876 
877 #ifdef L3CR_CONFIG
878 u_int l3cr_config = L3CR_CONFIG;
879 #else
880 u_int l3cr_config = 0;
881 #endif
882 
883 void
884 cpu_enable_l2cr(register_t l2cr)
885 {
886 	register_t msr, x;
887 	uint16_t vers;
888 
889 	vers = mfpvr() >> 16;
890 
891 	/* Disable interrupts and set the cache config bits. */
892 	msr = mfmsr();
893 	mtmsr(msr & ~PSL_EE);
894 #ifdef ALTIVEC
895 	if (cpu_altivec)
896 		__asm volatile("dssall");
897 #endif
898 	__asm volatile("sync");
899 	mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
900 	__asm volatile("sync");
901 
902 	/* Wait for L2 clock to be stable (640 L2 clocks). */
903 	delay(100);
904 
905 	/* Invalidate all L2 contents. */
906 	if (MPC745X_P(vers)) {
907 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
908 		do {
909 			x = mfspr(SPR_L2CR);
910 		} while (x & L2CR_L2I);
911 	} else {
912 		mtspr(SPR_L2CR, l2cr | L2CR_L2I);
913 		do {
914 			x = mfspr(SPR_L2CR);
915 		} while (x & L2CR_L2IP);
916 	}
917 	/* Enable L2 cache. */
918 	l2cr |= L2CR_L2E;
919 	mtspr(SPR_L2CR, l2cr);
920 	mtmsr(msr);
921 }
922 
923 void
924 cpu_enable_l3cr(register_t l3cr)
925 {
926 	register_t x;
927 
928 	/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
929 
930 	/*
931 	 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
932 	 *    L3CLKEN.  (also mask off reserved bits in case they were included
933 	 *    in L3CR_CONFIG)
934 	 */
935 	l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
936 	mtspr(SPR_L3CR, l3cr);
937 
938 	/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
939 	l3cr |= 0x04000000;
940 	mtspr(SPR_L3CR, l3cr);
941 
942 	/* 3: Set L3CLKEN to 1*/
943 	l3cr |= L3CR_L3CLKEN;
944 	mtspr(SPR_L3CR, l3cr);
945 
946 	/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
947 	__asm volatile("dssall;sync");
948 	/* L3 cache is already disabled, no need to clear L3E */
949 	mtspr(SPR_L3CR, l3cr|L3CR_L3I);
950 	do {
951 		x = mfspr(SPR_L3CR);
952 	} while (x & L3CR_L3I);
953 
954 	/* 6: Clear L3CLKEN to 0 */
955 	l3cr &= ~L3CR_L3CLKEN;
956 	mtspr(SPR_L3CR, l3cr);
957 
958 	/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
959 	__asm volatile("sync");
960 	delay(100);
961 
962 	/* 8: Set L3E and L3CLKEN */
963 	l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
964 	mtspr(SPR_L3CR, l3cr);
965 
966 	/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
967 	__asm volatile("sync");
968 	delay(100);
969 }
970 
971 void
972 cpu_config_l2cr(int pvr)
973 {
974 	register_t l2cr;
975 	u_int vers = (pvr >> 16) & 0xffff;
976 
977 	l2cr = mfspr(SPR_L2CR);
978 
979 	/*
980 	 * For MP systems, the firmware may only configure the L2 cache
981 	 * on the first CPU.  In this case, assume that the other CPUs
982 	 * should use the same value for L2CR.
983 	 */
984 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
985 		l2cr_config = l2cr;
986 	}
987 
988 	/*
989 	 * Configure L2 cache if not enabled.
