1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/IR/AutoUpgrade.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DebugInfoMetadata.h"
18 #include "llvm/IR/DiagnosticPrinter.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GVMaterializer.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PseudoProbe.h"
27 #include "llvm/IR/TypeFinder.h"
28 #include "llvm/Object/ModuleSymbolTable.h"
29 #include "llvm/Support/Error.h"
30 #include "llvm/Support/Path.h"
31 #include "llvm/Transforms/Utils/ValueMapper.h"
32 #include <optional>
33 #include <utility>
34 using namespace llvm;
35
36 //===----------------------------------------------------------------------===//
37 // TypeMap implementation.
38 //===----------------------------------------------------------------------===//
39
40 namespace {
41 class TypeMapTy : public ValueMapTypeRemapper {
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap<Type *, Type *> MappedTypes;
44
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
47 /// roll back.
48 SmallVector<Type *, 16> SpeculativeTypes;
49
50 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
51
52 /// This is a list of non-opaque structs in the source module that are mapped
53 /// to an opaque struct in the destination module.
54 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
55
56 /// This is the set of opaque types in the destination modules who are
57 /// getting a body from the source module.
58 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
59
60 public:
TypeMapTy(IRMover::IdentifiedStructTypeSet & DstStructTypesSet)61 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
62 : DstStructTypesSet(DstStructTypesSet) {}
63
64 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
65 /// Indicate that the specified type in the destination module is conceptually
66 /// equivalent to the specified type in the source module.
67 void addTypeMapping(Type *DstTy, Type *SrcTy);
68
69 /// Produce a body for an opaque type in the dest module from a type
70 /// definition in the source module.
71 void linkDefinedTypeBodies();
72
73 /// Return the mapped type to use for the specified input type from the
74 /// source module.
75 Type *get(Type *SrcTy);
76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
77
78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
79
get(FunctionType * T)80 FunctionType *get(FunctionType *T) {
81 return cast<FunctionType>(get((Type *)T));
82 }
83
84 private:
remapType(Type * SrcTy)85 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
86
87 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
88 };
89 }
90
addTypeMapping(Type * DstTy,Type * SrcTy)91 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
92 assert(SpeculativeTypes.empty());
93 assert(SpeculativeDstOpaqueTypes.empty());
94
95 // Check to see if these types are recursively isomorphic and establish a
96 // mapping between them if so.
97 if (!areTypesIsomorphic(DstTy, SrcTy)) {
98 // Oops, they aren't isomorphic. Just discard this request by rolling out
99 // any speculative mappings we've established.
100 for (Type *Ty : SpeculativeTypes)
101 MappedTypes.erase(Ty);
102
103 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
104 SpeculativeDstOpaqueTypes.size());
105 for (StructType *Ty : SpeculativeDstOpaqueTypes)
106 DstResolvedOpaqueTypes.erase(Ty);
107 } else {
108 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
109 // and all its descendants to lower amount of renaming in LLVM context
110 // Renaming occurs because we load all source modules to the same context
111 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
112 // As a result we may get several different types in the destination
113 // module, which are in fact the same.
114 for (Type *Ty : SpeculativeTypes)
115 if (auto *STy = dyn_cast<StructType>(Ty))
116 if (STy->hasName())
117 STy->setName("");
118 }
119 SpeculativeTypes.clear();
120 SpeculativeDstOpaqueTypes.clear();
121 }
122
123 /// Recursively walk this pair of types, returning true if they are isomorphic,
124 /// false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)125 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
126 // Two types with differing kinds are clearly not isomorphic.
127 if (DstTy->getTypeID() != SrcTy->getTypeID())
128 return false;
129
130 // If we have an entry in the MappedTypes table, then we have our answer.
131 Type *&Entry = MappedTypes[SrcTy];
132 if (Entry)
133 return Entry == DstTy;
134
135 // Two identical types are clearly isomorphic. Remember this
136 // non-speculatively.
137 if (DstTy == SrcTy) {
138 Entry = DstTy;
139 return true;
140 }
141
142 // Okay, we have two types with identical kinds that we haven't seen before.
143
144 // If this is an opaque struct type, special case it.
145 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
146 // Mapping an opaque type to any struct, just keep the dest struct.
147 if (SSTy->isOpaque()) {
148 Entry = DstTy;
149 SpeculativeTypes.push_back(SrcTy);
150 return true;
151 }
152
153 // Mapping a non-opaque source type to an opaque dest. If this is the first
154 // type that we're mapping onto this destination type then we succeed. Keep
155 // the dest, but fill it in later. If this is the second (different) type
156 // that we're trying to map onto the same opaque type then we fail.
157 if (cast<StructType>(DstTy)->isOpaque()) {
158 // We can only map one source type onto the opaque destination type.
159 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
160 return false;
161 SrcDefinitionsToResolve.push_back(SSTy);
162 SpeculativeTypes.push_back(SrcTy);
163 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
164 Entry = DstTy;
165 return true;
166 }
167 }
168
169 // If the number of subtypes disagree between the two types, then we fail.
170 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
171 return false;
172
173 // Fail if any of the extra properties (e.g. array size) of the type disagree.
174 if (isa<IntegerType>(DstTy))
175 return false; // bitwidth disagrees.
176 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
177 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
178 return false;
179 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
180 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
181 return false;
182 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
183 StructType *SSTy = cast<StructType>(SrcTy);
184 if (DSTy->isLiteral() != SSTy->isLiteral() ||
185 DSTy->isPacked() != SSTy->isPacked())
186 return false;
187 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
188 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
189 return false;
190 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
191 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
192 return false;
193 }
194
195 // Otherwise, we speculate that these two types will line up and recursively
196 // check the subelements.
197 Entry = DstTy;
198 SpeculativeTypes.push_back(SrcTy);
199
200 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
201 if (!areTypesIsomorphic(DstTy->getContainedType(I),
202 SrcTy->getContainedType(I)))
203 return false;
204
205 // If everything seems to have lined up, then everything is great.
206 return true;
207 }
208
linkDefinedTypeBodies()209 void TypeMapTy::linkDefinedTypeBodies() {
210 SmallVector<Type *, 16> Elements;
211 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
212 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
213 assert(DstSTy->isOpaque());
214
215 // Map the body of the source type over to a new body for the dest type.
216 Elements.resize(SrcSTy->getNumElements());
217 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
218 Elements[I] = get(SrcSTy->getElementType(I));
219
220 DstSTy->setBody(Elements, SrcSTy->isPacked());
221 DstStructTypesSet.switchToNonOpaque(DstSTy);
222 }
223 SrcDefinitionsToResolve.clear();
224 DstResolvedOpaqueTypes.clear();
225 }
226
finishType(StructType * DTy,StructType * STy,ArrayRef<Type * > ETypes)227 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
228 ArrayRef<Type *> ETypes) {
229 DTy->setBody(ETypes, STy->isPacked());
230
231 // Steal STy's name.
232 if (STy->hasName()) {
233 SmallString<16> TmpName = STy->getName();
234 STy->setName("");
235 DTy->setName(TmpName);
236 }
237
238 DstStructTypesSet.addNonOpaque(DTy);
239 }
240
get(Type * Ty)241 Type *TypeMapTy::get(Type *Ty) {
242 SmallPtrSet<StructType *, 8> Visited;
243 return get(Ty, Visited);
244 }
245
get(Type * Ty,SmallPtrSet<StructType *,8> & Visited)246 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
247 // If we already have an entry for this type, return it.
248 Type **Entry = &MappedTypes[Ty];
249 if (*Entry)
250 return *Entry;
251
252 // These are types that LLVM itself will unique.
