1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalObject.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/ProfDataUtils.h"
43 #include "llvm/IR/TrackingMDRef.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstddef>
52 #include <cstdint>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56
57 using namespace llvm;
58
MetadataAsValue(Type * Ty,Metadata * MD)59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
60 : Value(Ty, MetadataAsValueVal), MD(MD) {
61 track();
62 }
63
~MetadataAsValue()64 MetadataAsValue::~MetadataAsValue() {
65 getType()->getContext().pImpl->MetadataAsValues.erase(MD);
66 untrack();
67 }
68
69 /// Canonicalize metadata arguments to intrinsics.
70 ///
71 /// To support bitcode upgrades (and assembly semantic sugar) for \a
72 /// MetadataAsValue, we need to canonicalize certain metadata.
73 ///
74 /// - nullptr is replaced by an empty MDNode.
75 /// - An MDNode with a single null operand is replaced by an empty MDNode.
76 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
77 ///
78 /// This maintains readability of bitcode from when metadata was a type of
79 /// value, and these bridges were unnecessary.
canonicalizeMetadataForValue(LLVMContext & Context,Metadata * MD)80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
81 Metadata *MD) {
82 if (!MD)
83 // !{}
84 return MDNode::get(Context, std::nullopt);
85
86 // Return early if this isn't a single-operand MDNode.
87 auto *N = dyn_cast<MDNode>(MD);
88 if (!N || N->getNumOperands() != 1)
89 return MD;
90
91 if (!N->getOperand(0))
92 // !{}
93 return MDNode::get(Context, std::nullopt);
94
95 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
96 // Look through the MDNode.
97 return C;
98
99 return MD;
100 }
101
get(LLVMContext & Context,Metadata * MD)102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
103 MD = canonicalizeMetadataForValue(Context, MD);
104 auto *&Entry = Context.pImpl->MetadataAsValues[MD];
105 if (!Entry)
106 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
107 return Entry;
108 }
109
getIfExists(LLVMContext & Context,Metadata * MD)110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
111 Metadata *MD) {
112 MD = canonicalizeMetadataForValue(Context, MD);
113 auto &Store = Context.pImpl->MetadataAsValues;
114 return Store.lookup(MD);
115 }
116
handleChangedMetadata(Metadata * MD)117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
118 LLVMContext &Context = getContext();
119 MD = canonicalizeMetadataForValue(Context, MD);
120 auto &Store = Context.pImpl->MetadataAsValues;
121
122 // Stop tracking the old metadata.
123 Store.erase(this->MD);
124 untrack();
125 this->MD = nullptr;
126
127 // Start tracking MD, or RAUW if necessary.
128 auto *&Entry = Store[MD];
129 if (Entry) {
130 replaceAllUsesWith(Entry);
131 delete this;
132 return;
133 }
134
135 this->MD = MD;
136 track();
137 Entry = this;
138 }
139
track()140 void MetadataAsValue::track() {
141 if (MD)
142 MetadataTracking::track(&MD, *MD, *this);
143 }
144
untrack()145 void MetadataAsValue::untrack() {
146 if (MD)
147 MetadataTracking::untrack(MD);
148 }
149
track(void * Ref,Metadata & MD,OwnerTy Owner)150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
151 assert(Ref && "Expected live reference");
152 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
153 "Reference without owner must be direct");
154 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
155 R->addRef(Ref, Owner);
156 return true;
157 }
158 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
159 assert(!PH->Use && "Placeholders can only be used once");
160 assert(!Owner && "Unexpected callback to owner");
161 PH->Use = static_cast<Metadata **>(Ref);
162 return true;
163 }
164 return false;
165 }
166
untrack(void * Ref,Metadata & MD)167 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
168 assert(Ref && "Expected live reference");
169 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
170 R->dropRef(Ref);
171 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
172 PH->Use = nullptr;
173 }
174
retrack(void * Ref,Metadata & MD,void * New)175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
176 assert(Ref && "Expected live reference");
177 assert(New && "Expected live reference");
178 assert(Ref != New && "Expected change");
179 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
180 R->moveRef(Ref, New, MD);
181 return true;
182 }
183 assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
184 "Unexpected move of an MDOperand");
185 assert(!isReplaceable(MD) &&
186 "Expected un-replaceable metadata, since we didn't move a reference");
187 return false;
188 }
189
isReplaceable(const Metadata & MD)190 bool MetadataTracking::isReplaceable(const Metadata &MD) {
191 return ReplaceableMetadataImpl::isReplaceable(MD);
192 }
193
getAllArgListUsers()194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
195 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
196 for (auto Pair : UseMap) {
197 OwnerTy Owner = Pair.second.first;
198 if (!Owner.is<Metadata *>())
199 continue;
200 Metadata *OwnerMD = Owner.get<Metadata *>();
201 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
202 MDUsersWithID.push_back(&UseMap[Pair.first]);
203 }
204 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
205 return UserA->second < UserB->second;
206 });
207 SmallVector<Metadata *> MDUsers;
208 for (auto *UserWithID : MDUsersWithID)
209 MDUsers.push_back(UserWithID->first.get<Metadata *>());
210 return MDUsers;
211 }
212
addRef(void * Ref,OwnerTy Owner)213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
214 bool WasInserted =
215 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
216 .second;
217 (void)WasInserted;
218 assert(WasInserted && "Expected to add a reference");
219
220 ++NextIndex;
221 assert(NextIndex != 0 && "Unexpected overflow");
222 }
223
dropRef(void * Ref)224 void ReplaceableMetadataImpl::dropRef(void *Ref) {
225 bool WasErased = UseMap.erase(Ref);
226 (void)WasErased;
227 assert(WasErased && "Expected to drop a reference");
228 }
229
moveRef(void * Ref,void * New,const Metadata & MD)230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
231 const Metadata &MD) {
232 auto I = UseMap.find(Ref);
233 assert(I != UseMap.end() && "Expected to move a reference");
234 auto OwnerAndIndex = I->second;
235 UseMap.erase(I);
236 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
237 (void)WasInserted;
238 assert(WasInserted && "Expected to add a reference");
239
240 // Check that the references are direct if there's no owner.
