1 /* $NetBSD: nfs_bio.c,v 1.201 2022/06/24 16:50:00 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.201 2022/06/24 16:50:00 hannken Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_nfs.h"
42 #include "opt_ddb.h"
43 #endif
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/kernel.h>
54 #include <sys/namei.h>
55 #include <sys/dirent.h>
56 #include <sys/kauth.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nfsmount.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs_var.h>
67
68 extern int nfs_numasync;
69 extern int nfs_commitsize;
70 extern struct nfsstats nfsstats;
71
72 static int nfs_doio_read(struct buf *, struct uio *);
73 static int nfs_doio_write(struct buf *, struct uio *);
74 static int nfs_doio_phys(struct buf *, struct uio *);
75
76 /*
77 * Vnode op for read using bio
78 * Any similarity to readip() is purely coincidental
79 */
80 int
nfs_bioread(struct vnode * vp,struct uio * uio,int ioflag,kauth_cred_t cred,int cflag)81 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag,
82 kauth_cred_t cred, int cflag)
83 {
84 struct nfsnode *np = VTONFS(vp);
85 struct buf *bp = NULL, *rabp;
86 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
87 struct nfsdircache *ndp = NULL, *nndp = NULL;
88 void *baddr;
89 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
90 int enough = 0;
91 struct dirent *dp, *pdp, *edp, *ep;
92 off_t curoff = 0;
93 int advice;
94 struct lwp *l = curlwp;
95
96 #ifdef DIAGNOSTIC
97 if (uio->uio_rw != UIO_READ)
98 panic("nfs_read mode");
99 #endif
100 if (uio->uio_resid == 0)
101 return (0);
102 if (vp->v_type != VDIR && uio->uio_offset < 0)
103 return (EINVAL);
104 #ifndef NFS_V2_ONLY
105 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
106 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
107 (void)nfs_fsinfo(nmp, vp, cred, l);
108 #endif
109 if (vp->v_type != VDIR &&
110 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
111 return (EFBIG);
112
113 /*
114 * For nfs, cache consistency can only be maintained approximately.
115 * Although RFC1094 does not specify the criteria, the following is
116 * believed to be compatible with the reference port.
117 *
118 * If the file's modify time on the server has changed since the
119 * last read rpc or you have written to the file,
120 * you may have lost data cache consistency with the
121 * server, so flush all of the file's data out of the cache.
122 * Then force a getattr rpc to ensure that you have up to date
123 * attributes.
124 * NB: This implies that cache data can be read when up to
125 * nfs_attrtimeo seconds out of date. If you find that you need current
126 * attributes this could be forced by setting n_attrstamp to 0 before
127 * the VOP_GETATTR() call.
128 */
129
130 if (vp->v_type != VLNK) {
131 error = nfs_flushstalebuf(vp, cred, l,
132 NFS_FLUSHSTALEBUF_MYWRITE);
133 if (error)
134 return error;
135 }
136
137 do {
138 /*
139 * Don't cache symlinks.
140 */
141 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
142 return (nfs_readlinkrpc(vp, uio, cred));
143 }
144 baddr = (void *)0;
145 switch (vp->v_type) {
146 case VREG:
147 nfsstats.biocache_reads++;
148
149 advice = IO_ADV_DECODE(ioflag);
150 error = 0;
151 while (uio->uio_resid > 0) {
152 vsize_t bytelen;
153
154 nfs_delayedtruncate(vp);
155 if (np->n_size <= uio->uio_offset) {
156 break;
157 }
158 bytelen =
159 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
160 error = ubc_uiomove(&vp->v_uobj, uio, bytelen, advice,
161 UBC_READ | UBC_PARTIALOK | UBC_VNODE_FLAGS(vp));
162 if (error) {
163 /*
164 * XXXkludge
165 * the file has been truncated on the server.
166 * there isn't much we can do.
167 */
168 if (uio->uio_offset >= np->n_size) {
169 /* end of file */
170 error = 0;
171 } else {
172 break;
173 }
174 }
175 }
176 break;
177
178 case VLNK:
179 nfsstats.biocache_readlinks++;
180 bp = nfs_getcacheblk(vp, (daddr_t)0, MAXPATHLEN, l);
181 if (!bp)
182 return (EINTR);
183 if ((bp->b_oflags & BO_DONE) == 0) {
184 bp->b_flags |= B_READ;
185 error = nfs_doio(bp);
186 if (error) {
187 brelse(bp, 0);
188 return (error);
189 }
190 }
191 n = MIN(uio->uio_resid, MAXPATHLEN - bp->b_resid);
192 got_buf = 1;
193 on = 0;
194 break;
195 case VDIR:
196 diragain:
197 nfsstats.biocache_readdirs++;
198 ndp = nfs_searchdircache(vp, uio->uio_offset,
199 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
200 if (!ndp) {
201 /*
202 * We've been handed a cookie that is not
203 * in the cache. If we're not translating
204 * 32 <-> 64, it may be a value that was
205 * flushed out of the cache because it grew
206 * too big. Let the server judge if it's
207 * valid or not. In the translation case,
208 * we have no way of validating this value,
209 * so punt.
