1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeViewDebug.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/BinaryFormat/Dwarf.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/LexicalScopes.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
34 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
35 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
36 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
37 #include "llvm/DebugInfo/CodeView/EnumTables.h"
38 #include "llvm/DebugInfo/CodeView/Line.h"
39 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
40 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
41 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
42 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCContext.h"
53 #include "llvm/MC/MCSectionCOFF.h"
54 #include "llvm/MC/MCStreamer.h"
55 #include "llvm/MC/MCSymbol.h"
56 #include "llvm/Support/BinaryStreamWriter.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Endian.h"
59 #include "llvm/Support/Error.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/FormatVariadic.h"
62 #include "llvm/Support/Path.h"
63 #include "llvm/Support/Program.h"
64 #include "llvm/Support/SMLoc.h"
65 #include "llvm/Support/ScopedPrinter.h"
66 #include "llvm/Target/TargetLoweringObjectFile.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cctype>
71 #include <cstddef>
72 #include <iterator>
73 #include <limits>
74
75 using namespace llvm;
76 using namespace llvm::codeview;
77
78 namespace {
79 class CVMCAdapter : public CodeViewRecordStreamer {
80 public:
CVMCAdapter(MCStreamer & OS,TypeCollection & TypeTable)81 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
82 : OS(&OS), TypeTable(TypeTable) {}
83
emitBytes(StringRef Data)84 void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
85
emitIntValue(uint64_t Value,unsigned Size)86 void emitIntValue(uint64_t Value, unsigned Size) override {
87 OS->emitIntValueInHex(Value, Size);
88 }
89
emitBinaryData(StringRef Data)90 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
91
AddComment(const Twine & T)92 void AddComment(const Twine &T) override { OS->AddComment(T); }
93
AddRawComment(const Twine & T)94 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
95
isVerboseAsm()96 bool isVerboseAsm() override { return OS->isVerboseAsm(); }
97
getTypeName(TypeIndex TI)98 std::string getTypeName(TypeIndex TI) override {
99 std::string TypeName;
100 if (!TI.isNoneType()) {
101 if (TI.isSimple())
102 TypeName = std::string(TypeIndex::simpleTypeName(TI));
103 else
104 TypeName = std::string(TypeTable.getTypeName(TI));
105 }
106 return TypeName;
107 }
108
109 private:
110 MCStreamer *OS = nullptr;
111 TypeCollection &TypeTable;
112 };
113 } // namespace
114
mapArchToCVCPUType(Triple::ArchType Type)115 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
116 switch (Type) {
117 case Triple::ArchType::x86:
118 return CPUType::Pentium3;
119 case Triple::ArchType::x86_64:
120 return CPUType::X64;
121 case Triple::ArchType::thumb:
122 // LLVM currently doesn't support Windows CE and so thumb
123 // here is indiscriminately mapped to ARMNT specifically.
124 return CPUType::ARMNT;
125 case Triple::ArchType::aarch64:
126 return CPUType::ARM64;
127 default:
128 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
129 }
130 }
131
CodeViewDebug(AsmPrinter * AP)132 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
133 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
134
getFullFilepath(const DIFile * File)135 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
136 std::string &Filepath = FileToFilepathMap[File];
137 if (!Filepath.empty())
138 return Filepath;
139
140 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
141
142 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
143 // it textually because one of the path components could be a symlink.
144 if (Dir.startswith("/") || Filename.startswith("/")) {
145 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
146 return Filename;
147 Filepath = std::string(Dir);
148 if (Dir.back() != '/')
149 Filepath += '/';
150 Filepath += Filename;
151 return Filepath;
152 }
153
154 // Clang emits directory and relative filename info into the IR, but CodeView
155 // operates on full paths. We could change Clang to emit full paths too, but
156 // that would increase the IR size and probably not needed for other users.
157 // For now, just concatenate and canonicalize the path here.
158 if (Filename.find(':') == 1)
159 Filepath = std::string(Filename);
160 else
161 Filepath = (Dir + "\\" + Filename).str();
162
163 // Canonicalize the path. We have to do it textually because we may no longer
164 // have access the file in the filesystem.
165 // First, replace all slashes with backslashes.
166 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
167
168 // Remove all "\.\" with "\".
169 size_t Cursor = 0;
170 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
171 Filepath.erase(Cursor, 2);
172
173 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
174 // path should be well-formatted, e.g. start with a drive letter, etc.
175 Cursor = 0;
176 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
177 // Something's wrong if the path starts with "\..\", abort.
178 if (Cursor == 0)
179 break;
180
181 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
182 if (PrevSlash == std::string::npos)
183 // Something's wrong, abort.
184 break;
185
186 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
187 // The next ".." might be following the one we've just erased.
188 Cursor = PrevSlash;
189 }
190
191 // Remove all duplicate backslashes.
192 Cursor = 0;
193 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
194 Filepath.erase(Cursor, 1);
195
196 return Filepath;
197 }
198
maybeRecordFile(const DIFile * F)199 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
200 StringRef FullPath = getFullFilepath(F);
201 unsigned NextId = FileIdMap.size() + 1;
202 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
203 if (Insertion.second) {
204 // We have to compute the full filepath and emit a .cv_file directive.
205 ArrayRef<uint8_t> ChecksumAsBytes;
206 FileChecksumKind CSKind = FileChecksumKind::None;
207 if (F->getChecksum()) {
208 std::string Checksum = fromHex(F->getChecksum()->Value);
209 void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
210 memcpy(CKMem, Checksum.data(), Checksum.size());
211 ChecksumAsBytes = ArrayRef<uint8_t>(
212 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
213 switch (F->getChecksum()->Kind) {
214 case DIFile::CSK_MD5:
215 CSKind = FileChecksumKind::MD5;
216 break;
217 case DIFile::CSK_SHA1:
218 CSKind = FileChecksumKind::SHA1;
219 break;
220 case DIFile::CSK_SHA256:
221 CSKind = FileChecksumKind::SHA256;
222 break;
223 }
224 }
225 bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
226 static_cast<unsigned>(CSKind));
227 (void)Success;
228 assert(Success && ".cv_file directive failed");
229 }
230 return Insertion.first->second;
231 }
232
233 CodeViewDebug::InlineSite &
getInlineSite(const DILocation * InlinedAt,const DISubprogram * Inlinee)234 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
235 const DISubprogram *Inlinee) {
236 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
237 InlineSite *Site = &SiteInsertion.first->second;
238 if (SiteInsertion.second) {
239 unsigned ParentFuncId = CurFn->FuncId;
240 if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
241 ParentFuncId =
242 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
243 .SiteFuncId;
244
245 Site->SiteFuncId = NextFuncId++;
246 OS.emitCVInlineSiteIdDirective(
247 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
248 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
249 Site->Inlinee = Inlinee;
250 InlinedSubprograms.insert(Inlinee);
251 getFuncIdForSubprogram(Inlinee);
252 }
253 return *Site;
254 }
255
getPrettyScopeName(const DIScope * Scope)256 static StringRef getPrettyScopeName(const DIScope *Scope) {
257 StringRef ScopeName = Scope->getName();
258 if (!ScopeName.empty())
259 return ScopeName;
260
261 switch (Scope->getTag()) {
262 case dwarf::DW_TAG_enumeration_type:
263 case dwarf::DW_TAG_class_type:
264 case dwarf::DW_TAG_structure_type:
265 case dwarf::DW_TAG_union_type:
266 return "<unnamed-tag>";
267 case dwarf::DW_TAG_namespace:
268 return "`anonymous namespace'";
269 default:
270 return StringRef();
271 }
272 }
273
collectParentScopeNames(const DIScope * Scope,SmallVectorImpl<StringRef> & QualifiedNameComponents)274 const DISubprogram *CodeViewDebug::collectParentScopeNames(
275 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
276 const DISubprogram *ClosestSubprogram = nullptr;
277 while (Scope != nullptr) {
278 if (ClosestSubprogram == nullptr)
279 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
280
281 // If a type appears in a scope chain, make sure it gets emitted. The
282 // frontend will be responsible for deciding if this should be a forward
283 // declaration or a complete type.
284 if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
285 DeferredCompleteTypes.push_back(Ty);
286
287 StringRef ScopeName = getPrettyScopeName(Scope);
288 if (!ScopeName.empty())
289 QualifiedNameComponents.push_back(ScopeName);
290 Scope = Scope->getScope();
291 }
292 return ClosestSubprogram;
293 }
294
formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,StringRef TypeName)295 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
296 StringRef TypeName) {
297 std::string FullyQualifiedName;
298 for (StringRef QualifiedNameComponent :
299 llvm::reverse(QualifiedNameComponents)) {
300 FullyQualifiedName.append(std::string(QualifiedNameComponent));
301 FullyQualifiedName.append("::");
302 }
303 FullyQualifiedName.append(std::string(TypeName));
304 return FullyQualifiedName;
305 }
306
307 struct CodeViewDebug::TypeLoweringScope {
TypeLoweringScopeCodeViewDebug::TypeLoweringScope308 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
~TypeLoweringScopeCodeViewDebug::TypeLoweringScope309 ~TypeLoweringScope() {
310 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
311 // inner TypeLoweringScopes don't attempt to emit deferred types.
312 if (CVD.TypeEmissionLevel == 1)
313 CVD.emitDeferredCompleteTypes();
314 --CVD.TypeEmissionLevel;
315 }
316 CodeViewDebug &CVD;
317 };
318
getFullyQualifiedName(const DIScope * Scope,StringRef Name)319 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
320 StringRef Name) {
321 // Ensure types in the scope chain are emitted as soon as possible.
322 // This can create otherwise a situation where S_UDTs are emitted while
323 // looping in emitDebugInfoForUDTs.
324 TypeLoweringScope S(*this);
325 SmallVector<StringRef, 5> QualifiedNameComponents;
326 collectParentScopeNames(Scope, QualifiedNameComponents);
327 return formatNestedName(QualifiedNameComponents, Name);
328 }
329
getFullyQualifiedName(const DIScope * Ty)330 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
331 const DIScope *Scope = Ty->getScope();
332 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
333 }
334
getScopeIndex(const DIScope * Scope)335 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
336 // No scope means global scope and that uses the zero index.
337 //
338 // We also use zero index when the scope is a DISubprogram
339 // to suppress the emission of LF_STRING_ID for the function,
340 // which can trigger a link-time error with the linker in
341 // VS2019 version 16.11.2 or newer.
342 // Note, however, skipping the debug info emission for the DISubprogram
343 // is a temporary fix. The root issue here is that we need to figure out
344 // the proper way to encode a function nested in another function
345 // (as introduced by the Fortran 'contains' keyword) in CodeView.
346 if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope))
347 return TypeIndex();
348
349 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
350
351 // Check if we've already translated this scope.
352 auto I = TypeIndices.find({Scope, nullptr});
353 if (I != TypeIndices.end())
354 return I->second;
355
356 // Build the fully qualified name of the scope.
357 std::string ScopeName = getFullyQualifiedName(Scope);
358 StringIdRecord SID(TypeIndex(), ScopeName);
359 auto TI = TypeTable.writeLeafType(SID);
360 return recordTypeIndexForDINode(Scope, TI);
361 }
362
removeTemplateArgs(StringRef Name)363 static StringRef removeTemplateArgs(StringRef Name) {
364 // Remove template args from the display name. Assume that the template args
365 // are the last thing in the name.
366 if (Name.empty() || Name.back() != '>')
367 return Name;
368
369 int OpenBrackets = 0;
370 for (int i = Name.size() - 1; i >= 0; --i) {
371 if (Name[i] == '>')
372 ++OpenBrackets;
373 else if (Name[i] == '<') {
374 --OpenBrackets;
375 if (OpenBrackets == 0)
376 return Name.substr(0, i);
377 }
378 }
379 return Name;
380 }
381
getFuncIdForSubprogram(const DISubprogram * SP)382 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
383 assert(SP);
384
385 // Check if we've already translated this subprogram.
386 auto I = TypeIndices.find({SP, nullptr});
387 if (I != TypeIndices.end())
388 return I->second;
389
390 // The display name includes function template arguments. Drop them to match
391 // MSVC. We need to have the template arguments in the DISubprogram name
392 // because they are used in other symbol records, such as S_GPROC32_IDs.
393 StringRef DisplayName = removeTemplateArgs(SP->getName());
394
395 const DIScope *Scope = SP->getScope();
396 TypeIndex TI;
397 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
398 // If the scope is a DICompositeType, then this must be a method. Member
399 // function types take some special handling, and require access to the
400 // subprogram.
401 TypeIndex ClassType = getTypeIndex(Class);
402 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
403 DisplayName);
404 TI = TypeTable.writeLeafType(MFuncId);
405 } else {
406 // Otherwise, this must be a free function.
407 TypeIndex ParentScope = getScopeIndex(Scope);
408 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
409 TI = TypeTable.writeLeafType(FuncId);
410 }
411
412 return recordTypeIndexForDINode(SP, TI);
413 }
414
isNonTrivial(const DICompositeType * DCTy)415 static bool isNonTrivial(const DICompositeType *DCTy) {
416 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
417 }
418
419 static FunctionOptions
getFunctionOptions(const DISubroutineType * Ty,const DICompositeType * ClassTy=nullptr,StringRef SPName=StringRef (""))420 getFunctionOptions(const DISubroutineType *Ty,
421 const DICompositeType *ClassTy = nullptr,
422 StringRef SPName = StringRef("")) {
423 FunctionOptions FO = FunctionOptions::None;
424 const DIType *ReturnTy = nullptr;
425 if (auto TypeArray = Ty->getTypeArray()) {
426 if (TypeArray.size())
427 ReturnTy = TypeArray[0];
428 }
429
430 // Add CxxReturnUdt option to functions that return nontrivial record types
431 // or methods that return record types.
432 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
433 if (isNonTrivial(ReturnDCTy) || ClassTy)
434 FO |= FunctionOptions::CxxReturnUdt;
435
436 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
437 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
438 FO |= FunctionOptions::Constructor;
439
440 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
441
442 }
443 return FO;
444 }
445
getMemberFunctionType(const DISubprogram * SP,const DICompositeType * Class)446 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
447 const DICompositeType *Class) {
448 // Always use the method declaration as the key for the function type. The
449 // method declaration contains the this adjustment.
450 if (SP->getDeclaration())
451 SP = SP->getDeclaration();
452 assert(!SP->getDeclaration() && "should use declaration as key");
453
454 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
455 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
456 auto I = TypeIndices.find({SP, Class});
457 if (I != TypeIndices.end())
458 return I->second;
459
460 // Make sure complete type info for the class is emitted *after* the member
461 // function type, as the complete class type is likely to reference this
462 // member function type.
463 TypeLoweringScope S(*this);
464 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
465
466 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
467 TypeIndex TI = lowerTypeMemberFunction(
468 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
469 return recordTypeIndexForDINode(SP, TI, Class);
470 }
471
recordTypeIndexForDINode(const DINode * Node,TypeIndex TI,const DIType * ClassTy)472 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
473 TypeIndex TI,
474 const DIType *ClassTy) {
475 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
476 (void)InsertResult;
477 assert(InsertResult.second && "DINode was already assigned a type index");
478 return TI;
479 }
480
getPointerSizeInBytes()481 unsigned CodeViewDebug::getPointerSizeInBytes() {
482 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
483 }
484
recordLocalVariable(LocalVariable && Var,const LexicalScope * LS)485 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
486 const LexicalScope *LS) {
487 if (const DILocation *InlinedAt = LS->getInlinedAt()) {
488 // This variable was inlined. Associate it with the InlineSite.
