1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5211_keycache.c,v 1.1.1.1 2008/12/11 04:46:31 alc Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5211/ar5211.h"
25 #include "ar5211/ar5211reg.h"
26
27 /*
28 * Chips-specific key cache routines.
29 */
30
31 #define AR_KEYTABLE_SIZE 128
32 #define KEY_XOR 0xaa
33
34 /*
35 * Return the size of the hardware key cache.
36 */
37 uint32_t
ar5211GetKeyCacheSize(struct ath_hal * ah)38 ar5211GetKeyCacheSize(struct ath_hal *ah)
39 {
40 return AR_KEYTABLE_SIZE;
41 }
42
43 /*
44 * Return true if the specific key cache entry is valid.
45 */
46 HAL_BOOL
ar5211IsKeyCacheEntryValid(struct ath_hal * ah,uint16_t entry)47 ar5211IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
48 {
49 if (entry < AR_KEYTABLE_SIZE) {
50 uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
51 if (val & AR_KEYTABLE_VALID)
52 return AH_TRUE;
53 }
54 return AH_FALSE;
55 }
56
57 /*
58 * Clear the specified key cache entry
59 */
60 HAL_BOOL
ar5211ResetKeyCacheEntry(struct ath_hal * ah,uint16_t entry)61 ar5211ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
62 {
63 if (entry < AR_KEYTABLE_SIZE) {
64 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
65 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
66 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
67 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
68 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
69 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), 0);
70 OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
71 OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
72 return AH_TRUE;
73 }
74 return AH_FALSE;
75 }
76
77 /*
78 * Sets the mac part of the specified key cache entry and mark it valid.
79 */
80 HAL_BOOL
ar5211SetKeyCacheEntryMac(struct ath_hal * ah,uint16_t entry,const uint8_t * mac)81 ar5211SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
82 {
83 uint32_t macHi, macLo;
84
85 if (entry >= AR_KEYTABLE_SIZE) {
86 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
87 __func__, entry);
88 return AH_FALSE;
89 }
90
91 /*
92 * Set MAC address -- shifted right by 1. MacLo is
93 * the 4 MSBs, and MacHi is the 2 LSBs.
94 */
95 if (mac != AH_NULL) {
96 macHi = (mac[5] << 8) | mac[4];
97 macLo = (mac[3] << 24)| (mac[2] << 16)
98 | (mac[1] << 8) | mac[0];
99 macLo >>= 1;
100 macLo |= (macHi & 1) << 31; /* carry */
101 macHi >>= 1;
102 } else {
103 macLo = macHi = 0;
104 }
105
106 OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
107 OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
108 return AH_TRUE;
109 }
110
111 /*
112 * Sets the contents of the specified key cache entry.
113 */
114 HAL_BOOL
ar5211SetKeyCacheEntry(struct ath_hal * ah,uint16_t entry,const HAL_KEYVAL * k,const uint8_t * mac,int xorKey)115 ar5211SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
116 const HAL_KEYVAL *k, const uint8_t *mac,
117 int xorKey)
118 {
119 uint32_t key0, key1, key2, key3, key4;
120 uint32_t keyType;
121 uint32_t xorMask= xorKey ?
122 (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
123
124 if (entry >= AR_KEYTABLE_SIZE) {
125 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
126 __func__, entry);
127 return AH_FALSE;
128 }
129 switch (k->kv_type) {
130 case HAL_CIPHER_AES_OCB:
131 keyType = AR_KEYTABLE_TYPE_AES;
132 break;
133 case HAL_CIPHER_WEP:
134 if (k->kv_len < 40 / NBBY) {
135 HALDEBUG(ah, HAL_DEBUG_ANY,
136 "%s: WEP key length %u too small\n",
137 __func__, k->kv_len);
138 return AH_FALSE;
139 }
140 if (k->kv_len <= 40 / NBBY)
141 keyType = AR_KEYTABLE_TYPE_40;
142 else if (k->kv_len <= 104 / NBBY)
143 keyType = AR_KEYTABLE_TYPE_104;
144 else
145 keyType = AR_KEYTABLE_TYPE_128;
146 break;
147 case HAL_CIPHER_CLR:
148 keyType = AR_KEYTABLE_TYPE_CLR;
149 break;
150 default:
151 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
152 __func__, k->kv_type);
153 return AH_FALSE;
154 }
155
156 key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
157 key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
158 key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
159 key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
160 key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
161 if (k->kv_len <= 104 / NBBY)
162 key4 &= 0xff;
163
164
165 /*
166 * Note: WEP key cache hardware requires that each double-word
167 * pair be written in even/odd order (since the destination is
168 * a 64-bit register). Don't reorder these writes w/o
169 * understanding this!
170 */
171 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
172 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
173 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
174 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
175 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
176 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
177 return ar5211SetKeyCacheEntryMac(ah, entry, mac);
178 }
179