990 	 */
991 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
992 		cpu_enable_l2cr(l2cr_config);
993 		l2cr = mfspr(SPR_L2CR);
994 	}
995 
996 	if ((l2cr & L2CR_L2E) == 0) {
997 		aprint_normal(" L2 cache present but not enabled ");
998 		return;
999 	}
1000 	aprint_normal(",");
1001 
1002 	switch (vers) {
1003 	case IBM750FX:
1004 	case IBM750GX:
1005 		cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1006 		break;
1007 	case MPC750:
1008 		if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
1009 		    (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
1010 			cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
1011 		else
1012 			cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1013 		break;
1014 	case MPC7447A:
1015 	case MPC7457:
1016 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1017 		return;
1018 	case MPC7448:
1019 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1020 		return;
1021 	case MPC7450:
1022 	case MPC7455:
1023 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1024 		break;
1025 	default:
1026 		cpu_fmttab_print(cpu_l2cr_formats, l2cr);
1027 		break;
1028 	}
1029 }
1030 
1031 void
1032 cpu_config_l3cr(int vers)
1033 {
1034 	register_t l2cr;
1035 	register_t l3cr;
1036 
1037 	l2cr = mfspr(SPR_L2CR);
1038 
1039 	/*
1040 	 * For MP systems, the firmware may only configure the L2 cache
1041 	 * on the first CPU.  In this case, assume that the other CPUs
1042 	 * should use the same value for L2CR.
1043 	 */
1044 	if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
1045 		l2cr_config = l2cr;
1046 	}
1047 
1048 	/*
1049 	 * Configure L2 cache if not enabled.
1050 	 */
1051 	if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
1052 		cpu_enable_l2cr(l2cr_config);
1053 		l2cr = mfspr(SPR_L2CR);
1054 	}
1055 
1056 	aprint_normal(",");
1057 	switch (vers) {
1058 	case MPC7447A:
1059 	case MPC7457:
1060 		cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
1061 		return;
1062 	case MPC7448:
1063 		cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
1064 		return;
1065 	default:
1066 		cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
1067 		break;
1068 	}
1069 
1070 	l3cr = mfspr(SPR_L3CR);
1071 
1072 	/*
1073 	 * For MP systems, the firmware may only configure the L3 cache
1074 	 * on the first CPU.  In this case, assume that the other CPUs
1075 	 * should use the same value for L3CR.
1076 	 */
1077 	if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
1078 		l3cr_config = l3cr;
1079 	}
1080 
1081 	/*
1082 	 * Configure L3 cache if not enabled.
1083 	 */
1084 	if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
1085 		cpu_enable_l3cr(l3cr_config);
1086 		l3cr = mfspr(SPR_L3CR);
1087 	}
1088 
1089 	if (l3cr & L3CR_L3E) {
1090 		aprint_normal(",");
1091 		cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
1092 	}
1093 }
1094 
1095 void
1096 cpu_probe_speed(struct cpu_info *ci)
1097 {
1098 	uint64_t cps;
1099 
1100 	mtspr(SPR_MMCR0, MMCR0_FC);
1101 	mtspr(SPR_PMC1, 0);
1102 	mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
1103 	delay(100000);
1104 	cps = (mfspr(SPR_PMC1) * 10) + 4999;
1105 
1106 	mtspr(SPR_MMCR0, MMCR0_FC);
1107 
1108 	ci->ci_khz = (cps * cpu_get_dfs()) / 1000;
1109 }
1110 
1111 /*
1112  * Read the Dynamic Frequency Switching state and return a divisor for
1113  * the maximum frequency.
1114  */
1115 int
1116 cpu_get_dfs(void)
1117 {
1118 	u_int pvr, vers;
1119 
1120 	pvr = mfpvr();
1121 	vers = pvr >> 16;
1122 
1123 	switch (vers) {
1124 	case MPC7448:
1125 		if (mfspr(SPR_HID1) & HID1_DFS4)
1126 			return 4;
1127 	case MPC7447A:
1128 		if (mfspr(SPR_HID1) & HID1_DFS2)
1129 			return 2;
1130 	}
1131 	return 1;
1132 }
1133 
1134 /*
1135  * Set the Dynamic Frequency Switching divisor the same for all cpus.