210 */
211 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
212 return (EINVAL);
213 ndp = nfs_enterdircache(vp, uio->uio_offset,
214 uio->uio_offset, 0, 0);
215 }
216
217 if (NFS_EOFVALID(np) &&
218 ndp->dc_cookie == np->n_direofoffset) {
219 nfs_putdircache(np, ndp);
220 nfsstats.direofcache_hits++;
221 return (0);
222 }
223
224 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
225 if (!bp)
226 return (EINTR);
227 if ((bp->b_oflags & BO_DONE) == 0) {
228 bp->b_flags |= B_READ;
229 bp->b_dcookie = ndp->dc_blkcookie;
230 error = nfs_doio(bp);
231 if (error) {
232 /*
233 * Yuck! The directory has been modified on the
234 * server. Punt and let the userland code
235 * deal with it.
236 */
237 nfs_putdircache(np, ndp);
238 brelse(bp, 0);
239 /*
240 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
241 */
242 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
243 nfs_invaldircache(vp, 0);
244 nfs_vinvalbuf(vp, 0, cred, l, 1);
245 }
246 return (error);
247 }
248 }
249
250 /*
251 * Just return if we hit EOF right away with this
252 * block. Always check here, because direofoffset
253 * may have been set by an nfsiod since the last
254 * check.
255 *
256 * also, empty block implies EOF.
257 */
258
259 if (bp->b_bcount == bp->b_resid ||
260 (NFS_EOFVALID(np) &&
261 ndp->dc_blkcookie == np->n_direofoffset)) {
262 KASSERT(bp->b_bcount != bp->b_resid ||
263 ndp->dc_blkcookie == bp->b_dcookie);
264 nfs_putdircache(np, ndp);
265 brelse(bp, BC_NOCACHE);
266 return 0;
267 }
268
269 /*
270 * Find the entry we were looking for in the block.
271 */
272
273 en = ndp->dc_entry;
274
275 pdp = dp = (struct dirent *)bp->b_data;
276 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
277 bp->b_resid);
278 enn = 0;
279 while (enn < en && dp < edp) {
280 pdp = dp;
281 dp = _DIRENT_NEXT(dp);
282 enn++;
283 }
284
285 /*
286 * If the entry number was bigger than the number of
287 * entries in the block, or the cookie of the previous
288 * entry doesn't match, the directory cache is
289 * stale. Flush it and try again (i.e. go to
290 * the server).
291 */
292 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
293 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
294 #ifdef DEBUG
295 printf("invalid cache: %p %p %p off %jx %jx\n",
296 pdp, dp, edp,
297 (uintmax_t)uio->uio_offset,
298 (uintmax_t)NFS_GETCOOKIE(pdp));
299 #endif
300 nfs_putdircache(np, ndp);
301 brelse(bp, 0);
302 nfs_invaldircache(vp, 0);
303 nfs_vinvalbuf(vp, 0, cred, l, 0);
304 goto diragain;
305 }
306
307 on = (char *)dp - (char *)bp->b_data;
308
309 /*
310 * Cache all entries that may be exported to the
311 * user, as they may be thrown back at us. The
312 * NFSBIO_CACHECOOKIES flag indicates that all
313 * entries are being 'exported', so cache them all.
314 */
315
316 if (en == 0 && pdp == dp) {
317 dp = _DIRENT_NEXT(dp);
318 enn++;
319 }
320
321 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
322 n = uio->uio_resid;
323 enough = 1;
324 } else
325 n = bp->b_bcount - bp->b_resid - on;
326
327 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
328
329 /*
330 * Find last complete entry to copy, caching entries
331 * (if requested) as we go.
332 */
333
334 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
335 if (cflag & NFSBIO_CACHECOOKIES) {
336 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
337 ndp->dc_blkcookie, enn, bp->b_lblkno);
338 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
339 NFS_STASHCOOKIE32(pdp,
340 nndp->dc_cookie32);
341 }
342 nfs_putdircache(np, nndp);
343 }
344 pdp = dp;
345 dp = _DIRENT_NEXT(dp);
346 enn++;
347 }
348 nfs_putdircache(np, ndp);
349
350 /*
351 * If the last requested entry was not the last in the
352 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
353 * cache the cookie of the last requested one, and
354 * set of the offset to it.
355 */
356
357 if ((on + n) < bp->b_bcount - bp->b_resid) {
358 curoff = NFS_GETCOOKIE(pdp);
359 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
360 enn, bp->b_lblkno);
361 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
362 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
363 curoff = nndp->dc_cookie32;
364 }
365 nfs_putdircache(np, nndp);
366 } else
367 curoff = bp->b_dcookie;
368
369 /*
370 * Always cache the entry for the next block,
371 * so that readaheads can use it.
372 */
373 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
374 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
375 if (curoff == bp->b_dcookie) {
376 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
377 curoff = nndp->dc_cookie32;
378 }
379 }
380
381 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
382
383 /*
384 * If not eof and read aheads are enabled, start one.
385 * (You need the current block first, so that you have the
386 * directory offset cookie of the next block.)
