xref: /netbsd/sys/kern/subr_percpu.c (revision d79ca119)
1 /*	$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * per-cpu storage.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/cpu.h>
38 #include <sys/kernel.h>
39 #include <sys/kmem.h>
40 #include <sys/mutex.h>
41 #include <sys/percpu.h>
42 #include <sys/rwlock.h>
43 #include <sys/vmem.h>
44 #include <sys/xcall.h>
45 
46 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
47 #define	PERCPU_QCACHE_MAX	0
48 #define	PERCPU_IMPORT_SIZE	2048
49 
50 struct percpu {
51 	unsigned		pc_offset;
52 	size_t			pc_size;
53 	percpu_callback_t	pc_ctor;
54 	percpu_callback_t	pc_dtor;
55 	void			*pc_cookie;
56 	LIST_ENTRY(percpu)	pc_list;
57 };
58 
59 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
60 static vmem_t *		percpu_offset_arena	__read_mostly;
61 static struct {
62 	kmutex_t	lock;
63 	unsigned int	nextoff;
64 	LIST_HEAD(, percpu) ctor_list;
65 	struct lwp	*busy;
66 	kcondvar_t	cv;
67 } percpu_allocation __cacheline_aligned;
68 
69 static percpu_cpu_t *
cpu_percpu(struct cpu_info * ci)70 cpu_percpu(struct cpu_info *ci)
71 {
72 
73 	return &ci->ci_data.cpu_percpu;
74 }
75 
76 static unsigned int
percpu_offset(percpu_t * pc)77 percpu_offset(percpu_t *pc)
78 {
79 	const unsigned int off = pc->pc_offset;
80 
81 	KASSERT(off < percpu_allocation.nextoff);
82 	return off;
83 }
84 
85 /*
86  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
87  */
88 __noubsan
89 static void
percpu_cpu_swap(void * p1,void * p2)90 percpu_cpu_swap(void *p1, void *p2)
91 {
92 	struct cpu_info * const ci = p1;
93 	percpu_cpu_t * const newpcc = p2;
94 	percpu_cpu_t * const pcc = cpu_percpu(ci);
95 
96 	KASSERT(ci == curcpu() || !mp_online);
97 
98 	/*
99 	 * swap *pcc and *newpcc unless anyone has beaten us.
100 	 */
101 	rw_enter(&percpu_swap_lock, RW_WRITER);
102 	if (newpcc->pcc_size > pcc->pcc_size) {
103 		percpu_cpu_t tmp;
104 		int s;
105 
106 		tmp = *pcc;
107 
108 		/*
109 		 * block interrupts so that we don't lose their modifications.
110 		 */
111 
112 		s = splhigh();
113 
114 		/*
115 		 * copy data to new storage.
116 		 */
117 
118 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
119 
120 		/*
121 		 * this assignment needs to be atomic for percpu_getptr_remote.
122 		 */
123 
124 		pcc->pcc_data = newpcc->pcc_data;
125 
126 		splx(s);
127 
128 		pcc->pcc_size = newpcc->pcc_size;
129 		*newpcc = tmp;
130 	}
131 	rw_exit(&percpu_swap_lock);
132 }
133 
134 /*
135  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
136  */
137 
138 static void
percpu_cpu_enlarge(size_t size)139 percpu_cpu_enlarge(size_t size)
140 {
141 	CPU_INFO_ITERATOR cii;
142 	struct cpu_info *ci;
143 
144 	for (CPU_INFO_FOREACH(cii, ci)) {
145 		percpu_cpu_t pcc;
146 
147 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
148 		pcc.pcc_size = size;
149 		if (!mp_online) {
150 			percpu_cpu_swap(ci, &pcc);
151 		} else {
152 			uint64_t where;
153 
154 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
155 			xc_wait(where);
156 		}
157 		KASSERT(pcc.pcc_size <= size);
158 		if (pcc.pcc_data != NULL) {
159 			kmem_free(pcc.pcc_data, pcc.pcc_size);
160 		}
161 	}
162 }
163 
164 /*
165  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
166  */
167 
168 static int
percpu_backend_alloc(vmem_t * dummy,vmem_size_t size,vmem_size_t * resultsize,vm_flag_t vmflags,vmem_addr_t * addrp)169 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
170     vm_flag_t vmflags, vmem_addr_t *addrp)
171 {
172 	unsigned int offset;
173 	unsigned int nextoff;
174 
175 	ASSERT_SLEEPABLE();
176 	KASSERT(dummy == NULL);
177 
178 	if ((vmflags & VM_NOSLEEP) != 0)
179 		return ENOMEM;
180 
181 	size = roundup(size, PERCPU_IMPORT_SIZE);
182 	mutex_enter(&percpu_allocation.lock);
183 	offset = percpu_allocation.nextoff;
184 	percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
185 	mutex_exit(&percpu_allocation.lock);
186 
187 	percpu_cpu_enlarge(nextoff);
188 
189 	*resultsize = size;
190 	*addrp = (vmem_addr_t)offset;
191 	return 0;
192 }
193 
194 static void
percpu_zero_cb(void * vp,void * vp2,struct cpu_info * ci)195 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
196 {
197 	size_t sz = (uintptr_t)vp2;
198 
199 	memset(vp, 0, sz);
200 }
201 
202 /*
203  * percpu_zero: initialize percpu storage with zero.