1136  */
1137 void
1138 cpu_set_dfs(int div)
1139 {
1140 	uint64_t where;
1141 	u_int dfs_mask, pvr, vers;
1142 
1143 	pvr = mfpvr();
1144 	vers = pvr >> 16;
1145 	dfs_mask = 0;
1146 
1147 	switch (vers) {
1148 	case MPC7448:
1149 		dfs_mask |= HID1_DFS4;
1150 	case MPC7447A:
1151 		dfs_mask |= HID1_DFS2;
1152 		break;
1153 	default:
1154 		printf("cpu_set_dfs: DFS not supported\n");
1155 		return;
1156 
1157 	}
1158 
1159 	where = xc_broadcast(0, (xcfunc_t)cpu_set_dfs_xcall, &div, &dfs_mask);
1160 	xc_wait(where);
1161 }
1162 
1163 static void
1164 cpu_set_dfs_xcall(void *arg1, void *arg2)
1165 {
1166 	u_int dfs_mask, hid1, old_hid1;
1167 	int *divisor, s;
1168 
1169 	divisor = arg1;
1170 	dfs_mask = *(u_int *)arg2;
1171 
1172 	s = splhigh();
1173 	hid1 = old_hid1 = mfspr(SPR_HID1);
1174 
1175 	switch (*divisor) {
1176 	case 1:
1177 		hid1 &= ~dfs_mask;
1178 		break;
1179 	case 2:
1180 		hid1 &= ~(dfs_mask & HID1_DFS4);
1181 		hid1 |= dfs_mask & HID1_DFS2;
1182 		break;
1183 	case 4:
1184 		hid1 &= ~(dfs_mask & HID1_DFS2);
1185 		hid1 |= dfs_mask & HID1_DFS4;
1186 		break;
1187 	}
1188 
1189 	if (hid1 != old_hid1) {
1190 		__asm volatile("sync");
1191 		mtspr(SPR_HID1, hid1);
1192 		__asm volatile("sync;isync");
1193 	}
1194 
1195 	splx(s);
1196 }
1197 
1198 #if NSYSMON_ENVSYS > 0
1199 void
1200 cpu_tau_setup(struct cpu_info *ci)
1201 {
1202 	struct sysmon_envsys *sme;
1203 	int error, therm_delay;
1204 
1205 	mtspr(SPR_THRM1, SPR_THRM_VALID);
1206 	mtspr(SPR_THRM2, 0);
1207 
1208 	/*
1209 	 * we need to figure out how much 20+us in units of CPU clock cycles
1210 	 * are
1211 	 */
1212 
1213 	therm_delay = ci->ci_khz / 40;		/* 25us just to be safe */
1214 
1215         mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
1216 
1217 	sme = sysmon_envsys_create();
1218 
1219 	sensor.units = ENVSYS_STEMP;
1220 	sensor.state = ENVSYS_SINVALID;
1221 	(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
1222 	if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1223 		sysmon_envsys_destroy(sme);
1224 		return;
1225 	}
1226 
1227 	sme->sme_name = device_xname(ci->ci_dev);
1228 	sme->sme_cookie = ci;
1229 	sme->sme_refresh = cpu_tau_refresh;
1230 
1231 	if ((error = sysmon_envsys_register(sme)) != 0) {
1232 		aprint_error_dev(ci->ci_dev,
1233 		    " unable to register with sysmon (%d)\n", error);
1234 		sysmon_envsys_destroy(sme);
1235 	}
1236 }
1237 
1238 /* Find the temperature of the CPU. */
1239 void
1240 cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1241 {
1242 	int i, threshold, count;
1243 
1244 	threshold = 64; /* Half of the 7-bit sensor range */
1245 
1246 	/* Successive-approximation code adapted from Motorola
1247 	 * application note AN1800/D, "Programming the Thermal Assist
1248 	 * Unit in the MPC750 Microprocessor".