489 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
490 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
491 Site.InlinedLocals.emplace_back(Var);
492 } else {
493 // This variable goes into the corresponding lexical scope.
494 ScopeVariables[LS].emplace_back(Var);
495 }
496 }
497
addLocIfNotPresent(SmallVectorImpl<const DILocation * > & Locs,const DILocation * Loc)498 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
499 const DILocation *Loc) {
500 if (!llvm::is_contained(Locs, Loc))
501 Locs.push_back(Loc);
502 }
503
maybeRecordLocation(const DebugLoc & DL,const MachineFunction * MF)504 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
505 const MachineFunction *MF) {
506 // Skip this instruction if it has the same location as the previous one.
507 if (!DL || DL == PrevInstLoc)
508 return;
509
510 const DIScope *Scope = DL->getScope();
511 if (!Scope)
512 return;
513
514 // Skip this line if it is longer than the maximum we can record.
515 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
516 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
517 LI.isNeverStepInto())
518 return;
519
520 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
521 if (CI.getStartColumn() != DL.getCol())
522 return;
523
524 if (!CurFn->HaveLineInfo)
525 CurFn->HaveLineInfo = true;
526 unsigned FileId = 0;
527 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
528 FileId = CurFn->LastFileId;
529 else
530 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
531 PrevInstLoc = DL;
532
533 unsigned FuncId = CurFn->FuncId;
534 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
535 const DILocation *Loc = DL.get();
536
537 // If this location was actually inlined from somewhere else, give it the ID
538 // of the inline call site.
539 FuncId =
540 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
541
542 // Ensure we have links in the tree of inline call sites.
543 bool FirstLoc = true;
544 while ((SiteLoc = Loc->getInlinedAt())) {
545 InlineSite &Site =
546 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
547 if (!FirstLoc)
548 addLocIfNotPresent(Site.ChildSites, Loc);
549 FirstLoc = false;
550 Loc = SiteLoc;
551 }
552 addLocIfNotPresent(CurFn->ChildSites, Loc);
553 }
554
555 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
556 /*PrologueEnd=*/false, /*IsStmt=*/false,
557 DL->getFilename(), SMLoc());
558 }
559
emitCodeViewMagicVersion()560 void CodeViewDebug::emitCodeViewMagicVersion() {
561 OS.emitValueToAlignment(Align(4));
562 OS.AddComment("Debug section magic");
563 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
564 }
565
MapDWLangToCVLang(unsigned DWLang)566 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
567 switch (DWLang) {
568 case dwarf::DW_LANG_C:
569 case dwarf::DW_LANG_C89:
570 case dwarf::DW_LANG_C99:
571 case dwarf::DW_LANG_C11:
572 case dwarf::DW_LANG_ObjC:
573 return SourceLanguage::C;
574 case dwarf::DW_LANG_C_plus_plus:
575 case dwarf::DW_LANG_C_plus_plus_03:
576 case dwarf::DW_LANG_C_plus_plus_11:
577 case dwarf::DW_LANG_C_plus_plus_14:
578 return SourceLanguage::Cpp;
579 case dwarf::DW_LANG_Fortran77:
580 case dwarf::DW_LANG_Fortran90:
581 case dwarf::DW_LANG_Fortran95:
582 case dwarf::DW_LANG_Fortran03:
583 case dwarf::DW_LANG_Fortran08:
584 return SourceLanguage::Fortran;
585 case dwarf::DW_LANG_Pascal83:
586 return SourceLanguage::Pascal;
587 case dwarf::DW_LANG_Cobol74:
588 case dwarf::DW_LANG_Cobol85:
589 return SourceLanguage::Cobol;
590 case dwarf::DW_LANG_Java:
591 return SourceLanguage::Java;
592 case dwarf::DW_LANG_D:
593 return SourceLanguage::D;
594 case dwarf::DW_LANG_Swift:
595 return SourceLanguage::Swift;
596 case dwarf::DW_LANG_Rust:
597 return SourceLanguage::Rust;
598 default:
599 // There's no CodeView representation for this language, and CV doesn't
600 // have an "unknown" option for the language field, so we'll use MASM,
601 // as it's very low level.
602 return SourceLanguage::Masm;
603 }
604 }
605
beginModule(Module * M)606 void CodeViewDebug::beginModule(Module *M) {
607 // If module doesn't have named metadata anchors or COFF debug section
608 // is not available, skip any debug info related stuff.
609 if (!MMI->hasDebugInfo() ||
610 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
611 Asm = nullptr;
612 return;
613 }
614
615 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
616
617 // Get the current source language.
618 const MDNode *Node = *M->debug_compile_units_begin();
619 const auto *CU = cast<DICompileUnit>(Node);
620
621 CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage());
622
623 collectGlobalVariableInfo();
624
625 // Check if we should emit type record hashes.
626 ConstantInt *GH =
627 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
628 EmitDebugGlobalHashes = GH && !GH->isZero();
629 }
630
endModule()631 void CodeViewDebug::endModule() {
632 if (!Asm || !MMI->hasDebugInfo())
633 return;
634
635 // The COFF .debug$S section consists of several subsections, each starting
636 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
637 // of the payload followed by the payload itself. The subsections are 4-byte
638 // aligned.
639
640 // Use the generic .debug$S section, and make a subsection for all the inlined
641 // subprograms.
642 switchToDebugSectionForSymbol(nullptr);
643
644 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
645 emitObjName();
646 emitCompilerInformation();
647 endCVSubsection(CompilerInfo);
648
649 emitInlineeLinesSubsection();
650
651 // Emit per-function debug information.
652 for (auto &P : FnDebugInfo)
653 if (!P.first->isDeclarationForLinker())
654 emitDebugInfoForFunction(P.first, *P.second);
655
656 // Get types used by globals without emitting anything.
657 // This is meant to collect all static const data members so they can be
658 // emitted as globals.
659 collectDebugInfoForGlobals();
660
661 // Emit retained types.
662 emitDebugInfoForRetainedTypes();
663
664 // Emit global variable debug information.
665 setCurrentSubprogram(nullptr);
666 emitDebugInfoForGlobals();
667
668 // Switch back to the generic .debug$S section after potentially processing
669 // comdat symbol sections.
670 switchToDebugSectionForSymbol(nullptr);
671
672 // Emit UDT records for any types used by global variables.
673 if (!GlobalUDTs.empty()) {
674 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
675 emitDebugInfoForUDTs(GlobalUDTs);
676 endCVSubsection(SymbolsEnd);
677 }
678
679 // This subsection holds a file index to offset in string table table.
680 OS.AddComment("File index to string table offset subsection");
681 OS.emitCVFileChecksumsDirective();
682
683 // This subsection holds the string table.
684 OS.AddComment("String table");
685 OS.emitCVStringTableDirective();
686
687 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
688 // subsection in the generic .debug$S section at the end. There is no
689 // particular reason for this ordering other than to match MSVC.
690 emitBuildInfo();
691
692 // Emit type information and hashes last, so that any types we translate while
693 // emitting function info are included.
694 emitTypeInformation();
695
696 if (EmitDebugGlobalHashes)
697 emitTypeGlobalHashes();
698
699 clear();
700 }
701
702 static void
emitNullTerminatedSymbolName(MCStreamer & OS,StringRef S,unsigned MaxFixedRecordLength=0xF00)703 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
704 unsigned MaxFixedRecordLength = 0xF00) {
705 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
706 // after a fixed length portion of the record. The fixed length portion should
707 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
708 // overall record size is less than the maximum allowed.
709 SmallString<32> NullTerminatedString(
710 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
711 NullTerminatedString.push_back('\0');
712 OS.emitBytes(NullTerminatedString);
713 }
714
emitTypeInformation()715 void CodeViewDebug::emitTypeInformation() {
716 if (TypeTable.empty())
717 return;
718
719 // Start the .debug$T or .debug$P section with 0x4.
720 OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
721 emitCodeViewMagicVersion();
722
723 TypeTableCollection Table(TypeTable.records());
724 TypeVisitorCallbackPipeline Pipeline;
725
726 // To emit type record using Codeview MCStreamer adapter
727 CVMCAdapter CVMCOS(OS, Table);
728 TypeRecordMapping typeMapping(CVMCOS);
729 Pipeline.addCallbackToPipeline(typeMapping);
730
731 std::optional<TypeIndex> B = Table.getFirst();
732 while (B) {
733 // This will fail if the record data is invalid.
734 CVType Record = Table.getType(*B);
735
736 Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
737
738 if (E) {
739 logAllUnhandledErrors(std::move(E), errs(), "error: ");
740 llvm_unreachable("produced malformed type record");
741 }
742
743 B = Table.getNext(*B);
744 }
745 }
746
emitTypeGlobalHashes()747 void CodeViewDebug::emitTypeGlobalHashes() {
748 if (TypeTable.empty())
749 return;
750
751 // Start the .debug$H section with the version and hash algorithm, currently
752 // hardcoded to version 0, SHA1.
753 OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
754
755 OS.emitValueToAlignment(Align(4));
756 OS.AddComment("Magic");
757 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
758 OS.AddComment("Section Version");
759 OS.emitInt16(0);
760 OS.AddComment("Hash Algorithm");
761 OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3));
762
763 TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
764 for (const auto &GHR : TypeTable.hashes()) {
765 if (OS.isVerboseAsm()) {
766 // Emit an EOL-comment describing which TypeIndex this hash corresponds
767 // to, as well as the stringified SHA1 hash.
768 SmallString<32> Comment;
769 raw_svector_ostream CommentOS(Comment);
770 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
771 OS.AddComment(Comment);
772 ++TI;
773 }
774 assert(GHR.Hash.size() == 8);
775 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
776 GHR.Hash.size());
777 OS.emitBinaryData(S);
778 }
779 }
780
emitObjName()781 void CodeViewDebug::emitObjName() {
782 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME);
783
784 StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug);
785 llvm::SmallString<256> PathStore(PathRef);
786
787 if (PathRef.empty() || PathRef == "-") {
788 // Don't emit the filename if we're writing to stdout or to /dev/null.
789 PathRef = {};
790 } else {
791 llvm::sys::path::remove_dots(PathStore, /*remove_dot_dot=*/true);
792 PathRef = PathStore;
793 }
794
795 OS.AddComment("Signature");
796 OS.emitIntValue(0, 4);
797
798 OS.AddComment("Object name");
799 emitNullTerminatedSymbolName(OS, PathRef);
800
801 endSymbolRecord(CompilerEnd);
802 }
803
804 namespace {
805 struct Version {
806 int Part[4];
807 };
808 } // end anonymous namespace
809
810 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
811 // the version number.
parseVersion(StringRef Name)812 static Version parseVersion(StringRef Name) {
813 Version V = {{0}};
814 int N = 0;
815 for (const char C : Name) {
816 if (isdigit(C)) {
817 V.Part[N] *= 10;
818 V.Part[N] += C - '0';
819 V.Part[N] =
820 std::min<int>(V.Part[N], std::numeric_limits<uint16_t>::max());
821 } else if (C == '.') {
822 ++N;
823 if (N >= 4)
824 return V;
825 } else if (N > 0)
826 return V;
827 }
828 return V;
829 }
830
emitCompilerInformation()831 void CodeViewDebug::emitCompilerInformation() {
832 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
833 uint32_t Flags = 0;
834
835 // The low byte of the flags indicates the source language.
836 Flags = CurrentSourceLanguage;
837 // TODO: Figure out which other flags need to be set.
838 if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
839 Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
840 }
841 using ArchType = llvm::Triple::ArchType;
842 ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch();
843 if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb ||
844 Arch == ArchType::aarch64) {
845 Flags |= static_cast<uint32_t>(CompileSym3Flags::HotPatch);
846 }
847
848 OS.AddComment("Flags and language");
849 OS.emitInt32(Flags);
850
851 OS.AddComment("CPUType");
852 OS.emitInt16(static_cast<uint64_t>(TheCPU));
853
854 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
855 const MDNode *Node = *CUs->operands().begin();
856 const auto *CU = cast<DICompileUnit>(Node);
857
858 StringRef CompilerVersion = CU->getProducer();
859 Version FrontVer = parseVersion(CompilerVersion);
860 OS.AddComment("Frontend version");
861 for (int N : FrontVer.Part) {
862 OS.emitInt16(N);
863 }
864
865 // Some Microsoft tools, like Binscope, expect a backend version number of at
866 // least 8.something, so we'll coerce the LLVM version into a form that
867 // guarantees it'll be big enough without really lying about the version.
868 int Major = 1000 * LLVM_VERSION_MAJOR +
869 10 * LLVM_VERSION_MINOR +
870 LLVM_VERSION_PATCH;
871 // Clamp it for builds that use unusually large version numbers.
872 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
873 Version BackVer = {{ Major, 0, 0, 0 }};
874 OS.AddComment("Backend version");
875 for (int N : BackVer.Part)
876 OS.emitInt16(N);
877
878 OS.AddComment("Null-terminated compiler version string");
879 emitNullTerminatedSymbolName(OS, CompilerVersion);
880
881 endSymbolRecord(CompilerEnd);
882 }
883
getStringIdTypeIdx(GlobalTypeTableBuilder & TypeTable,StringRef S)884 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
885 StringRef S) {
886 StringIdRecord SIR(TypeIndex(0x0), S);
887 return TypeTable.writeLeafType(SIR);
888 }
889
flattenCommandLine(ArrayRef<std::string> Args,StringRef MainFilename)890 static std::string flattenCommandLine(ArrayRef<std::string> Args,
891 StringRef MainFilename) {
892 std::string FlatCmdLine;
893 raw_string_ostream OS(FlatCmdLine);
894 bool PrintedOneArg = false;
895 if (!StringRef(Args[0]).contains("-cc1")) {
896 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true);
897 PrintedOneArg = true;
898 }
899 for (unsigned i = 0; i < Args.size(); i++) {
900 StringRef Arg = Args[i];
901 if (Arg.empty())
902 continue;
903 if (Arg == "-main-file-name" || Arg == "-o") {
904 i++; // Skip this argument and next one.
905 continue;
906 }
907 if (Arg.startswith("-object-file-name") || Arg == MainFilename)
908 continue;
909 // Skip fmessage-length for reproduciability.
910 if (Arg.startswith("-fmessage-length"))
911 continue;
912 if (PrintedOneArg)
913 OS << " ";
914 llvm::sys::printArg(OS, Arg, /*Quote=*/true);
915 PrintedOneArg = true;
916 }
917 OS.flush();
918 return FlatCmdLine;
919 }
920
emitBuildInfo()921 void CodeViewDebug::emitBuildInfo() {
922 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
923 // build info. The known prefix is:
924 // - Absolute path of current directory
925 // - Compiler path
926 // - Main source file path, relative to CWD or absolute
927 // - Type server PDB file
928 // - Canonical compiler command line
929 // If frontend and backend compilation are separated (think llc or LTO), it's
930 // not clear if the compiler path should refer to the executable for the
931 // frontend or the backend. Leave it blank for now.