204  */
205 
206 static void
percpu_zero(percpu_t * pc,size_t sz)207 percpu_zero(percpu_t *pc, size_t sz)
208 {
209 
210 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
211 }
212 
213 /*
214  * percpu_init: subsystem initialization
215  */
216 
217 void
percpu_init(void)218 percpu_init(void)
219 {
220 
221 	ASSERT_SLEEPABLE();
222 	rw_init(&percpu_swap_lock);
223 	mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
224 	percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
225 	LIST_INIT(&percpu_allocation.ctor_list);
226 	percpu_allocation.busy = NULL;
227 	cv_init(&percpu_allocation.cv, "percpu");
228 
229 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
230 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
231 	    IPL_NONE);
232 }
233 
234 /*
235  * percpu_init_cpu: cpu initialization
236  *
237  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
238  * => may be called for static CPUs afterward (typically just primary CPU)
239  */
240 
241 void
percpu_init_cpu(struct cpu_info * ci)242 percpu_init_cpu(struct cpu_info *ci)
243 {
244 	percpu_cpu_t * const pcc = cpu_percpu(ci);
245 	struct percpu *pc;
246 	size_t size = percpu_allocation.nextoff; /* XXX racy */
247 
248 	ASSERT_SLEEPABLE();
249 
250 	/*
251 	 * For the primary CPU, prior percpu_create may have already
252 	 * triggered allocation, so there's nothing more for us to do
253 	 * here.
254 	 */
255 	if (pcc->pcc_size)
256 		return;
257 	KASSERT(pcc->pcc_data == NULL);
258 
259 	/*
260 	 * Otherwise, allocate storage and, while the constructor list
261 	 * is locked, run constructors for all percpus on this CPU.
262 	 */
263 	pcc->pcc_size = size;
264 	if (size) {
265 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
266 		mutex_enter(&percpu_allocation.lock);
267 		while (percpu_allocation.busy)
268 			cv_wait(&percpu_allocation.cv,
269 			    &percpu_allocation.lock);
270 		percpu_allocation.busy = curlwp;
271 		LIST_FOREACH(pc, &percpu_allocation.ctor_list, pc_list) {
272 			KASSERT(pc->pc_ctor);
273 			mutex_exit(&percpu_allocation.lock);
274 			(*pc->pc_ctor)((char *)pcc->pcc_data + pc->pc_offset,
275 			    pc->pc_cookie, ci);
276 			mutex_enter(&percpu_allocation.lock);
277 		}
278 		KASSERT(percpu_allocation.busy == curlwp);
279 		percpu_allocation.busy = NULL;
280 		cv_broadcast(&percpu_allocation.cv);
281 		mutex_exit(&percpu_allocation.lock);
282 	}
283 }
284 
285 /*
286  * percpu_alloc: allocate percpu storage
287  *
288  * => called in thread context.
289  * => considered as an expensive and rare operation.
290  * => allocated storage is initialized with zeros.
291  */
292 
293 percpu_t *
percpu_alloc(size_t size)294 percpu_alloc(size_t size)
295 {
296 
297 	return percpu_create(size, NULL, NULL, NULL);
298 }
299 
300 /*
301  * percpu_create: allocate percpu storage and associate ctor/dtor with it
302  *
303  * => called in thread context.
304  * => considered as an expensive and rare operation.