1249 	 */
1250 	for (i = 5; i >= 0 ; i--) {
1251 		mtspr(SPR_THRM1,
1252 		    SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1253 		count = 0;
1254 		while ((count < 100000) &&
1255 		    ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1256 			count++;
1257 			delay(1);
1258 		}
1259 		if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1260 			/* The interrupt bit was set, meaning the
1261 			 * temperature was above the threshold
1262 			 */
1263 			threshold += 1 << i;
1264 		} else {
1265 			/* Temperature was below the threshold */
1266 			threshold -= 1 << i;
1267 		}
1268 	}
1269 	threshold += 2;
1270 
1271 	/* Convert the temperature in degrees C to microkelvin */
1272 	edata->value_cur = (threshold * 1000000) + 273150000;
1273 	edata->state = ENVSYS_SVALID;
1274 }
1275 #endif /* NSYSMON_ENVSYS > 0 */
1276 
1277 #ifdef MULTIPROCESSOR
1278 volatile u_int cpu_spinstart_ack, cpu_spinstart_cpunum;
1279 
1280 int
1281 cpu_spinup(device_t self, struct cpu_info *ci)
1282 {
1283 	volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1284 	struct pglist mlist;
1285 	int i, error;
1286 	char *hp;
1287 
1288 	KASSERT(ci != curcpu());
1289 
1290 	/* Now allocate a hatch stack */
1291 	error = uvm_pglistalloc(HATCH_STACK_SIZE, 0x10000, 0x10000000, 16, 0,
1292 	    &mlist, 1, 1);
1293 	if (error) {
1294 		aprint_error(": unable to allocate hatch stack\n");
1295 		return -1;
1296 	}
1297 
1298 	hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1299 	memset(hp, 0, HATCH_STACK_SIZE);
1300 
1301 	/* Initialize secondary cpu's initial lwp to its idlelwp. */
1302 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1303 	ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
1304 	ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1305 
1306 	cpu_hatch_data = h;
1307 	h->hatch_running = 0;
1308 	h->hatch_self = self;
1309 	h->hatch_ci = ci;
1310 	h->hatch_pir = ci->ci_cpuid;
1311 
1312 	cpu_hatch_stack = (uint32_t)hp + HATCH_STACK_SIZE - CALLFRAMELEN;
1313 	ci->ci_lasttb = cpu_info[0].ci_lasttb;
1314 
1315 	/* copy special registers */
1316 
1317 	h->hatch_hid0 = mfspr(SPR_HID0);
1318 #if defined(PPC_OEA64_BRIDGE) || defined (_ARCH_PPC64)
1319 	h->hatch_hid4 = mfspr(SPR_HID4);
1320 	h->hatch_hid5 = mfspr(SPR_HID5);
1321 	printf("HIDs: %016llx %016llx\n", h->hatch_hid4, h->hatch_hid5);
1322 #endif
1323 
1324 	__asm volatile ("mfsdr1 %0" : "=r"(h->hatch_sdr1));
1325 	for (i = 0; i < 16; i++) {
1326 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1327 		       "r"(i << ADDR_SR_SHFT));
1328 	}
1329 	if (oeacpufeat & OEACPU_64)
1330 		h->hatch_asr = mfspr(SPR_ASR);
1331 	else
1332 		h->hatch_asr = 0;
1333 
1334 	if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1335 		/* copy the bat regs */