387 */
388 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
389 !NFS_EOFVALID(np)) {
390 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
391 NFS_DIRBLKSIZ, l);
392 if (rabp) {
393 if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) {
394 rabp->b_dcookie = nndp->dc_cookie;
395 rabp->b_flags |= (B_READ | B_ASYNC);
396 if (nfs_asyncio(rabp)) {
397 brelse(rabp, BC_INVAL);
398 }
399 } else
400 brelse(rabp, 0);
401 }
402 }
403 nfs_putdircache(np, nndp);
404 got_buf = 1;
405 break;
406 default:
407 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
408 break;
409 }
410
411 if (n > 0) {
412 if (!baddr)
413 baddr = bp->b_data;
414 error = uiomove((char *)baddr + on, (int)n, uio);
415 }
416 switch (vp->v_type) {
417 case VREG:
418 break;
419 case VLNK:
420 n = 0;
421 break;
422 case VDIR:
423 uio->uio_offset = curoff;
424 if (enough)
425 n = 0;
426 break;
427 default:
428 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
429 }
430 if (got_buf)
431 brelse(bp, 0);
432 } while (error == 0 && uio->uio_resid > 0 && n > 0);
433 return (error);
434 }
435
436 /*
437 * Vnode op for write using bio
438 */
439 int
nfs_write(void * v)440 nfs_write(void *v)
441 {
442 struct vop_write_args /* {
443 struct vnode *a_vp;
444 struct uio *a_uio;
445 int a_ioflag;
446 kauth_cred_t a_cred;
447 } */ *ap = v;
448 struct uio *uio = ap->a_uio;
449 struct lwp *l = curlwp;
450 struct vnode *vp = ap->a_vp;
451 struct nfsnode *np = VTONFS(vp);
452 kauth_cred_t cred = ap->a_cred;
453 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
454 voff_t oldoff, origoff;
455 vsize_t bytelen;
456 int error = 0;
457 int ioflag = ap->a_ioflag;
458
459 #ifdef DIAGNOSTIC
460 if (uio->uio_rw != UIO_WRITE)
461 panic("nfs_write mode");
462 #endif
463 if (vp->v_type != VREG)
464 return (EIO);
465 if (np->n_flag & NWRITEERR) {
466 np->n_flag &= ~NWRITEERR;
467 return (np->n_error);
468 }
469 #ifndef NFS_V2_ONLY
470 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
471 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
472 (void)nfs_fsinfo(nmp, vp, cred, l);
473 #endif
474 if (ioflag & IO_APPEND) {
475 NFS_INVALIDATE_ATTRCACHE(np);
476 error = nfs_flushstalebuf(vp, cred, l,
477 NFS_FLUSHSTALEBUF_MYWRITE);
478 if (error)
479 return (error);
480 uio->uio_offset = np->n_size;
481
482 /*
483 * This is already checked above VOP_WRITE, but recheck
484 * the append case here to make sure our idea of the
485 * file size is as fresh as possible.
486 */
487 if (uio->uio_offset + uio->uio_resid >
488 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
489 mutex_enter(&proc_lock);
490 psignal(l->l_proc, SIGXFSZ);
491 mutex_exit(&proc_lock);
492 return (EFBIG);
493 }
494 }
495 if (uio->uio_offset < 0)
496 return (EINVAL);
497 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
498 return (EFBIG);
499 if (uio->uio_resid == 0)
500 return (0);
501
502 origoff = uio->uio_offset;
503 do {
504 bool overwrite; /* if we are overwriting whole pages */
505 u_quad_t oldsize;
506 oldoff = uio->uio_offset;
507 bytelen = uio->uio_resid;
508
509 nfsstats.biocache_writes++;
510
511 oldsize = np->n_size;
512 np->n_flag |= NMODIFIED;
513 if (np->n_size < uio->uio_offset + bytelen) {
514 np->n_size = uio->uio_offset + bytelen;
515 }
516 overwrite = false;
517 if ((uio->uio_offset & PAGE_MASK) == 0) {
518 if ((vp->v_vflag & VV_MAPPED) == 0 &&
519 bytelen > PAGE_SIZE) {
520 bytelen = trunc_page(bytelen);
521 overwrite = true;
522 } else if ((bytelen & PAGE_MASK) == 0 &&
523 uio->uio_offset >= vp->v_size) {
524 overwrite = true;
525 }
526 }
527 if (vp->v_size < uio->uio_offset + bytelen) {
528 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
529 }
530 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
531 UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
532 (overwrite ? UBC_FAULTBUSY : 0) |
533 UBC_VNODE_FLAGS(vp));
534 if (error) {
535 uvm_vnp_setwritesize(vp, vp->v_size);
536 if (overwrite && np->n_size != oldsize) {
537 /*
538 * backout size and free pages past eof.
539 */
540 np->n_size = oldsize;
541 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
542 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
543 0, PGO_SYNCIO | PGO_FREE);
544 }
545 break;
546 }
547
548 /*
549 * update UVM's notion of the size now that we've
550 * copied the data into the vnode's pages.