305  * => allocated storage is initialized by ctor, or zeros if ctor is null
306  * => percpu_free will call dtor first, if dtor is nonnull
307  * => ctor or dtor may sleep, even on allocation
308  */
309 
310 percpu_t *
percpu_create(size_t size,percpu_callback_t ctor,percpu_callback_t dtor,void * cookie)311 percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
312     void *cookie)
313 {
314 	vmem_addr_t offset;
315 	percpu_t *pc;
316 
317 	ASSERT_SLEEPABLE();
318 	(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
319 	    &offset);
320 
321 	pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
322 	pc->pc_offset = offset;
323 	pc->pc_size = size;
324 	pc->pc_ctor = ctor;
325 	pc->pc_dtor = dtor;
326 	pc->pc_cookie = cookie;
327 
328 	if (ctor) {
329 		CPU_INFO_ITERATOR cii;
330 		struct cpu_info *ci;
331 		void *buf;
332 
333 		/*
334 		 * Wait until nobody is using the list of percpus with
335 		 * constructors.
336 		 */
337 		mutex_enter(&percpu_allocation.lock);
338 		while (percpu_allocation.busy)
339 			cv_wait(&percpu_allocation.cv,
340 			    &percpu_allocation.lock);
341 		percpu_allocation.busy = curlwp;
342 		mutex_exit(&percpu_allocation.lock);
343 
344 		/*
345 		 * Run the constructor for all CPUs.  We use a
346 		 * temporary buffer wo that we need not hold the
347 		 * percpu_swap_lock while running the constructor.
348 		 */
349 		buf = kmem_alloc(size, KM_SLEEP);
350 		for (CPU_INFO_FOREACH(cii, ci)) {
351 			memset(buf, 0, size);
352 			(*ctor)(buf, cookie, ci);
353 			percpu_traverse_enter();
354 			memcpy(percpu_getptr_remote(pc, ci), buf, size);
355 			percpu_traverse_exit();
356 		}
357 		explicit_memset(buf, 0, size);
358 		kmem_free(buf, size);
359 
360 		/*
361 		 * Insert the percpu into the list of percpus with
362 		 * constructors.  We are now done using the list, so it
363 		 * is safe for concurrent percpu_create or concurrent
364 		 * percpu_init_cpu to run.
365 		 */
366 		mutex_enter(&percpu_allocation.lock);
367 		KASSERT(percpu_allocation.busy == curlwp);
368 		percpu_allocation.busy = NULL;
369 		cv_broadcast(&percpu_allocation.cv);
370 		LIST_INSERT_HEAD(&percpu_allocation.ctor_list, pc, pc_list);
371 		mutex_exit(&percpu_allocation.lock);
372 	} else {
373 		percpu_zero(pc, size);
374 	}
375 
376 	return pc;
377 }
378 
379 /*
380  * percpu_free: free percpu storage
381  *
382  * => called in thread context.
383  * => considered as an expensive and rare operation.
384  */
385 
386 void
percpu_free(percpu_t * pc,size_t size)387 percpu_free(percpu_t *pc, size_t size)
388 {
389 
390 	ASSERT_SLEEPABLE();
391 	KASSERT(size == pc->pc_size);
392 
393 	/*
394 	 * If there's a constructor, take the percpu off the list of
395 	 * percpus with constructors, but first wait until nobody is
396 	 * using the list.
397 	 */
398 	if (pc->pc_ctor) {
399 		mutex_enter(&percpu_allocation.lock);
400 		while (percpu_allocation.busy)
401 			cv_wait(&percpu_allocation.cv,
402 			    &percpu_allocation.lock);
403 		LIST_REMOVE(pc, pc_list);
404 		mutex_exit(&percpu_allocation.lock);
405 	}
406 
407 	/* If there's a destructor, run it now for all CPUs.  */
408 	if (pc->pc_dtor) {
409 		CPU_INFO_ITERATOR cii;
410 		struct cpu_info *ci;
411 		void *buf;
412 
413 		buf = kmem_alloc(size, KM_SLEEP);
414 		for (CPU_INFO_FOREACH(cii, ci)) {
415 			percpu_traverse_enter();
416 			memcpy(buf, percpu_getptr_remote(pc, ci), size);
417 			explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
418 			percpu_traverse_exit();
419 			(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
420 		}
421 		explicit_memset(buf, 0, size);
422 		kmem_free(buf, size);
423 	}
424 
425 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
426 	kmem_free(pc, sizeof(*pc));
427 }
428 
429 /*
430  * percpu_getref:
431  *
432  * => safe to be used in either thread or interrupt context
433  * => disables preemption; must be bracketed with a percpu_putref()
434  */
435 
436 void *
percpu_getref(percpu_t * pc)437 percpu_getref(percpu_t *pc)
438 {
439 
440 	kpreempt_disable();
441 	return percpu_getptr_remote(pc, curcpu());
442 }
443 
444 /*
445  * percpu_putref:
446  *
447  * => drops the preemption-disabled count after caller is done with per-cpu
448  *    data
449  */
450 
451 void
percpu_putref(percpu_t * pc)452 percpu_putref(percpu_t *pc)
453 {
454 
455 	kpreempt_enable();
456 }
457 
458 /*
459  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
460  * helpers to access remote cpu's percpu data.