241 (void)MD;
242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
243 "Reference without owner must be direct");
244 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
245 "Reference without owner must be direct");
246 }
247
SalvageDebugInfo(const Constant & C)248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) {
249 if (!C.isUsedByMetadata()) {
250 return;
251 }
252
253 LLVMContext &Context = C.getType()->getContext();
254 auto &Store = Context.pImpl->ValuesAsMetadata;
255 auto I = Store.find(&C);
256 ValueAsMetadata *MD = I->second;
257 using UseTy =
258 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>;
259 // Copy out uses and update value of Constant used by debug info metadata with undef below
260 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end());
261
262 for (const auto &Pair : Uses) {
263 MetadataTracking::OwnerTy Owner = Pair.second.first;
264 if (!Owner)
265 continue;
266 if (!Owner.is<Metadata *>())
267 continue;
268 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
269 if (!OwnerMD)
270 continue;
271 if (isa<DINode>(OwnerMD)) {
272 OwnerMD->handleChangedOperand(
273 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType())));
274 }
275 }
276 }
277
replaceAllUsesWith(Metadata * MD)278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
279 if (UseMap.empty())
280 return;
281
282 // Copy out uses since UseMap will get touched below.
283 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
284 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
285 llvm::sort(Uses, llvm::less_second());
286 for (const auto &Pair : Uses) {
287 // Check that this Ref hasn't disappeared after RAUW (when updating a
288 // previous Ref).
289 if (!UseMap.count(Pair.first))
290 continue;
291
292 OwnerTy Owner = Pair.second.first;
293 if (!Owner) {
294 // Update unowned tracking references directly.
295 Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
296 Ref = MD;
297 if (MD)
298 MetadataTracking::track(Ref);
299 UseMap.erase(Pair.first);
300 continue;
301 }
302
303 // Check for MetadataAsValue.
304 if (Owner.is<MetadataAsValue *>()) {
305 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
306 continue;
307 }
308
309 // There's a Metadata owner -- dispatch.
310 Metadata *OwnerMD = Owner.get<Metadata *>();
311 switch (OwnerMD->getMetadataID()) {
312 #define HANDLE_METADATA_LEAF(CLASS) \
313 case Metadata::CLASS##Kind: \
314 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
315 continue;
316 #include "llvm/IR/Metadata.def"
317 default:
318 llvm_unreachable("Invalid metadata subclass");
319 }
320 }
321 assert(UseMap.empty() && "Expected all uses to be replaced");
322 }
323
resolveAllUses(bool ResolveUsers)324 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
325 if (UseMap.empty())
326 return;
327
328 if (!ResolveUsers) {
329 UseMap.clear();
330 return;
331 }
332
333 // Copy out uses since UseMap could get touched below.
334 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
335 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
336 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
337 return L.second.second < R.second.second;
338 });
339 UseMap.clear();
340 for (const auto &Pair : Uses) {
341 auto Owner = Pair.second.first;
342 if (!Owner)
343 continue;
344 if (Owner.is<MetadataAsValue *>())
345 continue;
346
347 // Resolve MDNodes that point at this.
348 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
349 if (!OwnerMD)
350 continue;
351 if (OwnerMD->isResolved())
352 continue;
353 OwnerMD->decrementUnresolvedOperandCount();
354 }
355 }
356
getOrCreate(Metadata & MD)357 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
358 if (auto *N = dyn_cast<MDNode>(&MD))
359 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
360 return dyn_cast<ValueAsMetadata>(&MD);
361 }
362
getIfExists(Metadata & MD)363 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
364 if (auto *N = dyn_cast<MDNode>(&MD))
365 return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
366 return dyn_cast<ValueAsMetadata>(&MD);
367 }
368
isReplaceable(const Metadata & MD)369 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
370 if (auto *N = dyn_cast<MDNode>(&MD))
371 return !N->isResolved();
372 return isa<ValueAsMetadata>(&MD);
373 }
374
getLocalFunctionMetadata(Value * V)375 static DISubprogram *getLocalFunctionMetadata(Value *V) {
376 assert(V && "Expected value");
377 if (auto *A = dyn_cast<Argument>(V)) {
378 if (auto *Fn = A->getParent())
379 return Fn->getSubprogram();
380 return nullptr;
381 }
382
383 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
384 if (auto *Fn = BB->getParent())
385 return Fn->getSubprogram();
386 return nullptr;
387 }
388
389 return nullptr;
390 }
391
get(Value * V)392 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
393 assert(V && "Unexpected null Value");
394
395 auto &Context = V->getContext();
396 auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
397 if (!Entry) {
398 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
399 "Expected constant or function-local value");
400 assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
401 V->IsUsedByMD = true;
402 if (auto *C = dyn_cast<Constant>(V))
403 Entry = new ConstantAsMetadata(C);
404 else
405 Entry = new LocalAsMetadata(V);
406 }
407
408 return Entry;
409 }
410
getIfExists(Value * V)411 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
412 assert(V && "Unexpected null Value");
413 return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
414 }
415
handleDeletion(Value * V)416 void ValueAsMetadata::handleDeletion(Value *V) {
417 assert(V && "Expected valid value");
418
419 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
420 auto I = Store.find(V);
421 if (I == Store.end())
422 return;
423
424 // Remove old entry from the map.
425 ValueAsMetadata *MD = I->second;
426 assert(MD && "Expected valid metadata");
427 assert(MD->getValue() == V && "Expected valid mapping");
428 Store.erase(I);
429
430 // Delete the metadata.
431 MD->replaceAllUsesWith(nullptr);
432 delete MD;
433 }
434
handleRAUW(Value * From,Value * To)435 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
436 assert(From && "Expected valid value");
437 assert(To && "Expected valid value");
438 assert(From != To && "Expected changed value");
439 assert(From->getType() == To->getType() && "Unexpected type change");
440
441 LLVMContext &Context = From->getType()->getContext();
442 auto &Store = Context.pImpl->ValuesAsMetadata;
443 auto I = Store.find(From);
444 if (I == Store.end()) {
445 assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
446 return;
447 }
448
449 // Remove old entry from the map.
450 assert(From->IsUsedByMD && "Expected From to be used by metadata");
451 From->IsUsedByMD = false;
452 ValueAsMetadata *MD = I->second;
453 assert(MD && "Expected valid metadata");
454 assert(MD->getValue() == From && "Expected valid mapping");
455 Store.erase(I);
456
457 if (isa<LocalAsMetadata>(MD)) {
458 if (auto *C = dyn_cast<Constant>(To)) {
459 // Local became a constant.
460 MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
461 delete MD;
462 return;
463 }
464 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
465 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
466 // DISubprogram changed.
467 MD->replaceAllUsesWith(nullptr);
468 delete MD;
469 return;
470 }
471 } else if (!isa<Constant>(To)) {
472 // Changed to function-local value.
473 MD->replaceAllUsesWith(nullptr);
474 delete MD;
475 return;
476 }
477
478 auto *&Entry = Store[To];
479 if (Entry) {
480 // The target already exists.
481 MD->replaceAllUsesWith(Entry);
482 delete MD;
483 return;
484 }
485
486 // Update MD in place (and update the map entry).
