1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 //
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42
43 #include <algorithm>
44 #include <cassert>
45 #include <list>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "interleaved-load-combine"
50
51 namespace {
52
53 /// Statistic counter
54 STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
55
56 /// Option to disable the pass
57 static cl::opt<bool> DisableInterleavedLoadCombine(
58 "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
59 cl::desc("Disable combining of interleaved loads"));
60
61 struct VectorInfo;
62
63 struct InterleavedLoadCombineImpl {
64 public:
InterleavedLoadCombineImpl__anonb47475680111::InterleavedLoadCombineImpl65 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
66 TargetMachine &TM)
67 : F(F), DT(DT), MSSA(MSSA),
68 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
69 TTI(TM.getTargetTransformInfo(F)) {}
70
71 /// Scan the function for interleaved load candidates and execute the
72 /// replacement if applicable.
73 bool run();
74
75 private:
76 /// Function this pass is working on
77 Function &F;
78
79 /// Dominator Tree Analysis
80 DominatorTree &DT;
81
82 /// Memory Alias Analyses
83 MemorySSA &MSSA;
84
85 /// Target Lowering Information
86 const TargetLowering &TLI;
87
88 /// Target Transform Information
89 const TargetTransformInfo TTI;
90
91 /// Find the instruction in sets LIs that dominates all others, return nullptr
92 /// if there is none.
93 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
94
95 /// Replace interleaved load candidates. It does additional
96 /// analyses if this makes sense. Returns true on success and false
97 /// of nothing has been changed.
98 bool combine(std::list<VectorInfo> &InterleavedLoad,
99 OptimizationRemarkEmitter &ORE);
100
101 /// Given a set of VectorInfo containing candidates for a given interleave
102 /// factor, find a set that represents a 'factor' interleaved load.
103 bool findPattern(std::list<VectorInfo> &Candidates,
104 std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
105 const DataLayout &DL);
106 }; // InterleavedLoadCombine
107
108 /// First Order Polynomial on an n-Bit Integer Value
109 ///
110 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
111 ///
112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
113 /// significant bits. It is introduced if an exact computation cannot be proven
114 /// (e.q. division by 2).
115 ///
116 /// As part of this optimization multiple loads will be combined. It necessary
117 /// to prove that loads are within some relative offset to each other. This
118 /// class is used to prove relative offsets of values loaded from memory.
119 ///
120 /// Representing an integer in this form is sound since addition in two's
121 /// complement is associative (trivial) and multiplication distributes over the
122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
123 /// commute.
124 //
125 // Example:
126 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
127 // %Pa1 = add i64 %IDX, 2
128 // %Pa2 = lshr i64 %Pa1, 1
129 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
130 // %Va = load <4 x float>, <4 x float>* %Pa3
131 //
132 // %Pb1 = add i64 %IDX, 4
133 // %Pb2 = lshr i64 %Pb1, 1
134 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
135 // %Vb = load <4 x float>, <4 x float>* %Pb3
136 // ... }
137 //
138 // The goal is to prove that two loads load consecutive addresses.
139 //
140 // In this case the polynomials are constructed by the following
141 // steps.
142 //
143 // The number tag #e specifies the error bits.
144 //
145 // Pa_0 = %IDX #0
146 // Pa_1 = %IDX + 2 #0 | add 2
147 // Pa_2 = %IDX/2 + 1 #1 | lshr 1
148 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
149 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
150 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
151 //
152 // Pb_0 = %IDX #0
153 // Pb_1 = %IDX + 4 #0 | add 2
154 // Pb_2 = %IDX/2 + 2 #1 | lshr 1
155 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
156 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
157 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
158 //
159 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
160 //
161 // Remark: %PTR is not maintained within this class. So in this instance the
162 // offset of 16 can only be assumed if the pointers are equal.
163 //
164 class Polynomial {
165 /// Operations on B
166 enum BOps {
167 LShr,
168 Mul,
169 SExt,
170 Trunc,
171 };
172
173 /// Number of Error Bits e
174 unsigned ErrorMSBs = (unsigned)-1;
175
176 /// Value
177 Value *V = nullptr;
178
179 /// Coefficient B
180 SmallVector<std::pair<BOps, APInt>, 4> B;
181
182 /// Coefficient A
183 APInt A;
184
185 public:
Polynomial(Value * V)186 Polynomial(Value *V) : V(V) {
187 IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
188 if (Ty) {
189 ErrorMSBs = 0;
190 this->V = V;
191 A = APInt(Ty->getBitWidth(), 0);
192 }
193 }
194
Polynomial(const APInt & A,unsigned ErrorMSBs=0)195 Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
196 : ErrorMSBs(ErrorMSBs), A(A) {}
197
Polynomial(unsigned BitWidth,uint64_t A,unsigned ErrorMSBs=0)198 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
199 : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {}
200
201 Polynomial() = default;
202
203 /// Increment and clamp the number of undefined bits.
incErrorMSBs(unsigned amt)204 void incErrorMSBs(unsigned amt) {
205 if (ErrorMSBs == (unsigned)-1)
206 return;
207
208 ErrorMSBs += amt;
209 if (ErrorMSBs > A.getBitWidth())
210 ErrorMSBs = A.getBitWidth();
211 }
212
213 /// Decrement and clamp the number of undefined bits.
decErrorMSBs(unsigned amt)214 void decErrorMSBs(unsigned amt) {
215 if (ErrorMSBs == (unsigned)-1)
216 return;
217
218 if (ErrorMSBs > amt)
219 ErrorMSBs -= amt;
220 else
221 ErrorMSBs = 0;
222 }
223
224 /// Apply an add on the polynomial
add(const APInt & C)225 Polynomial &add(const APInt &C) {
226 // Note: Addition is associative in two's complement even when in case of
227 // signed overflow.