551 */
552
553 if (vp->v_size < uio->uio_offset) {
554 uvm_vnp_setsize(vp, uio->uio_offset);
555 }
556
557 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
558 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
559 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
560 error = VOP_PUTPAGES(vp,
561 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
562 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
563 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
564 }
565 } while (uio->uio_resid > 0);
566 if (error == 0 && (ioflag & IO_SYNC) != 0) {
567 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
568 error = VOP_PUTPAGES(vp,
569 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
570 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
571 ~(nmp->nm_wsize - 1)),
572 PGO_CLEANIT | PGO_SYNCIO);
573 }
574 return error;
575 }
576
577 /*
578 * Get an nfs cache block.
579 * Allocate a new one if the block isn't currently in the cache
580 * and return the block marked busy. If the calling process is
581 * interrupted by a signal for an interruptible mount point, return
582 * NULL.
583 */
584 struct buf *
nfs_getcacheblk(struct vnode * vp,daddr_t bn,int size,struct lwp * l)585 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l)
586 {
587 struct buf *bp;
588 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
589
590 if (nmp->nm_flag & NFSMNT_INT) {
591 bp = getblk(vp, bn, size, PCATCH, 0);
592 while (bp == NULL) {
593 if (nfs_sigintr(nmp, NULL, l))
594 return (NULL);
595 bp = getblk(vp, bn, size, 0, 2 * hz);
596 }
597 } else
598 bp = getblk(vp, bn, size, 0, 0);
599 return (bp);
600 }
601
602 /*
603 * Flush and invalidate all dirty buffers. If another process is already
604 * doing the flush, just wait for completion.
605 */
606 int
nfs_vinvalbuf(struct vnode * vp,int flags,kauth_cred_t cred,struct lwp * l,int intrflg)607 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred,
608 struct lwp *l, int intrflg)
609 {
610 struct nfsnode *np = VTONFS(vp);
611 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
612 int error = 0, allerror = 0, slptimeo;
613 bool catch_p;
614
615 if ((nmp->nm_flag & NFSMNT_INT) == 0)
616 intrflg = 0;
617 if (intrflg) {
618 catch_p = true;
619 slptimeo = 2 * hz;
620 } else {
621 catch_p = false;
622 if (nmp->nm_flag & NFSMNT_SOFT)
623 slptimeo = nmp->nm_retry * nmp->nm_timeo;
624 else
625 slptimeo = 0;
626 }
627 /*
628 * First wait for any other process doing a flush to complete.
629 */
630 mutex_enter(vp->v_interlock);
631 while (np->n_flag & NFLUSHINPROG) {
632 np->n_flag |= NFLUSHWANT;
633 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
634 slptimeo, vp->v_interlock);
635 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
636 mutex_exit(vp->v_interlock);
637 return EINTR;
638 }
639 }
640
641 /*
642 * Now, flush as required.
643 */
644 np->n_flag |= NFLUSHINPROG;
645 mutex_exit(vp->v_interlock);
646 error = vinvalbuf(vp, flags, cred, l, catch_p, 0);
647 while (error) {
648 if (allerror == 0)
649 allerror = error;
650 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
651 error = EINTR;
652 break;
653 }
654 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
655 }
656 mutex_enter(vp->v_interlock);
657 if (allerror != 0) {
658 /*
659 * Keep error from vinvalbuf so fsync/close will know.
660 */
661 np->n_error = allerror;
662 np->n_flag |= NWRITEERR;
663 }
664 if (error == 0)
665 np->n_flag &= ~NMODIFIED;
666 np->n_flag &= ~NFLUSHINPROG;
667 if (np->n_flag & NFLUSHWANT) {
668 np->n_flag &= ~NFLUSHWANT;
669 wakeup(&np->n_flag);
670 }
671 mutex_exit(vp->v_interlock);
672 return error;
673 }
674
675 /*
676 * nfs_flushstalebuf: flush cache if it's stale.
677 *
678 * => caller shouldn't own any pages or buffers which belong to the vnode.
679 */
680
681 int
nfs_flushstalebuf(struct vnode * vp,kauth_cred_t cred,struct lwp * l,int flags)682 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
683 int flags)
684 {
685 struct nfsnode *np = VTONFS(vp);
686 struct vattr vattr;
687 int error;
688
689 if (np->n_flag & NMODIFIED) {
690 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
691 || vp->v_type != VREG) {
692 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
693 if (error)
694 return error;
695 if (vp->v_type == VDIR) {
696 nfs_invaldircache(vp, 0);
697 }
698 } else {
699 /*
700 * XXX assuming writes are ours.
701 */
702 }
703 NFS_INVALIDATE_ATTRCACHE(np);
704 error = VOP_GETATTR(vp, &vattr, cred);
705 if (error)
706 return error;
707 np->n_mtime = vattr.va_mtime;
708 } else {
709 error = VOP_GETATTR(vp, &vattr, cred);
710 if (error)
711 return error;
712 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
713 if (vp->v_type == VDIR) {
714 nfs_invaldircache(vp, 0);
715 }
716 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
717 if (error)
718 return error;
719 np->n_mtime = vattr.va_mtime;
720 }
721 }
722
723 return error;
724 }
725
726 /*
727 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
728 * This is mainly to avoid queueing async I/O requests when the nfsiods
729 * are all hung on a dead server.