487 assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
488 To->IsUsedByMD = true;
489 MD->V = To;
490 Entry = MD;
491 }
492
493 //===----------------------------------------------------------------------===//
494 // MDString implementation.
495 //
496
get(LLVMContext & Context,StringRef Str)497 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
498 auto &Store = Context.pImpl->MDStringCache;
499 auto I = Store.try_emplace(Str);
500 auto &MapEntry = I.first->getValue();
501 if (!I.second)
502 return &MapEntry;
503 MapEntry.Entry = &*I.first;
504 return &MapEntry;
505 }
506
getString() const507 StringRef MDString::getString() const {
508 assert(Entry && "Expected to find string map entry");
509 return Entry->first();
510 }
511
512 //===----------------------------------------------------------------------===//
513 // MDNode implementation.
514 //
515
516 // Assert that the MDNode types will not be unaligned by the objects
517 // prepended to them.
518 #define HANDLE_MDNODE_LEAF(CLASS) \
519 static_assert( \
520 alignof(uint64_t) >= alignof(CLASS), \
521 "Alignment is insufficient after objects prepended to " #CLASS);
522 #include "llvm/IR/Metadata.def"
523
operator new(size_t Size,size_t NumOps,StorageType Storage)524 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) {
525 // uint64_t is the most aligned type we need support (ensured by static_assert
526 // above)
527 size_t AllocSize =
528 alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t));
529 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size));
530 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage);
531 return reinterpret_cast<void *>(H + 1);
532 }
533
operator delete(void * N)534 void MDNode::operator delete(void *N) {
535 Header *H = reinterpret_cast<Header *>(N) - 1;
536 void *Mem = H->getAllocation();
537 H->~Header();
538 ::operator delete(Mem);
539 }
540
MDNode(LLVMContext & Context,unsigned ID,StorageType Storage,ArrayRef<Metadata * > Ops1,ArrayRef<Metadata * > Ops2)541 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
542 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
543 : Metadata(ID, Storage), Context(Context) {
544 unsigned Op = 0;
545 for (Metadata *MD : Ops1)
546 setOperand(Op++, MD);
547 for (Metadata *MD : Ops2)
548 setOperand(Op++, MD);
549
550 if (!isUniqued())
551 return;
552
553 // Count the unresolved operands. If there are any, RAUW support will be
554 // added lazily on first reference.
555 countUnresolvedOperands();
556 }
557
clone() const558 TempMDNode MDNode::clone() const {
559 switch (getMetadataID()) {
560 default:
561 llvm_unreachable("Invalid MDNode subclass");
562 #define HANDLE_MDNODE_LEAF(CLASS) \
563 case CLASS##Kind: \
564 return cast<CLASS>(this)->cloneImpl();
565 #include "llvm/IR/Metadata.def"
566 }
567 }
568
Header(size_t NumOps,StorageType Storage)569 MDNode::Header::Header(size_t NumOps, StorageType Storage) {
570 IsLarge = isLarge(NumOps);
571 IsResizable = isResizable(Storage);
572 SmallSize = getSmallSize(NumOps, IsResizable, IsLarge);
573 if (IsLarge) {
574 SmallNumOps = 0;
575 new (getLargePtr()) LargeStorageVector();
576 getLarge().resize(NumOps);
577 return;
578 }
579 SmallNumOps = NumOps;
580 MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize;
581 for (MDOperand *E = O + SmallSize; O != E;)
582 (void)new (O++) MDOperand();
583 }
584
~Header()585 MDNode::Header::~Header() {
586 if (IsLarge) {
587 getLarge().~LargeStorageVector();
588 return;
589 }
590 MDOperand *O = reinterpret_cast<MDOperand *>(this);
591 for (MDOperand *E = O - SmallSize; O != E; --O)
592 (void)(O - 1)->~MDOperand();
593 }
594
getSmallPtr()595 void *MDNode::Header::getSmallPtr() {
596 static_assert(alignof(MDOperand) <= alignof(Header),
597 "MDOperand too strongly aligned");
598 return reinterpret_cast<char *>(const_cast<Header *>(this)) -
599 sizeof(MDOperand) * SmallSize;
600 }
601
resize(size_t NumOps)602 void MDNode::Header::resize(size_t NumOps) {
603 assert(IsResizable && "Node is not resizable");
604 if (operands().size() == NumOps)
605 return;
606
607 if (IsLarge)
608 getLarge().resize(NumOps);
609 else if (NumOps <= SmallSize)
610 resizeSmall(NumOps);
611 else
612 resizeSmallToLarge(NumOps);
613 }
614
resizeSmall(size_t NumOps)615 void MDNode::Header::resizeSmall(size_t NumOps) {
616 assert(!IsLarge && "Expected a small MDNode");
617 assert(NumOps <= SmallSize && "NumOps too large for small resize");
618
619 MutableArrayRef<MDOperand> ExistingOps = operands();
620 assert(NumOps != ExistingOps.size() && "Expected a different size");
621
622 int NumNew = (int)NumOps - (int)ExistingOps.size();
623 MDOperand *O = ExistingOps.end();
624 for (int I = 0, E = NumNew; I < E; ++I)
625 (O++)->reset();
626 for (int I = 0, E = NumNew; I > E; --I)
627 (--O)->reset();
628 SmallNumOps = NumOps;
629 assert(O == operands().end() && "Operands not (un)initialized until the end");
630 }
631
resizeSmallToLarge(size_t NumOps)632 void MDNode::Header::resizeSmallToLarge(size_t NumOps) {
633 assert(!IsLarge && "Expected a small MDNode");
634 assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation");
635 LargeStorageVector NewOps;
636 NewOps.resize(NumOps);
637 llvm::move(operands(), NewOps.begin());
638 resizeSmall(0);
639 new (getLargePtr()) LargeStorageVector(std::move(NewOps));
640 IsLarge = true;
641 }
642
isOperandUnresolved(Metadata * Op)643 static bool isOperandUnresolved(Metadata *Op) {
644 if (auto *N = dyn_cast_or_null<MDNode>(Op))
645 return !N->isResolved();
646 return false;
647 }
648
countUnresolvedOperands()649 void MDNode::countUnresolvedOperands() {
650 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
651 assert(isUniqued() && "Expected this to be uniqued");
652 setNumUnresolved(count_if(operands(), isOperandUnresolved));
653 }
654
makeUniqued()655 void MDNode::makeUniqued() {
656 assert(isTemporary() && "Expected this to be temporary");
657 assert(!isResolved() && "Expected this to be unresolved");
658
659 // Enable uniquing callbacks.
660 for (auto &Op : mutable_operands())
661 Op.reset(Op.get(), this);
662
663 // Make this 'uniqued'.