228 //
229 // Error bits can only propagate into higher significant bits. As these are
230 // already regarded as undefined, there is no change.
231 //
232 // Theorem: Adding a constant to a polynomial does not change the error
233 // term.
234 //
235 // Proof:
236 //
237 // Since the addition is associative and commutes:
238 //
239 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
240 // [qed]
241
242 if (C.getBitWidth() != A.getBitWidth()) {
243 ErrorMSBs = (unsigned)-1;
244 return *this;
245 }
246
247 A += C;
248 return *this;
249 }
250
251 /// Apply a multiplication onto the polynomial.
mul(const APInt & C)252 Polynomial &mul(const APInt &C) {
253 // Note: Multiplication distributes over the addition
254 //
255 // Theorem: Multiplication distributes over the addition
256 //
257 // Proof(1):
258 //
259 // (B+A)*C =-
260 // = (B + A) + (B + A) + .. {C Times}
261 // addition is associative and commutes, hence
262 // = B + B + .. {C Times} .. + A + A + .. {C times}
263 // = B*C + A*C
264 // (see (function add) for signed values and overflows)
265 // [qed]
266 //
267 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
268 // to the left.
269 //
270 // Proof(2):
271 //
272 // Let B' and A' be the n-Bit inputs with some unknown errors EA,
273 // EB at e leading bits. B' and A' can be written down as:
274 //
275 // B' = B + 2^(n-e)*EB
276 // A' = A + 2^(n-e)*EA
277 //
278 // Let C' be an input with c trailing zero bits. C' can be written as
279 //
280 // C' = C*2^c
281 //
282 // Therefore we can compute the result by using distributivity and
283 // commutativity.
284 //
285 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
286 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
287 // = (B'+A') * C' =
288 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
290 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
292 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
293 //
294 // Let EC be the final error with EC = C*(EB + EA)
295 //
296 // = (B + A)*C' + EC*2^(n-e)*2^c =
297 // = (B + A)*C' + EC*2^(n-(e-c))
298 //
299 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
300 // less error bits than the input. c bits are shifted out to the left.
301 // [qed]
302
303 if (C.getBitWidth() != A.getBitWidth()) {
304 ErrorMSBs = (unsigned)-1;
305 return *this;
306 }
307
308 // Multiplying by one is a no-op.
309 if (C.isOne()) {
310 return *this;
311 }
312
313 // Multiplying by zero removes the coefficient B and defines all bits.
314 if (C.isZero()) {
315 ErrorMSBs = 0;
316 deleteB();
317 }
318
319 // See Proof(2): Trailing zero bits indicate a left shift. This removes
320 // leading bits from the result even if they are undefined.
321 decErrorMSBs(C.countTrailingZeros());
322
323 A *= C;
324 pushBOperation(Mul, C);
325 return *this;
326 }
327
328 /// Apply a logical shift right on the polynomial
lshr(const APInt & C)329 Polynomial &lshr(const APInt &C) {
330 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
331 // where
332 // e' = e + 1,
333 // E is a e-bit number,
334 // E' is a e'-bit number,
335 // holds under the following precondition:
336 // pre(1): A % 2 = 0
337 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
338 // where >> expresses a logical shift to the right, with adding zeros.
339 //
340 // We need to show that for every, E there is a E'
341 //
342 // B = b_h * 2^(n-1) + b_m * 2 + b_l
343 // A = a_h * 2^(n-1) + a_m * 2 (pre(1))
344 //
345 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
346 //
347 // Let X = (B + A + E*2^(n-e)) >> 1
348 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
349 //
350 // X = [B + A + E*2^(n-e)] >> 1 =
351 // = [ b_h * 2^(n-1) + b_m * 2 + b_l +
352 // + a_h * 2^(n-1) + a_m * 2 +
353 // + E * 2^(n-e) ] >> 1 =
354 //
355 // The sum is built by putting the overflow of [a_m + b+n] into the term
356 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
357 // this bit is discarded. This is expressed by % 2.
358 //
359 // The bit in position 0 cannot overflow into the term (b_m + a_m).
360 //
361 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
362 // + ((b_m + a_m) % 2^(n-2)) * 2 +
363 // + b_l + E * 2^(n-e) ] >> 1 =
364 //
365 // The shift is computed by dividing the terms by 2 and by cutting off
366 // b_l.
367 //
368 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
369 // + ((b_m + a_m) % 2^(n-2)) +
370 // + E * 2^(n-(e+1)) =
371 //
372 // by the definition in the Theorem e+1 = e'
373 //
374 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
375 // + ((b_m + a_m) % 2^(n-2)) +
376 // + E * 2^(n-e') =
377 //
378 // Compute Y by applying distributivity first
379 //
380 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
381 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
382 // + (a_h * 2^(n-1) + a_m * 2) >> 1 +
383 // + E * 2^(n-e) >> 1 =
384 //
385 // Again, the shift is computed by dividing the terms by 2 and by cutting
386 // off b_l.