253 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
254
255 if (!IsUniqued) {
256 #ifndef NDEBUG
257 for (auto &Pair : MappedTypes) {
258 assert(!(Pair.first != Ty && Pair.second == Ty) &&
259 "mapping to a source type");
260 }
261 #endif
262
263 if (!Visited.insert(cast<StructType>(Ty)).second) {
264 StructType *DTy = StructType::create(Ty->getContext());
265 return *Entry = DTy;
266 }
267 }
268
269 // If this is not a recursive type, then just map all of the elements and
270 // then rebuild the type from inside out.
271 SmallVector<Type *, 4> ElementTypes;
272
273 // If there are no element types to map, then the type is itself. This is
274 // true for the anonymous {} struct, things like 'float', integers, etc.
275 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
276 return *Entry = Ty;
277
278 // Remap all of the elements, keeping track of whether any of them change.
279 bool AnyChange = false;
280 ElementTypes.resize(Ty->getNumContainedTypes());
281 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
282 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
283 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
284 }
285
286 // If we found our type while recursively processing stuff, just use it.
287 Entry = &MappedTypes[Ty];
288 if (*Entry) {
289 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
290 if (DTy->isOpaque()) {
291 auto *STy = cast<StructType>(Ty);
292 finishType(DTy, STy, ElementTypes);
293 }
294 }
295 return *Entry;
296 }
297
298 // If all of the element types mapped directly over and the type is not
299 // a named struct, then the type is usable as-is.
300 if (!AnyChange && IsUniqued)
301 return *Entry = Ty;
302
303 // Otherwise, rebuild a modified type.
304 switch (Ty->getTypeID()) {
305 default:
306 llvm_unreachable("unknown derived type to remap");
307 case Type::ArrayTyID:
308 return *Entry = ArrayType::get(ElementTypes[0],
309 cast<ArrayType>(Ty)->getNumElements());
310 case Type::ScalableVectorTyID:
311 case Type::FixedVectorTyID:
312 return *Entry = VectorType::get(ElementTypes[0],
313 cast<VectorType>(Ty)->getElementCount());
314 case Type::PointerTyID:
315 return *Entry = PointerType::get(ElementTypes[0],
316 cast<PointerType>(Ty)->getAddressSpace());
317 case Type::FunctionTyID:
318 return *Entry = FunctionType::get(ElementTypes[0],
319 ArrayRef(ElementTypes).slice(1),
320 cast<FunctionType>(Ty)->isVarArg());
321 case Type::StructTyID: {
322 auto *STy = cast<StructType>(Ty);
323 bool IsPacked = STy->isPacked();
324 if (IsUniqued)
325 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
326
327 // If the type is opaque, we can just use it directly.
328 if (STy->isOpaque()) {
329 DstStructTypesSet.addOpaque(STy);
330 return *Entry = Ty;
331 }
332
333 if (StructType *OldT =
334 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
335 STy->setName("");
336 return *Entry = OldT;
337 }
338
339 if (!AnyChange) {
340 DstStructTypesSet.addNonOpaque(STy);
341 return *Entry = Ty;
342 }
343
344 StructType *DTy = StructType::create(Ty->getContext());
345 finishType(DTy, STy, ElementTypes);
346 return *Entry = DTy;
347 }
348 }
349 }
350
LinkDiagnosticInfo(DiagnosticSeverity Severity,const Twine & Msg)351 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
352 const Twine &Msg)
353 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
print(DiagnosticPrinter & DP) const354 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
355
356 //===----------------------------------------------------------------------===//
357 // IRLinker implementation.
358 //===----------------------------------------------------------------------===//
359
360 namespace {
361 class IRLinker;
362
363 /// Creates prototypes for functions that are lazily linked on the fly. This
364 /// speeds up linking for modules with many/ lazily linked functions of which
365 /// few get used.
366 class GlobalValueMaterializer final : public ValueMaterializer {
367 IRLinker &TheIRLinker;
368
369 public:
GlobalValueMaterializer(IRLinker & TheIRLinker)370 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
371 Value *materialize(Value *V) override;
372 };
373
374 class LocalValueMaterializer final : public ValueMaterializer {
375 IRLinker &TheIRLinker;
376
377 public:
LocalValueMaterializer(IRLinker & TheIRLinker)378 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
379 Value *materialize(Value *V) override;
380 };
381
382 /// Type of the Metadata map in \a ValueToValueMapTy.
383 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
384
385 /// This is responsible for keeping track of the state used for moving data
386 /// from SrcM to DstM.
387 class IRLinker {
388 Module &DstM;
389 std::unique_ptr<Module> SrcM;
390
391 /// See IRMover::move().
392 IRMover::LazyCallback AddLazyFor;
393
394 TypeMapTy TypeMap;
395 GlobalValueMaterializer GValMaterializer;
396 LocalValueMaterializer LValMaterializer;
397
398 /// A metadata map that's shared between IRLinker instances.
399 MDMapT &SharedMDs;
400
401 /// Mapping of values from what they used to be in Src, to what they are now
402 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
403 /// due to the use of Value handles which the Linker doesn't actually need,
404 /// but this allows us to reuse the ValueMapper code.
405 ValueToValueMapTy ValueMap;
406 ValueToValueMapTy IndirectSymbolValueMap;
407
408 DenseSet<GlobalValue *> ValuesToLink;
409 std::vector<GlobalValue *> Worklist;
410 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
411
maybeAdd(GlobalValue * GV)412 void maybeAdd(GlobalValue *GV) {
413 if (ValuesToLink.insert(GV).second)
414 Worklist.push_back(GV);
415 }
416
417 /// Whether we are importing globals for ThinLTO, as opposed to linking the
418 /// source module. If this flag is set, it means that we can rely on some
419 /// other object file to define any non-GlobalValue entities defined by the
420 /// source module. This currently causes us to not link retained types in
421 /// debug info metadata and module inline asm.
422 bool IsPerformingImport;
423
424 /// Set to true when all global value body linking is complete (including
425 /// lazy linking). Used to prevent metadata linking from creating new
426 /// references.
427 bool DoneLinkingBodies = false;
428
429 /// The Error encountered during materialization. We use an Optional here to
430 /// avoid needing to manage an unconsumed success value.
431 std::optional<Error> FoundError;
setError(Error E)432 void setError(Error E) {
433 if (E)
434 FoundError = std::move(E);
435 }
436
437 /// Most of the errors produced by this module are inconvertible StringErrors.
438 /// This convenience function lets us return one of those more easily.
stringErr(const Twine & T)439 Error stringErr(const Twine &T) {
440 return make_error<StringError>(T, inconvertibleErrorCode());
441 }
442
443 /// Entry point for mapping values and alternate context for mapping aliases.
444 ValueMapper Mapper;
445 unsigned IndirectSymbolMCID;
446
447 /// Handles cloning of a global values from the source module into
448 /// the destination module, including setting the attributes and visibility.
449 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
450
emitWarning(const Twine & Message)451 void emitWarning(const Twine &Message) {
452 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
453 }
454
455 /// Given a global in the source module, return the global in the
456 /// destination module that is being linked to, if any.
getLinkedToGlobal(const GlobalValue * SrcGV)457 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
458 // If the source has no name it can't link. If it has local linkage,
459 // there is no name match-up going on.
460 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
461 return nullptr;
462
463 // Otherwise see if we have a match in the destination module's symtab.
464 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
465 if (!DGV)
466 return nullptr;
467
468 // If we found a global with the same name in the dest module, but it has
469 // internal linkage, we are really not doing any linkage here.