664 Storage = Uniqued;
665 countUnresolvedOperands();
666 if (!getNumUnresolved()) {
667 dropReplaceableUses();
668 assert(isResolved() && "Expected this to be resolved");
669 }
670
671 assert(isUniqued() && "Expected this to be uniqued");
672 }
673
makeDistinct()674 void MDNode::makeDistinct() {
675 assert(isTemporary() && "Expected this to be temporary");
676 assert(!isResolved() && "Expected this to be unresolved");
677
678 // Drop RAUW support and store as a distinct node.
679 dropReplaceableUses();
680 storeDistinctInContext();
681
682 assert(isDistinct() && "Expected this to be distinct");
683 assert(isResolved() && "Expected this to be resolved");
684 }
685
resolve()686 void MDNode::resolve() {
687 assert(isUniqued() && "Expected this to be uniqued");
688 assert(!isResolved() && "Expected this to be unresolved");
689
690 setNumUnresolved(0);
691 dropReplaceableUses();
692
693 assert(isResolved() && "Expected this to be resolved");
694 }
695
dropReplaceableUses()696 void MDNode::dropReplaceableUses() {
697 assert(!getNumUnresolved() && "Unexpected unresolved operand");
698
699 // Drop any RAUW support.
700 if (Context.hasReplaceableUses())
701 Context.takeReplaceableUses()->resolveAllUses();
702 }
703
resolveAfterOperandChange(Metadata * Old,Metadata * New)704 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
705 assert(isUniqued() && "Expected this to be uniqued");
706 assert(getNumUnresolved() != 0 && "Expected unresolved operands");
707
708 // Check if an operand was resolved.
709 if (!isOperandUnresolved(Old)) {
710 if (isOperandUnresolved(New))
711 // An operand was un-resolved!
712 setNumUnresolved(getNumUnresolved() + 1);
713 } else if (!isOperandUnresolved(New))
714 decrementUnresolvedOperandCount();
715 }
716
decrementUnresolvedOperandCount()717 void MDNode::decrementUnresolvedOperandCount() {
718 assert(!isResolved() && "Expected this to be unresolved");
719 if (isTemporary())
720 return;
721
722 assert(isUniqued() && "Expected this to be uniqued");
723 setNumUnresolved(getNumUnresolved() - 1);
724 if (getNumUnresolved())
725 return;
726
727 // Last unresolved operand has just been resolved.
728 dropReplaceableUses();
729 assert(isResolved() && "Expected this to become resolved");
730 }
731
resolveCycles()732 void MDNode::resolveCycles() {
733 if (isResolved())
734 return;
735
736 // Resolve this node immediately.
737 resolve();
738
739 // Resolve all operands.
740 for (const auto &Op : operands()) {
741 auto *N = dyn_cast_or_null<MDNode>(Op);
742 if (!N)
743 continue;
744
745 assert(!N->isTemporary() &&
746 "Expected all forward declarations to be resolved");
747 if (!N->isResolved())
748 N->resolveCycles();
749 }
750 }
751
hasSelfReference(MDNode * N)752 static bool hasSelfReference(MDNode *N) {
753 return llvm::is_contained(N->operands(), N);
754 }
755
replaceWithPermanentImpl()756 MDNode *MDNode::replaceWithPermanentImpl() {
757 switch (getMetadataID()) {
758 default:
759 // If this type isn't uniquable, replace with a distinct node.
760 return replaceWithDistinctImpl();
761
762 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
763 case CLASS##Kind: \
764 break;
765 #include "llvm/IR/Metadata.def"
766 }
767
768 // Even if this type is uniquable, self-references have to be distinct.
769 if (hasSelfReference(this))
770 return replaceWithDistinctImpl();
771 return replaceWithUniquedImpl();
772 }
773
replaceWithUniquedImpl()774 MDNode *MDNode::replaceWithUniquedImpl() {
775 // Try to uniquify in place.
776 MDNode *UniquedNode = uniquify();
777
778 if (UniquedNode == this) {
779 makeUniqued();
780 return this;
781 }
782
783 // Collision, so RAUW instead.
784 replaceAllUsesWith(UniquedNode);
785 deleteAsSubclass();
786 return UniquedNode;
787 }
788
replaceWithDistinctImpl()789 MDNode *MDNode::replaceWithDistinctImpl() {
790 makeDistinct();
791 return this;
792 }
793
recalculateHash()794 void MDTuple::recalculateHash() {
795 setHash(MDTupleInfo::KeyTy::calculateHash(this));
796 }
797
dropAllReferences()798 void MDNode::dropAllReferences() {
799 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
800 setOperand(I, nullptr);
801 if (Context.hasReplaceableUses()) {
802 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
803 (void)Context.takeReplaceableUses();
804 }
805 }
806
handleChangedOperand(void * Ref,Metadata * New)807 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
808 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
809 assert(Op < getNumOperands() && "Expected valid operand");
810
811 if (!isUniqued()) {
812 // This node is not uniqued. Just set the operand and be done with it.
813 setOperand(Op, New);
814 return;
815 }
816
817 // This node is uniqued.
818 eraseFromStore();
819
820 Metadata *Old = getOperand(Op);
821 setOperand(Op, New);
822
823 // Drop uniquing for self-reference cycles and deleted constants.
824 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
825 if (!isResolved())
826 resolve();
827 storeDistinctInContext();
828 return;
829 }
830
831 // Re-unique the node.
832 auto *Uniqued = uniquify();
833 if (Uniqued == this) {
834 if (!isResolved())
835 resolveAfterOperandChange(Old, New);
836 return;
837 }
838
839 // Collision.
840 if (!isResolved()) {
841 // Still unresolved, so RAUW.
842 //
843 // First, clear out all operands to prevent any recursion (similar to
844 // dropAllReferences(), but we still need the use-list).
845 for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
846 setOperand(O, nullptr);
847 if (Context.hasReplaceableUses())
848 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
849 deleteAsSubclass();
850 return;
851 }
852
853 // Store in non-uniqued form if RAUW isn't possible.
854 storeDistinctInContext();
855 }
856
deleteAsSubclass()857 void MDNode::deleteAsSubclass() {
858 switch (getMetadataID()) {
859 default:
860 llvm_unreachable("Invalid subclass of MDNode");
861 #define HANDLE_MDNODE_LEAF(CLASS) \
862 case CLASS##Kind: \
863 delete cast<CLASS>(this); \
864 break;
865 #include "llvm/IR/Metadata.def"
866 }
867 }
868
869 template <class T, class InfoT>
uniquifyImpl(T * N,DenseSet<T *,InfoT> & Store)870 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
871 if (T *U = getUniqued(Store, N))
872 return U;
873
874 Store.insert(N);
875 return N;
876 }
877
878 template <class NodeTy> struct MDNode::HasCachedHash {
879 using Yes = char[1];
880 using No = char[2];
881 template <class U, U Val> struct SFINAE {};
882
883 template <class U>
884 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
885 template <class U> static No &check(...);
886
887 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
888 };
889
uniquify()890 MDNode *MDNode::uniquify() {
891 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
892
893 // Try to insert into uniquing store.