387 //
388 // = b_h * 2^(n-2) + b_m +
389 // + a_h * 2^(n-2) + a_m +
390 // + E * 2^(n-(e+1)) =
391 //
392 // Again, the sum is built by putting the overflow of [a_m + b+n] into
393 // the term 2^(n-1). But this time there is room for a second bit in the
394 // term 2^(n-2) we add this bit to a new term and denote it o_h in a
395 // second step.
396 //
397 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
398 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
399 // + ((b_m + a_m) % 2^(n-2)) +
400 // + E * 2^(n-(e+1)) =
401 //
402 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
403 // Further replace e+1 by e'.
404 //
405 // = o_h * 2^(n-1) +
406 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
407 // + ((b_m + a_m) % 2^(n-2)) +
408 // + E * 2^(n-e') =
409 //
410 // Move o_h into the error term and construct E'. To ensure that there is
411 // no 2^x with negative x, this step requires pre(2) (e < n).
412 //
413 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
414 // + ((b_m + a_m) % 2^(n-2)) +
415 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
416 // | out of the old exponent
417 // + E * 2^(n-e') =
418 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
419 // + ((b_m + a_m) % 2^(n-2)) +
420 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
421 // | the old exponent
422 //
423 // Let E' = o_h * 2^(e'-1) + E
424 //
425 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
426 // + ((b_m + a_m) % 2^(n-2)) +
427 // + E' * 2^(n-e')
428 //
429 // Because X and Y are distinct only in there error terms and E' can be
430 // constructed as shown the theorem holds.
431 // [qed]
432 //
433 // For completeness in case of the case e=n it is also required to show that
434 // distributivity can be applied.
435 //
436 // In this case Theorem(1) transforms to (the pre-condition on A can also be
437 // dropped)
438 //
439 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
440 // where
441 // A, B, E, E' are two's complement numbers with the same bit
442 // width
443 //
444 // Let A + B + E = X
445 // Let (B >> 1) + (A >> 1) = Y
446 //
447 // Therefore we need to show that for every X and Y there is an E' which
448 // makes the equation
449 //
450 // X = Y + E'
451 //
452 // hold. This is trivially the case for E' = X - Y.
453 //
454 // [qed]
455 //
456 // Remark: Distributing lshr with and arbitrary number n can be expressed as
457 // ((((B + A) lshr 1) lshr 1) ... ) {n times}.
458 // This construction induces n additional error bits at the left.
459
460 if (C.getBitWidth() != A.getBitWidth()) {
461 ErrorMSBs = (unsigned)-1;
462 return *this;
463 }
464
465 if (C.isZero())
466 return *this;
467
468 // Test if the result will be zero
469 unsigned shiftAmt = C.getZExtValue();
470 if (shiftAmt >= C.getBitWidth())
471 return mul(APInt(C.getBitWidth(), 0));
472
473 // The proof that shiftAmt LSBs are zero for at least one summand is only
474 // possible for the constant number.
475 //
476 // If this can be proven add shiftAmt to the error counter
477 // `ErrorMSBs`. Otherwise set all bits as undefined.
478 if (A.countTrailingZeros() < shiftAmt)
479 ErrorMSBs = A.getBitWidth();
480 else
481 incErrorMSBs(shiftAmt);
482
483 // Apply the operation.
484 pushBOperation(LShr, C);
485 A = A.lshr(shiftAmt);
486
487 return *this;
488 }
489
490 /// Apply a sign-extend or truncate operation on the polynomial.
sextOrTrunc(unsigned n)491 Polynomial &sextOrTrunc(unsigned n) {
492 if (n < A.getBitWidth()) {
493 // Truncate: Clearly undefined Bits on the MSB side are removed
494 // if there are any.
495 decErrorMSBs(A.getBitWidth() - n);
496 A = A.trunc(n);
497 pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
498 }
499 if (n > A.getBitWidth()) {
500 // Extend: Clearly extending first and adding later is different
501 // to adding first and extending later in all extended bits.
502 incErrorMSBs(n - A.getBitWidth());
503 A = A.sext(n);
504 pushBOperation(SExt, APInt(sizeof(n) * 8, n));
505 }
506
507 return *this;
508 }
509
510 /// Test if there is a coefficient B.
isFirstOrder() const511 bool isFirstOrder() const { return V != nullptr; }
512
513 /// Test coefficient B of two Polynomials are equal.
isCompatibleTo(const Polynomial & o) const514 bool isCompatibleTo(const Polynomial &o) const {
515 // The polynomial use different bit width.
516 if (A.getBitWidth() != o.A.getBitWidth())
517 return false;
518
519 // If neither Polynomial has the Coefficient B.
520 if (!isFirstOrder() && !o.isFirstOrder())
521 return true;
522
523 // The index variable is different.
524 if (V != o.V)
525 return false;
526
527 // Check the operations.