932 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
933 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
934 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
935 const auto *CU = cast<DICompileUnit>(Node);
936 const DIFile *MainSourceFile = CU->getFile();
937 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
938 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
939 BuildInfoArgs[BuildInfoRecord::SourceFile] =
940 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
941 // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
942 BuildInfoArgs[BuildInfoRecord::TypeServerPDB] =
943 getStringIdTypeIdx(TypeTable, "");
944 if (Asm->TM.Options.MCOptions.Argv0 != nullptr) {
945 BuildInfoArgs[BuildInfoRecord::BuildTool] =
946 getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0);
947 BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx(
948 TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs,
949 MainSourceFile->getFilename()));
950 }
951 BuildInfoRecord BIR(BuildInfoArgs);
952 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
953
954 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
955 // from the module symbols into the type stream.
956 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
957 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
958 OS.AddComment("LF_BUILDINFO index");
959 OS.emitInt32(BuildInfoIndex.getIndex());
960 endSymbolRecord(BIEnd);
961 endCVSubsection(BISubsecEnd);
962 }
963
emitInlineeLinesSubsection()964 void CodeViewDebug::emitInlineeLinesSubsection() {
965 if (InlinedSubprograms.empty())
966 return;
967
968 OS.AddComment("Inlinee lines subsection");
969 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
970
971 // We emit the checksum info for files. This is used by debuggers to
972 // determine if a pdb matches the source before loading it. Visual Studio,
973 // for instance, will display a warning that the breakpoints are not valid if
974 // the pdb does not match the source.
975 OS.AddComment("Inlinee lines signature");
976 OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
977
978 for (const DISubprogram *SP : InlinedSubprograms) {
979 assert(TypeIndices.count({SP, nullptr}));
980 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
981
982 OS.addBlankLine();
983 unsigned FileId = maybeRecordFile(SP->getFile());
984 OS.AddComment("Inlined function " + SP->getName() + " starts at " +
985 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
986 OS.addBlankLine();
987 OS.AddComment("Type index of inlined function");
988 OS.emitInt32(InlineeIdx.getIndex());
989 OS.AddComment("Offset into filechecksum table");
990 OS.emitCVFileChecksumOffsetDirective(FileId);
991 OS.AddComment("Starting line number");
992 OS.emitInt32(SP->getLine());
993 }
994
995 endCVSubsection(InlineEnd);
996 }
997
emitInlinedCallSite(const FunctionInfo & FI,const DILocation * InlinedAt,const InlineSite & Site)998 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
999 const DILocation *InlinedAt,
1000 const InlineSite &Site) {
1001 assert(TypeIndices.count({Site.Inlinee, nullptr}));
1002 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
1003
1004 // SymbolRecord
1005 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
1006
1007 OS.AddComment("PtrParent");
1008 OS.emitInt32(0);
1009 OS.AddComment("PtrEnd");
1010 OS.emitInt32(0);
1011 OS.AddComment("Inlinee type index");
1012 OS.emitInt32(InlineeIdx.getIndex());
1013
1014 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
1015 unsigned StartLineNum = Site.Inlinee->getLine();
1016
1017 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
1018 FI.Begin, FI.End);
1019
1020 endSymbolRecord(InlineEnd);
1021
1022 emitLocalVariableList(FI, Site.InlinedLocals);
1023
1024 // Recurse on child inlined call sites before closing the scope.
1025 for (const DILocation *ChildSite : Site.ChildSites) {
1026 auto I = FI.InlineSites.find(ChildSite);
1027 assert(I != FI.InlineSites.end() &&
1028 "child site not in function inline site map");
1029 emitInlinedCallSite(FI, ChildSite, I->second);
1030 }
1031
1032 // Close the scope.
1033 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
1034 }
1035
switchToDebugSectionForSymbol(const MCSymbol * GVSym)1036 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
1037 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
1038 // comdat key. A section may be comdat because of -ffunction-sections or
1039 // because it is comdat in the IR.
1040 MCSectionCOFF *GVSec =
1041 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
1042 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
1043
1044 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
1045 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
1046 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
1047
1048 OS.switchSection(DebugSec);
1049
1050 // Emit the magic version number if this is the first time we've switched to
1051 // this section.
1052 if (ComdatDebugSections.insert(DebugSec).second)
1053 emitCodeViewMagicVersion();
1054 }
1055
1056 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
1057 // The only supported thunk ordinal is currently the standard type.
emitDebugInfoForThunk(const Function * GV,FunctionInfo & FI,const MCSymbol * Fn)1058 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
1059 FunctionInfo &FI,
1060 const MCSymbol *Fn) {
1061 std::string FuncName =
1062 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1063 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
1064
1065 OS.AddComment("Symbol subsection for " + Twine(FuncName));
1066 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1067
1068 // Emit S_THUNK32
1069 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
1070 OS.AddComment("PtrParent");
1071 OS.emitInt32(0);
1072 OS.AddComment("PtrEnd");
1073 OS.emitInt32(0);
1074 OS.AddComment("PtrNext");
1075 OS.emitInt32(0);
1076 OS.AddComment("Thunk section relative address");
1077 OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
1078 OS.AddComment("Thunk section index");
1079 OS.emitCOFFSectionIndex(Fn);
1080 OS.AddComment("Code size");
1081 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1082 OS.AddComment("Ordinal");
1083 OS.emitInt8(unsigned(ordinal));
1084 OS.AddComment("Function name");
1085 emitNullTerminatedSymbolName(OS, FuncName);
1086 // Additional fields specific to the thunk ordinal would go here.
1087 endSymbolRecord(ThunkRecordEnd);
1088
1089 // Local variables/inlined routines are purposely omitted here. The point of
1090 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1091
1092 // Emit S_PROC_ID_END
1093 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1094
1095 endCVSubsection(SymbolsEnd);
1096 }
1097
emitDebugInfoForFunction(const Function * GV,FunctionInfo & FI)1098 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1099 FunctionInfo &FI) {
1100 // For each function there is a separate subsection which holds the PC to
1101 // file:line table.
1102 const MCSymbol *Fn = Asm->getSymbol(GV);
1103 assert(Fn);
1104
1105 // Switch to the to a comdat section, if appropriate.
1106 switchToDebugSectionForSymbol(Fn);
1107
1108 std::string FuncName;
1109 auto *SP = GV->getSubprogram();
1110 assert(SP);
1111 setCurrentSubprogram(SP);
1112
1113 if (SP->isThunk()) {
1114 emitDebugInfoForThunk(GV, FI, Fn);
1115 return;
1116 }
1117
1118 // If we have a display name, build the fully qualified name by walking the
1119 // chain of scopes.
1120 if (!SP->getName().empty())
1121 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1122
1123 // If our DISubprogram name is empty, use the mangled name.
1124 if (FuncName.empty())
1125 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1126
1127 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1128 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1129 OS.emitCVFPOData(Fn);
1130
1131 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1132 OS.AddComment("Symbol subsection for " + Twine(FuncName));
1133 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1134 {
1135 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1136 : SymbolKind::S_GPROC32_ID;
1137 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1138
1139 // These fields are filled in by tools like CVPACK which run after the fact.
1140 OS.AddComment("PtrParent");
1141 OS.emitInt32(0);
1142 OS.AddComment("PtrEnd");
1143 OS.emitInt32(0);
1144 OS.AddComment("PtrNext");
1145 OS.emitInt32(0);
1146 // This is the important bit that tells the debugger where the function
1147 // code is located and what's its size:
1148 OS.AddComment("Code size");
1149 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1150 OS.AddComment("Offset after prologue");
1151 OS.emitInt32(0);
1152 OS.AddComment("Offset before epilogue");
1153 OS.emitInt32(0);
1154 OS.AddComment("Function type index");
1155 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1156 OS.AddComment("Function section relative address");
1157 OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
1158 OS.AddComment("Function section index");
1159 OS.emitCOFFSectionIndex(Fn);
1160 OS.AddComment("Flags");
1161 OS.emitInt8(0);
1162 // Emit the function display name as a null-terminated string.
1163 OS.AddComment("Function name");
1164 // Truncate the name so we won't overflow the record length field.
1165 emitNullTerminatedSymbolName(OS, FuncName);
1166 endSymbolRecord(ProcRecordEnd);
1167
1168 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1169 // Subtract out the CSR size since MSVC excludes that and we include it.
1170 OS.AddComment("FrameSize");
1171 OS.emitInt32(FI.FrameSize - FI.CSRSize);
1172 OS.AddComment("Padding");
1173 OS.emitInt32(0);
1174 OS.AddComment("Offset of padding");
1175 OS.emitInt32(0);
1176 OS.AddComment("Bytes of callee saved registers");
1177 OS.emitInt32(FI.CSRSize);
1178 OS.AddComment("Exception handler offset");
1179 OS.emitInt32(0);
1180 OS.AddComment("Exception handler section");
1181 OS.emitInt16(0);
1182 OS.AddComment("Flags (defines frame register)");
1183 OS.emitInt32(uint32_t(FI.FrameProcOpts));
1184 endSymbolRecord(FrameProcEnd);
1185
1186 emitLocalVariableList(FI, FI.Locals);
1187 emitGlobalVariableList(FI.Globals);
1188 emitLexicalBlockList(FI.ChildBlocks, FI);
1189
1190 // Emit inlined call site information. Only emit functions inlined directly
1191 // into the parent function. We'll emit the other sites recursively as part
1192 // of their parent inline site.
1193 for (const DILocation *InlinedAt : FI.ChildSites) {
1194 auto I = FI.InlineSites.find(InlinedAt);
1195 assert(I != FI.InlineSites.end() &&
1196 "child site not in function inline site map");
1197 emitInlinedCallSite(FI, InlinedAt, I->second);
1198 }
1199
1200 for (auto Annot : FI.Annotations) {
1201 MCSymbol *Label = Annot.first;
1202 MDTuple *Strs = cast<MDTuple>(Annot.second);
1203 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1204 OS.emitCOFFSecRel32(Label, /*Offset=*/0);
1205 // FIXME: Make sure we don't overflow the max record size.
1206 OS.emitCOFFSectionIndex(Label);
1207 OS.emitInt16(Strs->getNumOperands());
1208 for (Metadata *MD : Strs->operands()) {
1209 // MDStrings are null terminated, so we can do EmitBytes and get the
1210 // nice .asciz directive.
1211 StringRef Str = cast<MDString>(MD)->getString();
1212 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1213 OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1214 }
1215 endSymbolRecord(AnnotEnd);
1216 }
1217
1218 for (auto HeapAllocSite : FI.HeapAllocSites) {
1219 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1220 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1221 const DIType *DITy = std::get<2>(HeapAllocSite);
1222 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1223 OS.AddComment("Call site offset");
1224 OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1225 OS.AddComment("Call site section index");
1226 OS.emitCOFFSectionIndex(BeginLabel);
1227 OS.AddComment("Call instruction length");
1228 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1229 OS.AddComment("Type index");
1230 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1231 endSymbolRecord(HeapAllocEnd);
1232 }
1233
1234 if (SP != nullptr)
1235 emitDebugInfoForUDTs(LocalUDTs);
1236
1237 // We're done with this function.
1238 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1239 }
1240 endCVSubsection(SymbolsEnd);
1241
1242 // We have an assembler directive that takes care of the whole line table.
1243 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1244 }
1245
1246 CodeViewDebug::LocalVarDef
createDefRangeMem(uint16_t CVRegister,int Offset)1247 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1248 LocalVarDef DR;
1249 DR.InMemory = -1;
1250 DR.DataOffset = Offset;
1251 assert(DR.DataOffset == Offset && "truncation");
1252 DR.IsSubfield = 0;
1253 DR.StructOffset = 0;
1254 DR.CVRegister = CVRegister;
1255 return DR;
1256 }
1257
collectVariableInfoFromMFTable(DenseSet<InlinedEntity> & Processed)1258 void CodeViewDebug::collectVariableInfoFromMFTable(
1259 DenseSet<InlinedEntity> &Processed) {
1260 const MachineFunction &MF = *Asm->MF;
1261 const TargetSubtargetInfo &TSI = MF.getSubtarget();
1262 const TargetFrameLowering *TFI = TSI.getFrameLowering();
1263 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1264
1265 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1266 if (!VI.Var)
1267 continue;
1268 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1269 "Expected inlined-at fields to agree");
1270
1271 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1272 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1273
1274 // If variable scope is not found then skip this variable.
1275 if (!Scope)
1276 continue;
1277
1278 // If the variable has an attached offset expression, extract it.
1279 // FIXME: Try to handle DW_OP_deref as well.
1280 int64_t ExprOffset = 0;
1281 bool Deref = false;
1282 if (VI.Expr) {
1283 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1284 if (VI.Expr->getNumElements() == 1 &&
1285 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1286 Deref = true;
1287 else if (!VI.Expr->extractIfOffset(ExprOffset))
1288 continue;
1289 }
1290
1291 // Get the frame register used and the offset.
1292 Register FrameReg;
1293 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1294 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1295
1296 assert(!FrameOffset.getScalable() &&
1297 "Frame offsets with a scalable component are not supported");
1298
1299 // Calculate the label ranges.
1300 LocalVarDef DefRange =
1301 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1302
1303 LocalVariable Var;
1304 Var.DIVar = VI.Var;
1305
1306 for (const InsnRange &Range : Scope->getRanges()) {
1307 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1308 const MCSymbol *End = getLabelAfterInsn(Range.second);
1309 End = End ? End : Asm->getFunctionEnd();
1310 Var.DefRanges[DefRange].emplace_back(Begin, End);
1311 }
1312
1313 if (Deref)
1314 Var.UseReferenceType = true;
1315
1316 recordLocalVariable(std::move(Var), Scope);
1317 }
1318 }
1319
canUseReferenceType(const DbgVariableLocation & Loc)1320 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1321 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1322 }
1323
needsReferenceType(const DbgVariableLocation & Loc)1324 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1325 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1326 }
1327
calculateRanges(LocalVariable & Var,const DbgValueHistoryMap::Entries & Entries)1328 void CodeViewDebug::calculateRanges(
1329 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1330 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1331
1332 // Calculate the definition ranges.
1333 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1334 const auto &Entry = *I;
1335 if (!Entry.isDbgValue())
1336 continue;
1337 const MachineInstr *DVInst = Entry.getInstr();
1338 assert(DVInst->isDebugValue() && "Invalid History entry");
1339 // FIXME: Find a way to represent constant variables, since they are
1340 // relatively common.
1341 std::optional<DbgVariableLocation> Location =
1342 DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1343 if (!Location)
1344 {
1345 // When we don't have a location this is usually because LLVM has
1346 // transformed it into a constant and we only have an llvm.dbg.value. We
1347 // can't represent these well in CodeView since S_LOCAL only works on
1348 // registers and memory locations. Instead, we will pretend this to be a
1349 // constant value to at least have it show up in the debugger.
1350 auto Op = DVInst->getDebugOperand(0);
1351 if (Op.isImm())
1352 Var.ConstantValue = APSInt(APInt(64, Op.getImm()), false);
1353 continue;
1354 }
1355
1356 // CodeView can only express variables in register and variables in memory
1357 // at a constant offset from a register. However, for variables passed
1358 // indirectly by pointer, it is common for that pointer to be spilled to a
1359 // stack location. For the special case of one offseted load followed by a
1360 // zero offset load (a pointer spilled to the stack), we change the type of
1361 // the local variable from a value type to a reference type. This tricks the
1362 // debugger into doing the load for us.
1363 if (Var.UseReferenceType) {
1364 // We're using a reference type. Drop the last zero offset load.
1365 if (canUseReferenceType(*Location))
1366 Location->LoadChain.pop_back();
1367 else
1368 continue;
1369 } else if (needsReferenceType(*Location)) {
1370 // This location can't be expressed without switching to a reference type.