730 */
731
732 int
nfs_asyncio(struct buf * bp)733 nfs_asyncio(struct buf *bp)
734 {
735 struct nfs_iod *iod;
736 struct nfsmount *nmp;
737 int slptimeo = 0, error;
738 bool catch_p = false;
739
740 if (nfs_numasync == 0)
741 return (EIO);
742
743 nmp = VFSTONFS(bp->b_vp->v_mount);
744
745 if (nmp->nm_flag & NFSMNT_SOFT)
746 slptimeo = nmp->nm_retry * nmp->nm_timeo;
747
748 if (nmp->nm_iflag & NFSMNT_DISMNTFORCE)
749 slptimeo = hz;
750
751 again:
752 if (nmp->nm_flag & NFSMNT_INT)
753 catch_p = true;
754
755 /*
756 * Find a free iod to process this request.
757 */
758
759 mutex_enter(&nfs_iodlist_lock);
760 iod = LIST_FIRST(&nfs_iodlist_idle);
761 if (iod) {
762 /*
763 * Found one, so wake it up and tell it which
764 * mount to process.
765 */
766 LIST_REMOVE(iod, nid_idle);
767 mutex_enter(&iod->nid_lock);
768 mutex_exit(&nfs_iodlist_lock);
769 KASSERT(iod->nid_mount == NULL);
770 iod->nid_mount = nmp;
771 cv_signal(&iod->nid_cv);
772 mutex_enter(&nmp->nm_lock);
773 mutex_exit(&iod->nid_lock);
774 nmp->nm_bufqiods++;
775 if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
776 cv_broadcast(&nmp->nm_aiocv);
777 }
778 } else {
779 mutex_exit(&nfs_iodlist_lock);
780 mutex_enter(&nmp->nm_lock);
781 }
782
783 KASSERT(mutex_owned(&nmp->nm_lock));
784
785 /*
786 * If we have an iod which can process the request, then queue
787 * the buffer. However, even if we have an iod, do not initiate
788 * queue cleaning if curproc is the pageout daemon. if the NFS mount
789 * is via local loopback, we may put curproc (pagedaemon) to sleep
790 * waiting for the writes to complete. But the server (ourself)
791 * may block the write, waiting for its (ie., our) pagedaemon
792 * to produce clean pages to handle the write: deadlock.
793 * XXX: start non-loopback mounts straight away? If "lots free",
794 * let pagedaemon start loopback writes anyway?
795 */
796 if (nmp->nm_bufqiods > 0) {
797
798 /*
799 * Ensure that the queue never grows too large.
800 */
801 if (curlwp == uvm.pagedaemon_lwp) {
802 /* Enque for later, to avoid free-page deadlock */
803 } else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
804 if (catch_p) {
805 error = cv_timedwait_sig(&nmp->nm_aiocv,
806 &nmp->nm_lock, slptimeo);
807 } else {
808 error = cv_timedwait(&nmp->nm_aiocv,
809 &nmp->nm_lock, slptimeo);
810 }
811 if (error) {
812 if (error == EWOULDBLOCK &&
813 nmp->nm_flag & NFSMNT_SOFT) {
814 mutex_exit(&nmp->nm_lock);
815 bp->b_error = EIO;
816 return (EIO);
817 }
818
819 if (nfs_sigintr(nmp, NULL, curlwp)) {
820 mutex_exit(&nmp->nm_lock);
821 return (EINTR);
822 }
823 if (catch_p) {
824 catch_p = false;
825 slptimeo = 2 * hz;
826 }
827 }
828
829 /*
830 * We might have lost our iod while sleeping,
831 * so check and loop if necessary.
832 */
833
834 if (nmp->nm_bufqiods == 0) {
835 mutex_exit(&nmp->nm_lock);
836 goto again;
837 }
838 }
839 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
840 nmp->nm_bufqlen++;
841 mutex_exit(&nmp->nm_lock);
842 return (0);
843 }
844 mutex_exit(&nmp->nm_lock);
845
846 /*
847 * All the iods are busy on other mounts, so return EIO to
848 * force the caller to process the i/o synchronously.
849 */
850
851 return (EIO);
852 }
853
854 /*
855 * nfs_doio for read.
856 */
857 static int
nfs_doio_read(struct buf * bp,struct uio * uiop)858 nfs_doio_read(struct buf *bp, struct uio *uiop)
859 {
860 struct vnode *vp = bp->b_vp;
861 struct nfsnode *np = VTONFS(vp);
862 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
863 int error = 0;
864
865 uiop->uio_rw = UIO_READ;
866 switch (vp->v_type) {
867 case VREG:
868 nfsstats.read_bios++;
869 error = nfs_readrpc(vp, uiop);
870 if (!error && uiop->uio_resid) {
871 int diff, len;
872
873 /*
874 * If uio_resid > 0, there is a hole in the file and
875 * no writes after the hole have been pushed to
876 * the server yet or the file has been truncated
877 * on the server.
878 * Just zero fill the rest of the valid area.