1336 		__asm volatile ("mfibatu %0,0" : "=r"(h->hatch_ibatu[0]));
1337 		__asm volatile ("mfibatl %0,0" : "=r"(h->hatch_ibatl[0]));
1338 		__asm volatile ("mfibatu %0,1" : "=r"(h->hatch_ibatu[1]));
1339 		__asm volatile ("mfibatl %0,1" : "=r"(h->hatch_ibatl[1]));
1340 		__asm volatile ("mfibatu %0,2" : "=r"(h->hatch_ibatu[2]));
1341 		__asm volatile ("mfibatl %0,2" : "=r"(h->hatch_ibatl[2]));
1342 		__asm volatile ("mfibatu %0,3" : "=r"(h->hatch_ibatu[3]));
1343 		__asm volatile ("mfibatl %0,3" : "=r"(h->hatch_ibatl[3]));
1344 		__asm volatile ("mfdbatu %0,0" : "=r"(h->hatch_dbatu[0]));
1345 		__asm volatile ("mfdbatl %0,0" : "=r"(h->hatch_dbatl[0]));
1346 		__asm volatile ("mfdbatu %0,1" : "=r"(h->hatch_dbatu[1]));
1347 		__asm volatile ("mfdbatl %0,1" : "=r"(h->hatch_dbatl[1]));
1348 		__asm volatile ("mfdbatu %0,2" : "=r"(h->hatch_dbatu[2]));
1349 		__asm volatile ("mfdbatl %0,2" : "=r"(h->hatch_dbatl[2]));
1350 		__asm volatile ("mfdbatu %0,3" : "=r"(h->hatch_dbatu[3]));
1351 		__asm volatile ("mfdbatl %0,3" : "=r"(h->hatch_dbatl[3]));
1352 		__asm volatile ("sync; isync");
1353 	}
1354 
1355 	if (md_setup_trampoline(h, ci) == -1)
1356 		return -1;
1357 	md_presync_timebase(h);
1358 	md_start_timebase(h);
1359 
1360 	/* wait for secondary printf */
1361 
1362 	delay(200000);
1363 
1364 #ifdef CACHE_PROTO_MEI
1365 	__asm volatile ("dcbi 0,%0"::"r"(&h->hatch_running):"memory");
1366 	__asm volatile ("sync; isync");
1367 	__asm volatile ("dcbst 0,%0"::"r"(&h->hatch_running):"memory");
1368 	__asm volatile ("sync; isync");
1369 #endif
1370 	if (h->hatch_running < 1) {
1371 #ifdef CACHE_PROTO_MEI
1372 		__asm volatile ("dcbi 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1373 		__asm volatile ("sync; isync");
1374 		__asm volatile ("dcbst 0,%0"::"r"(&cpu_spinstart_ack):"memory");
1375 		__asm volatile ("sync; isync");
1376 #endif
1377 		aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1378 		    ci->ci_cpuid, cpu_spinstart_ack);
1379 		Debugger();
1380 		return -1;
1381 	}
1382 
1383 	/* Register IPI Interrupt */
1384 	if (ipiops.ppc_establish_ipi)
1385 		ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1386 
1387 	return 0;
1388 }
1389 
1390 static volatile int start_secondary_cpu;
1391 
1392 register_t
1393 cpu_hatch(void)
1394 {
1395 	volatile struct cpu_hatch_data *h = cpu_hatch_data;
1396 	struct cpu_info * const ci = h->hatch_ci;
1397 	struct pcb *pcb;
1398 	u_int msr;
1399 	int i;
1400 
1401 	/* Initialize timebase. */
1402 	__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1403 
1404 	/*
1405 	 * Set PIR (Processor Identification Register).  i.e. whoami
1406 	 * Note that PIR is read-only on some CPU versions, so we write to it
1407 	 * only if it has a different value than we need.