1371 // Start over using that.
1372 Var.UseReferenceType = true;
1373 Var.DefRanges.clear();
1374 calculateRanges(Var, Entries);
1375 return;
1376 }
1377
1378 // We can only handle a register or an offseted load of a register.
1379 if (Location->Register == 0 || Location->LoadChain.size() > 1)
1380 continue;
1381
1382 LocalVarDef DR;
1383 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1384 DR.InMemory = !Location->LoadChain.empty();
1385 DR.DataOffset =
1386 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1387 if (Location->FragmentInfo) {
1388 DR.IsSubfield = true;
1389 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1390 } else {
1391 DR.IsSubfield = false;
1392 DR.StructOffset = 0;
1393 }
1394
1395 // Compute the label range.
1396 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1397 const MCSymbol *End;
1398 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1399 auto &EndingEntry = Entries[Entry.getEndIndex()];
1400 End = EndingEntry.isDbgValue()
1401 ? getLabelBeforeInsn(EndingEntry.getInstr())
1402 : getLabelAfterInsn(EndingEntry.getInstr());
1403 } else
1404 End = Asm->getFunctionEnd();
1405
1406 // If the last range end is our begin, just extend the last range.
1407 // Otherwise make a new range.
1408 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1409 Var.DefRanges[DR];
1410 if (!R.empty() && R.back().second == Begin)
1411 R.back().second = End;
1412 else
1413 R.emplace_back(Begin, End);
1414
1415 // FIXME: Do more range combining.
1416 }
1417 }
1418
collectVariableInfo(const DISubprogram * SP)1419 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1420 DenseSet<InlinedEntity> Processed;
1421 // Grab the variable info that was squirreled away in the MMI side-table.
1422 collectVariableInfoFromMFTable(Processed);
1423
1424 for (const auto &I : DbgValues) {
1425 InlinedEntity IV = I.first;
1426 if (Processed.count(IV))
1427 continue;
1428 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1429 const DILocation *InlinedAt = IV.second;
1430
1431 // Instruction ranges, specifying where IV is accessible.
1432 const auto &Entries = I.second;
1433
1434 LexicalScope *Scope = nullptr;
1435 if (InlinedAt)
1436 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1437 else
1438 Scope = LScopes.findLexicalScope(DIVar->getScope());
1439 // If variable scope is not found then skip this variable.
1440 if (!Scope)
1441 continue;
1442
1443 LocalVariable Var;
1444 Var.DIVar = DIVar;
1445
1446 calculateRanges(Var, Entries);
1447 recordLocalVariable(std::move(Var), Scope);
1448 }
1449 }
1450
beginFunctionImpl(const MachineFunction * MF)1451 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1452 const TargetSubtargetInfo &TSI = MF->getSubtarget();
1453 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1454 const MachineFrameInfo &MFI = MF->getFrameInfo();
1455 const Function &GV = MF->getFunction();
1456 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1457 assert(Insertion.second && "function already has info");
1458 CurFn = Insertion.first->second.get();
1459 CurFn->FuncId = NextFuncId++;
1460 CurFn->Begin = Asm->getFunctionBegin();
1461
1462 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1463 // callee-saved registers were used. For targets that don't use a PUSH
1464 // instruction (AArch64), this will be zero.
1465 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1466 CurFn->FrameSize = MFI.getStackSize();
1467 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1468 CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1469
1470 // For this function S_FRAMEPROC record, figure out which codeview register
1471 // will be the frame pointer.
1472 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1473 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1474 if (CurFn->FrameSize > 0) {
1475 if (!TSI.getFrameLowering()->hasFP(*MF)) {
1476 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1477 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1478 } else {
1479 // If there is an FP, parameters are always relative to it.
1480 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1481 if (CurFn->HasStackRealignment) {
1482 // If the stack needs realignment, locals are relative to SP or VFRAME.
1483 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1484 } else {
1485 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1486 // other stack adjustments.
1487 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1488 }
1489 }
1490 }
1491
1492 // Compute other frame procedure options.
1493 FrameProcedureOptions FPO = FrameProcedureOptions::None;
1494 if (MFI.hasVarSizedObjects())
1495 FPO |= FrameProcedureOptions::HasAlloca;
1496 if (MF->exposesReturnsTwice())
1497 FPO |= FrameProcedureOptions::HasSetJmp;
1498 // FIXME: Set HasLongJmp if we ever track that info.
1499 if (MF->hasInlineAsm())
1500 FPO |= FrameProcedureOptions::HasInlineAssembly;
1501 if (GV.hasPersonalityFn()) {
1502 if (isAsynchronousEHPersonality(
1503 classifyEHPersonality(GV.getPersonalityFn())))
1504 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1505 else
1506 FPO |= FrameProcedureOptions::HasExceptionHandling;
1507 }
1508 if (GV.hasFnAttribute(Attribute::InlineHint))
1509 FPO |= FrameProcedureOptions::MarkedInline;
1510 if (GV.hasFnAttribute(Attribute::Naked))
1511 FPO |= FrameProcedureOptions::Naked;
1512 if (MFI.hasStackProtectorIndex()) {
1513 FPO |= FrameProcedureOptions::SecurityChecks;
1514 if (GV.hasFnAttribute(Attribute::StackProtectStrong) ||
1515 GV.hasFnAttribute(Attribute::StackProtectReq)) {
1516 FPO |= FrameProcedureOptions::StrictSecurityChecks;
1517 }
1518 } else if (!GV.hasStackProtectorFnAttr()) {
1519 // __declspec(safebuffers) disables stack guards.
1520 FPO |= FrameProcedureOptions::SafeBuffers;
1521 }
1522 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1523 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1524 if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1525 !GV.hasOptSize() && !GV.hasOptNone())
1526 FPO |= FrameProcedureOptions::OptimizedForSpeed;
1527 if (GV.hasProfileData()) {
1528 FPO |= FrameProcedureOptions::ValidProfileCounts;
1529 FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1530 }
1531 // FIXME: Set GuardCfg when it is implemented.
1532 CurFn->FrameProcOpts = FPO;
1533
1534 OS.emitCVFuncIdDirective(CurFn->FuncId);
1535
1536 // Find the end of the function prolog. First known non-DBG_VALUE and
1537 // non-frame setup location marks the beginning of the function body.
1538 // FIXME: is there a simpler a way to do this? Can we just search
1539 // for the first instruction of the function, not the last of the prolog?
1540 DebugLoc PrologEndLoc;
1541 bool EmptyPrologue = true;
1542 for (const auto &MBB : *MF) {
1543 for (const auto &MI : MBB) {
1544 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1545 MI.getDebugLoc()) {
1546 PrologEndLoc = MI.getDebugLoc();
1547 break;
1548 } else if (!MI.isMetaInstruction()) {
1549 EmptyPrologue = false;
1550 }
1551 }
1552 }
1553
1554 // Record beginning of function if we have a non-empty prologue.
1555 if (PrologEndLoc && !EmptyPrologue) {
1556 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1557 maybeRecordLocation(FnStartDL, MF);
1558 }
1559
1560 // Find heap alloc sites and emit labels around them.
1561 for (const auto &MBB : *MF) {
1562 for (const auto &MI : MBB) {
1563 if (MI.getHeapAllocMarker()) {
1564 requestLabelBeforeInsn(&MI);
1565 requestLabelAfterInsn(&MI);
1566 }
1567 }
1568 }
1569 }
1570
shouldEmitUdt(const DIType * T)1571 static bool shouldEmitUdt(const DIType *T) {
1572 if (!T)
1573 return false;
1574
1575 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1576 if (T->getTag() == dwarf::DW_TAG_typedef) {
1577 if (DIScope *Scope = T->getScope()) {
1578 switch (Scope->getTag()) {
1579 case dwarf::DW_TAG_structure_type:
1580 case dwarf::DW_TAG_class_type:
1581 case dwarf::DW_TAG_union_type:
1582 return false;
1583 default:
1584 // do nothing.
1585 ;
1586 }
1587 }
1588 }
1589
1590 while (true) {
1591 if (!T || T->isForwardDecl())
1592 return false;
1593
1594 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1595 if (!DT)
1596 return true;
1597 T = DT->getBaseType();
1598 }
1599 return true;
1600 }
1601
addToUDTs(const DIType * Ty)1602 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1603 // Don't record empty UDTs.
1604 if (Ty->getName().empty())
1605 return;
1606 if (!shouldEmitUdt(Ty))
1607 return;
1608
1609 SmallVector<StringRef, 5> ParentScopeNames;
1610 const DISubprogram *ClosestSubprogram =
1611 collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1612
1613 std::string FullyQualifiedName =
1614 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1615
1616 if (ClosestSubprogram == nullptr) {
1617 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1618 } else if (ClosestSubprogram == CurrentSubprogram) {
1619 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1620 }
1621
1622 // TODO: What if the ClosestSubprogram is neither null or the current
1623 // subprogram? Currently, the UDT just gets dropped on the floor.
1624 //
1625 // The current behavior is not desirable. To get maximal fidelity, we would
1626 // need to perform all type translation before beginning emission of .debug$S
1627 // and then make LocalUDTs a member of FunctionInfo
1628 }
1629
lowerType(const DIType * Ty,const DIType * ClassTy)1630 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1631 // Generic dispatch for lowering an unknown type.
1632 switch (Ty->getTag()) {
1633 case dwarf::DW_TAG_array_type:
1634 return lowerTypeArray(cast<DICompositeType>(Ty));
1635 case dwarf::DW_TAG_typedef:
1636 return lowerTypeAlias(cast<DIDerivedType>(Ty));
1637 case dwarf::DW_TAG_base_type:
1638 return lowerTypeBasic(cast<DIBasicType>(Ty));
1639 case dwarf::DW_TAG_pointer_type:
1640 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1641 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1642 [[fallthrough]];
1643 case dwarf::DW_TAG_reference_type:
1644 case dwarf::DW_TAG_rvalue_reference_type:
1645 return lowerTypePointer(cast<DIDerivedType>(Ty));
1646 case dwarf::DW_TAG_ptr_to_member_type:
1647 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1648 case dwarf::DW_TAG_restrict_type:
1649 case dwarf::DW_TAG_const_type:
1650 case dwarf::DW_TAG_volatile_type:
1651 // TODO: add support for DW_TAG_atomic_type here
1652 return lowerTypeModifier(cast<DIDerivedType>(Ty));
1653 case dwarf::DW_TAG_subroutine_type:
1654 if (ClassTy) {
1655 // The member function type of a member function pointer has no
1656 // ThisAdjustment.
1657 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1658 /*ThisAdjustment=*/0,
1659 /*IsStaticMethod=*/false);
1660 }
1661 return lowerTypeFunction(cast<DISubroutineType>(Ty));
1662 case dwarf::DW_TAG_enumeration_type:
1663 return lowerTypeEnum(cast<DICompositeType>(Ty));
1664 case dwarf::DW_TAG_class_type:
1665 case dwarf::DW_TAG_structure_type:
1666 return lowerTypeClass(cast<DICompositeType>(Ty));
1667 case dwarf::DW_TAG_union_type:
1668 return lowerTypeUnion(cast<DICompositeType>(Ty));
1669 case dwarf::DW_TAG_string_type:
1670 return lowerTypeString(cast<DIStringType>(Ty));
1671 case dwarf::DW_TAG_unspecified_type:
1672 if (Ty->getName() == "decltype(nullptr)")
1673 return TypeIndex::NullptrT();
1674 return TypeIndex::None();
1675 default:
1676 // Use the null type index.
1677 return TypeIndex();
1678 }
1679 }
1680
lowerTypeAlias(const DIDerivedType * Ty)1681 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1682 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1683 StringRef TypeName = Ty->getName();
1684
1685 addToUDTs(Ty);
1686
1687 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1688 TypeName == "HRESULT")
1689 return TypeIndex(SimpleTypeKind::HResult);
1690 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1691 TypeName == "wchar_t")
1692 return TypeIndex(SimpleTypeKind::WideCharacter);
1693
1694 return UnderlyingTypeIndex;
1695 }
1696
lowerTypeArray(const DICompositeType * Ty)1697 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1698 const DIType *ElementType = Ty->getBaseType();
1699 TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1700 // IndexType is size_t, which depends on the bitness of the target.
1701 TypeIndex IndexType = getPointerSizeInBytes() == 8
1702 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1703 : TypeIndex(SimpleTypeKind::UInt32Long);
1704
1705 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1706
1707 // Add subranges to array type.
1708 DINodeArray Elements = Ty->getElements();
1709 for (int i = Elements.size() - 1; i >= 0; --i) {
1710 const DINode *Element = Elements[i];
1711 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1712
1713 const DISubrange *Subrange = cast<DISubrange>(Element);
1714 int64_t Count = -1;
1715
1716 // If Subrange has a Count field, use it.
1717 // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1718 // where lowerbound is from the LowerBound field of the Subrange,
1719 // or the language default lowerbound if that field is unspecified.
1720 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>())
1721 Count = CI->getSExtValue();
1722 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) {
1723 // Fortran uses 1 as the default lowerbound; other languages use 0.
1724 int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0;
1725 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>();
1726 Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound;
1727 Count = UI->getSExtValue() - Lowerbound + 1;
1728 }
1729
1730 // Forward declarations of arrays without a size and VLAs use a count of -1.
1731 // Emit a count of zero in these cases to match what MSVC does for arrays
1732 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1733 // should do for them even if we could distinguish them.
1734 if (Count == -1)
1735 Count = 0;
1736
1737 // Update the element size and element type index for subsequent subranges.
1738 ElementSize *= Count;
1739
1740 // If this is the outermost array, use the size from the array. It will be
1741 // more accurate if we had a VLA or an incomplete element type size.
1742 uint64_t ArraySize =
1743 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1744
1745 StringRef Name = (i == 0) ? Ty->getName() : "";
1746 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1747 ElementTypeIndex = TypeTable.writeLeafType(AR);
1748 }
1749
1750 return ElementTypeIndex;
1751 }
1752
1753 // This function lowers a Fortran character type (DIStringType).
1754 // Note that it handles only the character*n variant (using SizeInBits
1755 // field in DIString to describe the type size) at the moment.
1756 // Other variants (leveraging the StringLength and StringLengthExp
1757 // fields in DIStringType) remain TBD.
lowerTypeString(const DIStringType * Ty)1758 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) {
1759 TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter);
1760 uint64_t ArraySize = Ty->getSizeInBits() >> 3;
1761 StringRef Name = Ty->getName();
1762 // IndexType is size_t, which depends on the bitness of the target.
1763 TypeIndex IndexType = getPointerSizeInBytes() == 8
1764 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1765 : TypeIndex(SimpleTypeKind::UInt32Long);
1766
1767 // Create a type of character array of ArraySize.