528 if (B.size() != o.B.size())
529 return false;
530
531 auto *ob = o.B.begin();
532 for (const auto &b : B) {
533 if (b != *ob)
534 return false;
535 ob++;
536 }
537
538 return true;
539 }
540
541 /// Subtract two polynomials, return an undefined polynomial if
542 /// subtraction is not possible.
operator -(const Polynomial & o) const543 Polynomial operator-(const Polynomial &o) const {
544 // Return an undefined polynomial if incompatible.
545 if (!isCompatibleTo(o))
546 return Polynomial();
547
548 // If the polynomials are compatible (meaning they have the same
549 // coefficient on B), B is eliminated. Thus a polynomial solely
550 // containing A is returned
551 return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
552 }
553
554 /// Subtract a constant from a polynomial,
operator -(uint64_t C) const555 Polynomial operator-(uint64_t C) const {
556 Polynomial Result(*this);
557 Result.A -= C;
558 return Result;
559 }
560
561 /// Add a constant to a polynomial,
operator +(uint64_t C) const562 Polynomial operator+(uint64_t C) const {
563 Polynomial Result(*this);
564 Result.A += C;
565 return Result;
566 }
567
568 /// Returns true if it can be proven that two Polynomials are equal.
isProvenEqualTo(const Polynomial & o)569 bool isProvenEqualTo(const Polynomial &o) {
570 // Subtract both polynomials and test if it is fully defined and zero.
571 Polynomial r = *this - o;
572 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero());
573 }
574
575 /// Print the polynomial into a stream.
print(raw_ostream & OS) const576 void print(raw_ostream &OS) const {
577 OS << "[{#ErrBits:" << ErrorMSBs << "} ";
578
579 if (V) {
580 for (auto b : B)
581 OS << "(";
582 OS << "(" << *V << ") ";
583
584 for (auto b : B) {
585 switch (b.first) {
586 case LShr:
587 OS << "LShr ";
588 break;
589 case Mul:
590 OS << "Mul ";
591 break;
592 case SExt:
593 OS << "SExt ";
594 break;
595 case Trunc:
596 OS << "Trunc ";
597 break;
598 }
599
600 OS << b.second << ") ";
601 }
602 }
603
604 OS << "+ " << A << "]";
605 }
606
607 private:
deleteB()608 void deleteB() {
609 V = nullptr;
610 B.clear();
611 }
612
pushBOperation(const BOps Op,const APInt & C)613 void pushBOperation(const BOps Op, const APInt &C) {
614 if (isFirstOrder()) {
615 B.push_back(std::make_pair(Op, C));
616 return;
617 }
618 }
619 };
620
621 #ifndef NDEBUG
operator <<(raw_ostream & OS,const Polynomial & S)622 static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
623 S.print(OS);
624 return OS;
625 }
626 #endif
627
628 /// VectorInfo stores abstract the following information for each vector
629 /// element:
630 ///
631 /// 1) The the memory address loaded into the element as Polynomial
632 /// 2) a set of load instruction necessary to construct the vector,
633 /// 3) a set of all other instructions that are necessary to create the vector and
634 /// 4) a pointer value that can be used as relative base for all elements.
635 struct VectorInfo {
636 private:
VectorInfo__anonb47475680111::VectorInfo637 VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
638 llvm_unreachable(
639 "Copying VectorInfo is neither implemented nor necessary,");
640 }
641
642 public:
643 /// Information of a Vector Element
644 struct ElementInfo {
645 /// Offset Polynomial.
646 Polynomial Ofs;
647
648 /// The Load Instruction used to Load the entry. LI is null if the pointer
649 /// of the load instruction does not point on to the entry
650 LoadInst *LI;
651
ElementInfo__anonb47475680111::VectorInfo::ElementInfo652 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
653 : Ofs(Offset), LI(LI) {}
654 };
655
656 /// Basic-block the load instructions are within
657 BasicBlock *BB = nullptr;
658
659 /// Pointer value of all participation load instructions
660 Value *PV = nullptr;
661
662 /// Participating load instructions
663 std::set<LoadInst *> LIs;
664
665 /// Participating instructions
666 std::set<Instruction *> Is;
667
668 /// Final shuffle-vector instruction
669 ShuffleVectorInst *SVI = nullptr;
670
671 /// Information of the offset for each vector element
672 ElementInfo *EI;
673
674 /// Vector Type
675 FixedVectorType *const VTy;
676
VectorInfo__anonb47475680111::VectorInfo677 VectorInfo(FixedVectorType *VTy) : VTy(VTy) {
678 EI = new ElementInfo[VTy->getNumElements()];
679 }
680
~VectorInfo__anonb47475680111::VectorInfo681 virtual ~VectorInfo() { delete[] EI; }
682
getDimension__anonb47475680111::VectorInfo683 unsigned getDimension() const { return VTy->getNumElements(); }
684
685 /// Test if the VectorInfo can be part of an interleaved load with the
686 /// specified factor.
687 ///
688 /// \param Factor of the interleave
689 /// \param DL Targets Datalayout
690 ///
691 /// \returns true if this is possible and false if not
isInterleaved__anonb47475680111::VectorInfo692 bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
693 unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
694 for (unsigned i = 1; i < getDimension(); i++) {
695 if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
696 return false;
697 }
698 }
699 return true;
700 }
701
702 /// Recursively computes the vector information stored in V.