1408 	 */
1409 
1410 	msr = mfspr(SPR_PIR);
1411 	if (msr != h->hatch_pir)
1412 		mtspr(SPR_PIR, h->hatch_pir);
1413 
1414 	__asm volatile ("mtsprg0 %0" :: "r"(ci));
1415 	curlwp = ci->ci_curlwp;
1416 	cpu_spinstart_ack = 0;
1417 
1418 	if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1419 		/* Initialize MMU. */
1420 		__asm ("mtibatu 0,%0" :: "r"(h->hatch_ibatu[0]));
1421 		__asm ("mtibatl 0,%0" :: "r"(h->hatch_ibatl[0]));
1422 		__asm ("mtibatu 1,%0" :: "r"(h->hatch_ibatu[1]));
1423 		__asm ("mtibatl 1,%0" :: "r"(h->hatch_ibatl[1]));
1424 		__asm ("mtibatu 2,%0" :: "r"(h->hatch_ibatu[2]));
1425 		__asm ("mtibatl 2,%0" :: "r"(h->hatch_ibatl[2]));
1426 		__asm ("mtibatu 3,%0" :: "r"(h->hatch_ibatu[3]));
1427 		__asm ("mtibatl 3,%0" :: "r"(h->hatch_ibatl[3]));
1428 		__asm ("mtdbatu 0,%0" :: "r"(h->hatch_dbatu[0]));
1429 		__asm ("mtdbatl 0,%0" :: "r"(h->hatch_dbatl[0]));
1430 		__asm ("mtdbatu 1,%0" :: "r"(h->hatch_dbatu[1]));
1431 		__asm ("mtdbatl 1,%0" :: "r"(h->hatch_dbatl[1]));
1432 		__asm ("mtdbatu 2,%0" :: "r"(h->hatch_dbatu[2]));
1433 		__asm ("mtdbatl 2,%0" :: "r"(h->hatch_dbatl[2]));
1434 		__asm ("mtdbatu 3,%0" :: "r"(h->hatch_dbatu[3]));
1435 		__asm ("mtdbatl 3,%0" :: "r"(h->hatch_dbatl[3]));
1436 	}
1437 
1438 #ifdef PPC_OEA64_BRIDGE
1439 	if ((oeacpufeat & OEACPU_64_BRIDGE) != 0) {
1440 
1441 		mtspr64(SPR_HID0, h->hatch_hid0);
1442 		mtspr64(SPR_HID4, h->hatch_hid4);
1443 		mtspr64(SPR_HID5, h->hatch_hid5);
1444 		mtspr64(SPR_HIOR, 0);
1445 	} else
1446 #endif
1447 		mtspr(SPR_HID0, h->hatch_hid0);
1448 
1449 	if ((oeacpufeat & OEACPU_NOBAT) == 0) {
1450 		__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1451 		    :: "r"(battable[0].batl), "r"(battable[0].batu));
1452 	}
1453 
1454 	__asm volatile ("sync");
1455 	for (i = 0; i < 16; i++)
1456 		__asm ("mtsrin %0,%1" :: "r"(h->hatch_sr[i]), "r"(i << ADDR_SR_SHFT));
1457 	__asm volatile ("sync; isync");
1458 
1459 	if (oeacpufeat & OEACPU_64)
1460 		mtspr(SPR_ASR, h->hatch_asr);
1461 
1462 	cpu_spinstart_ack = 1;
1463 	__asm ("ptesync");
1464 	__asm ("mtsdr1 %0" :: "r"(h->hatch_sdr1));
1465 	__asm volatile ("sync; isync");
1466 
1467 	cpu_spinstart_ack = 5;
1468 	for (i = 0; i < 16; i++)
1469 		__asm ("mfsrin %0,%1" : "=r"(h->hatch_sr[i]) :
1470 		       "r"(i << ADDR_SR_SHFT));
1471 
1472 	/* Enable I/D address translations. */
1473 	msr = mfmsr();
1474 	msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1475 	mtmsr(msr);
1476 	__asm volatile ("sync; isync");
1477 	cpu_spinstart_ack = 2;
1478 
1479 	md_sync_timebase(h);
1480 
1481 	cpu_setup(h->hatch_self, ci);
1482 
1483 	h->hatch_running = 1;
1484 	__asm volatile ("sync; isync");
1485 
1486 	while (start_secondary_cpu == 0)
1487 		;
1488 
1489 	__asm volatile ("sync; isync");
1490 
1491 	aprint_normal("cpu%d started\n", curcpu()->ci_index);
1492 	__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1493 
1494 	md_setup_interrupts();
1495 
1496 	ci->ci_ipending = 0;
1497 	ci->ci_cpl = 0;
1498 
1499 	mtmsr(mfmsr() | PSL_EE);
1500 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
1501 	return pcb->pcb_sp;
1502 }
1503 
1504 void
1505 cpu_boot_secondary_processors(void)
1506 {
1507 	start_secondary_cpu = 1;
1508 	__asm volatile ("sync");
1509 }
1510 
1511 #endif /*MULTIPROCESSOR*/
1512