1768 ArrayRecord AR(CharType, IndexType, ArraySize, Name);
1769
1770 return TypeTable.writeLeafType(AR);
1771 }
1772
lowerTypeBasic(const DIBasicType * Ty)1773 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1774 TypeIndex Index;
1775 dwarf::TypeKind Kind;
1776 uint32_t ByteSize;
1777
1778 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1779 ByteSize = Ty->getSizeInBits() / 8;
1780
1781 SimpleTypeKind STK = SimpleTypeKind::None;
1782 switch (Kind) {
1783 case dwarf::DW_ATE_address:
1784 // FIXME: Translate
1785 break;
1786 case dwarf::DW_ATE_boolean:
1787 switch (ByteSize) {
1788 case 1: STK = SimpleTypeKind::Boolean8; break;
1789 case 2: STK = SimpleTypeKind::Boolean16; break;
1790 case 4: STK = SimpleTypeKind::Boolean32; break;
1791 case 8: STK = SimpleTypeKind::Boolean64; break;
1792 case 16: STK = SimpleTypeKind::Boolean128; break;
1793 }
1794 break;
1795 case dwarf::DW_ATE_complex_float:
1796 switch (ByteSize) {
1797 case 2: STK = SimpleTypeKind::Complex16; break;
1798 case 4: STK = SimpleTypeKind::Complex32; break;
1799 case 8: STK = SimpleTypeKind::Complex64; break;
1800 case 10: STK = SimpleTypeKind::Complex80; break;
1801 case 16: STK = SimpleTypeKind::Complex128; break;
1802 }
1803 break;
1804 case dwarf::DW_ATE_float:
1805 switch (ByteSize) {
1806 case 2: STK = SimpleTypeKind::Float16; break;
1807 case 4: STK = SimpleTypeKind::Float32; break;
1808 case 6: STK = SimpleTypeKind::Float48; break;
1809 case 8: STK = SimpleTypeKind::Float64; break;
1810 case 10: STK = SimpleTypeKind::Float80; break;
1811 case 16: STK = SimpleTypeKind::Float128; break;
1812 }
1813 break;
1814 case dwarf::DW_ATE_signed:
1815 switch (ByteSize) {
1816 case 1: STK = SimpleTypeKind::SignedCharacter; break;
1817 case 2: STK = SimpleTypeKind::Int16Short; break;
1818 case 4: STK = SimpleTypeKind::Int32; break;
1819 case 8: STK = SimpleTypeKind::Int64Quad; break;
1820 case 16: STK = SimpleTypeKind::Int128Oct; break;
1821 }
1822 break;
1823 case dwarf::DW_ATE_unsigned:
1824 switch (ByteSize) {
1825 case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
1826 case 2: STK = SimpleTypeKind::UInt16Short; break;
1827 case 4: STK = SimpleTypeKind::UInt32; break;
1828 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1829 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1830 }
1831 break;
1832 case dwarf::DW_ATE_UTF:
1833 switch (ByteSize) {
1834 case 1: STK = SimpleTypeKind::Character8; break;
1835 case 2: STK = SimpleTypeKind::Character16; break;
1836 case 4: STK = SimpleTypeKind::Character32; break;
1837 }
1838 break;
1839 case dwarf::DW_ATE_signed_char:
1840 if (ByteSize == 1)
1841 STK = SimpleTypeKind::SignedCharacter;
1842 break;
1843 case dwarf::DW_ATE_unsigned_char:
1844 if (ByteSize == 1)
1845 STK = SimpleTypeKind::UnsignedCharacter;
1846 break;
1847 default:
1848 break;
1849 }
1850
1851 // Apply some fixups based on the source-level type name.
1852 // Include some amount of canonicalization from an old naming scheme Clang
1853 // used to use for integer types (in an outdated effort to be compatible with
1854 // GCC's debug info/GDB's behavior, which has since been addressed).
1855 if (STK == SimpleTypeKind::Int32 &&
1856 (Ty->getName() == "long int" || Ty->getName() == "long"))
1857 STK = SimpleTypeKind::Int32Long;
1858 if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" ||
1859 Ty->getName() == "unsigned long"))
1860 STK = SimpleTypeKind::UInt32Long;
1861 if (STK == SimpleTypeKind::UInt16Short &&
1862 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1863 STK = SimpleTypeKind::WideCharacter;
1864 if ((STK == SimpleTypeKind::SignedCharacter ||
1865 STK == SimpleTypeKind::UnsignedCharacter) &&
1866 Ty->getName() == "char")
1867 STK = SimpleTypeKind::NarrowCharacter;
1868
1869 return TypeIndex(STK);
1870 }
1871
lowerTypePointer(const DIDerivedType * Ty,PointerOptions PO)1872 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1873 PointerOptions PO) {
1874 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1875
1876 // Pointers to simple types without any options can use SimpleTypeMode, rather
1877 // than having a dedicated pointer type record.
1878 if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1879 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1880 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1881 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1882 ? SimpleTypeMode::NearPointer64
1883 : SimpleTypeMode::NearPointer32;
1884 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1885 }
1886
1887 PointerKind PK =
1888 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1889 PointerMode PM = PointerMode::Pointer;
1890 switch (Ty->getTag()) {
1891 default: llvm_unreachable("not a pointer tag type");
1892 case dwarf::DW_TAG_pointer_type:
1893 PM = PointerMode::Pointer;
1894 break;
1895 case dwarf::DW_TAG_reference_type:
1896 PM = PointerMode::LValueReference;
1897 break;
1898 case dwarf::DW_TAG_rvalue_reference_type:
1899 PM = PointerMode::RValueReference;
1900 break;
1901 }
1902
1903 if (Ty->isObjectPointer())
1904 PO |= PointerOptions::Const;
1905
1906 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1907 return TypeTable.writeLeafType(PR);
1908 }
1909
1910 static PointerToMemberRepresentation
translatePtrToMemberRep(unsigned SizeInBytes,bool IsPMF,unsigned Flags)1911 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1912 // SizeInBytes being zero generally implies that the member pointer type was
1913 // incomplete, which can happen if it is part of a function prototype. In this
1914 // case, use the unknown model instead of the general model.
1915 if (IsPMF) {
1916 switch (Flags & DINode::FlagPtrToMemberRep) {
1917 case 0:
1918 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1919 : PointerToMemberRepresentation::GeneralFunction;
1920 case DINode::FlagSingleInheritance:
1921 return PointerToMemberRepresentation::SingleInheritanceFunction;
1922 case DINode::FlagMultipleInheritance:
1923 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1924 case DINode::FlagVirtualInheritance:
1925 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1926 }
1927 } else {
1928 switch (Flags & DINode::FlagPtrToMemberRep) {
1929 case 0:
1930 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1931 : PointerToMemberRepresentation::GeneralData;
1932 case DINode::FlagSingleInheritance:
1933 return PointerToMemberRepresentation::SingleInheritanceData;
1934 case DINode::FlagMultipleInheritance:
1935 return PointerToMemberRepresentation::MultipleInheritanceData;
1936 case DINode::FlagVirtualInheritance:
1937 return PointerToMemberRepresentation::VirtualInheritanceData;
1938 }
1939 }
1940 llvm_unreachable("invalid ptr to member representation");
1941 }
1942
lowerTypeMemberPointer(const DIDerivedType * Ty,PointerOptions PO)1943 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1944 PointerOptions PO) {
1945 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1946 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1947 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1948 TypeIndex PointeeTI =
1949 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1950 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1951 : PointerKind::Near32;
1952 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1953 : PointerMode::PointerToDataMember;
1954
1955 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1956 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1957 MemberPointerInfo MPI(
1958 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1959 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1960 return TypeTable.writeLeafType(PR);
1961 }
1962
1963 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1964 /// have a translation, use the NearC convention.
dwarfCCToCodeView(unsigned DwarfCC)1965 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1966 switch (DwarfCC) {
1967 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1968 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1969 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1970 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1971 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1972 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1973 }
1974 return CallingConvention::NearC;
1975 }
1976
lowerTypeModifier(const DIDerivedType * Ty)1977 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1978 ModifierOptions Mods = ModifierOptions::None;
1979 PointerOptions PO = PointerOptions::None;
1980 bool IsModifier = true;
1981 const DIType *BaseTy = Ty;
1982 while (IsModifier && BaseTy) {
1983 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1984 switch (BaseTy->getTag()) {
1985 case dwarf::DW_TAG_const_type:
1986 Mods |= ModifierOptions::Const;
1987 PO |= PointerOptions::Const;
1988 break;
1989 case dwarf::DW_TAG_volatile_type:
1990 Mods |= ModifierOptions::Volatile;
1991 PO |= PointerOptions::Volatile;
1992 break;
1993 case dwarf::DW_TAG_restrict_type:
1994 // Only pointer types be marked with __restrict. There is no known flag
1995 // for __restrict in LF_MODIFIER records.
1996 PO |= PointerOptions::Restrict;
1997 break;
1998 default:
1999 IsModifier = false;
2000 break;
2001 }
2002 if (IsModifier)
2003 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
2004 }
2005
2006 // Check if the inner type will use an LF_POINTER record. If so, the
2007 // qualifiers will go in the LF_POINTER record. This comes up for types like
2008 // 'int *const' and 'int *__restrict', not the more common cases like 'const
2009 // char *'.
2010 if (BaseTy) {
2011 switch (BaseTy->getTag()) {
2012 case dwarf::DW_TAG_pointer_type:
2013 case dwarf::DW_TAG_reference_type:
2014 case dwarf::DW_TAG_rvalue_reference_type:
2015 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
2016 case dwarf::DW_TAG_ptr_to_member_type:
2017 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
2018 default:
2019 break;
2020 }
2021 }
2022
2023 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
2024
2025 // Return the base type index if there aren't any modifiers. For example, the
2026 // metadata could contain restrict wrappers around non-pointer types.
2027 if (Mods == ModifierOptions::None)
2028 return ModifiedTI;
2029
2030 ModifierRecord MR(ModifiedTI, Mods);
2031 return TypeTable.writeLeafType(MR);
2032 }
2033
lowerTypeFunction(const DISubroutineType * Ty)2034 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
2035 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
2036 for (const DIType *ArgType : Ty->getTypeArray())
2037 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
2038
2039 // MSVC uses type none for variadic argument.
2040 if (ReturnAndArgTypeIndices.size() > 1 &&
2041 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
2042 ReturnAndArgTypeIndices.back() = TypeIndex::None();
2043 }
2044 TypeIndex ReturnTypeIndex = TypeIndex::Void();
2045 ArrayRef<TypeIndex> ArgTypeIndices = std::nullopt;
2046 if (!ReturnAndArgTypeIndices.empty()) {
2047 auto ReturnAndArgTypesRef = ArrayRef(ReturnAndArgTypeIndices);
2048 ReturnTypeIndex = ReturnAndArgTypesRef.front();
2049 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
2050 }
2051
2052 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2053 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2054
2055 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2056
2057 FunctionOptions FO = getFunctionOptions(Ty);
2058 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
2059 ArgListIndex);
2060 return TypeTable.writeLeafType(Procedure);
2061 }
2062
lowerTypeMemberFunction(const DISubroutineType * Ty,const DIType * ClassTy,int ThisAdjustment,bool IsStaticMethod,FunctionOptions FO)2063 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
2064 const DIType *ClassTy,
2065 int ThisAdjustment,
2066 bool IsStaticMethod,
2067 FunctionOptions FO) {
2068 // Lower the containing class type.
2069 TypeIndex ClassType = getTypeIndex(ClassTy);
2070
2071 DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
2072
2073 unsigned Index = 0;
2074 SmallVector<TypeIndex, 8> ArgTypeIndices;
2075 TypeIndex ReturnTypeIndex = TypeIndex::Void();
2076 if (ReturnAndArgs.size() > Index) {
2077 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
2078 }
2079
2080 // If the first argument is a pointer type and this isn't a static method,
2081 // treat it as the special 'this' parameter, which is encoded separately from
2082 // the arguments.
2083 TypeIndex ThisTypeIndex;
2084 if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
2085 if (const DIDerivedType *PtrTy =
2086 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
2087 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
2088 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
2089 Index++;
2090 }
2091 }
2092 }
2093
2094 while (Index < ReturnAndArgs.size())
2095 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
2096
2097 // MSVC uses type none for variadic argument.
2098 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
2099 ArgTypeIndices.back() = TypeIndex::None();
2100
2101 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2102 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2103
2104 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2105
2106 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
2107 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
2108 return TypeTable.writeLeafType(MFR);
2109 }
2110
lowerTypeVFTableShape(const DIDerivedType * Ty)2111 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
2112 unsigned VSlotCount =
2113 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
2114 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
2115
2116 VFTableShapeRecord VFTSR(Slots);
2117 return TypeTable.writeLeafType(VFTSR);
2118 }
2119
translateAccessFlags(unsigned RecordTag,unsigned Flags)2120 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
2121 switch (Flags & DINode::FlagAccessibility) {
2122 case DINode::FlagPrivate: return MemberAccess::Private;
2123 case DINode::FlagPublic: return MemberAccess::Public;
2124 case DINode::FlagProtected: return MemberAccess::Protected;
2125 case 0:
2126 // If there was no explicit access control, provide the default for the tag.
2127 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2128 : MemberAccess::Public;
2129 }
2130 llvm_unreachable("access flags are exclusive");
2131 }
2132
translateMethodOptionFlags(const DISubprogram * SP)2133 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2134 if (SP->isArtificial())
2135 return MethodOptions::CompilerGenerated;
2136
2137 // FIXME: Handle other MethodOptions.
2138
2139 return MethodOptions::None;
2140 }
2141
translateMethodKindFlags(const DISubprogram * SP,bool Introduced)2142 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2143 bool Introduced) {
2144 if (SP->getFlags() & DINode::FlagStaticMember)
2145 return MethodKind::Static;
2146
2147 switch (SP->getVirtuality()) {
2148 case dwarf::DW_VIRTUALITY_none:
2149 break;
2150 case dwarf::DW_VIRTUALITY_virtual:
2151 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2152 case dwarf::DW_VIRTUALITY_pure_virtual:
2153 return Introduced ? MethodKind::PureIntroducingVirtual
2154 : MethodKind::PureVirtual;
2155 default:
2156 llvm_unreachable("unhandled virtuality case");
2157 }
2158
2159 return MethodKind::Vanilla;
2160 }
2161
getRecordKind(const DICompositeType * Ty)2162 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2163 switch (Ty->getTag()) {
2164 case dwarf::DW_TAG_class_type:
2165 return TypeRecordKind::Class;
2166 case dwarf::DW_TAG_structure_type:
2167 return TypeRecordKind::Struct;
2168 default:
2169 llvm_unreachable("unexpected tag");
2170 }
2171 }
2172
2173 /// Return ClassOptions that should be present on both the forward declaration
2174 /// and the defintion of a tag type.
getCommonClassOptions(const DICompositeType * Ty)2175 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2176 ClassOptions CO = ClassOptions::None;
2177
2178 // MSVC always sets this flag, even for local types. Clang doesn't always
2179 // appear to give every type a linkage name, which may be problematic for us.
2180 // FIXME: Investigate the consequences of not following them here.
2181 if (!Ty->getIdentifier().empty())
2182 CO |= ClassOptions::HasUniqueName;
2183
2184 // Put the Nested flag on a type if it appears immediately inside a tag type.
2185 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2186 // here. That flag is only set on definitions, and not forward declarations.
2187 const DIScope *ImmediateScope = Ty->getScope();
2188 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2189 CO |= ClassOptions::Nested;
2190
2191 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2192 // type only when it has an immediate function scope. Clang never puts enums
2193 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2194 // always in function, class, or file scopes.