470 if (DGV->hasLocalLinkage())
471 return nullptr;
472
473 // If we found an intrinsic declaration with mismatching prototypes, we
474 // probably had a nameclash. Don't use that version.
475 if (auto *FDGV = dyn_cast<Function>(DGV))
476 if (FDGV->isIntrinsic())
477 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
478 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
479 return nullptr;
480
481 // Otherwise, we do in fact link to the destination global.
482 return DGV;
483 }
484
485 void computeTypeMapping();
486
487 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
488 const GlobalVariable *SrcGV);
489
490 /// Given the GlobaValue \p SGV in the source module, and the matching
491 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
492 /// into the destination module.
493 ///
494 /// Note this code may call the client-provided \p AddLazyFor.
495 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
496 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
497 bool ForIndirectSymbol);
498
499 Error linkModuleFlagsMetadata();
500
501 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
502 Error linkFunctionBody(Function &Dst, Function &Src);
503 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
504 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
505 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
506
507 /// Replace all types in the source AttributeList with the
508 /// corresponding destination type.
509 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
510
511 /// Functions that take care of cloning a specific global value type
512 /// into the destination module.
513 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
514 Function *copyFunctionProto(const Function *SF);
515 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);
516
517 /// Perform "replace all uses with" operations. These work items need to be
518 /// performed as part of materialization, but we postpone them to happen after
519 /// materialization is done. The materializer called by ValueMapper is not
520 /// expected to delete constants, as ValueMapper is holding pointers to some
521 /// of them, but constant destruction may be indirectly triggered by RAUW.
522 /// Hence, the need to move this out of the materialization call chain.
523 void flushRAUWWorklist();
524
525 /// When importing for ThinLTO, prevent importing of types listed on
526 /// the DICompileUnit that we don't need a copy of in the importing
527 /// module.
528 void prepareCompileUnitsForImport();
529 void linkNamedMDNodes();
530
531 /// Update attributes while linking.
532 void updateAttributes(GlobalValue &GV);
533
534 public:
IRLinker(Module & DstM,MDMapT & SharedMDs,IRMover::IdentifiedStructTypeSet & Set,std::unique_ptr<Module> SrcM,ArrayRef<GlobalValue * > ValuesToLink,IRMover::LazyCallback AddLazyFor,bool IsPerformingImport)535 IRLinker(Module &DstM, MDMapT &SharedMDs,
536 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
537 ArrayRef<GlobalValue *> ValuesToLink,
538 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport)
539 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
540 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
541 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
542 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
543 &TypeMap, &GValMaterializer),
544 IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
545 IndirectSymbolValueMap, &LValMaterializer)) {
546 ValueMap.getMDMap() = std::move(SharedMDs);
547 for (GlobalValue *GV : ValuesToLink)
548 maybeAdd(GV);
549 if (IsPerformingImport)
550 prepareCompileUnitsForImport();
551 }
~IRLinker()552 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
553
554 Error run();
555 Value *materialize(Value *V, bool ForIndirectSymbol);
556 };
557 }
558
559 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
560 /// table. This is good for all clients except for us. Go through the trouble
561 /// to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)562 static void forceRenaming(GlobalValue *GV, StringRef Name) {
563 // If the global doesn't force its name or if it already has the right name,
564 // there is nothing for us to do.
565 if (GV->hasLocalLinkage() || GV->getName() == Name)
566 return;
567
568 Module *M = GV->getParent();
569
570 // If there is a conflict, rename the conflict.
571 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
572 GV->takeName(ConflictGV);
573 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
574 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
575 } else {
576 GV->setName(Name); // Force the name back
577 }
578 }
579
materialize(Value * SGV)580 Value *GlobalValueMaterializer::materialize(Value *SGV) {
581 return TheIRLinker.materialize(SGV, false);
582 }
583
materialize(Value * SGV)584 Value *LocalValueMaterializer::materialize(Value *SGV) {
585 return TheIRLinker.materialize(SGV, true);
586 }
587
materialize(Value * V,bool ForIndirectSymbol)588 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
589 auto *SGV = dyn_cast<GlobalValue>(V);
590 if (!SGV)
591 return nullptr;
592
593 // When linking a global from other modules than source & dest, skip
594 // materializing it because it would be mapped later when its containing
595 // module is linked. Linking it now would potentially pull in many types that
596 // may not be mapped properly.
597 if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
598 return nullptr;
599
600 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
601 if (!NewProto) {
602 setError(NewProto.takeError());
603 return nullptr;
604 }
605 if (!*NewProto)
606 return nullptr;
607
608 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
609 if (!New)
610 return *NewProto;
611
612 // If we already created the body, just return.
613 if (auto *F = dyn_cast<Function>(New)) {
614 if (!F->isDeclaration())
615 return New;
616 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
617 if (V->hasInitializer() || V->hasAppendingLinkage())
618 return New;
619 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
620 if (GA->getAliasee())
621 return New;
622 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
623 if (GI->getResolver())
624 return New;
625 } else {
626 llvm_unreachable("Invalid GlobalValue type");
627 }
628
629 // If the global is being linked for an indirect symbol, it may have already
630 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
631 // for a regular symbol may have already been scheduled for an indirect
632 // symbol. Check for these cases by looking in the other value map and
633 // confirming the same value has been scheduled. If there is an entry in the
634 // ValueMap but the value is different, it means that the value already had a
635 // definition in the destination module (linkonce for instance), but we need a
636 // new definition for the indirect symbol ("New" will be different).
637 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
638 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
639 return New;
640
641 if (ForIndirectSymbol || shouldLink(New, *SGV))
642 setError(linkGlobalValueBody(*New, *SGV));
643
644 updateAttributes(*New);
645 return New;
646 }
647
648 /// Loop through the global variables in the src module and merge them into the
649 /// dest module.
copyGlobalVariableProto(const GlobalVariable * SGVar)650 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
651 // No linking to be performed or linking from the source: simply create an
652 // identical version of the symbol over in the dest module... the
653 // initializer will be filled in later by LinkGlobalInits.
654 GlobalVariable *NewDGV =
655 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
656 SGVar->isConstant(), GlobalValue::ExternalLinkage,
657 /*init*/ nullptr, SGVar->getName(),
658 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
659 SGVar->getAddressSpace());
660 NewDGV->setAlignment(SGVar->getAlign());
661 NewDGV->copyAttributesFrom(SGVar);
662 return NewDGV;
663 }
664
mapAttributeTypes(LLVMContext & C,AttributeList Attrs)665 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
666 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
667 for (int AttrIdx = Attribute::FirstTypeAttr;
668 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
669 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
670 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
671 if (Type *Ty =
672 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
673 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
674 TypeMap.get(Ty));
675 break;
676 }
677 }
678 }
679 }
680 return Attrs;
681 }
682
683 /// Link the function in the source module into the destination module if
684 /// needed, setting up mapping information.
copyFunctionProto(const Function * SF)685 Function *IRLinker::copyFunctionProto(const Function *SF) {
686 // If there is no linkage to be performed or we are linking from the source,
687 // bring SF over.
688 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
689 GlobalValue::ExternalLinkage,
690 SF->getAddressSpace(), SF->getName(), &DstM);
691 F->copyAttributesFrom(SF);
692 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
693 return F;
694 }
695
696 /// Set up prototypes for any indirect symbols that come over from the source
697 /// module.
copyIndirectSymbolProto(const GlobalValue * SGV)698 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
699 // If there is no linkage to be performed or we're linking from the source,
700 // bring over SGA.