894 switch (getMetadataID()) {
895 default:
896 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
897 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
898 case CLASS##Kind: { \
899 CLASS *SubclassThis = cast<CLASS>(this); \
900 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
901 ShouldRecalculateHash; \
902 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
903 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
904 }
905 #include "llvm/IR/Metadata.def"
906 }
907 }
908
eraseFromStore()909 void MDNode::eraseFromStore() {
910 switch (getMetadataID()) {
911 default:
912 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
913 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
914 case CLASS##Kind: \
915 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
916 break;
917 #include "llvm/IR/Metadata.def"
918 }
919 }
920
getImpl(LLVMContext & Context,ArrayRef<Metadata * > MDs,StorageType Storage,bool ShouldCreate)921 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
922 StorageType Storage, bool ShouldCreate) {
923 unsigned Hash = 0;
924 if (Storage == Uniqued) {
925 MDTupleInfo::KeyTy Key(MDs);
926 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
927 return N;
928 if (!ShouldCreate)
929 return nullptr;
930 Hash = Key.getHash();
931 } else {
932 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
933 }
934
935 return storeImpl(new (MDs.size(), Storage)
936 MDTuple(Context, Storage, Hash, MDs),
937 Storage, Context.pImpl->MDTuples);
938 }
939
deleteTemporary(MDNode * N)940 void MDNode::deleteTemporary(MDNode *N) {
941 assert(N->isTemporary() && "Expected temporary node");
942 N->replaceAllUsesWith(nullptr);
943 N->deleteAsSubclass();
944 }
945
storeDistinctInContext()946 void MDNode::storeDistinctInContext() {
947 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
948 assert(!getNumUnresolved() && "Unexpected unresolved nodes");
949 Storage = Distinct;
950 assert(isResolved() && "Expected this to be resolved");
951
952 // Reset the hash.
953 switch (getMetadataID()) {
954 default:
955 llvm_unreachable("Invalid subclass of MDNode");
956 #define HANDLE_MDNODE_LEAF(CLASS) \
957 case CLASS##Kind: { \
958 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
959 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
960 break; \
961 }
962 #include "llvm/IR/Metadata.def"
963 }
964
965 getContext().pImpl->DistinctMDNodes.push_back(this);
966 }
967
replaceOperandWith(unsigned I,Metadata * New)968 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
969 if (getOperand(I) == New)
970 return;
971
972 if (!isUniqued()) {
973 setOperand(I, New);
974 return;
975 }
976
977 handleChangedOperand(mutable_begin() + I, New);
978 }
979
setOperand(unsigned I,Metadata * New)980 void MDNode::setOperand(unsigned I, Metadata *New) {
981 assert(I < getNumOperands());
982 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
983 }
984
985 /// Get a node or a self-reference that looks like it.
986 ///
987 /// Special handling for finding self-references, for use by \a
988 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
989 /// when self-referencing nodes were still uniqued. If the first operand has
990 /// the same operands as \c Ops, return the first operand instead.
getOrSelfReference(LLVMContext & Context,ArrayRef<Metadata * > Ops)991 static MDNode *getOrSelfReference(LLVMContext &Context,
992 ArrayRef<Metadata *> Ops) {
993 if (!Ops.empty())
994 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
995 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
996 for (unsigned I = 1, E = Ops.size(); I != E; ++I)
997 if (Ops[I] != N->getOperand(I))
998 return MDNode::get(Context, Ops);
999 return N;
1000 }
1001
1002 return MDNode::get(Context, Ops);
1003 }
1004
concatenate(MDNode * A,MDNode * B)1005 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
1006 if (!A)
1007 return B;
1008 if (!B)
1009 return A;
1010
1011 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1012 MDs.insert(B->op_begin(), B->op_end());
1013
1014 // FIXME: This preserves long-standing behaviour, but is it really the right
1015 // behaviour? Or was that an unintended side-effect of node uniquing?
1016 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1017 }
1018
intersect(MDNode * A,MDNode * B)1019 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
1020 if (!A || !B)
1021 return nullptr;
1022
1023 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1024 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
1025 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
1026
1027 // FIXME: This preserves long-standing behaviour, but is it really the right
1028 // behaviour? Or was that an unintended side-effect of node uniquing?
1029 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1030 }
1031
getMostGenericAliasScope(MDNode * A,MDNode * B)1032 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
1033 if (!A || !B)
1034 return nullptr;
1035
1036 // Take the intersection of domains then union the scopes
1037 // within those domains
1038 SmallPtrSet<const MDNode *, 16> ADomains;
1039 SmallPtrSet<const MDNode *, 16> IntersectDomains;
1040 SmallSetVector<Metadata *, 4> MDs;
1041 for (const MDOperand &MDOp : A->operands())
1042 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1043 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1044 ADomains.insert(Domain);
1045
1046 for (const MDOperand &MDOp : B->operands())
1047 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1048 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1049 if (ADomains.contains(Domain)) {
1050 IntersectDomains.insert(Domain);
1051 MDs.insert(MDOp);
1052 }
1053
1054 for (const MDOperand &MDOp : A->operands())
1055 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1056 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1057 if (IntersectDomains.contains(Domain))
1058 MDs.insert(MDOp);
1059
1060 return MDs.empty() ? nullptr
1061 : getOrSelfReference(A->getContext(), MDs.getArrayRef());
1062 }
1063
getMostGenericFPMath(MDNode * A,MDNode * B)1064 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
1065 if (!A || !B)
1066 return nullptr;
1067
1068 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
1069 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
1070 if (AVal < BVal)
1071 return A;
1072 return B;
1073 }
1074
isContiguous(const ConstantRange & A,const ConstantRange & B)1075 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1076 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1077 }
1078
canBeMerged(const ConstantRange & A,const ConstantRange & B)1079 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
1080 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
1081 }
1082
tryMergeRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)1083 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1084 ConstantInt *Low, ConstantInt *High) {
1085 ConstantRange NewRange(Low->getValue(), High->getValue());
1086 unsigned Size = EndPoints.size();
1087 APInt LB = EndPoints[Size - 2]->getValue();
1088 APInt LE = EndPoints[Size - 1]->getValue();
1089 ConstantRange LastRange(LB, LE);
1090 if (canBeMerged(NewRange, LastRange)) {
1091 ConstantRange Union = LastRange.unionWith(NewRange);
1092 Type *Ty = High->getType();
1093 EndPoints[Size - 2] =
1094 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
1095 EndPoints[Size - 1] =
1096 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1097 return true;
1098 }
1099 return false;
1100 }
1101
addRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)1102 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1103 ConstantInt *Low, ConstantInt *High) {
1104 if (!EndPoints.empty())
1105 if (tryMergeRange(EndPoints, Low, High))
1106 return;
1107
1108 EndPoints.push_back(Low);
1109 EndPoints.push_back(High);
1110 }
1111
getMostGenericRange(MDNode * A,MDNode * B)1112 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1113 // Given two ranges, we want to compute the union of the ranges. This
1114 // is slightly complicated by having to combine the intervals and merge
1115 // the ones that overlap.