2195 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2196 if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2197 CO |= ClassOptions::Scoped;
2198 } else {
2199 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2200 Scope = Scope->getScope()) {
2201 if (isa<DISubprogram>(Scope)) {
2202 CO |= ClassOptions::Scoped;
2203 break;
2204 }
2205 }
2206 }
2207
2208 return CO;
2209 }
2210
addUDTSrcLine(const DIType * Ty,TypeIndex TI)2211 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2212 switch (Ty->getTag()) {
2213 case dwarf::DW_TAG_class_type:
2214 case dwarf::DW_TAG_structure_type:
2215 case dwarf::DW_TAG_union_type:
2216 case dwarf::DW_TAG_enumeration_type:
2217 break;
2218 default:
2219 return;
2220 }
2221
2222 if (const auto *File = Ty->getFile()) {
2223 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2224 TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2225
2226 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2227 TypeTable.writeLeafType(USLR);
2228 }
2229 }
2230
lowerTypeEnum(const DICompositeType * Ty)2231 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2232 ClassOptions CO = getCommonClassOptions(Ty);
2233 TypeIndex FTI;
2234 unsigned EnumeratorCount = 0;
2235
2236 if (Ty->isForwardDecl()) {
2237 CO |= ClassOptions::ForwardReference;
2238 } else {
2239 ContinuationRecordBuilder ContinuationBuilder;
2240 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2241 for (const DINode *Element : Ty->getElements()) {
2242 // We assume that the frontend provides all members in source declaration
2243 // order, which is what MSVC does.
2244 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2245 // FIXME: Is it correct to always emit these as unsigned here?
2246 EnumeratorRecord ER(MemberAccess::Public,
2247 APSInt(Enumerator->getValue(), true),
2248 Enumerator->getName());
2249 ContinuationBuilder.writeMemberType(ER);
2250 EnumeratorCount++;
2251 }
2252 }
2253 FTI = TypeTable.insertRecord(ContinuationBuilder);
2254 }
2255
2256 std::string FullName = getFullyQualifiedName(Ty);
2257
2258 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2259 getTypeIndex(Ty->getBaseType()));
2260 TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2261
2262 addUDTSrcLine(Ty, EnumTI);
2263
2264 return EnumTI;
2265 }
2266
2267 //===----------------------------------------------------------------------===//
2268 // ClassInfo
2269 //===----------------------------------------------------------------------===//
2270
2271 struct llvm::ClassInfo {
2272 struct MemberInfo {
2273 const DIDerivedType *MemberTypeNode;
2274 uint64_t BaseOffset;
2275 };
2276 // [MemberInfo]
2277 using MemberList = std::vector<MemberInfo>;
2278
2279 using MethodsList = TinyPtrVector<const DISubprogram *>;
2280 // MethodName -> MethodsList
2281 using MethodsMap = MapVector<MDString *, MethodsList>;
2282
2283 /// Base classes.
2284 std::vector<const DIDerivedType *> Inheritance;
2285
2286 /// Direct members.
2287 MemberList Members;
2288 // Direct overloaded methods gathered by name.
2289 MethodsMap Methods;
2290
2291 TypeIndex VShapeTI;
2292
2293 std::vector<const DIType *> NestedTypes;
2294 };
2295
clear()2296 void CodeViewDebug::clear() {
2297 assert(CurFn == nullptr);
2298 FileIdMap.clear();
2299 FnDebugInfo.clear();
2300 FileToFilepathMap.clear();
2301 LocalUDTs.clear();
2302 GlobalUDTs.clear();
2303 TypeIndices.clear();
2304 CompleteTypeIndices.clear();
2305 ScopeGlobals.clear();
2306 CVGlobalVariableOffsets.clear();
2307 }
2308
collectMemberInfo(ClassInfo & Info,const DIDerivedType * DDTy)2309 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2310 const DIDerivedType *DDTy) {
2311 if (!DDTy->getName().empty()) {
2312 Info.Members.push_back({DDTy, 0});
2313
2314 // Collect static const data members with values.
2315 if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2316 DINode::FlagStaticMember) {
2317 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2318 isa<ConstantFP>(DDTy->getConstant())))
2319 StaticConstMembers.push_back(DDTy);
2320 }
2321
2322 return;
2323 }
2324
2325 // An unnamed member may represent a nested struct or union. Attempt to
2326 // interpret the unnamed member as a DICompositeType possibly wrapped in
2327 // qualifier types. Add all the indirect fields to the current record if that
2328 // succeeds, and drop the member if that fails.
2329 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2330 uint64_t Offset = DDTy->getOffsetInBits();
2331 const DIType *Ty = DDTy->getBaseType();
2332 bool FullyResolved = false;
2333 while (!FullyResolved) {
2334 switch (Ty->getTag()) {
2335 case dwarf::DW_TAG_const_type:
2336 case dwarf::DW_TAG_volatile_type:
2337 // FIXME: we should apply the qualifier types to the indirect fields
2338 // rather than dropping them.
2339 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2340 break;
2341 default:
2342 FullyResolved = true;
2343 break;
2344 }
2345 }
2346
2347 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2348 if (!DCTy)
2349 return;
2350
2351 ClassInfo NestedInfo = collectClassInfo(DCTy);
2352 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2353 Info.Members.push_back(
2354 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2355 }
2356
collectClassInfo(const DICompositeType * Ty)2357 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2358 ClassInfo Info;
2359 // Add elements to structure type.
2360 DINodeArray Elements = Ty->getElements();
2361 for (auto *Element : Elements) {
2362 // We assume that the frontend provides all members in source declaration
2363 // order, which is what MSVC does.
2364 if (!Element)
2365 continue;
2366 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2367 Info.Methods[SP->getRawName()].push_back(SP);
2368 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2369 if (DDTy->getTag() == dwarf::DW_TAG_member) {
2370 collectMemberInfo(Info, DDTy);
2371 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2372 Info.Inheritance.push_back(DDTy);
2373 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2374 DDTy->getName() == "__vtbl_ptr_type") {
2375 Info.VShapeTI = getTypeIndex(DDTy);
2376 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2377 Info.NestedTypes.push_back(DDTy);
2378 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2379 // Ignore friend members. It appears that MSVC emitted info about
2380 // friends in the past, but modern versions do not.
2381 }
2382 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2383 Info.NestedTypes.push_back(Composite);
2384 }
2385 // Skip other unrecognized kinds of elements.
2386 }
2387 return Info;
2388 }
2389
shouldAlwaysEmitCompleteClassType(const DICompositeType * Ty)2390 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2391 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2392 // if a complete type should be emitted instead of a forward reference.
2393 return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2394 !Ty->isForwardDecl();
2395 }
2396
lowerTypeClass(const DICompositeType * Ty)2397 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2398 // Emit the complete type for unnamed structs. C++ classes with methods
2399 // which have a circular reference back to the class type are expected to
2400 // be named by the front-end and should not be "unnamed". C unnamed
2401 // structs should not have circular references.
2402 if (shouldAlwaysEmitCompleteClassType(Ty)) {
2403 // If this unnamed complete type is already in the process of being defined
2404 // then the description of the type is malformed and cannot be emitted
2405 // into CodeView correctly so report a fatal error.
2406 auto I = CompleteTypeIndices.find(Ty);
2407 if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2408 report_fatal_error("cannot debug circular reference to unnamed type");
2409 return getCompleteTypeIndex(Ty);
2410 }
2411
2412 // First, construct the forward decl. Don't look into Ty to compute the
2413 // forward decl options, since it might not be available in all TUs.
2414 TypeRecordKind Kind = getRecordKind(Ty);
2415 ClassOptions CO =
2416 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2417 std::string FullName = getFullyQualifiedName(Ty);
2418 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2419 FullName, Ty->getIdentifier());
2420 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2421 if (!Ty->isForwardDecl())
2422 DeferredCompleteTypes.push_back(Ty);
2423 return FwdDeclTI;
2424 }
2425
lowerCompleteTypeClass(const DICompositeType * Ty)2426 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2427 // Construct the field list and complete type record.
2428 TypeRecordKind Kind = getRecordKind(Ty);
2429 ClassOptions CO = getCommonClassOptions(Ty);
2430 TypeIndex FieldTI;
2431 TypeIndex VShapeTI;
2432 unsigned FieldCount;
2433 bool ContainsNestedClass;
2434 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2435 lowerRecordFieldList(Ty);
2436
2437 if (ContainsNestedClass)
2438 CO |= ClassOptions::ContainsNestedClass;
2439
2440 // MSVC appears to set this flag by searching any destructor or method with
2441 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2442 // the members, however special member functions are not yet emitted into
2443 // debug information. For now checking a class's non-triviality seems enough.
2444 // FIXME: not true for a nested unnamed struct.
2445 if (isNonTrivial(Ty))
2446 CO |= ClassOptions::HasConstructorOrDestructor;
2447
2448 std::string FullName = getFullyQualifiedName(Ty);
2449
2450 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2451
2452 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2453 SizeInBytes, FullName, Ty->getIdentifier());
2454 TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2455
2456 addUDTSrcLine(Ty, ClassTI);
2457
2458 addToUDTs(Ty);
2459
2460 return ClassTI;
2461 }
2462
lowerTypeUnion(const DICompositeType * Ty)2463 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2464 // Emit the complete type for unnamed unions.
2465 if (shouldAlwaysEmitCompleteClassType(Ty))
2466 return getCompleteTypeIndex(Ty);
2467
2468 ClassOptions CO =
2469 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2470 std::string FullName = getFullyQualifiedName(Ty);
2471 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2472 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2473 if (!Ty->isForwardDecl())
2474 DeferredCompleteTypes.push_back(Ty);
2475 return FwdDeclTI;
2476 }
2477
lowerCompleteTypeUnion(const DICompositeType * Ty)2478 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2479 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2480 TypeIndex FieldTI;
2481 unsigned FieldCount;
2482 bool ContainsNestedClass;
2483 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2484 lowerRecordFieldList(Ty);
2485
2486 if (ContainsNestedClass)
2487 CO |= ClassOptions::ContainsNestedClass;
2488
2489 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2490 std::string FullName = getFullyQualifiedName(Ty);
2491
2492 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2493 Ty->getIdentifier());
2494 TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2495
2496 addUDTSrcLine(Ty, UnionTI);
2497
2498 addToUDTs(Ty);
2499
2500 return UnionTI;
2501 }
2502
2503 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
lowerRecordFieldList(const DICompositeType * Ty)2504 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2505 // Manually count members. MSVC appears to count everything that generates a
2506 // field list record. Each individual overload in a method overload group
2507 // contributes to this count, even though the overload group is a single field
2508 // list record.
2509 unsigned MemberCount = 0;
2510 ClassInfo Info = collectClassInfo(Ty);
2511 ContinuationRecordBuilder ContinuationBuilder;
2512 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2513
2514 // Create base classes.
2515 for (const DIDerivedType *I : Info.Inheritance) {
2516 if (I->getFlags() & DINode::FlagVirtual) {
2517 // Virtual base.
2518 unsigned VBPtrOffset = I->getVBPtrOffset();
2519 // FIXME: Despite the accessor name, the offset is really in bytes.
2520 unsigned VBTableIndex = I->getOffsetInBits() / 4;
2521 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2522 ? TypeRecordKind::IndirectVirtualBaseClass
2523 : TypeRecordKind::VirtualBaseClass;
2524 VirtualBaseClassRecord VBCR(
2525 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2526 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2527 VBTableIndex);
2528
2529 ContinuationBuilder.writeMemberType(VBCR);
2530 MemberCount++;
2531 } else {
2532 assert(I->getOffsetInBits() % 8 == 0 &&
2533 "bases must be on byte boundaries");
2534 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2535 getTypeIndex(I->getBaseType()),
2536 I->getOffsetInBits() / 8);
2537 ContinuationBuilder.writeMemberType(BCR);
2538 MemberCount++;
2539 }
2540 }
2541
2542 // Create members.
2543 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2544 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2545 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2546 StringRef MemberName = Member->getName();
2547 MemberAccess Access =
2548 translateAccessFlags(Ty->getTag(), Member->getFlags());
2549
2550 if (Member->isStaticMember()) {
2551 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2552 ContinuationBuilder.writeMemberType(SDMR);
2553 MemberCount++;
2554 continue;
2555 }
2556
2557 // Virtual function pointer member.
2558 if ((Member->getFlags() & DINode::FlagArtificial) &&
2559 Member->getName().startswith("_vptr$")) {
2560 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2561 ContinuationBuilder.writeMemberType(VFPR);
2562 MemberCount++;
2563 continue;
2564 }
2565
2566 // Data member.
2567 uint64_t MemberOffsetInBits =
2568 Member->getOffsetInBits() + MemberInfo.BaseOffset;
2569 if (Member->isBitField()) {
2570 uint64_t StartBitOffset = MemberOffsetInBits;
2571 if (const auto *CI =
2572 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2573 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2574 }
2575 StartBitOffset -= MemberOffsetInBits;
2576 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2577 StartBitOffset);
2578 MemberBaseType = TypeTable.writeLeafType(BFR);
2579 }
2580 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2581 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2582 MemberName);
2583 ContinuationBuilder.writeMemberType(DMR);
2584 MemberCount++;
2585 }
2586
2587 // Create methods
2588 for (auto &MethodItr : Info.Methods) {
2589 StringRef Name = MethodItr.first->getString();
2590
2591 std::vector<OneMethodRecord> Methods;
2592 for (const DISubprogram *SP : MethodItr.second) {
2593 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2594 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2595
2596 unsigned VFTableOffset = -1;
2597 if (Introduced)
2598 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2599
2600 Methods.push_back(OneMethodRecord(
2601 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2602 translateMethodKindFlags(SP, Introduced),
2603 translateMethodOptionFlags(SP), VFTableOffset, Name));
2604 MemberCount++;
2605 }
2606 assert(!Methods.empty() && "Empty methods map entry");
2607 if (Methods.size() == 1)
2608 ContinuationBuilder.writeMemberType(Methods[0]);
2609 else {
2610 // FIXME: Make this use its own ContinuationBuilder so that
2611 // MethodOverloadList can be split correctly.
2612 MethodOverloadListRecord MOLR(Methods);
2613 TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2614
2615 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2616 ContinuationBuilder.writeMemberType(OMR);
2617 }
2618 }
2619
2620 // Create nested classes.
2621 for (const DIType *Nested : Info.NestedTypes) {
2622 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2623 ContinuationBuilder.writeMemberType(R);
2624 MemberCount++;
2625 }
2626
2627 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2628 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2629 !Info.NestedTypes.empty());
2630 }
2631
getVBPTypeIndex()2632 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2633 if (!VBPType.getIndex()) {
2634 // Make a 'const int *' type.
2635 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2636 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2637
2638 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2639 : PointerKind::Near32;
2640 PointerMode PM = PointerMode::Pointer;
2641 PointerOptions PO = PointerOptions::None;
2642 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2643 VBPType = TypeTable.writeLeafType(PR);
2644 }
2645
2646 return VBPType;
2647 }
2648
getTypeIndex(const DIType * Ty,const DIType * ClassTy)2649 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2650 // The null DIType is the void type. Don't try to hash it.
2651 if (!Ty)
2652 return TypeIndex::Void();
2653
2654 // Check if we've already translated this type. Don't try to do a
2655 // get-or-create style insertion that caches the hash lookup across the
2656 // lowerType call. It will update the TypeIndices map.