701 auto *Ty = TypeMap.get(SGV->getValueType());
702
703 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
704 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
705 GlobalValue::ExternalLinkage,
706 SGV->getName(), &DstM);
707 DGA->copyAttributesFrom(GA);
708 return DGA;
709 }
710
711 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
712 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
713 GlobalValue::ExternalLinkage,
714 SGV->getName(), nullptr, &DstM);
715 DGI->copyAttributesFrom(GI);
716 return DGI;
717 }
718
719 llvm_unreachable("Invalid source global value type");
720 }
721
copyGlobalValueProto(const GlobalValue * SGV,bool ForDefinition)722 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
723 bool ForDefinition) {
724 GlobalValue *NewGV;
725 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
726 NewGV = copyGlobalVariableProto(SGVar);
727 } else if (auto *SF = dyn_cast<Function>(SGV)) {
728 NewGV = copyFunctionProto(SF);
729 } else {
730 if (ForDefinition)
731 NewGV = copyIndirectSymbolProto(SGV);
732 else if (SGV->getValueType()->isFunctionTy())
733 NewGV =
734 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
735 GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
736 SGV->getName(), &DstM);
737 else
738 NewGV =
739 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
740 /*isConstant*/ false, GlobalValue::ExternalLinkage,
741 /*init*/ nullptr, SGV->getName(),
742 /*insertbefore*/ nullptr,
743 SGV->getThreadLocalMode(), SGV->getAddressSpace());
744 }
745
746 if (ForDefinition)
747 NewGV->setLinkage(SGV->getLinkage());
748 else if (SGV->hasExternalWeakLinkage())
749 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
750
751 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
752 // Metadata for global variables and function declarations is copied eagerly.
753 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
754 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
755 }
756
757 // Remove these copied constants in case this stays a declaration, since
758 // they point to the source module. If the def is linked the values will
759 // be mapped in during linkFunctionBody.
760 if (auto *NewF = dyn_cast<Function>(NewGV)) {
761 NewF->setPersonalityFn(nullptr);
762 NewF->setPrefixData(nullptr);
763 NewF->setPrologueData(nullptr);
764 }
765
766 return NewGV;
767 }
768
getTypeNamePrefix(StringRef Name)769 static StringRef getTypeNamePrefix(StringRef Name) {
770 size_t DotPos = Name.rfind('.');
771 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
772 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
773 ? Name
774 : Name.substr(0, DotPos);
775 }
776
777 /// Loop over all of the linked values to compute type mappings. For example,
778 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
779 /// types 'Foo' but one got renamed when the module was loaded into the same
780 /// LLVMContext.
computeTypeMapping()781 void IRLinker::computeTypeMapping() {
782 for (GlobalValue &SGV : SrcM->globals()) {
783 GlobalValue *DGV = getLinkedToGlobal(&SGV);
784 if (!DGV)
785 continue;
786
787 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
788 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
789 continue;
790 }
791
792 // Unify the element type of appending arrays.
793 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
794 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
795 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
796 }
797
798 for (GlobalValue &SGV : *SrcM)
799 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
800 if (DGV->getType() == SGV.getType()) {
801 // If the types of DGV and SGV are the same, it means that DGV is from
802 // the source module and got added to DstM from a shared metadata. We
803 // shouldn't map this type to itself in case the type's components get
804 // remapped to a new type from DstM (for instance, during the loop over
805 // SrcM->getIdentifiedStructTypes() below).
806 continue;
807 }
808
809 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
810 }
811
812 for (GlobalValue &SGV : SrcM->aliases())
813 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
814 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
815
816 // Incorporate types by name, scanning all the types in the source module.
817 // At this point, the destination module may have a type "%foo = { i32 }" for
818 // example. When the source module got loaded into the same LLVMContext, if
819 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
820 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
821 for (StructType *ST : Types) {
822 if (!ST->hasName())
823 continue;
824
825 if (TypeMap.DstStructTypesSet.hasType(ST)) {
826 // This is actually a type from the destination module.
827 // getIdentifiedStructTypes() can have found it by walking debug info
828 // metadata nodes, some of which get linked by name when ODR Type Uniquing
829 // is enabled on the Context, from the source to the destination module.
830 continue;
831 }
832
833 auto STTypePrefix = getTypeNamePrefix(ST->getName());
834 if (STTypePrefix.size() == ST->getName().size())
835 continue;
836
837 // Check to see if the destination module has a struct with the prefix name.
838 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
839 if (!DST)
840 continue;
841
842 // Don't use it if this actually came from the source module. They're in
843 // the same LLVMContext after all. Also don't use it unless the type is
844 // actually used in the destination module. This can happen in situations
845 // like this:
846 //
847 // Module A Module B
848 // -------- --------
849 // %Z = type { %A } %B = type { %C.1 }
850 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
851 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
852 // %C = type { i8* } %B.3 = type { %C.1 }
853 //
854 // When we link Module B with Module A, the '%B' in Module B is
855 // used. However, that would then use '%C.1'. But when we process '%C.1',
856 // we prefer to take the '%C' version. So we are then left with both
857 // '%C.1' and '%C' being used for the same types. This leads to some
858 // variables using one type and some using the other.
859 if (TypeMap.DstStructTypesSet.hasType(DST))
860 TypeMap.addTypeMapping(DST, ST);
861 }
862
863 // Now that we have discovered all of the type equivalences, get a body for
864 // any 'opaque' types in the dest module that are now resolved.
865 TypeMap.linkDefinedTypeBodies();
866 }
867
getArrayElements(const Constant * C,SmallVectorImpl<Constant * > & Dest)868 static void getArrayElements(const Constant *C,
869 SmallVectorImpl<Constant *> &Dest) {
870 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
871
872 for (unsigned i = 0; i != NumElements; ++i)
873 Dest.push_back(C->getAggregateElement(i));
874 }
875
876 /// If there were any appending global variables, link them together now.
877 Expected<Constant *>
linkAppendingVarProto(GlobalVariable * DstGV,const GlobalVariable * SrcGV)878 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
879 const GlobalVariable *SrcGV) {
880 // Check that both variables have compatible properties.
881 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
882 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
883 return stringErr(
884 "Linking globals named '" + SrcGV->getName() +
885 "': can only link appending global with another appending "
886 "global!");
887
888 if (DstGV->isConstant() != SrcGV->isConstant())
889 return stringErr("Appending variables linked with different const'ness!");
890
891 if (DstGV->getAlign() != SrcGV->getAlign())
892 return stringErr(
893 "Appending variables with different alignment need to be linked!");
894
895 if (DstGV->getVisibility() != SrcGV->getVisibility())
896 return stringErr(
897 "Appending variables with different visibility need to be linked!");
898
899 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
900 return stringErr(
901 "Appending variables with different unnamed_addr need to be linked!");
902
903 if (DstGV->getSection() != SrcGV->getSection())
904 return stringErr(
905 "Appending variables with different section name need to be linked!");
906
907 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace())
908 return stringErr("Appending variables with different address spaces need "
909 "to be linked!");
910 }
911
912 // Do not need to do anything if source is a declaration.
913 if (SrcGV->isDeclaration())
914 return DstGV;
915
916 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
917 ->getElementType();
918
919 // FIXME: This upgrade is done during linking to support the C API. Once the
920 // old form is deprecated, we should move this upgrade to
921 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
922 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
923 StringRef Name = SrcGV->getName();
924 bool IsNewStructor = false;
925 bool IsOldStructor = false;
926 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
927 if (cast<StructType>(EltTy)->getNumElements() == 3)
928 IsNewStructor = true;
929 else
930 IsOldStructor = true;
931 }
932
933 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
934 if (IsOldStructor) {
935 auto &ST = *cast<StructType>(EltTy);
936 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
937 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
938 }
939
940 uint64_t DstNumElements = 0;
941 if (DstGV && !DstGV->isDeclaration()) {
942 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
943 DstNumElements = DstTy->getNumElements();
944
945 // Check to see that they two arrays agree on type.