703 ///
704 /// This function delegates the work to specialized implementations
705 ///
706 /// \param V Value to operate on
707 /// \param Result Result of the computation
708 ///
709 /// \returns false if no sensible information can be gathered.
compute__anonb47475680111::VectorInfo710 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
711 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
712 if (SVI)
713 return computeFromSVI(SVI, Result, DL);
714 LoadInst *LI = dyn_cast<LoadInst>(V);
715 if (LI)
716 return computeFromLI(LI, Result, DL);
717 BitCastInst *BCI = dyn_cast<BitCastInst>(V);
718 if (BCI)
719 return computeFromBCI(BCI, Result, DL);
720 return false;
721 }
722
723 /// BitCastInst specialization to compute the vector information.
724 ///
725 /// \param BCI BitCastInst to operate on
726 /// \param Result Result of the computation
727 ///
728 /// \returns false if no sensible information can be gathered.
computeFromBCI__anonb47475680111::VectorInfo729 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
730 const DataLayout &DL) {
731 Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
732
733 if (!Op)
734 return false;
735
736 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType());
737 if (!VTy)
738 return false;
739
740 // We can only cast from large to smaller vectors
741 if (Result.VTy->getNumElements() % VTy->getNumElements())
742 return false;
743
744 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
745 unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
746 unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
747
748 if (NewSize * Factor != OldSize)
749 return false;
750
751 VectorInfo Old(VTy);
752 if (!compute(Op, Old, DL))
753 return false;
754
755 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
756 for (unsigned j = 0; j < Factor; j++) {
757 Result.EI[i + j] =
758 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
759 j == 0 ? Old.EI[i / Factor].LI : nullptr);
760 }
761 }
762
763 Result.BB = Old.BB;
764 Result.PV = Old.PV;
765 Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
766 Result.Is.insert(Old.Is.begin(), Old.Is.end());
767 Result.Is.insert(BCI);
768 Result.SVI = nullptr;
769
770 return true;
771 }
772
773 /// ShuffleVectorInst specialization to compute vector information.
774 ///
775 /// \param SVI ShuffleVectorInst to operate on
776 /// \param Result Result of the computation
777 ///
778 /// Compute the left and the right side vector information and merge them by
779 /// applying the shuffle operation. This function also ensures that the left
780 /// and right side have compatible loads. This means that all loads are with
781 /// in the same basic block and are based on the same pointer.
782 ///
783 /// \returns false if no sensible information can be gathered.
computeFromSVI__anonb47475680111::VectorInfo784 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
785 const DataLayout &DL) {
786 FixedVectorType *ArgTy =
787 cast<FixedVectorType>(SVI->getOperand(0)->getType());
788
789 // Compute the left hand vector information.
790 VectorInfo LHS(ArgTy);
791 if (!compute(SVI->getOperand(0), LHS, DL))
792 LHS.BB = nullptr;
793
794 // Compute the right hand vector information.
795 VectorInfo RHS(ArgTy);
796 if (!compute(SVI->getOperand(1), RHS, DL))
797 RHS.BB = nullptr;
798
799 // Neither operand produced sensible results?
800 if (!LHS.BB && !RHS.BB)
801 return false;
802 // Only RHS produced sensible results?
803 else if (!LHS.BB) {
804 Result.BB = RHS.BB;
805 Result.PV = RHS.PV;
806 }
807 // Only LHS produced sensible results?
808 else if (!RHS.BB) {
809 Result.BB = LHS.BB;
810 Result.PV = LHS.PV;
811 }
812 // Both operands produced sensible results?
813 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
814 Result.BB = LHS.BB;
815 Result.PV = LHS.PV;
816 }
817 // Both operands produced sensible results but they are incompatible.
818 else {
819 return false;
820 }
821
822 // Merge and apply the operation on the offset information.
823 if (LHS.BB) {
824 Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
825 Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
826 }
827 if (RHS.BB) {
828 Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
829 Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
830 }
831 Result.Is.insert(SVI);
832 Result.SVI = SVI;
833
834 int j = 0;
835 for (int i : SVI->getShuffleMask()) {
836 assert((i < 2 * (signed)ArgTy->getNumElements()) &&
837 "Invalid ShuffleVectorInst (index out of bounds)");
838
839 if (i < 0)
840 Result.EI[j] = ElementInfo();
841 else if (i < (signed)ArgTy->getNumElements()) {
842 if (LHS.BB)
843 Result.EI[j] = LHS.EI[i];
844 else
845 Result.EI[j] = ElementInfo();
846 } else {
847 if (RHS.BB)
848 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
849 else
850 Result.EI[j] = ElementInfo();
851 }
852 j++;
853 }
854
855 return true;
856 }
857
858 /// LoadInst specialization to compute vector information.
859 ///
860 /// This function also acts as abort condition to the recursion.