2657 auto I = TypeIndices.find({Ty, ClassTy});
2658 if (I != TypeIndices.end())
2659 return I->second;
2660
2661 TypeLoweringScope S(*this);
2662 TypeIndex TI = lowerType(Ty, ClassTy);
2663 return recordTypeIndexForDINode(Ty, TI, ClassTy);
2664 }
2665
2666 codeview::TypeIndex
getTypeIndexForThisPtr(const DIDerivedType * PtrTy,const DISubroutineType * SubroutineTy)2667 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2668 const DISubroutineType *SubroutineTy) {
2669 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2670 "this type must be a pointer type");
2671
2672 PointerOptions Options = PointerOptions::None;
2673 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2674 Options = PointerOptions::LValueRefThisPointer;
2675 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2676 Options = PointerOptions::RValueRefThisPointer;
2677
2678 // Check if we've already translated this type. If there is no ref qualifier
2679 // on the function then we look up this pointer type with no associated class
2680 // so that the TypeIndex for the this pointer can be shared with the type
2681 // index for other pointers to this class type. If there is a ref qualifier
2682 // then we lookup the pointer using the subroutine as the parent type.
2683 auto I = TypeIndices.find({PtrTy, SubroutineTy});
2684 if (I != TypeIndices.end())
2685 return I->second;
2686
2687 TypeLoweringScope S(*this);
2688 TypeIndex TI = lowerTypePointer(PtrTy, Options);
2689 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2690 }
2691
getTypeIndexForReferenceTo(const DIType * Ty)2692 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2693 PointerRecord PR(getTypeIndex(Ty),
2694 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2695 : PointerKind::Near32,
2696 PointerMode::LValueReference, PointerOptions::None,
2697 Ty->getSizeInBits() / 8);
2698 return TypeTable.writeLeafType(PR);
2699 }
2700
getCompleteTypeIndex(const DIType * Ty)2701 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2702 // The null DIType is the void type. Don't try to hash it.
2703 if (!Ty)
2704 return TypeIndex::Void();
2705
2706 // Look through typedefs when getting the complete type index. Call
2707 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2708 // emitted only once.
2709 if (Ty->getTag() == dwarf::DW_TAG_typedef)
2710 (void)getTypeIndex(Ty);
2711 while (Ty->getTag() == dwarf::DW_TAG_typedef)
2712 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2713
2714 // If this is a non-record type, the complete type index is the same as the
2715 // normal type index. Just call getTypeIndex.
2716 switch (Ty->getTag()) {
2717 case dwarf::DW_TAG_class_type:
2718 case dwarf::DW_TAG_structure_type:
2719 case dwarf::DW_TAG_union_type:
2720 break;
2721 default:
2722 return getTypeIndex(Ty);
2723 }
2724
2725 const auto *CTy = cast<DICompositeType>(Ty);
2726
2727 TypeLoweringScope S(*this);
2728
2729 // Make sure the forward declaration is emitted first. It's unclear if this
2730 // is necessary, but MSVC does it, and we should follow suit until we can show
2731 // otherwise.
2732 // We only emit a forward declaration for named types.
2733 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2734 TypeIndex FwdDeclTI = getTypeIndex(CTy);
2735
2736 // Just use the forward decl if we don't have complete type info. This
2737 // might happen if the frontend is using modules and expects the complete
2738 // definition to be emitted elsewhere.
2739 if (CTy->isForwardDecl())
2740 return FwdDeclTI;
2741 }
2742
2743 // Check if we've already translated the complete record type.
2744 // Insert the type with a null TypeIndex to signify that the type is currently
2745 // being lowered.
2746 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2747 if (!InsertResult.second)
2748 return InsertResult.first->second;
2749
2750 TypeIndex TI;
2751 switch (CTy->getTag()) {
2752 case dwarf::DW_TAG_class_type:
2753 case dwarf::DW_TAG_structure_type:
2754 TI = lowerCompleteTypeClass(CTy);
2755 break;
2756 case dwarf::DW_TAG_union_type:
2757 TI = lowerCompleteTypeUnion(CTy);
2758 break;
2759 default:
2760 llvm_unreachable("not a record");
2761 }
2762
2763 // Update the type index associated with this CompositeType. This cannot
2764 // use the 'InsertResult' iterator above because it is potentially
2765 // invalidated by map insertions which can occur while lowering the class
2766 // type above.
2767 CompleteTypeIndices[CTy] = TI;
2768 return TI;
2769 }
2770
2771 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2772 /// and do this until fixpoint, as each complete record type typically
2773 /// references
2774 /// many other record types.
emitDeferredCompleteTypes()2775 void CodeViewDebug::emitDeferredCompleteTypes() {
2776 SmallVector<const DICompositeType *, 4> TypesToEmit;
2777 while (!DeferredCompleteTypes.empty()) {
2778 std::swap(DeferredCompleteTypes, TypesToEmit);
2779 for (const DICompositeType *RecordTy : TypesToEmit)
2780 getCompleteTypeIndex(RecordTy);
2781 TypesToEmit.clear();
2782 }
2783 }
2784
emitLocalVariableList(const FunctionInfo & FI,ArrayRef<LocalVariable> Locals)2785 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2786 ArrayRef<LocalVariable> Locals) {
2787 // Get the sorted list of parameters and emit them first.
2788 SmallVector<const LocalVariable *, 6> Params;
2789 for (const LocalVariable &L : Locals)
2790 if (L.DIVar->isParameter())
2791 Params.push_back(&L);
2792 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2793 return L->DIVar->getArg() < R->DIVar->getArg();
2794 });
2795 for (const LocalVariable *L : Params)
2796 emitLocalVariable(FI, *L);
2797
2798 // Next emit all non-parameters in the order that we found them.
2799 for (const LocalVariable &L : Locals) {
2800 if (!L.DIVar->isParameter()) {
2801 if (L.ConstantValue) {
2802 // If ConstantValue is set we will emit it as a S_CONSTANT instead of a
2803 // S_LOCAL in order to be able to represent it at all.
2804 const DIType *Ty = L.DIVar->getType();
2805 APSInt Val(*L.ConstantValue);
2806 emitConstantSymbolRecord(Ty, Val, std::string(L.DIVar->getName()));
2807 } else {
2808 emitLocalVariable(FI, L);
2809 }
2810 }
2811 }
2812 }
2813
emitLocalVariable(const FunctionInfo & FI,const LocalVariable & Var)2814 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2815 const LocalVariable &Var) {
2816 // LocalSym record, see SymbolRecord.h for more info.
2817 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2818
2819 LocalSymFlags Flags = LocalSymFlags::None;
2820 if (Var.DIVar->isParameter())
2821 Flags |= LocalSymFlags::IsParameter;
2822 if (Var.DefRanges.empty())
2823 Flags |= LocalSymFlags::IsOptimizedOut;
2824
2825 OS.AddComment("TypeIndex");
2826 TypeIndex TI = Var.UseReferenceType
2827 ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2828 : getCompleteTypeIndex(Var.DIVar->getType());
2829 OS.emitInt32(TI.getIndex());
2830 OS.AddComment("Flags");
2831 OS.emitInt16(static_cast<uint16_t>(Flags));
2832 // Truncate the name so we won't overflow the record length field.
2833 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2834 endSymbolRecord(LocalEnd);
2835
2836 // Calculate the on disk prefix of the appropriate def range record. The
2837 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2838 // should be big enough to hold all forms without memory allocation.
2839 SmallString<20> BytePrefix;
2840 for (const auto &Pair : Var.DefRanges) {
2841 LocalVarDef DefRange = Pair.first;
2842 const auto &Ranges = Pair.second;
2843 BytePrefix.clear();
2844 if (DefRange.InMemory) {
2845 int Offset = DefRange.DataOffset;
2846 unsigned Reg = DefRange.CVRegister;
2847
2848 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2849 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2850 // instead. In frames without stack realignment, $T0 will be the CFA.
2851 if (RegisterId(Reg) == RegisterId::ESP) {
2852 Reg = unsigned(RegisterId::VFRAME);
2853 Offset += FI.OffsetAdjustment;
2854 }
2855
2856 // If we can use the chosen frame pointer for the frame and this isn't a
2857 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2858 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2859 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2860 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2861 (bool(Flags & LocalSymFlags::IsParameter)
2862 ? (EncFP == FI.EncodedParamFramePtrReg)
2863 : (EncFP == FI.EncodedLocalFramePtrReg))) {
2864 DefRangeFramePointerRelHeader DRHdr;
2865 DRHdr.Offset = Offset;
2866 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2867 } else {
2868 uint16_t RegRelFlags = 0;
2869 if (DefRange.IsSubfield) {
2870 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2871 (DefRange.StructOffset
2872 << DefRangeRegisterRelSym::OffsetInParentShift);
2873 }
2874 DefRangeRegisterRelHeader DRHdr;
2875 DRHdr.Register = Reg;
2876 DRHdr.Flags = RegRelFlags;
2877 DRHdr.BasePointerOffset = Offset;
2878 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2879 }
2880 } else {
2881 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2882 if (DefRange.IsSubfield) {
2883 DefRangeSubfieldRegisterHeader DRHdr;
2884 DRHdr.Register = DefRange.CVRegister;
2885 DRHdr.MayHaveNoName = 0;
2886 DRHdr.OffsetInParent = DefRange.StructOffset;
2887 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2888 } else {
2889 DefRangeRegisterHeader DRHdr;
2890 DRHdr.Register = DefRange.CVRegister;
2891 DRHdr.MayHaveNoName = 0;
2892 OS.emitCVDefRangeDirective(Ranges, DRHdr);
2893 }
2894 }
2895 }
2896 }
2897
emitLexicalBlockList(ArrayRef<LexicalBlock * > Blocks,const FunctionInfo & FI)2898 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2899 const FunctionInfo& FI) {
2900 for (LexicalBlock *Block : Blocks)
2901 emitLexicalBlock(*Block, FI);
2902 }
2903
2904 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2905 /// lexical block scope.
emitLexicalBlock(const LexicalBlock & Block,const FunctionInfo & FI)2906 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2907 const FunctionInfo& FI) {
2908 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2909 OS.AddComment("PtrParent");
2910 OS.emitInt32(0); // PtrParent
2911 OS.AddComment("PtrEnd");
2912 OS.emitInt32(0); // PtrEnd
2913 OS.AddComment("Code size");
2914 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
2915 OS.AddComment("Function section relative address");
2916 OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2917 OS.AddComment("Function section index");
2918 OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol
2919 OS.AddComment("Lexical block name");
2920 emitNullTerminatedSymbolName(OS, Block.Name); // Name
2921 endSymbolRecord(RecordEnd);
2922
2923 // Emit variables local to this lexical block.
2924 emitLocalVariableList(FI, Block.Locals);
2925 emitGlobalVariableList(Block.Globals);
2926
2927 // Emit lexical blocks contained within this block.
2928 emitLexicalBlockList(Block.Children, FI);
2929
2930 // Close the lexical block scope.
2931 emitEndSymbolRecord(SymbolKind::S_END);
2932 }
2933
2934 /// Convenience routine for collecting lexical block information for a list
2935 /// of lexical scopes.
collectLexicalBlockInfo(SmallVectorImpl<LexicalScope * > & Scopes,SmallVectorImpl<LexicalBlock * > & Blocks,SmallVectorImpl<LocalVariable> & Locals,SmallVectorImpl<CVGlobalVariable> & Globals)2936 void CodeViewDebug::collectLexicalBlockInfo(
2937 SmallVectorImpl<LexicalScope *> &Scopes,
2938 SmallVectorImpl<LexicalBlock *> &Blocks,
2939 SmallVectorImpl<LocalVariable> &Locals,
2940 SmallVectorImpl<CVGlobalVariable> &Globals) {
2941 for (LexicalScope *Scope : Scopes)
2942 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2943 }
2944
2945 /// Populate the lexical blocks and local variable lists of the parent with
2946 /// information about the specified lexical scope.
collectLexicalBlockInfo(LexicalScope & Scope,SmallVectorImpl<LexicalBlock * > & ParentBlocks,SmallVectorImpl<LocalVariable> & ParentLocals,SmallVectorImpl<CVGlobalVariable> & ParentGlobals)2947 void CodeViewDebug::collectLexicalBlockInfo(
2948 LexicalScope &Scope,
2949 SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2950 SmallVectorImpl<LocalVariable> &ParentLocals,
2951 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2952 if (Scope.isAbstractScope())
2953 return;
2954
2955 // Gather information about the lexical scope including local variables,
2956 // global variables, and address ranges.
2957 bool IgnoreScope = false;
2958 auto LI = ScopeVariables.find(&Scope);
2959 SmallVectorImpl<LocalVariable> *Locals =
2960 LI != ScopeVariables.end() ? &LI->second : nullptr;
2961 auto GI = ScopeGlobals.find(Scope.getScopeNode());
2962 SmallVectorImpl<CVGlobalVariable> *Globals =
2963 GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2964 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2965 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2966
2967 // Ignore lexical scopes which do not contain variables.
2968 if (!Locals && !Globals)
2969 IgnoreScope = true;
2970
2971 // Ignore lexical scopes which are not lexical blocks.
2972 if (!DILB)
2973 IgnoreScope = true;
2974
2975 // Ignore scopes which have too many address ranges to represent in the
2976 // current CodeView format or do not have a valid address range.
2977 //
2978 // For lexical scopes with multiple address ranges you may be tempted to
2979 // construct a single range covering every instruction where the block is
2980 // live and everything in between. Unfortunately, Visual Studio only
2981 // displays variables from the first matching lexical block scope. If the
2982 // first lexical block contains exception handling code or cold code which
2983 // is moved to the bottom of the routine creating a single range covering
2984 // nearly the entire routine, then it will hide all other lexical blocks
2985 // and the variables they contain.
2986 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2987 IgnoreScope = true;
2988
2989 if (IgnoreScope) {
2990 // This scope can be safely ignored and eliminating it will reduce the
2991 // size of the debug information. Be sure to collect any variable and scope
2992 // information from the this scope or any of its children and collapse them
2993 // into the parent scope.
2994 if (Locals)
2995 ParentLocals.append(Locals->begin(), Locals->end());
2996 if (Globals)
2997 ParentGlobals.append(Globals->begin(), Globals->end());
2998 collectLexicalBlockInfo(Scope.getChildren(),
2999 ParentBlocks,
3000 ParentLocals,
3001 ParentGlobals);
3002 return;
3003 }
3004
3005 // Create a new CodeView lexical block for this lexical scope. If we've
3006 // seen this DILexicalBlock before then the scope tree is malformed and
3007 // we can handle this gracefully by not processing it a second time.
3008 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
3009 if (!BlockInsertion.second)
3010 return;
3011
3012 // Create a lexical block containing the variables and collect the the
3013 // lexical block information for the children.
3014 const InsnRange &Range = Ranges.front();
3015 assert(Range.first && Range.second);
3016 LexicalBlock &Block = BlockInsertion.first->second;
3017 Block.Begin = getLabelBeforeInsn(Range.first);
3018 Block.End = getLabelAfterInsn(Range.second);
3019 assert(Block.Begin && "missing label for scope begin");
3020 assert(Block.End && "missing label for scope end");
3021 Block.Name = DILB->getName();
3022 if (Locals)
3023 Block.Locals = std::move(*Locals);
3024 if (Globals)
3025 Block.Globals = std::move(*Globals);
3026 ParentBlocks.push_back(&Block);
3027 collectLexicalBlockInfo(Scope.getChildren(),
3028 Block.Children,
3029 Block.Locals,
3030 Block.Globals);
3031 }
3032
endFunctionImpl(const MachineFunction * MF)3033 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
3034 const Function &GV = MF->getFunction();
3035 assert(FnDebugInfo.count(&GV));
3036 assert(CurFn == FnDebugInfo[&GV].get());
3037
3038 collectVariableInfo(GV.getSubprogram());
3039
3040 // Build the lexical block structure to emit for this routine.