1116
1117 if (!A || !B)
1118 return nullptr;
1119
1120 if (A == B)
1121 return A;
1122
1123 // First, walk both lists in order of the lower boundary of each interval.
1124 // At each step, try to merge the new interval to the last one we adedd.
1125 SmallVector<ConstantInt *, 4> EndPoints;
1126 int AI = 0;
1127 int BI = 0;
1128 int AN = A->getNumOperands() / 2;
1129 int BN = B->getNumOperands() / 2;
1130 while (AI < AN && BI < BN) {
1131 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1132 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1133
1134 if (ALow->getValue().slt(BLow->getValue())) {
1135 addRange(EndPoints, ALow,
1136 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1137 ++AI;
1138 } else {
1139 addRange(EndPoints, BLow,
1140 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1141 ++BI;
1142 }
1143 }
1144 while (AI < AN) {
1145 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1146 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1147 ++AI;
1148 }
1149 while (BI < BN) {
1150 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1151 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1152 ++BI;
1153 }
1154
1155 // If we have more than 2 ranges (4 endpoints) we have to try to merge
1156 // the last and first ones.
1157 unsigned Size = EndPoints.size();
1158 if (Size > 4) {
1159 ConstantInt *FB = EndPoints[0];
1160 ConstantInt *FE = EndPoints[1];
1161 if (tryMergeRange(EndPoints, FB, FE)) {
1162 for (unsigned i = 0; i < Size - 2; ++i) {
1163 EndPoints[i] = EndPoints[i + 2];
1164 }
1165 EndPoints.resize(Size - 2);
1166 }
1167 }
1168
1169 // If in the end we have a single range, it is possible that it is now the
1170 // full range. Just drop the metadata in that case.
1171 if (EndPoints.size() == 2) {
1172 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1173 if (Range.isFullSet())
1174 return nullptr;
1175 }
1176
1177 SmallVector<Metadata *, 4> MDs;
1178 MDs.reserve(EndPoints.size());
1179 for (auto *I : EndPoints)
1180 MDs.push_back(ConstantAsMetadata::get(I));
1181 return MDNode::get(A->getContext(), MDs);
1182 }
1183
getMostGenericAlignmentOrDereferenceable(MDNode * A,MDNode * B)1184 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1185 if (!A || !B)
1186 return nullptr;
1187
1188 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1189 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1190 if (AVal->getZExtValue() < BVal->getZExtValue())
1191 return A;
1192 return B;
1193 }
1194
1195 //===----------------------------------------------------------------------===//
1196 // NamedMDNode implementation.
1197 //
1198
getNMDOps(void * Operands)1199 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1200 return *(SmallVector<TrackingMDRef, 4> *)Operands;
1201 }
1202
NamedMDNode(const Twine & N)1203 NamedMDNode::NamedMDNode(const Twine &N)
1204 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1205
~NamedMDNode()1206 NamedMDNode::~NamedMDNode() {
1207 dropAllReferences();
1208 delete &getNMDOps(Operands);
1209 }
1210
getNumOperands() const1211 unsigned NamedMDNode::getNumOperands() const {
1212 return (unsigned)getNMDOps(Operands).size();
1213 }
1214
getOperand(unsigned i) const1215 MDNode *NamedMDNode::getOperand(unsigned i) const {
1216 assert(i < getNumOperands() && "Invalid Operand number!");
1217 auto *N = getNMDOps(Operands)[i].get();
1218 return cast_or_null<MDNode>(N);
1219 }
1220
addOperand(MDNode * M)1221 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1222
setOperand(unsigned I,MDNode * New)1223 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1224 assert(I < getNumOperands() && "Invalid operand number");
1225 getNMDOps(Operands)[I].reset(New);
1226 }
1227
eraseFromParent()1228 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1229
clearOperands()1230 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1231
getName() const1232 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1233
1234 //===----------------------------------------------------------------------===//
1235 // Instruction Metadata method implementations.
1236 //
1237
lookup(unsigned ID) const1238 MDNode *MDAttachments::lookup(unsigned ID) const {
1239 for (const auto &A : Attachments)
1240 if (A.MDKind == ID)
1241 return A.Node;
1242 return nullptr;
1243 }
1244
get(unsigned ID,SmallVectorImpl<MDNode * > & Result) const1245 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1246 for (const auto &A : Attachments)
1247 if (A.MDKind == ID)
1248 Result.push_back(A.Node);
1249 }
1250
getAll(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1251 void MDAttachments::getAll(
1252 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1253 for (const auto &A : Attachments)
1254 Result.emplace_back(A.MDKind, A.Node);
1255
1256 // Sort the resulting array so it is stable with respect to metadata IDs. We
1257 // need to preserve the original insertion order though.
1258 if (Result.size() > 1)
1259 llvm::stable_sort(Result, less_first());
1260 }
1261
set(unsigned ID,MDNode * MD)1262 void MDAttachments::set(unsigned ID, MDNode *MD) {
1263 erase(ID);
1264 if (MD)
1265 insert(ID, *MD);
1266 }
1267
insert(unsigned ID,MDNode & MD)1268 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1269 Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1270 }
1271
erase(unsigned ID)1272 bool MDAttachments::erase(unsigned ID) {
1273 if (empty())
1274 return false;
1275
1276 // Common case is one value.