861 ///
862 /// \param LI LoadInst to operate on
863 /// \param Result Result of the computation
864 ///
865 /// \returns false if no sensible information can be gathered.
computeFromLI__anonb47475680111::VectorInfo866 static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
867 const DataLayout &DL) {
868 Value *BasePtr;
869 Polynomial Offset;
870
871 if (LI->isVolatile())
872 return false;
873
874 if (LI->isAtomic())
875 return false;
876
877 // Get the base polynomial
878 computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
879
880 Result.BB = LI->getParent();
881 Result.PV = BasePtr;
882 Result.LIs.insert(LI);
883 Result.Is.insert(LI);
884
885 for (unsigned i = 0; i < Result.getDimension(); i++) {
886 Value *Idx[2] = {
887 ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
888 ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
889 };
890 int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, ArrayRef(Idx, 2));
891 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
892 }
893
894 return true;
895 }
896
897 /// Recursively compute polynomial of a value.
898 ///
899 /// \param BO Input binary operation
900 /// \param Result Result polynomial
computePolynomialBinOp__anonb47475680111::VectorInfo901 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
902 Value *LHS = BO.getOperand(0);
903 Value *RHS = BO.getOperand(1);
904
905 // Find the RHS Constant if any
906 ConstantInt *C = dyn_cast<ConstantInt>(RHS);
907 if ((!C) && BO.isCommutative()) {
908 C = dyn_cast<ConstantInt>(LHS);
909 if (C)
910 std::swap(LHS, RHS);
911 }
912
913 switch (BO.getOpcode()) {
914 case Instruction::Add:
915 if (!C)
916 break;
917
918 computePolynomial(*LHS, Result);
919 Result.add(C->getValue());
920 return;
921
922 case Instruction::LShr:
923 if (!C)
924 break;
925
926 computePolynomial(*LHS, Result);
927 Result.lshr(C->getValue());
928 return;
929
930 default:
931 break;
932 }
933
934 Result = Polynomial(&BO);
935 }
936
937 /// Recursively compute polynomial of a value
938 ///
939 /// \param V input value
940 /// \param Result result polynomial
computePolynomial__anonb47475680111::VectorInfo941 static void computePolynomial(Value &V, Polynomial &Result) {
942 if (auto *BO = dyn_cast<BinaryOperator>(&V))
943 computePolynomialBinOp(*BO, Result);
944 else
945 Result = Polynomial(&V);
946 }
947
948 /// Compute the Polynomial representation of a Pointer type.
949 ///
950 /// \param Ptr input pointer value
951 /// \param Result result polynomial
952 /// \param BasePtr pointer the polynomial is based on
953 /// \param DL Datalayout of the target machine
computePolynomialFromPointer__anonb47475680111::VectorInfo954 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
955 Value *&BasePtr,
956 const DataLayout &DL) {
957 // Not a pointer type? Return an undefined polynomial
958 PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
959 if (!PtrTy) {
960 Result = Polynomial();
961 BasePtr = nullptr;
962 return;
963 }
964 unsigned PointerBits =
965 DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
966
967 /// Skip pointer casts. Return Zero polynomial otherwise
968 if (isa<CastInst>(&Ptr)) {
969 CastInst &CI = *cast<CastInst>(&Ptr);
970 switch (CI.getOpcode()) {
971 case Instruction::BitCast:
972 computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
973 break;
974 default:
975 BasePtr = &Ptr;
976 Polynomial(PointerBits, 0);
977 break;
978 }
979 }
980 /// Resolve GetElementPtrInst.
981 else if (isa<GetElementPtrInst>(&Ptr)) {
982 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
983
984 APInt BaseOffset(PointerBits, 0);
985
986 // Check if we can compute the Offset with accumulateConstantOffset
987 if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
988 Result = Polynomial(BaseOffset);
989 BasePtr = GEP.getPointerOperand();
990 return;
991 } else {
992 // Otherwise we allow that the last index operand of the GEP is
993 // non-constant.
994 unsigned idxOperand, e;
995 SmallVector<Value *, 4> Indices;
996 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
997 idxOperand++) {
998 ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
999 if (!IDX)
1000 break;
1001 Indices.push_back(IDX);
1002 }
1003
1004 // It must also be the last operand.
1005 if (idxOperand + 1 != e) {
1006 Result = Polynomial();
1007 BasePtr = nullptr;
1008 return;
1009 }
1010
1011 // Compute the polynomial of the index operand.
1012 computePolynomial(*GEP.getOperand(idxOperand), Result);
1013
1014 // Compute base offset from zero based index, excluding the last
1015 // variable operand.
1016 BaseOffset =
1017 DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1018
1019 // Apply the operations of GEP to the polynomial.
1020 unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1021 Result.sextOrTrunc(PointerBits);
1022 Result.mul(APInt(PointerBits, ResultSize));
1023 Result.add(BaseOffset);
1024 BasePtr = GEP.getPointerOperand();
1025 }
1026 }
1027 // All other instructions are handled by using the value as base pointer and
1028 // a zero polynomial.