461  *
462  * => called in thread context.
463  * => percpu_traverse_enter can block low-priority xcalls.
464  * => typical usage would be:
465  *
466  *	sum = 0;
467  *	percpu_traverse_enter();
468  *	for (CPU_INFO_FOREACH(cii, ci)) {
469  *		unsigned int *p = percpu_getptr_remote(pc, ci);
470  *		sum += *p;
471  *	}
472  *	percpu_traverse_exit();
473  */
474 
475 void
percpu_traverse_enter(void)476 percpu_traverse_enter(void)
477 {
478 
479 	ASSERT_SLEEPABLE();
480 	rw_enter(&percpu_swap_lock, RW_READER);
481 }
482 
483 void
percpu_traverse_exit(void)484 percpu_traverse_exit(void)
485 {
486 
487 	rw_exit(&percpu_swap_lock);
488 }
489 
490 void *
percpu_getptr_remote(percpu_t * pc,struct cpu_info * ci)491 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
492 {
493 
494 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
495 }
496 
497 /*
498  * percpu_foreach: call the specified callback function for each cpus.
499  *
500  * => must be called from thread context.
501  * => callback executes on **current** CPU (or, really, arbitrary CPU,
502  *    in case of preemption)
503  * => caller should not rely on the cpu iteration order.
504  * => the callback function should be minimum because it is executed with
505  *    holding a global lock, which can block low-priority xcalls.
506  *    eg. it's illegal for a callback function to sleep for memory allocation.
507  */
508 void
percpu_foreach(percpu_t * pc,percpu_callback_t cb,void * arg)509 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
510 {
511 	CPU_INFO_ITERATOR cii;
512 	struct cpu_info *ci;
513 
514 	percpu_traverse_enter();
515 	for (CPU_INFO_FOREACH(cii, ci)) {
516 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
517 	}
518 	percpu_traverse_exit();
519 }
520 
521 struct percpu_xcall_ctx {
522 	percpu_callback_t  ctx_cb;
523 	void		  *ctx_arg;
524 };
525 
526 static void
percpu_xcfunc(void * const v1,void * const v2)527 percpu_xcfunc(void * const v1, void * const v2)
528 {
529 	percpu_t * const pc = v1;
530 	struct percpu_xcall_ctx * const ctx = v2;
531 
532 	(*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
533 	percpu_putref(pc);
534 }
535 
536 /*
537  * percpu_foreach_xcall: call the specified callback function for each
538  * cpu.  This version uses an xcall to run the callback on each cpu.
539  *
540  * => must be called from thread context.
541  * => callback executes on **remote** CPU in soft-interrupt context
542  *    (at the specified soft interrupt priority).
543  * => caller should not rely on the cpu iteration order.
544  * => the callback function should be minimum because it may be
545  *    executed in soft-interrupt context.  eg. it's illegal for
546  *    a callback function to sleep for memory allocation.
547  */
548 void
percpu_foreach_xcall(percpu_t * pc,u_int xcflags,percpu_callback_t cb,void * arg)549 percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
550 		     void *arg)
551 {
552 	struct percpu_xcall_ctx ctx = {
553 		.ctx_cb = cb,
554 		.ctx_arg = arg,
555 	};
556 	CPU_INFO_ITERATOR cii;
557 	struct cpu_info *ci;
558 
559 	for (CPU_INFO_FOREACH(cii, ci)) {
560 		xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
561 	}
562 }
563