946 if (EltTy != DstTy->getElementType())
947 return stringErr("Appending variables with different element types!");
948 }
949
950 SmallVector<Constant *, 16> SrcElements;
951 getArrayElements(SrcGV->getInitializer(), SrcElements);
952
953 if (IsNewStructor) {
954 erase_if(SrcElements, [this](Constant *E) {
955 auto *Key =
956 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
957 if (!Key)
958 return false;
959 GlobalValue *DGV = getLinkedToGlobal(Key);
960 return !shouldLink(DGV, *Key);
961 });
962 }
963 uint64_t NewSize = DstNumElements + SrcElements.size();
964 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
965
966 // Create the new global variable.
967 GlobalVariable *NG = new GlobalVariable(
968 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
969 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
970 SrcGV->getAddressSpace());
971
972 NG->copyAttributesFrom(SrcGV);
973 forceRenaming(NG, SrcGV->getName());
974
975 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
976
977 Mapper.scheduleMapAppendingVariable(
978 *NG,
979 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
980 IsOldStructor, SrcElements);
981
982 // Replace any uses of the two global variables with uses of the new
983 // global.
984 if (DstGV) {
985 RAUWWorklist.push_back(
986 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
987 }
988
989 return Ret;
990 }
991
shouldLink(GlobalValue * DGV,GlobalValue & SGV)992 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
993 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
994 return true;
995
996 if (DGV && !DGV->isDeclarationForLinker())
997 return false;
998
999 if (SGV.isDeclaration() || DoneLinkingBodies)
1000 return false;
1001
1002 // Callback to the client to give a chance to lazily add the Global to the
1003 // list of value to link.
1004 bool LazilyAdded = false;
1005 if (AddLazyFor)
1006 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
1007 maybeAdd(&GV);
1008 LazilyAdded = true;
1009 });
1010 return LazilyAdded;
1011 }
1012
linkGlobalValueProto(GlobalValue * SGV,bool ForIndirectSymbol)1013 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
1014 bool ForIndirectSymbol) {
1015 GlobalValue *DGV = getLinkedToGlobal(SGV);
1016
1017 bool ShouldLink = shouldLink(DGV, *SGV);
1018
1019 // just missing from map
1020 if (ShouldLink) {
1021 auto I = ValueMap.find(SGV);
1022 if (I != ValueMap.end())
1023 return cast<Constant>(I->second);
1024
1025 I = IndirectSymbolValueMap.find(SGV);
1026 if (I != IndirectSymbolValueMap.end())
1027 return cast<Constant>(I->second);
1028 }
1029
1030 if (!ShouldLink && ForIndirectSymbol)
1031 DGV = nullptr;
1032
1033 // Handle the ultra special appending linkage case first.
1034 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
1035 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
1036 cast<GlobalVariable>(SGV));
1037
1038 bool NeedsRenaming = false;
1039 GlobalValue *NewGV;
1040 if (DGV && !ShouldLink) {
1041 NewGV = DGV;
1042 } else {
1043 // If we are done linking global value bodies (i.e. we are performing
1044 // metadata linking), don't link in the global value due to this
1045 // reference, simply map it to null.
1046 if (DoneLinkingBodies)
1047 return nullptr;
1048
1049 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1050 if (ShouldLink || !ForIndirectSymbol)
1051 NeedsRenaming = true;
1052 }
1053
1054 // Overloaded intrinsics have overloaded types names as part of their
1055 // names. If we renamed overloaded types we should rename the intrinsic
1056 // as well.
1057 if (Function *F = dyn_cast<Function>(NewGV))
1058 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
1059 NewGV->eraseFromParent();
1060 NewGV = *Remangled;
1061 NeedsRenaming = false;
1062 }
1063
1064 if (NeedsRenaming)
1065 forceRenaming(NewGV, SGV->getName());
1066
1067 if (ShouldLink || ForIndirectSymbol) {
1068 if (const Comdat *SC = SGV->getComdat()) {
1069 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1070 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1071 DC->setSelectionKind(SC->getSelectionKind());
1072 GO->setComdat(DC);
1073 }
1074 }
1075 }
1076
1077 if (!ShouldLink && ForIndirectSymbol)
1078 NewGV->setLinkage(GlobalValue::InternalLinkage);
1079
1080 Constant *C = NewGV;
1081 // Only create a bitcast if necessary. In particular, with
1082 // DebugTypeODRUniquing we may reach metadata in the destination module
1083 // containing a GV from the source module, in which case SGV will be
1084 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1085 // assumes it is being invoked on a type in the source module.
1086 if (DGV && NewGV != SGV) {
1087 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1088 NewGV, TypeMap.get(SGV->getType()));
1089 }
1090
1091 if (DGV && NewGV != DGV) {
1092 // Schedule "replace all uses with" to happen after materializing is
1093 // done. It is not safe to do it now, since ValueMapper may be holding
1094 // pointers to constants that will get deleted if RAUW runs.
1095 RAUWWorklist.push_back(std::make_pair(
1096 DGV,
1097 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1098 }
1099
1100 return C;
1101 }
1102
1103 /// Update the initializers in the Dest module now that all globals that may be
1104 /// referenced are in Dest.
linkGlobalVariable(GlobalVariable & Dst,GlobalVariable & Src)1105 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1106 // Figure out what the initializer looks like in the dest module.
1107 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1108 }
1109
1110 /// Copy the source function over into the dest function and fix up references
1111 /// to values. At this point we know that Dest is an external function, and
1112 /// that Src is not.
linkFunctionBody(Function & Dst,Function & Src)1113 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1114 assert(Dst.isDeclaration() && !Src.isDeclaration());
1115
1116 // Materialize if needed.
1117 if (Error Err = Src.materialize())
1118 return Err;
1119
1120 // Link in the operands without remapping.
1121 if (Src.hasPrefixData())
1122 Dst.setPrefixData(Src.getPrefixData());
1123 if (Src.hasPrologueData())
1124 Dst.setPrologueData(Src.getPrologueData());
1125 if (Src.hasPersonalityFn())
1126 Dst.setPersonalityFn(Src.getPersonalityFn());
1127
1128 // Copy over the metadata attachments without remapping.
1129 Dst.copyMetadata(&Src, 0);
1130
1131 // Steal arguments and splice the body of Src into Dst.
1132 Dst.stealArgumentListFrom(Src);
1133 Dst.splice(Dst.end(), &Src);
1134
1135 // Everything has been moved over. Remap it.
1136 Mapper.scheduleRemapFunction(Dst);
1137 return Error::success();
1138 }
1139
linkAliasAliasee(GlobalAlias & Dst,GlobalAlias & Src)1140 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
1141 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
1142 }
1143
linkIFuncResolver(GlobalIFunc & Dst,GlobalIFunc & Src)1144 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
1145 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
1146 }
1147
linkGlobalValueBody(GlobalValue & Dst,GlobalValue & Src)1148 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1149 if (auto *F = dyn_cast<Function>(&Src))
1150 return linkFunctionBody(cast<Function>(Dst), *F);
1151 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1152 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1153 return Error::success();
1154 }
1155 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
1156 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
1157 return Error::success();
1158 }
1159 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
1160 return Error::success();
1161 }
1162
flushRAUWWorklist()1163 void IRLinker::flushRAUWWorklist() {
1164 for (const auto &Elem : RAUWWorklist) {
1165 GlobalValue *Old;
1166 Value *New;
1167 std::tie(Old, New) = Elem;
1168
1169 Old->replaceAllUsesWith(New);
1170 Old->eraseFromParent();
1171 }
1172 RAUWWorklist.clear();
1173 }
1174
prepareCompileUnitsForImport()1175 void IRLinker::prepareCompileUnitsForImport() {
1176 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1177 if (!SrcCompileUnits)
1178 return;
1179 // When importing for ThinLTO, prevent importing of types listed on
1180 // the DICompileUnit that we don't need a copy of in the importing
1181 // module. They will be emitted by the originating module.