1029 else {
1030 BasePtr = &Ptr;
1031 Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1032 }
1033 }
1034
1035 #ifndef NDEBUG
print__anonb47475680111::VectorInfo1036 void print(raw_ostream &OS) const {
1037 if (PV)
1038 OS << *PV;
1039 else
1040 OS << "(none)";
1041 OS << " + ";
1042 for (unsigned i = 0; i < getDimension(); i++)
1043 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1044 OS << "]";
1045 }
1046 #endif
1047 };
1048
1049 } // anonymous namespace
1050
findPattern(std::list<VectorInfo> & Candidates,std::list<VectorInfo> & InterleavedLoad,unsigned Factor,const DataLayout & DL)1051 bool InterleavedLoadCombineImpl::findPattern(
1052 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1053 unsigned Factor, const DataLayout &DL) {
1054 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1055 unsigned i;
1056 // Try to find an interleaved load using the front of Worklist as first line
1057 unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1058
1059 // List containing iterators pointing to the VectorInfos of the candidates
1060 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1061
1062 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1063 if (C->VTy != C0->VTy)
1064 continue;
1065 if (C->BB != C0->BB)
1066 continue;
1067 if (C->PV != C0->PV)
1068 continue;
1069
1070 // Check the current value matches any of factor - 1 remaining lines
1071 for (i = 1; i < Factor; i++) {
1072 if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1073 Res[i] = C;
1074 }
1075 }
1076
1077 for (i = 1; i < Factor; i++) {
1078 if (Res[i] == Candidates.end())
1079 break;
1080 }
1081 if (i == Factor) {
1082 Res[0] = C0;
1083 break;
1084 }
1085 }
1086
1087 if (Res[0] != Candidates.end()) {
1088 // Move the result into the output
1089 for (unsigned i = 0; i < Factor; i++) {
1090 InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1091 }
1092
1093 return true;
1094 }
1095 }
1096 return false;
1097 }
1098
1099 LoadInst *
findFirstLoad(const std::set<LoadInst * > & LIs)1100 InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1101 assert(!LIs.empty() && "No load instructions given.");
1102
1103 // All LIs are within the same BB. Select the first for a reference.
1104 BasicBlock *BB = (*LIs.begin())->getParent();
1105 BasicBlock::iterator FLI = llvm::find_if(
1106 *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); });
1107 assert(FLI != BB->end());
1108
1109 return cast<LoadInst>(FLI);
1110 }
1111
combine(std::list<VectorInfo> & InterleavedLoad,OptimizationRemarkEmitter & ORE)1112 bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1113 OptimizationRemarkEmitter &ORE) {
1114 LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1115
1116 // The insertion point is the LoadInst which loads the first values. The
1117 // following tests are used to proof that the combined load can be inserted
1118 // just before InsertionPoint.
1119 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1120
1121 // Test if the offset is computed
1122 if (!InsertionPoint)
1123 return false;
1124
1125 std::set<LoadInst *> LIs;
1126 std::set<Instruction *> Is;
1127 std::set<Instruction *> SVIs;
1128
1129 InstructionCost InterleavedCost;
1130 InstructionCost InstructionCost = 0;
1131 const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency;
1132
1133 // Get the interleave factor
1134 unsigned Factor = InterleavedLoad.size();
1135
1136 // Merge all input sets used in analysis
1137 for (auto &VI : InterleavedLoad) {
1138 // Generate a set of all load instructions to be combined
1139 LIs.insert(VI.LIs.begin(), VI.LIs.end());
1140
1141 // Generate a set of all instructions taking part in load
1142 // interleaved. This list excludes the instructions necessary for the
1143 // polynomial construction.
1144 Is.insert(VI.Is.begin(), VI.Is.end());
1145
1146 // Generate the set of the final ShuffleVectorInst.
1147 SVIs.insert(VI.SVI);
1148 }
1149
1150 // There is nothing to combine.
1151 if (LIs.size() < 2)
1152 return false;
1153
1154 // Test if all participating instruction will be dead after the
1155 // transformation. If intermediate results are used, no performance gain can
1156 // be expected. Also sum the cost of the Instructions beeing left dead.
1157 for (const auto &I : Is) {
1158 // Compute the old cost
1159 InstructionCost += TTI.getInstructionCost(I, CostKind);
1160
1161 // The final SVIs are allowed not to be dead, all uses will be replaced
1162 if (SVIs.find(I) != SVIs.end())
1163 continue;
1164
1165 // If there are users outside the set to be eliminated, we abort the
1166 // transformation. No gain can be expected.
1167 for (auto *U : I->users()) {
1168 if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1169 return false;
1170 }
1171 }
1172
1173 // We need to have a valid cost in order to proceed.
1174 if (!InstructionCost.isValid())
1175 return false;
1176
1177 // We know that all LoadInst are within the same BB. This guarantees that
1178 // either everything or nothing is loaded.
1179 LoadInst *First = findFirstLoad(LIs);
1180
1181 // To be safe that the loads can be combined, iterate over all loads and test
1182 // that the corresponding defining access dominates first LI. This guarantees
1183 // that there are no aliasing stores in between the loads.
1184 auto FMA = MSSA.getMemoryAccess(First);
1185 for (auto *LI : LIs) {
1186 auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1187 if (!MSSA.dominates(MADef, FMA))
1188 return false;
1189 }
1190 assert(!LIs.empty() && "There are no LoadInst to combine");
1191
1192 // It is necessary that insertion point dominates all final ShuffleVectorInst.
1193 for (auto &VI : InterleavedLoad) {
1194 if (!DT.dominates(InsertionPoint, VI.SVI))
1195 return false;
1196 }
1197
1198 // All checks are done. Add instructions detectable by InterleavedAccessPass
1199 // The old instruction will are left dead.