879 */
880
881 diff = bp->b_bcount - uiop->uio_resid;
882 len = uiop->uio_resid;
883 memset((char *)bp->b_data + diff, 0, len);
884 uiop->uio_resid = 0;
885 }
886 #if 0
887 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
888 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
889 mutex_enter(&proc_lock);
890 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
891 mutex_exit(&proc_lock);
892 #if 0 /* XXX NJWLWP */
893 uiop->uio_lwp->l_proc->p_holdcnt++;
894 #endif
895 }
896 #endif
897 break;
898 case VLNK:
899 KASSERT(uiop->uio_offset == (off_t)0);
900 nfsstats.readlink_bios++;
901 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
902 break;
903 case VDIR:
904 nfsstats.readdir_bios++;
905 uiop->uio_offset = bp->b_dcookie;
906 #ifndef NFS_V2_ONLY
907 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
908 error = nfs_readdirplusrpc(vp, uiop,
909 curlwp->l_cred);
910 /*
911 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
912 */
913 if (error == ENOTSUP)
914 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
915 }
916 #else
917 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
918 #endif
919 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
920 error = nfs_readdirrpc(vp, uiop,
921 curlwp->l_cred);
922 if (!error) {
923 bp->b_dcookie = uiop->uio_offset;
924 }
925 break;
926 default:
927 printf("nfs_doio: type %x unexpected\n", vp->v_type);
928 break;
929 }
930 bp->b_error = error;
931 return error;
932 }
933
934 /*
935 * nfs_doio for write.
936 */
937 static int
nfs_doio_write(struct buf * bp,struct uio * uiop)938 nfs_doio_write(struct buf *bp, struct uio *uiop)
939 {
940 struct vnode *vp = bp->b_vp;
941 struct nfsnode *np = VTONFS(vp);
942 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
943 int iomode;
944 bool stalewriteverf = false;
945 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
946 struct vm_page **pgs, *spgs[UBC_MAX_PAGES];
947 #ifndef NFS_V2_ONLY
948 bool needcommit = true; /* need only COMMIT RPC */
949 #else
950 bool needcommit = false; /* need only COMMIT RPC */
951 #endif
952 bool pageprotected;
953 struct uvm_object *uobj = &vp->v_uobj;
954 int error;
955 off_t off, cnt;
956
957 if (npages < __arraycount(spgs))
958 pgs = spgs;
959 else {
960 if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) ==
961 NULL)
962 return ENOMEM;
963 }
964
965 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
966 iomode = NFSV3WRITE_UNSTABLE;
967 } else {
968 iomode = NFSV3WRITE_FILESYNC;
969 }
970
971 #ifndef NFS_V2_ONLY
972 again:
973 #endif
974 rw_enter(&nmp->nm_writeverflock, RW_READER);
975
976 for (i = 0; i < npages; i++) {
977 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
978 if (pgs[i]->uobject == uobj &&
979 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
980 KASSERT(pgs[i]->flags & PG_BUSY);
981 /*
982 * this page belongs to our object.
983 */
984 rw_enter(uobj->vmobjlock, RW_WRITER);
985 /*
986 * write out the page stably if it's about to
987 * be released because we can't resend it
988 * on the server crash.
989 *
990 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
991 * changed until unbusy the page.
992 */
993 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
994 iomode = NFSV3WRITE_FILESYNC;
995 /*
996 * if we met a page which hasn't been sent yet,
997 * we need do WRITE RPC.
998 */
999 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
1000 needcommit = false;
1001 rw_exit(uobj->vmobjlock);
1002 } else {
1003 iomode = NFSV3WRITE_FILESYNC;
1004 needcommit = false;
1005 }
1006 }
1007 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
1008 rw_enter(uobj->vmobjlock, RW_WRITER);
1009 for (i = 0; i < npages; i++) {
1010 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
1011 pmap_page_protect(pgs[i], VM_PROT_READ);
1012 }
1013 rw_exit(uobj->vmobjlock);
1014 pageprotected = true; /* pages can't be modified during i/o. */
1015 } else
1016 pageprotected = false;
1017
1018 /*
1019 * Send the data to the server if necessary,
1020 * otherwise just send a commit rpc.
1021 */
1022 #ifndef NFS_V2_ONLY
1023 if (needcommit) {
1024
1025 /*
1026 * If the buffer is in the range that we already committed,
1027 * there's nothing to do.
1028 *
1029 * If it's in the range that we need to commit, push the
1030 * whole range at once, otherwise only push the buffer.
1031 * In both these cases, acquire the commit lock to avoid
1032 * other processes modifying the range.
1033 */
1034
1035 off = uiop->uio_offset;
1036 cnt = bp->b_bcount;
1037 mutex_enter(&np->n_commitlock);
1038 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1039 bool pushedrange;
1040 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1041 pushedrange = true;
1042 off = np->n_pushlo;
1043 cnt = np->n_pushhi - np->n_pushlo;
1044 } else {
1045 pushedrange = false;
1046 }
1047 error = nfs_commit(vp, off, cnt, curlwp);
1048 if (error == 0) {
1049 if (pushedrange) {
1050 nfs_merge_commit_ranges(vp);
1051 } else {
1052 nfs_add_committed_range(vp, off, cnt);
1053 }
1054 }
1055 } else {
1056 error = 0;
1057 }
1058 mutex_exit(&np->n_commitlock);
1059 rw_exit(&nmp->nm_writeverflock);
1060 if (!error) {
1061 /*
1062 * pages are now on stable storage.