1182 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1183 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1184 assert(CU && "Expected valid compile unit");
1185 // Enums, macros, and retained types don't need to be listed on the
1186 // imported DICompileUnit. This means they will only be imported
1187 // if reached from the mapped IR.
1188 CU->replaceEnumTypes(nullptr);
1189 CU->replaceMacros(nullptr);
1190 CU->replaceRetainedTypes(nullptr);
1191
1192 // The original definition (or at least its debug info - if the variable is
1193 // internalized and optimized away) will remain in the source module, so
1194 // there's no need to import them.
1195 // If LLVM ever does more advanced optimizations on global variables
1196 // (removing/localizing write operations, for instance) that can track
1197 // through debug info, this decision may need to be revisited - but do so
1198 // with care when it comes to debug info size. Emitting small CUs containing
1199 // only a few imported entities into every destination module may be very
1200 // size inefficient.
1201 CU->replaceGlobalVariables(nullptr);
1202
1203 // Imported entities only need to be mapped in if they have local
1204 // scope, as those might correspond to an imported entity inside a
1205 // function being imported (any locally scoped imported entities that
1206 // don't end up referenced by an imported function will not be emitted
1207 // into the object). Imported entities not in a local scope
1208 // (e.g. on the namespace) only need to be emitted by the originating
1209 // module. Create a list of the locally scoped imported entities, and
1210 // replace the source CUs imported entity list with the new list, so
1211 // only those are mapped in.
1212 // FIXME: Locally-scoped imported entities could be moved to the
1213 // functions they are local to instead of listing them on the CU, and
1214 // we would naturally only link in those needed by function importing.
1215 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1216 bool ReplaceImportedEntities = false;
1217 for (auto *IE : CU->getImportedEntities()) {
1218 DIScope *Scope = IE->getScope();
1219 assert(Scope && "Invalid Scope encoding!");
1220 if (isa<DILocalScope>(Scope))
1221 AllImportedModules.emplace_back(IE);
1222 else
1223 ReplaceImportedEntities = true;
1224 }
1225 if (ReplaceImportedEntities) {
1226 if (!AllImportedModules.empty())
1227 CU->replaceImportedEntities(MDTuple::get(
1228 CU->getContext(),
1229 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1230 AllImportedModules.end())));
1231 else
1232 // If there were no local scope imported entities, we can map
1233 // the whole list to nullptr.
1234 CU->replaceImportedEntities(nullptr);
1235 }
1236 }
1237 }
1238
1239 /// Insert all of the named MDNodes in Src into the Dest module.
linkNamedMDNodes()1240 void IRLinker::linkNamedMDNodes() {
1241 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1242 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1243 // Don't link module flags here. Do them separately.
1244 if (&NMD == SrcModFlags)
1245 continue;
1246 // Don't import pseudo probe descriptors here for thinLTO. They will be
1247 // emitted by the originating module.
1248 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
1249 if (!DstM.getNamedMetadata(NMD.getName()))
1250 emitWarning("Pseudo-probe ignored: source module '" +
1251 SrcM->getModuleIdentifier() +
1252 "' is compiled with -fpseudo-probe-for-profiling while "
1253 "destination module '" +
1254 DstM.getModuleIdentifier() + "' is not\n");
1255 continue;
1256 }
1257 // The stats are computed per module and will all be merged in the binary.
1258 // Importing the metadata will cause duplication of the stats.
1259 if (IsPerformingImport && NMD.getName() == "llvm.stats")
1260 continue;
1261
1262 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1263 // Add Src elements into Dest node.
1264 for (const MDNode *Op : NMD.operands())
1265 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1266 }
1267 }
1268
1269 /// Merge the linker flags in Src into the Dest module.
linkModuleFlagsMetadata()1270 Error IRLinker::linkModuleFlagsMetadata() {
1271 // If the source module has no module flags, we are done.
1272 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1273 if (!SrcModFlags)
1274 return Error::success();
1275
1276 // Check for module flag for updates before do anything.
1277 UpgradeModuleFlags(*SrcM);
1278
1279 // If the destination module doesn't have module flags yet, then just copy
1280 // over the source module's flags.
1281 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1282 if (DstModFlags->getNumOperands() == 0) {
1283 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1284 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1285
1286 return Error::success();
1287 }
1288
1289 // First build a map of the existing module flags and requirements.
1290 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1291 SmallSetVector<MDNode *, 16> Requirements;
1292 SmallVector<unsigned, 0> Mins;
1293 DenseSet<MDString *> SeenMin;
1294 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1295 MDNode *Op = DstModFlags->getOperand(I);
1296 uint64_t Behavior =
1297 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
1298 MDString *ID = cast<MDString>(Op->getOperand(1));
1299
1300 if (Behavior == Module::Require) {
1301 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1302 } else {
1303 if (Behavior == Module::Min)
1304 Mins.push_back(I);
1305 Flags[ID] = std::make_pair(Op, I);
1306 }
1307 }
1308
1309 // Merge in the flags from the source module, and also collect its set of
1310 // requirements.
1311 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1312 MDNode *SrcOp = SrcModFlags->getOperand(I);
1313 ConstantInt *SrcBehavior =
1314 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1315 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1316 MDNode *DstOp;
1317 unsigned DstIndex;
1318 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1319 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1320 SeenMin.insert(ID);
1321
1322 // If this is a requirement, add it and continue.
1323 if (SrcBehaviorValue == Module::Require) {
1324 // If the destination module does not already have this requirement, add
1325 // it.
1326 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1327 DstModFlags->addOperand(SrcOp);
1328 }
1329 continue;
1330 }
1331
1332 // If there is no existing flag with this ID, just add it.
1333 if (!DstOp) {
1334 if (SrcBehaviorValue == Module::Min) {
1335 Mins.push_back(DstModFlags->getNumOperands());
1336 SeenMin.erase(ID);
1337 }
1338 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1339 DstModFlags->addOperand(SrcOp);
1340 continue;
1341 }
1342
1343 // Otherwise, perform a merge.
1344 ConstantInt *DstBehavior =
1345 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1346 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1347
1348 auto overrideDstValue = [&]() {
1349 DstModFlags->setOperand(DstIndex, SrcOp);
1350 Flags[ID].first = SrcOp;
1351 };
1352
1353 // If either flag has override behavior, handle it first.
1354 if (DstBehaviorValue == Module::Override) {
1355 // Diagnose inconsistent flags which both have override behavior.
1356 if (SrcBehaviorValue == Module::Override &&
1357 SrcOp->getOperand(2) != DstOp->getOperand(2))
1358 return stringErr("linking module flags '" + ID->getString() +
1359 "': IDs have conflicting override values in '" +
1360 SrcM->getModuleIdentifier() + "' and '" +
1361 DstM.getModuleIdentifier() + "'");
1362 continue;
1363 } else if (SrcBehaviorValue == Module::Override) {
1364 // Update the destination flag to that of the source.
1365 overrideDstValue();
1366 continue;
1367 }
1368
1369 // Diagnose inconsistent merge behavior types.