1277 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1278 Attachments.pop_back();
1279 return true;
1280 }
1281
1282 auto OldSize = Attachments.size();
1283 llvm::erase_if(Attachments,
1284 [ID](const Attachment &A) { return A.MDKind == ID; });
1285 return OldSize != Attachments.size();
1286 }
1287
getMetadata(unsigned KindID) const1288 MDNode *Value::getMetadata(unsigned KindID) const {
1289 if (!hasMetadata())
1290 return nullptr;
1291 const auto &Info = getContext().pImpl->ValueMetadata[this];
1292 assert(!Info.empty() && "bit out of sync with hash table");
1293 return Info.lookup(KindID);
1294 }
1295
getMetadata(StringRef Kind) const1296 MDNode *Value::getMetadata(StringRef Kind) const {
1297 if (!hasMetadata())
1298 return nullptr;
1299 const auto &Info = getContext().pImpl->ValueMetadata[this];
1300 assert(!Info.empty() && "bit out of sync with hash table");
1301 return Info.lookup(getContext().getMDKindID(Kind));
1302 }
1303
getMetadata(unsigned KindID,SmallVectorImpl<MDNode * > & MDs) const1304 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1305 if (hasMetadata())
1306 getContext().pImpl->ValueMetadata[this].get(KindID, MDs);
1307 }
1308
getMetadata(StringRef Kind,SmallVectorImpl<MDNode * > & MDs) const1309 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1310 if (hasMetadata())
1311 getMetadata(getContext().getMDKindID(Kind), MDs);
1312 }
1313
getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs) const1314 void Value::getAllMetadata(
1315 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1316 if (hasMetadata()) {
1317 assert(getContext().pImpl->ValueMetadata.count(this) &&
1318 "bit out of sync with hash table");
1319 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1320 assert(!Info.empty() && "Shouldn't have called this");
1321 Info.getAll(MDs);
1322 }
1323 }
1324
setMetadata(unsigned KindID,MDNode * Node)1325 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1326 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1327
1328 // Handle the case when we're adding/updating metadata on a value.
1329 if (Node) {
1330 auto &Info = getContext().pImpl->ValueMetadata[this];
1331 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1332 if (Info.empty())
1333 HasMetadata = true;
1334 Info.set(KindID, Node);
1335 return;
1336 }
1337
1338 // Otherwise, we're removing metadata from an instruction.
1339 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1340 "bit out of sync with hash table");
1341 if (!HasMetadata)
1342 return; // Nothing to remove!
1343 auto &Info = getContext().pImpl->ValueMetadata[this];
1344
1345 // Handle removal of an existing value.
1346 Info.erase(KindID);
1347 if (!Info.empty())
1348 return;
1349 getContext().pImpl->ValueMetadata.erase(this);
1350 HasMetadata = false;
1351 }
1352
setMetadata(StringRef Kind,MDNode * Node)1353 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1354 if (!Node && !HasMetadata)
1355 return;
1356 setMetadata(getContext().getMDKindID(Kind), Node);
1357 }
1358
addMetadata(unsigned KindID,MDNode & MD)1359 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1360 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1361 if (!HasMetadata)
1362 HasMetadata = true;
1363 getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1364 }
1365
addMetadata(StringRef Kind,MDNode & MD)1366 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1367 addMetadata(getContext().getMDKindID(Kind), MD);
1368 }
1369
eraseMetadata(unsigned KindID)1370 bool Value::eraseMetadata(unsigned KindID) {
1371 // Nothing to unset.
1372 if (!HasMetadata)
1373 return false;
1374
1375 auto &Store = getContext().pImpl->ValueMetadata[this];
1376 bool Changed = Store.erase(KindID);
1377 if (Store.empty())
1378 clearMetadata();
1379 return Changed;
1380 }
1381
clearMetadata()1382 void Value::clearMetadata() {
1383 if (!HasMetadata)
1384 return;
1385 assert(getContext().pImpl->ValueMetadata.count(this) &&
1386 "bit out of sync with hash table");
1387 getContext().pImpl->ValueMetadata.erase(this);
1388 HasMetadata = false;
1389 }
1390
setMetadata(StringRef Kind,MDNode * Node)1391 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1392 if (!Node && !hasMetadata())
1393 return;
1394 setMetadata(getContext().getMDKindID(Kind), Node);
1395 }
1396
getMetadataImpl(StringRef Kind) const1397 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1398 return getMetadataImpl(getContext().getMDKindID(Kind));
1399 }
1400
dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs)1401 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1402 if (!Value::hasMetadata())
1403 return; // Nothing to remove!
1404
1405 SmallSet<unsigned, 4> KnownSet;
1406 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1407
1408 // A DIAssignID attachment is debug metadata, don't drop it.
1409 KnownSet.insert(LLVMContext::MD_DIAssignID);
1410
1411 auto &MetadataStore = getContext().pImpl->ValueMetadata;
1412 auto &Info = MetadataStore[this];
1413 assert(!Info.empty() && "bit out of sync with hash table");
1414 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) {
1415 return !KnownSet.count(I.MDKind);
1416 });
1417
1418 if (Info.empty()) {
1419 // Drop our entry at the store.
1420 clearMetadata();
1421 }
1422 }
1423
updateDIAssignIDMapping(DIAssignID * ID)1424 void Instruction::updateDIAssignIDMapping(DIAssignID *ID) {
1425 auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs;
1426 if (const DIAssignID *CurrentID =
1427 cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) {
1428 // Nothing to do if the ID isn't changing.
1429 if (ID == CurrentID)
1430 return;
1431
1432 // Unmap this instruction from its current ID.
1433 auto InstrsIt = IDToInstrs.find(CurrentID);
1434 assert(InstrsIt != IDToInstrs.end() &&
1435 "Expect existing attachment to be mapped");
1436
1437 auto &InstVec = InstrsIt->second;
1438 auto *InstIt = std::find(InstVec.begin(), InstVec.end(), this);
1439 assert(InstIt != InstVec.end() &&
1440 "Expect instruction to be mapped to attachment");
1441 // The vector contains a ptr to this. If this is the only element in the
1442 // vector, remove the ID:vector entry, otherwise just remove the
1443 // instruction from the vector.
1444 if (InstVec.size() == 1)
1445 IDToInstrs.erase(InstrsIt);
1446 else
1447 InstVec.erase(InstIt);
1448 }
1449
1450 // Map this instruction to the new ID.
1451 if (ID)
1452 IDToInstrs[ID].push_back(this);
1453 }
1454
setMetadata(unsigned KindID,MDNode * Node)1455 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1456 if (!Node && !hasMetadata())
1457 return;
1458
1459 // Handle 'dbg' as a special case since it is not stored in the hash table.
1460 if (KindID == LLVMContext::MD_dbg) {
1461 DbgLoc = DebugLoc(Node);
1462 return;
1463 }
1464
1465 // Update DIAssignID to Instruction(s) mapping.
1466 if (KindID == LLVMContext::MD_DIAssignID) {
1467 // The DIAssignID tracking infrastructure doesn't support RAUWing temporary
1468 // nodes with DIAssignIDs. The cast_or_null below would also catch this, but
1469 // having a dedicated assert helps make this obvious.