1063 */
1064 uiop->uio_resid = 0;
1065 rw_enter(uobj->vmobjlock, RW_WRITER);
1066 for (i = 0; i < npages; i++) {
1067 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1068 }
1069 rw_exit(uobj->vmobjlock);
1070 goto out;
1071 } else if (error == NFSERR_STALEWRITEVERF) {
1072 nfs_clearcommit(vp->v_mount);
1073 goto again;
1074 }
1075 if (error) {
1076 bp->b_error = np->n_error = error;
1077 np->n_flag |= NWRITEERR;
1078 }
1079 goto out;
1080 }
1081 #endif
1082 off = uiop->uio_offset;
1083 cnt = bp->b_bcount;
1084 uiop->uio_rw = UIO_WRITE;
1085 nfsstats.write_bios++;
1086 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1087 #ifndef NFS_V2_ONLY
1088 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1089 /*
1090 * we need to commit pages later.
1091 */
1092 mutex_enter(&np->n_commitlock);
1093 nfs_add_tobecommitted_range(vp, off, cnt);
1094 /*
1095 * if there can be too many uncommitted pages, commit them now.
1096 */
1097 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1098 off = np->n_pushlo;
1099 cnt = nfs_commitsize >> 1;
1100 error = nfs_commit(vp, off, cnt, curlwp);
1101 if (!error) {
1102 nfs_add_committed_range(vp, off, cnt);
1103 nfs_del_tobecommitted_range(vp, off, cnt);
1104 }
1105 if (error == NFSERR_STALEWRITEVERF) {
1106 stalewriteverf = true;
1107 error = 0; /* it isn't a real error */
1108 }
1109 } else {
1110 /*
1111 * re-dirty pages so that they will be passed
1112 * to us later again.
1113 */
1114 rw_enter(uobj->vmobjlock, RW_WRITER);
1115 for (i = 0; i < npages; i++) {
1116 uvm_pagemarkdirty(pgs[i],
1117 UVM_PAGE_STATUS_DIRTY);
1118 }
1119 rw_exit(uobj->vmobjlock);
1120 }
1121 mutex_exit(&np->n_commitlock);
1122 } else
1123 #endif
1124 if (!error) {
1125 /*
1126 * pages are now on stable storage.
1127 */
1128 mutex_enter(&np->n_commitlock);
1129 nfs_del_committed_range(vp, off, cnt);
1130 mutex_exit(&np->n_commitlock);
1131 rw_enter(uobj->vmobjlock, RW_WRITER);
1132 for (i = 0; i < npages; i++) {
1133 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1134 }
1135 rw_exit(uobj->vmobjlock);
1136 } else {
1137 /*
1138 * we got an error.
1139 */
1140 bp->b_error = np->n_error = error;
1141 np->n_flag |= NWRITEERR;
1142 }
1143
1144 rw_exit(&nmp->nm_writeverflock);
1145
1146
1147 if (stalewriteverf) {
1148 nfs_clearcommit(vp->v_mount);
1149 }
1150 #ifndef NFS_V2_ONLY
1151 out:
1152 #endif
1153 if (pgs != spgs)
1154 kmem_free(pgs, sizeof(*pgs) * npages);
1155 return error;
1156 }
1157
1158 /*
1159 * nfs_doio for B_PHYS.
1160 */
1161 static int
nfs_doio_phys(struct buf * bp,struct uio * uiop)1162 nfs_doio_phys(struct buf *bp, struct uio *uiop)
1163 {
1164 struct vnode *vp = bp->b_vp;
1165 int error;
1166
1167 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1168 if (bp->b_flags & B_READ) {
1169 uiop->uio_rw = UIO_READ;
1170 nfsstats.read_physios++;
1171 error = nfs_readrpc(vp, uiop);
1172 } else {
1173 int iomode = NFSV3WRITE_DATASYNC;
1174 bool stalewriteverf;
1175 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1176
1177 uiop->uio_rw = UIO_WRITE;
1178 nfsstats.write_physios++;
1179 rw_enter(&nmp->nm_writeverflock, RW_READER);
1180 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1181 rw_exit(&nmp->nm_writeverflock);
1182 if (stalewriteverf) {
1183 nfs_clearcommit(bp->b_vp->v_mount);
1184 }
1185 }
1186 bp->b_error = error;
1187 return error;
1188 }
1189
1190 /*
1191 * Do an I/O operation to/from a cache block. This may be called
1192 * synchronously or from an nfsiod.
1193 */
1194 int
nfs_doio(struct buf * bp)1195 nfs_doio(struct buf *bp)
1196 {
1197 int error;
1198 struct uio uio;
1199 struct uio *uiop = &uio;
1200 struct iovec io;
1201 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1202
1203 uiop->uio_iov = &io;
1204 uiop->uio_iovcnt = 1;
1205 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1206 UIO_SETUP_SYSSPACE(uiop);
1207 io.iov_base = bp->b_data;
1208 io.iov_len = uiop->uio_resid = bp->b_bcount;
1209
1210 /*
1211 * Historically, paging was done with physio, but no more...