1370 if (SrcBehaviorValue != DstBehaviorValue) {
1371 bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
1372 DstBehaviorValue == Module::Warning) ||
1373 (DstBehaviorValue == Module::Min &&
1374 SrcBehaviorValue == Module::Warning);
1375 bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1376 DstBehaviorValue == Module::Warning) ||
1377 (DstBehaviorValue == Module::Max &&
1378 SrcBehaviorValue == Module::Warning);
1379 if (!(MaxAndWarn || MinAndWarn))
1380 return stringErr("linking module flags '" + ID->getString() +
1381 "': IDs have conflicting behaviors in '" +
1382 SrcM->getModuleIdentifier() + "' and '" +
1383 DstM.getModuleIdentifier() + "'");
1384 }
1385
1386 auto ensureDistinctOp = [&](MDNode *DstValue) {
1387 assert(isa<MDTuple>(DstValue) &&
1388 "Expected MDTuple when appending module flags");
1389 if (DstValue->isDistinct())
1390 return dyn_cast<MDTuple>(DstValue);
1391 ArrayRef<MDOperand> DstOperands = DstValue->operands();
1392 MDTuple *New = MDTuple::getDistinct(
1393 DstM.getContext(),
1394 SmallVector<Metadata *, 4>(DstOperands.begin(), DstOperands.end()));
1395 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1396 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
1397 DstModFlags->setOperand(DstIndex, Flag);
1398 Flags[ID].first = Flag;
1399 return New;
1400 };
1401
1402 // Emit a warning if the values differ and either source or destination
1403 // request Warning behavior.
1404 if ((DstBehaviorValue == Module::Warning ||
1405 SrcBehaviorValue == Module::Warning) &&
1406 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1407 std::string Str;
1408 raw_string_ostream(Str)
1409 << "linking module flags '" << ID->getString()
1410 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1411 << "' from " << SrcM->getModuleIdentifier() << " with '"
1412 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1413 << ')';
1414 emitWarning(Str);
1415 }
1416
1417 // Choose the minimum if either source or destination request Min behavior.
1418 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
1419 ConstantInt *DstValue =
1420 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1421 ConstantInt *SrcValue =
1422 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1423
1424 // The resulting flag should have a Min behavior, and contain the minimum
1425 // value from between the source and destination values.
1426 Metadata *FlagOps[] = {
1427 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
1428 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
1429 ->getOperand(2)};
1430 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1431 DstModFlags->setOperand(DstIndex, Flag);
1432 Flags[ID].first = Flag;
1433 continue;
1434 }
1435
1436 // Choose the maximum if either source or destination request Max behavior.
1437 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1438 ConstantInt *DstValue =
1439 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1440 ConstantInt *SrcValue =
1441 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1442
1443 // The resulting flag should have a Max behavior, and contain the maximum
1444 // value from between the source and destination values.
1445 Metadata *FlagOps[] = {
1446 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1447 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1448 ->getOperand(2)};
1449 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1450 DstModFlags->setOperand(DstIndex, Flag);
1451 Flags[ID].first = Flag;
1452 continue;
1453 }
1454
1455 // Perform the merge for standard behavior types.
1456 switch (SrcBehaviorValue) {
1457 case Module::Require:
1458 case Module::Override:
1459 llvm_unreachable("not possible");
1460 case Module::Error: {
1461 // Emit an error if the values differ.
1462 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1463 return stringErr("linking module flags '" + ID->getString() +
1464 "': IDs have conflicting values in '" +
1465 SrcM->getModuleIdentifier() + "' and '" +
1466 DstM.getModuleIdentifier() + "'");
1467 continue;
1468 }
1469 case Module::Warning: {
1470 break;
1471 }
1472 case Module::Max: {
1473 break;
1474 }
1475 case Module::Append: {
1476 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1477 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1478 for (const auto &O : SrcValue->operands())
1479 DstValue->push_back(O);
1480 break;
1481 }
1482 case Module::AppendUnique: {
1483 SmallSetVector<Metadata *, 16> Elts;
1484 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1485 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1486 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1487 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1488 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
1489 DstValue->push_back(Elts[I]);
1490 break;
1491 }
1492 }
1493
1494 }
1495
1496 // For the Min behavior, set the value to 0 if either module does not have the
1497 // flag.
1498 for (auto Idx : Mins) {
1499 MDNode *Op = DstModFlags->getOperand(Idx);
1500 MDString *ID = cast<MDString>(Op->getOperand(1));
1501 if (!SeenMin.count(ID)) {
1502 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
1503 Metadata *FlagOps[] = {
1504 Op->getOperand(0), ID,
1505 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))};
1506 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
1507 }
1508 }
1509
1510 // Check all of the requirements.
1511 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1512 MDNode *Requirement = Requirements[I];
1513 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1514 Metadata *ReqValue = Requirement->getOperand(1);
1515
1516 MDNode *Op = Flags[Flag].first;
1517 if (!Op || Op->getOperand(2) != ReqValue)
1518 return stringErr("linking module flags '" + Flag->getString() +
1519 "': does not have the required value");
1520 }
1521 return Error::success();
1522 }
1523
1524 /// Return InlineAsm adjusted with target-specific directives if required.
1525 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1526 /// to support mixing module-level inline assembly from ARM and Thumb modules.
adjustInlineAsm(const std::string & InlineAsm,const Triple & Triple)1527 static std::string adjustInlineAsm(const std::string &InlineAsm,
1528 const Triple &Triple) {
1529 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1530 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1531 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1532 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1533 return InlineAsm;
1534 }
1535
updateAttributes(GlobalValue & GV)1536 void IRLinker::updateAttributes(GlobalValue &GV) {
1537 /// Remove nocallback attribute while linking, because nocallback attribute
1538 /// indicates that the function is only allowed to jump back into caller's
1539 /// module only by a return or an exception. When modules are linked, this
1540 /// property cannot be guaranteed anymore. For example, the nocallback
1541 /// function may contain a call to another module. But if we merge its caller
1542 /// and callee module here, and not the module containing the nocallback
1543 /// function definition itself, the nocallback property will be violated
1544 /// (since the nocallback function will call back into the newly merged module
1545 /// containing both its caller and callee). This could happen if the module
1546 /// containing the nocallback function definition is native code, so it does
1547 /// not participate in the LTO link. Note if the nocallback function does
1548 /// participate in the LTO link, and thus ends up in the merged module
1549 /// containing its caller and callee, removing the attribute doesn't hurt as
1550 /// it has no effect on definitions in the same module.
1551 if (auto *F = dyn_cast<Function>(&GV)) {
1552 if (!F->isIntrinsic())
1553 F->removeFnAttr(llvm::Attribute::NoCallback);
1554
1555 // Remove nocallback attribute when it is on a call-site.
1556 for (BasicBlock &BB : *F)
1557 for (Instruction &I : BB)
1558 if (CallBase *CI = dyn_cast<CallBase>(&I))
1559 CI->removeFnAttr(Attribute::NoCallback);
1560 }
1561 }
1562
run()1563 Error IRLinker::run() {
1564 // Ensure metadata materialized before value mapping.
1565 if (SrcM->getMaterializer())
1566 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1567 return Err;
1568
1569 // Inherit the target data from the source module if the destination module
1570 // doesn't have one already.
1571 if (DstM.getDataLayout().isDefault())
1572 DstM.setDataLayout(SrcM->getDataLayout());
1573
1574 // Copy the target triple from the source to dest if the dest's is empty.
1575 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1576 DstM.setTargetTriple(SrcM->getTargetTriple());
1577
1578 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1579
1580 // During CUDA compilation we have to link with the bitcode supplied with
1581 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1582 // the layout that is different from the one used by LLVM/clang (it does not
1583 // include i128). Issuing a warning is not very helpful as there's not much
1584 // the user can do about it.