1470 assert((!Node || !Node->isTemporary()) &&
1471 "Temporary DIAssignIDs are invalid");
1472 updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node));
1473 }
1474
1475 Value::setMetadata(KindID, Node);
1476 }
1477
addAnnotationMetadata(StringRef Name)1478 void Instruction::addAnnotationMetadata(StringRef Name) {
1479 MDBuilder MDB(getContext());
1480
1481 auto *Existing = getMetadata(LLVMContext::MD_annotation);
1482 SmallVector<Metadata *, 4> Names;
1483 bool AppendName = true;
1484 if (Existing) {
1485 auto *Tuple = cast<MDTuple>(Existing);
1486 for (auto &N : Tuple->operands()) {
1487 if (cast<MDString>(N.get())->getString() == Name)
1488 AppendName = false;
1489 Names.push_back(N.get());
1490 }
1491 }
1492 if (AppendName)
1493 Names.push_back(MDB.createString(Name));
1494
1495 MDNode *MD = MDTuple::get(getContext(), Names);
1496 setMetadata(LLVMContext::MD_annotation, MD);
1497 }
1498
getAAMetadata() const1499 AAMDNodes Instruction::getAAMetadata() const {
1500 AAMDNodes Result;
1501 // Not using Instruction::hasMetadata() because we're not interested in
1502 // DebugInfoMetadata.
1503 if (Value::hasMetadata()) {
1504 const auto &Info = getContext().pImpl->ValueMetadata[this];
1505 Result.TBAA = Info.lookup(LLVMContext::MD_tbaa);
1506 Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct);
1507 Result.Scope = Info.lookup(LLVMContext::MD_alias_scope);
1508 Result.NoAlias = Info.lookup(LLVMContext::MD_noalias);
1509 }
1510 return Result;
1511 }
1512
setAAMetadata(const AAMDNodes & N)1513 void Instruction::setAAMetadata(const AAMDNodes &N) {
1514 setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1515 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1516 setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1517 setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1518 }
1519
getMetadataImpl(unsigned KindID) const1520 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1521 // Handle 'dbg' as a special case since it is not stored in the hash table.
1522 if (KindID == LLVMContext::MD_dbg)
1523 return DbgLoc.getAsMDNode();
1524 return Value::getMetadata(KindID);
1525 }
1526
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1527 void Instruction::getAllMetadataImpl(
1528 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1529 Result.clear();
1530
1531 // Handle 'dbg' as a special case since it is not stored in the hash table.
1532 if (DbgLoc) {
1533 Result.push_back(
1534 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1535 }
1536 Value::getAllMetadata(Result);
1537 }
1538
extractProfTotalWeight(uint64_t & TotalVal) const1539 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1540 assert(
1541 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1542 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1543 getOpcode() == Instruction::IndirectBr ||
1544 getOpcode() == Instruction::Switch) &&
1545 "Looking for branch weights on something besides branch");
1546
1547 return ::extractProfTotalWeight(*this, TotalVal);
1548 }
1549
copyMetadata(const GlobalObject * Other,unsigned Offset)1550 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1551 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1552 Other->getAllMetadata(MDs);
1553 for (auto &MD : MDs) {
1554 // We need to adjust the type metadata offset.
1555 if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1556 auto *OffsetConst = cast<ConstantInt>(
1557 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1558 Metadata *TypeId = MD.second->getOperand(1);
1559 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1560 OffsetConst->getType(), OffsetConst->getValue() + Offset));
1561 addMetadata(LLVMContext::MD_type,
1562 *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1563 continue;
1564 }
1565 // If an offset adjustment was specified we need to modify the DIExpression
1566 // to prepend the adjustment:
1567 // !DIExpression(DW_OP_plus, Offset, [original expr])
1568 auto *Attachment = MD.second;
1569 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1570 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1571 DIExpression *E = nullptr;
1572 if (!GV) {
1573 auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1574 GV = GVE->getVariable();
1575 E = GVE->getExpression();
1576 }
1577 ArrayRef<uint64_t> OrigElements;
1578 if (E)
1579 OrigElements = E->getElements();
1580 std::vector<uint64_t> Elements(OrigElements.size() + 2);
1581 Elements[0] = dwarf::DW_OP_plus_uconst;
1582 Elements[1] = Offset;
1583 llvm::copy(OrigElements, Elements.begin() + 2);
1584 E = DIExpression::get(getContext(), Elements);
1585 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1586 }
1587 addMetadata(MD.first, *Attachment);
1588 }
1589 }
1590
addTypeMetadata(unsigned Offset,Metadata * TypeID)1591 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1592 addMetadata(
1593 LLVMContext::MD_type,
1594 *MDTuple::get(getContext(),
1595 {ConstantAsMetadata::get(ConstantInt::get(
1596 Type::getInt64Ty(getContext()), Offset)),
1597 TypeID}));
1598 }
1599
setVCallVisibilityMetadata(VCallVisibility Visibility)1600 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1601 // Remove any existing vcall visibility metadata first in case we are
1602 // updating.
1603 eraseMetadata(LLVMContext::MD_vcall_visibility);
1604 addMetadata(LLVMContext::MD_vcall_visibility,
1605 *MDNode::get(getContext(),
1606 {ConstantAsMetadata::get(ConstantInt::get(
1607 Type::getInt64Ty(getContext()), Visibility))}));
1608 }
1609
getVCallVisibility() const1610 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1611 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1612 uint64_t Val = cast<ConstantInt>(
1613 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1614 ->getZExtValue();
1615 assert(Val <= 2 && "unknown vcall visibility!");
1616 return (VCallVisibility)Val;
1617 }
1618 return VCallVisibility::VCallVisibilityPublic;
1619 }
1620
setSubprogram(DISubprogram * SP)1621 void Function::setSubprogram(DISubprogram *SP) {
1622 setMetadata(LLVMContext::MD_dbg, SP);
1623 }
1624
getSubprogram() const1625 DISubprogram *Function::getSubprogram() const {
1626 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1627 }
1628
shouldEmitDebugInfoForProfiling() const1629 bool Function::shouldEmitDebugInfoForProfiling() const {
1630 if (DISubprogram *SP = getSubprogram()) {
1631 if (DICompileUnit *CU = SP->getUnit()) {
1632 return CU->getDebugInfoForProfiling();
1633 }
1634 }
1635 return false;
1636 }
1637
addDebugInfo(DIGlobalVariableExpression * GV)1638 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1639 addMetadata(LLVMContext::MD_dbg, *GV);
1640 }
1641
getDebugInfo(SmallVectorImpl<DIGlobalVariableExpression * > & GVs) const1642 void GlobalVariable::getDebugInfo(
1643 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1644 SmallVector<MDNode *, 1> MDs;
1645 getMetadata(LLVMContext::MD_dbg, MDs);
1646 for (MDNode *MD : MDs)
1647 GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1648 }
1649