1212 */
1213 if (bp->b_flags & B_PHYS) {
1214 /*
1215 * ...though reading /dev/drum still gets us here.
1216 */
1217 error = nfs_doio_phys(bp, uiop);
1218 } else if (bp->b_flags & B_READ) {
1219 error = nfs_doio_read(bp, uiop);
1220 } else {
1221 error = nfs_doio_write(bp, uiop);
1222 }
1223 bp->b_resid = uiop->uio_resid;
1224 biodone(bp);
1225 return (error);
1226 }
1227
1228 /*
1229 * Vnode op for VM getpages.
1230 */
1231
1232 int
nfs_getpages(void * v)1233 nfs_getpages(void *v)
1234 {
1235 struct vop_getpages_args /* {
1236 struct vnode *a_vp;
1237 voff_t a_offset;
1238 struct vm_page **a_m;
1239 int *a_count;
1240 int a_centeridx;
1241 vm_prot_t a_access_type;
1242 int a_advice;
1243 int a_flags;
1244 } */ *ap = v;
1245
1246 struct vnode *vp = ap->a_vp;
1247 struct uvm_object *uobj = &vp->v_uobj;
1248 struct nfsnode *np = VTONFS(vp);
1249 const int npages = *ap->a_count;
1250 struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES];
1251 off_t origoffset, len;
1252 int i, error;
1253 bool v3 = NFS_ISV3(vp);
1254 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1255 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1256
1257 /*
1258 * XXX NFS wants to modify the pages below and that can't be done
1259 * with a read lock. We can't upgrade the lock here because it
1260 * would screw up UVM fault processing. Have NFS take the I/O
1261 * path.
1262 */
1263 if (locked && rw_lock_op(uobj->vmobjlock) == RW_READER) {
1264 *ap->a_count = 0;
1265 ap->a_m[ap->a_centeridx] = NULL;
1266 return EBUSY;
1267 }
1268
1269 /*
1270 * If we are not locked we are not really using opgs,
1271 * so just initialize it
1272 */
1273 if (!locked || npages < __arraycount(spgs))
1274 opgs = spgs;
1275 else {
1276 if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) ==
1277 NULL)
1278 return ENOMEM;
1279 }
1280
1281 /*
1282 * call the genfs code to get the pages. `pgs' may be NULL
1283 * when doing read-ahead.
1284 */
1285 pgs = ap->a_m;
1286 if (write && locked && v3) {
1287 KASSERT(pgs != NULL);
1288 #ifdef DEBUG
1289
1290 /*
1291 * If PGO_LOCKED is set, real pages shouldn't exists
1292 * in the array.
1293 */
1294
1295 for (i = 0; i < npages; i++)
1296 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1297 #endif
1298 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1299 }
1300 error = genfs_getpages(v);
1301 if (error)
1302 goto out;
1303
1304 /*
1305 * for read faults where the nfs node is not yet marked NMODIFIED,
1306 * set PG_RDONLY on the pages so that we come back here if someone
1307 * tries to modify later via the mapping that will be entered for
1308 * this fault.
1309 */
1310
1311 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1312 if (!locked) {
1313 rw_enter(uobj->vmobjlock, RW_WRITER);
1314 }
1315 for (i = 0; i < npages; i++) {
1316 pg = pgs[i];
1317 if (pg == NULL || pg == PGO_DONTCARE) {
1318 continue;
1319 }
1320 pg->flags |= PG_RDONLY;
1321 }
1322 if (!locked) {
1323 rw_exit(uobj->vmobjlock);
1324 }
1325 }
1326 if (!write)
1327 goto out;
1328
1329 /*
1330 * this is a write fault, update the commit info.
1331 */
1332
1333 origoffset = ap->a_offset;
1334 len = npages << PAGE_SHIFT;
1335
1336 if (v3) {
1337 if (!locked) {
1338 mutex_enter(&np->n_commitlock);
1339 } else {
1340 if (!mutex_tryenter(&np->n_commitlock)) {
1341
1342 /*
1343 * tell the caller that there are no pages
1344 * available and put back original pgs array.
1345 */
1346
1347 *ap->a_count = 0;
1348 memcpy(pgs, opgs,
1349 npages * sizeof(struct vm_pages *));
1350 error = EBUSY;
1351 goto out;
1352 }
1353 }
1354 nfs_del_committed_range(vp, origoffset, len);
1355 nfs_del_tobecommitted_range(vp, origoffset, len);
1356 }
1357 np->n_flag |= NMODIFIED;
1358 if (!locked) {
1359 rw_enter(uobj->vmobjlock, RW_WRITER);
1360 }
1361 for (i = 0; i < npages; i++) {
1362 pg = pgs[i];
1363 if (pg == NULL || pg == PGO_DONTCARE) {
1364 continue;
1365 }
1366 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1367 }
1368 if (!locked) {
1369 rw_exit(uobj->vmobjlock);
1370 }
1371 if (v3) {
1372 mutex_exit(&np->n_commitlock);
1373 }
1374 out:
1375 if (opgs != spgs)
1376 kmem_free(opgs, sizeof(*opgs) * npages);
1377 return error;
1378 }
1379