3041 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
3042 collectLexicalBlockInfo(*CFS,
3043 CurFn->ChildBlocks,
3044 CurFn->Locals,
3045 CurFn->Globals);
3046
3047 // Clear the scope and variable information from the map which will not be
3048 // valid after we have finished processing this routine. This also prepares
3049 // the map for the subsequent routine.
3050 ScopeVariables.clear();
3051
3052 // Don't emit anything if we don't have any line tables.
3053 // Thunks are compiler-generated and probably won't have source correlation.
3054 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
3055 FnDebugInfo.erase(&GV);
3056 CurFn = nullptr;
3057 return;
3058 }
3059
3060 // Find heap alloc sites and add to list.
3061 for (const auto &MBB : *MF) {
3062 for (const auto &MI : MBB) {
3063 if (MDNode *MD = MI.getHeapAllocMarker()) {
3064 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
3065 getLabelAfterInsn(&MI),
3066 dyn_cast<DIType>(MD)));
3067 }
3068 }
3069 }
3070
3071 CurFn->Annotations = MF->getCodeViewAnnotations();
3072
3073 CurFn->End = Asm->getFunctionEnd();
3074
3075 CurFn = nullptr;
3076 }
3077
3078 // Usable locations are valid with non-zero line numbers. A line number of zero
3079 // corresponds to optimized code that doesn't have a distinct source location.
3080 // In this case, we try to use the previous or next source location depending on
3081 // the context.
isUsableDebugLoc(DebugLoc DL)3082 static bool isUsableDebugLoc(DebugLoc DL) {
3083 return DL && DL.getLine() != 0;
3084 }
3085
beginInstruction(const MachineInstr * MI)3086 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
3087 DebugHandlerBase::beginInstruction(MI);
3088
3089 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
3090 if (!Asm || !CurFn || MI->isDebugInstr() ||
3091 MI->getFlag(MachineInstr::FrameSetup))
3092 return;
3093
3094 // If the first instruction of a new MBB has no location, find the first
3095 // instruction with a location and use that.
3096 DebugLoc DL = MI->getDebugLoc();
3097 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
3098 for (const auto &NextMI : *MI->getParent()) {
3099 if (NextMI.isDebugInstr())
3100 continue;
3101 DL = NextMI.getDebugLoc();
3102 if (isUsableDebugLoc(DL))
3103 break;
3104 }
3105 // FIXME: Handle the case where the BB has no valid locations. This would
3106 // probably require doing a real dataflow analysis.
3107 }
3108 PrevInstBB = MI->getParent();
3109
3110 // If we still don't have a debug location, don't record a location.
3111 if (!isUsableDebugLoc(DL))
3112 return;
3113
3114 maybeRecordLocation(DL, Asm->MF);
3115 }
3116
beginCVSubsection(DebugSubsectionKind Kind)3117 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
3118 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3119 *EndLabel = MMI->getContext().createTempSymbol();
3120 OS.emitInt32(unsigned(Kind));
3121 OS.AddComment("Subsection size");
3122 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
3123 OS.emitLabel(BeginLabel);
3124 return EndLabel;
3125 }
3126
endCVSubsection(MCSymbol * EndLabel)3127 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
3128 OS.emitLabel(EndLabel);
3129 // Every subsection must be aligned to a 4-byte boundary.
3130 OS.emitValueToAlignment(Align(4));
3131 }
3132
getSymbolName(SymbolKind SymKind)3133 static StringRef getSymbolName(SymbolKind SymKind) {
3134 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
3135 if (EE.Value == SymKind)
3136 return EE.Name;
3137 return "";
3138 }
3139
beginSymbolRecord(SymbolKind SymKind)3140 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
3141 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3142 *EndLabel = MMI->getContext().createTempSymbol();
3143 OS.AddComment("Record length");
3144 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
3145 OS.emitLabel(BeginLabel);
3146 if (OS.isVerboseAsm())
3147 OS.AddComment("Record kind: " + getSymbolName(SymKind));
3148 OS.emitInt16(unsigned(SymKind));
3149 return EndLabel;
3150 }
3151
endSymbolRecord(MCSymbol * SymEnd)3152 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3153 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3154 // an extra copy of every symbol record in LLD. This increases object file
3155 // size by less than 1% in the clang build, and is compatible with the Visual
3156 // C++ linker.
3157 OS.emitValueToAlignment(Align(4));
3158 OS.emitLabel(SymEnd);
3159 }
3160
emitEndSymbolRecord(SymbolKind EndKind)3161 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3162 OS.AddComment("Record length");
3163 OS.emitInt16(2);
3164 if (OS.isVerboseAsm())
3165 OS.AddComment("Record kind: " + getSymbolName(EndKind));
3166 OS.emitInt16(uint16_t(EndKind)); // Record Kind
3167 }
3168
emitDebugInfoForUDTs(const std::vector<std::pair<std::string,const DIType * >> & UDTs)3169 void CodeViewDebug::emitDebugInfoForUDTs(
3170 const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3171 #ifndef NDEBUG
3172 size_t OriginalSize = UDTs.size();
3173 #endif
3174 for (const auto &UDT : UDTs) {
3175 const DIType *T = UDT.second;
3176 assert(shouldEmitUdt(T));
3177 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3178 OS.AddComment("Type");
3179 OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3180 assert(OriginalSize == UDTs.size() &&
3181 "getCompleteTypeIndex found new UDTs!");
3182 emitNullTerminatedSymbolName(OS, UDT.first);
3183 endSymbolRecord(UDTRecordEnd);
3184 }
3185 }
3186
collectGlobalVariableInfo()3187 void CodeViewDebug::collectGlobalVariableInfo() {
3188 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3189 GlobalMap;
3190 for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3191 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3192 GV.getDebugInfo(GVEs);
3193 for (const auto *GVE : GVEs)
3194 GlobalMap[GVE] = &GV;
3195 }
3196
3197 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3198 for (const MDNode *Node : CUs->operands()) {
3199 const auto *CU = cast<DICompileUnit>(Node);
3200 for (const auto *GVE : CU->getGlobalVariables()) {
3201 const DIGlobalVariable *DIGV = GVE->getVariable();
3202 const DIExpression *DIE = GVE->getExpression();
3203 // Don't emit string literals in CodeView, as the only useful parts are
3204 // generally the filename and line number, which isn't possible to output
3205 // in CodeView. String literals should be the only unnamed GlobalVariable
3206 // with debug info.
3207 if (DIGV->getName().empty()) continue;
3208
3209 if ((DIE->getNumElements() == 2) &&
3210 (DIE->getElement(0) == dwarf::DW_OP_plus_uconst))
3211 // Record the constant offset for the variable.
3212 //
3213 // A Fortran common block uses this idiom to encode the offset
3214 // of a variable from the common block's starting address.
3215 CVGlobalVariableOffsets.insert(
3216 std::make_pair(DIGV, DIE->getElement(1)));
3217
3218 // Emit constant global variables in a global symbol section.
3219 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3220 CVGlobalVariable CVGV = {DIGV, DIE};
3221 GlobalVariables.emplace_back(std::move(CVGV));
3222 }
3223
3224 const auto *GV = GlobalMap.lookup(GVE);
3225 if (!GV || GV->isDeclarationForLinker())
3226 continue;
3227
3228 DIScope *Scope = DIGV->getScope();
3229 SmallVector<CVGlobalVariable, 1> *VariableList;
3230 if (Scope && isa<DILocalScope>(Scope)) {
3231 // Locate a global variable list for this scope, creating one if
3232 // necessary.
3233 auto Insertion = ScopeGlobals.insert(
3234 {Scope, std::unique_ptr<GlobalVariableList>()});
3235 if (Insertion.second)
3236 Insertion.first->second = std::make_unique<GlobalVariableList>();
3237 VariableList = Insertion.first->second.get();
3238 } else if (GV->hasComdat())
3239 // Emit this global variable into a COMDAT section.
3240 VariableList = &ComdatVariables;
3241 else
3242 // Emit this global variable in a single global symbol section.
3243 VariableList = &GlobalVariables;
3244 CVGlobalVariable CVGV = {DIGV, GV};
3245 VariableList->emplace_back(std::move(CVGV));
3246 }
3247 }
3248 }
3249
collectDebugInfoForGlobals()3250 void CodeViewDebug::collectDebugInfoForGlobals() {
3251 for (const CVGlobalVariable &CVGV : GlobalVariables) {
3252 const DIGlobalVariable *DIGV = CVGV.DIGV;
3253 const DIScope *Scope = DIGV->getScope();
3254 getCompleteTypeIndex(DIGV->getType());
3255 getFullyQualifiedName(Scope, DIGV->getName());
3256 }
3257
3258 for (const CVGlobalVariable &CVGV : ComdatVariables) {
3259 const DIGlobalVariable *DIGV = CVGV.DIGV;
3260 const DIScope *Scope = DIGV->getScope();
3261 getCompleteTypeIndex(DIGV->getType());
3262 getFullyQualifiedName(Scope, DIGV->getName());
3263 }
3264 }
3265
emitDebugInfoForGlobals()3266 void CodeViewDebug::emitDebugInfoForGlobals() {
3267 // First, emit all globals that are not in a comdat in a single symbol
3268 // substream. MSVC doesn't like it if the substream is empty, so only open
3269 // it if we have at least one global to emit.
3270 switchToDebugSectionForSymbol(nullptr);
3271 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3272 OS.AddComment("Symbol subsection for globals");
3273 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3274 emitGlobalVariableList(GlobalVariables);
3275 emitStaticConstMemberList();
3276 endCVSubsection(EndLabel);
3277 }
3278
3279 // Second, emit each global that is in a comdat into its own .debug$S
3280 // section along with its own symbol substream.
3281 for (const CVGlobalVariable &CVGV : ComdatVariables) {
3282 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3283 MCSymbol *GVSym = Asm->getSymbol(GV);
3284 OS.AddComment("Symbol subsection for " +
3285 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3286 switchToDebugSectionForSymbol(GVSym);
3287 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3288 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3289 emitDebugInfoForGlobal(CVGV);
3290 endCVSubsection(EndLabel);
3291 }
3292 }
3293
emitDebugInfoForRetainedTypes()3294 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3295 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3296 for (const MDNode *Node : CUs->operands()) {
3297 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3298 if (DIType *RT = dyn_cast<DIType>(Ty)) {
3299 getTypeIndex(RT);
3300 // FIXME: Add to global/local DTU list.
3301 }
3302 }
3303 }
3304 }
3305
3306 // Emit each global variable in the specified array.
emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals)3307 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3308 for (const CVGlobalVariable &CVGV : Globals) {
3309 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3310 emitDebugInfoForGlobal(CVGV);
3311 }
3312 }
3313
emitConstantSymbolRecord(const DIType * DTy,APSInt & Value,const std::string & QualifiedName)3314 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
3315 const std::string &QualifiedName) {
3316 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3317 OS.AddComment("Type");
3318 OS.emitInt32(getTypeIndex(DTy).getIndex());
3319
3320 OS.AddComment("Value");
3321
3322 // Encoded integers shouldn't need more than 10 bytes.
3323 uint8_t Data[10];
3324 BinaryStreamWriter Writer(Data, llvm::support::endianness::little);
3325 CodeViewRecordIO IO(Writer);
3326 cantFail(IO.mapEncodedInteger(Value));
3327 StringRef SRef((char *)Data, Writer.getOffset());
3328 OS.emitBinaryData(SRef);
3329
3330 OS.AddComment("Name");
3331 emitNullTerminatedSymbolName(OS, QualifiedName);
3332 endSymbolRecord(SConstantEnd);
3333 }
3334
emitStaticConstMemberList()3335 void CodeViewDebug::emitStaticConstMemberList() {
3336 for (const DIDerivedType *DTy : StaticConstMembers) {
3337 const DIScope *Scope = DTy->getScope();
3338
3339 APSInt Value;
3340 if (const ConstantInt *CI =
3341 dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3342 Value = APSInt(CI->getValue(),
3343 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3344 else if (const ConstantFP *CFP =
3345 dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3346 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3347 else
3348 llvm_unreachable("cannot emit a constant without a value");
3349
3350 emitConstantSymbolRecord(DTy->getBaseType(), Value,
3351 getFullyQualifiedName(Scope, DTy->getName()));
3352 }
3353 }
3354
isFloatDIType(const DIType * Ty)3355 static bool isFloatDIType(const DIType *Ty) {
3356 if (isa<DICompositeType>(Ty))
3357 return false;
3358
3359 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3360 dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3361 if (T == dwarf::DW_TAG_pointer_type ||
3362 T == dwarf::DW_TAG_ptr_to_member_type ||
3363 T == dwarf::DW_TAG_reference_type ||
3364 T == dwarf::DW_TAG_rvalue_reference_type)
3365 return false;
3366 assert(DTy->getBaseType() && "Expected valid base type");
3367 return isFloatDIType(DTy->getBaseType());
3368 }
3369
3370 auto *BTy = cast<DIBasicType>(Ty);
3371 return (BTy->getEncoding() == dwarf::DW_ATE_float);
3372 }
3373
emitDebugInfoForGlobal(const CVGlobalVariable & CVGV)3374 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3375 const DIGlobalVariable *DIGV = CVGV.DIGV;
3376
3377 const DIScope *Scope = DIGV->getScope();
3378 // For static data members, get the scope from the declaration.
3379 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3380 DIGV->getRawStaticDataMemberDeclaration()))
3381 Scope = MemberDecl->getScope();
3382 // For static local variables and Fortran, the scoping portion is elided
3383 // in its name so that we can reference the variable in the command line
3384 // of the VS debugger.
3385 std::string QualifiedName =
3386 (moduleIsInFortran() || (Scope && isa<DILocalScope>(Scope)))
3387 ? std::string(DIGV->getName())
3388 : getFullyQualifiedName(Scope, DIGV->getName());
3389
3390 if (const GlobalVariable *GV =
3391 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3392 // DataSym record, see SymbolRecord.h for more info. Thread local data
3393 // happens to have the same format as global data.
3394 MCSymbol *GVSym = Asm->getSymbol(GV);
3395 SymbolKind DataSym = GV->isThreadLocal()
3396 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3397 : SymbolKind::S_GTHREAD32)
3398 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3399 : SymbolKind::S_GDATA32);
3400 MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3401 OS.AddComment("Type");
3402 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3403 OS.AddComment("DataOffset");
3404
3405 uint64_t Offset = 0;
3406 if (CVGlobalVariableOffsets.find(DIGV) != CVGlobalVariableOffsets.end())
3407 // Use the offset seen while collecting info on globals.
3408 Offset = CVGlobalVariableOffsets[DIGV];
3409 OS.emitCOFFSecRel32(GVSym, Offset);
3410
3411 OS.AddComment("Segment");
3412 OS.emitCOFFSectionIndex(GVSym);
3413 OS.AddComment("Name");
3414 const unsigned LengthOfDataRecord = 12;
3415 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3416 endSymbolRecord(DataEnd);
3417 } else {
3418 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3419 assert(DIE->isConstant() &&
3420 "Global constant variables must contain a constant expression.");
3421
3422 // Use unsigned for floats.
3423 bool isUnsigned = isFloatDIType(DIGV->getType())
3424 ? true
3425 : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3426 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3427 emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
3428 }
3429 }
3430