1200 IRBuilder<> Builder(InsertionPoint);
1201 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1202 unsigned ElementsPerSVI =
1203 cast<FixedVectorType>(InterleavedLoad.front().SVI->getType())
1204 ->getNumElements();
1205 FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI);
1206
1207 auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor));
1208 InterleavedCost = TTI.getInterleavedMemoryOpCost(
1209 Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(),
1210 InsertionPoint->getPointerAddressSpace(), CostKind);
1211
1212 if (InterleavedCost >= InstructionCost) {
1213 return false;
1214 }
1215
1216 // Create a pointer cast for the wide load.
1217 auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1218 ILTy->getPointerTo(),
1219 "interleaved.wide.ptrcast");
1220
1221 // Create the wide load and update the MemorySSA.
1222 auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(),
1223 "interleaved.wide.load");
1224 auto MSSAU = MemorySSAUpdater(&MSSA);
1225 MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1226 LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1227 MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true);
1228
1229 // Create the final SVIs and replace all uses.
1230 int i = 0;
1231 for (auto &VI : InterleavedLoad) {
1232 SmallVector<int, 4> Mask;
1233 for (unsigned j = 0; j < ElementsPerSVI; j++)
1234 Mask.push_back(i + j * Factor);
1235
1236 Builder.SetInsertPoint(VI.SVI);
1237 auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle");
1238 VI.SVI->replaceAllUsesWith(SVI);
1239 i++;
1240 }
1241
1242 NumInterleavedLoadCombine++;
1243 ORE.emit([&]() {
1244 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1245 << "Load interleaved combined with factor "
1246 << ore::NV("Factor", Factor);
1247 });
1248
1249 return true;
1250 }
1251
run()1252 bool InterleavedLoadCombineImpl::run() {
1253 OptimizationRemarkEmitter ORE(&F);
1254 bool changed = false;
1255 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1256
1257 auto &DL = F.getParent()->getDataLayout();
1258
1259 // Start with the highest factor to avoid combining and recombining.
1260 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1261 std::list<VectorInfo> Candidates;
1262
1263 for (BasicBlock &BB : F) {
1264 for (Instruction &I : BB) {
1265 if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1266 // We don't support scalable vectors in this pass.
1267 if (isa<ScalableVectorType>(SVI->getType()))
1268 continue;
1269
1270 Candidates.emplace_back(cast<FixedVectorType>(SVI->getType()));
1271
1272 if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1273 Candidates.pop_back();
1274 continue;
1275 }
1276
1277 if (!Candidates.back().isInterleaved(Factor, DL)) {
1278 Candidates.pop_back();
1279 }
1280 }
1281 }
1282 }
1283
1284 std::list<VectorInfo> InterleavedLoad;
1285 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1286 if (combine(InterleavedLoad, ORE)) {
1287 changed = true;
1288 } else {
1289 // Remove the first element of the Interleaved Load but put the others
1290 // back on the list and continue searching
1291 Candidates.splice(Candidates.begin(), InterleavedLoad,
1292 std::next(InterleavedLoad.begin()),
1293 InterleavedLoad.end());
1294 }
1295 InterleavedLoad.clear();
1296 }
1297 }
1298
1299 return changed;
1300 }
1301
1302 namespace {
1303 /// This pass combines interleaved loads into a pattern detectable by
1304 /// InterleavedAccessPass.
1305 struct InterleavedLoadCombine : public FunctionPass {
1306 static char ID;
1307
InterleavedLoadCombine__anonb47475680411::InterleavedLoadCombine1308 InterleavedLoadCombine() : FunctionPass(ID) {
1309 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1310 }
1311
getPassName__anonb47475680411::InterleavedLoadCombine1312 StringRef getPassName() const override {
1313 return "Interleaved Load Combine Pass";
1314 }
1315
runOnFunction__anonb47475680411::InterleavedLoadCombine1316 bool runOnFunction(Function &F) override {
1317 if (DisableInterleavedLoadCombine)
1318 return false;
1319
1320 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1321 if (!TPC)
1322 return false;
1323
1324 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1325 << "\n");
1326
1327 return InterleavedLoadCombineImpl(
1328 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1329 getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1330 TPC->getTM<TargetMachine>())
1331 .run();
1332 }
1333
getAnalysisUsage__anonb47475680411::InterleavedLoadCombine1334 void getAnalysisUsage(AnalysisUsage &AU) const override {
1335 AU.addRequired<MemorySSAWrapperPass>();
1336 AU.addRequired<DominatorTreeWrapperPass>();
1337 FunctionPass::getAnalysisUsage(AU);
1338 }
1339
1340 private:
1341 };
1342 } // anonymous namespace
1343
1344 char InterleavedLoadCombine::ID = 0;
1345
1346 INITIALIZE_PASS_BEGIN(
1347 InterleavedLoadCombine, DEBUG_TYPE,
1348 "Combine interleaved loads into wide loads and shufflevector instructions",
1349 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1350 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1351 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1352 INITIALIZE_PASS_END(
1353 InterleavedLoadCombine, DEBUG_TYPE,
1354 "Combine interleaved loads into wide loads and shufflevector instructions",
1355 false, false)
1356
1357 FunctionPass *
1358 llvm::createInterleavedLoadCombinePass() {
1359 auto P = new InterleavedLoadCombine();
1360 return P;
1361 }
1362