1585 bool EnableDLWarning = true;
1586 bool EnableTripleWarning = true;
1587 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
1588 std::string ModuleId = SrcM->getModuleIdentifier();
1589 StringRef FileName = llvm::sys::path::filename(ModuleId);
1590 bool SrcIsLibDevice =
1591 FileName.startswith("libdevice") && FileName.endswith(".10.bc");
1592 bool SrcHasLibDeviceDL =
1593 (SrcM->getDataLayoutStr().empty() ||
1594 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1595 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1596 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1597 // all NVPTX variants.
1598 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
1599 SrcTriple.getOSName() == "gpulibs") ||
1600 (SrcTriple.getVendorName() == "unknown" &&
1601 SrcTriple.getOSName() == "unknown");
1602 EnableTripleWarning = !(SrcIsLibDevice && SrcHasLibDeviceTriple);
1603 EnableDLWarning = !(SrcIsLibDevice && SrcHasLibDeviceDL);
1604 }
1605
1606 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
1607 emitWarning("Linking two modules of different data layouts: '" +
1608 SrcM->getModuleIdentifier() + "' is '" +
1609 SrcM->getDataLayoutStr() + "' whereas '" +
1610 DstM.getModuleIdentifier() + "' is '" +
1611 DstM.getDataLayoutStr() + "'\n");
1612 }
1613
1614 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
1615 !SrcTriple.isCompatibleWith(DstTriple))
1616 emitWarning("Linking two modules of different target triples: '" +
1617 SrcM->getModuleIdentifier() + "' is '" +
1618 SrcM->getTargetTriple() + "' whereas '" +
1619 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1620 "'\n");
1621
1622 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1623
1624 // Loop over all of the linked values to compute type mappings.
1625 computeTypeMapping();
1626
1627 std::reverse(Worklist.begin(), Worklist.end());
1628 while (!Worklist.empty()) {
1629 GlobalValue *GV = Worklist.back();
1630 Worklist.pop_back();
1631
1632 // Already mapped.
1633 if (ValueMap.find(GV) != ValueMap.end() ||
1634 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1635 continue;
1636
1637 assert(!GV->isDeclaration());
1638 Mapper.mapValue(*GV);
1639 if (FoundError)
1640 return std::move(*FoundError);
1641 flushRAUWWorklist();
1642 }
1643
1644 // Note that we are done linking global value bodies. This prevents
1645 // metadata linking from creating new references.
1646 DoneLinkingBodies = true;
1647 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1648
1649 // Remap all of the named MDNodes in Src into the DstM module. We do this
1650 // after linking GlobalValues so that MDNodes that reference GlobalValues
1651 // are properly remapped.
1652 linkNamedMDNodes();
1653
1654 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1655 // Append the module inline asm string.
1656 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1657 SrcTriple));
1658 } else if (IsPerformingImport) {
1659 // Import any symver directives for symbols in DstM.
1660 ModuleSymbolTable::CollectAsmSymvers(*SrcM,
1661 [&](StringRef Name, StringRef Alias) {
1662 if (DstM.getNamedValue(Name)) {
1663 SmallString<256> S(".symver ");
1664 S += Name;
1665 S += ", ";
1666 S += Alias;
1667 DstM.appendModuleInlineAsm(S);
1668 }
1669 });
1670 }
1671
1672 // Reorder the globals just added to the destination module to match their
1673 // original order in the source module.
1674 Module::GlobalListType &Globals = DstM.getGlobalList();
1675 for (GlobalVariable &GV : SrcM->globals()) {
1676 if (GV.hasAppendingLinkage())
1677 continue;
1678 Value *NewValue = Mapper.mapValue(GV);
1679 if (NewValue) {
1680 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1681 if (NewGV)
1682 Globals.splice(Globals.end(), Globals, NewGV->getIterator());
1683 }
1684 }
1685
1686 // Merge the module flags into the DstM module.
1687 return linkModuleFlagsMetadata();
1688 }
1689
KeyTy(ArrayRef<Type * > E,bool P)1690 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1691 : ETypes(E), IsPacked(P) {}
1692
KeyTy(const StructType * ST)1693 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1694 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1695
operator ==(const KeyTy & That) const1696 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1697 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1698 }
1699
operator !=(const KeyTy & That) const1700 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1701 return !this->operator==(That);
1702 }
1703
getEmptyKey()1704 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1705 return DenseMapInfo<StructType *>::getEmptyKey();
1706 }
1707
getTombstoneKey()1708 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1709 return DenseMapInfo<StructType *>::getTombstoneKey();
1710 }
1711
getHashValue(const KeyTy & Key)1712 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1713 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1714 Key.IsPacked);
1715 }
1716
getHashValue(const StructType * ST)1717 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1718 return getHashValue(KeyTy(ST));
1719 }
1720
isEqual(const KeyTy & LHS,const StructType * RHS)1721 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1722 const StructType *RHS) {
1723 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1724 return false;
1725 return LHS == KeyTy(RHS);
1726 }
1727
isEqual(const StructType * LHS,const StructType * RHS)1728 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1729 const StructType *RHS) {
1730 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1731 return LHS == RHS;
1732 return KeyTy(LHS) == KeyTy(RHS);
1733 }
1734
addNonOpaque(StructType * Ty)1735 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1736 assert(!Ty->isOpaque());
1737 NonOpaqueStructTypes.insert(Ty);
1738 }
1739
switchToNonOpaque(StructType * Ty)1740 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1741 assert(!Ty->isOpaque());
1742 NonOpaqueStructTypes.insert(Ty);
1743 bool Removed = OpaqueStructTypes.erase(Ty);
1744 (void)Removed;
1745 assert(Removed);
1746 }
1747
addOpaque(StructType * Ty)1748 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1749 assert(Ty->isOpaque());
1750 OpaqueStructTypes.insert(Ty);
1751 }
1752
1753 StructType *
findNonOpaque(ArrayRef<Type * > ETypes,bool IsPacked)1754 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1755 bool IsPacked) {
1756 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1757 auto I = NonOpaqueStructTypes.find_as(Key);
1758 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1759 }
1760
hasType(StructType * Ty)1761 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1762 if (Ty->isOpaque())
1763 return OpaqueStructTypes.count(Ty);
1764 auto I = NonOpaqueStructTypes.find(Ty);
1765 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1766 }
1767
IRMover(Module & M)1768 IRMover::IRMover(Module &M) : Composite(M) {
1769 TypeFinder StructTypes;
1770 StructTypes.run(M, /* OnlyNamed */ false);
1771 for (StructType *Ty : StructTypes) {
1772 if (Ty->isOpaque())
1773 IdentifiedStructTypes.addOpaque(Ty);
1774 else
1775 IdentifiedStructTypes.addNonOpaque(Ty);
1776 }
1777 // Self-map metadatas in the destination module. This is needed when
1778 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1779 // destination module may be reached from the source module.
1780 for (const auto *MD : StructTypes.getVisitedMetadata()) {
1781 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1782 }
1783 }
1784
move(std::unique_ptr<Module> Src,ArrayRef<GlobalValue * > ValuesToLink,LazyCallback AddLazyFor,bool IsPerformingImport)1785 Error IRMover::move(std::unique_ptr<Module> Src,
1786 ArrayRef<GlobalValue *> ValuesToLink,
1787 LazyCallback AddLazyFor, bool IsPerformingImport) {
1788 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1789 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1790 IsPerformingImport);
1791 Error E = TheIRLinker.run();
1792 Composite.dropTriviallyDeadConstantArrays();
1793 return E;
1794 }
1795