1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a YAML parser.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Support/YAMLParser.h"
14 #include "llvm/ADT/AllocatorList.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 #include "llvm/Support/SMLoc.h"
26 #include "llvm/Support/SourceMgr.h"
27 #include "llvm/Support/Unicode.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <map>
33 #include <memory>
34 #include <string>
35 #include <system_error>
36 #include <utility>
37
38 using namespace llvm;
39 using namespace yaml;
40
41 enum UnicodeEncodingForm {
42 UEF_UTF32_LE, ///< UTF-32 Little Endian
43 UEF_UTF32_BE, ///< UTF-32 Big Endian
44 UEF_UTF16_LE, ///< UTF-16 Little Endian
45 UEF_UTF16_BE, ///< UTF-16 Big Endian
46 UEF_UTF8, ///< UTF-8 or ascii.
47 UEF_Unknown ///< Not a valid Unicode encoding.
48 };
49
50 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
51 /// it exists. Length is in {0, 2, 3, 4}.
52 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
53
54 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
55 /// encoding form of \a Input.
56 ///
57 /// @param Input A string of length 0 or more.
58 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
59 /// and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)60 static EncodingInfo getUnicodeEncoding(StringRef Input) {
61 if (Input.empty())
62 return std::make_pair(UEF_Unknown, 0);
63
64 switch (uint8_t(Input[0])) {
65 case 0x00:
66 if (Input.size() >= 4) {
67 if ( Input[1] == 0
68 && uint8_t(Input[2]) == 0xFE
69 && uint8_t(Input[3]) == 0xFF)
70 return std::make_pair(UEF_UTF32_BE, 4);
71 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
72 return std::make_pair(UEF_UTF32_BE, 0);
73 }
74
75 if (Input.size() >= 2 && Input[1] != 0)
76 return std::make_pair(UEF_UTF16_BE, 0);
77 return std::make_pair(UEF_Unknown, 0);
78 case 0xFF:
79 if ( Input.size() >= 4
80 && uint8_t(Input[1]) == 0xFE
81 && Input[2] == 0
82 && Input[3] == 0)
83 return std::make_pair(UEF_UTF32_LE, 4);
84
85 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
86 return std::make_pair(UEF_UTF16_LE, 2);
87 return std::make_pair(UEF_Unknown, 0);
88 case 0xFE:
89 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
90 return std::make_pair(UEF_UTF16_BE, 2);
91 return std::make_pair(UEF_Unknown, 0);
92 case 0xEF:
93 if ( Input.size() >= 3
94 && uint8_t(Input[1]) == 0xBB
95 && uint8_t(Input[2]) == 0xBF)
96 return std::make_pair(UEF_UTF8, 3);
97 return std::make_pair(UEF_Unknown, 0);
98 }
99
100 // It could still be utf-32 or utf-16.
101 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
102 return std::make_pair(UEF_UTF32_LE, 0);
103
104 if (Input.size() >= 2 && Input[1] == 0)
105 return std::make_pair(UEF_UTF16_LE, 0);
106
107 return std::make_pair(UEF_UTF8, 0);
108 }
109
110 /// Pin the vtables to this file.
anchor()111 void Node::anchor() {}
anchor()112 void NullNode::anchor() {}
anchor()113 void ScalarNode::anchor() {}
anchor()114 void BlockScalarNode::anchor() {}
anchor()115 void KeyValueNode::anchor() {}
anchor()116 void MappingNode::anchor() {}
anchor()117 void SequenceNode::anchor() {}
anchor()118 void AliasNode::anchor() {}
119
120 namespace llvm {
121 namespace yaml {
122
123 /// Token - A single YAML token.
124 struct Token {
125 enum TokenKind {
126 TK_Error, // Uninitialized token.
127 TK_StreamStart,
128 TK_StreamEnd,
129 TK_VersionDirective,
130 TK_TagDirective,
131 TK_DocumentStart,
132 TK_DocumentEnd,
133 TK_BlockEntry,
134 TK_BlockEnd,
135 TK_BlockSequenceStart,
136 TK_BlockMappingStart,
137 TK_FlowEntry,
138 TK_FlowSequenceStart,
139 TK_FlowSequenceEnd,
140 TK_FlowMappingStart,
141 TK_FlowMappingEnd,
142 TK_Key,
143 TK_Value,
144 TK_Scalar,
145 TK_BlockScalar,
146 TK_Alias,
147 TK_Anchor,
148 TK_Tag
149 } Kind = TK_Error;
150
151 /// A string of length 0 or more whose begin() points to the logical location
152 /// of the token in the input.
153 StringRef Range;
154
155 /// The value of a block scalar node.
156 std::string Value;
157
158 Token() = default;
159 };
160
161 } // end namespace yaml
162 } // end namespace llvm
163
164 using TokenQueueT = BumpPtrList<Token>;
165
166 namespace {
167
168 /// This struct is used to track simple keys.
169 ///
170 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
171 /// which could legally be the start of a simple key. When peekNext is called,
172 /// if the Token To be returned is referenced by a SimpleKey, we continue
173 /// tokenizing until that potential simple key has either been found to not be
174 /// a simple key (we moved on to the next line or went further than 1024 chars).
175 /// Or when we run into a Value, and then insert a Key token (and possibly
176 /// others) before the SimpleKey's Tok.
177 struct SimpleKey {
178 TokenQueueT::iterator Tok;
179 unsigned Column = 0;
180 unsigned Line = 0;
181 unsigned FlowLevel = 0;
182 bool IsRequired = false;
183
operator ==__anon259698e90111::SimpleKey184 bool operator ==(const SimpleKey &Other) {
185 return Tok == Other.Tok;
186 }
187 };
188
189 } // end anonymous namespace
190
191 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
192 /// subsequence and the subsequence's length in code units (uint8_t).
193 /// A length of 0 represents an error.
194 using UTF8Decoded = std::pair<uint32_t, unsigned>;
195
decodeUTF8(StringRef Range)196 static UTF8Decoded decodeUTF8(StringRef Range) {
197 StringRef::iterator Position= Range.begin();
198 StringRef::iterator End = Range.end();
199 // 1 byte: [0x00, 0x7f]
200 // Bit pattern: 0xxxxxxx
201 if (Position < End && (*Position & 0x80) == 0) {
202 return std::make_pair(*Position, 1);
203 }
204 // 2 bytes: [0x80, 0x7ff]
205 // Bit pattern: 110xxxxx 10xxxxxx
206 if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
207 ((*(Position + 1) & 0xC0) == 0x80)) {
208 uint32_t codepoint = ((*Position & 0x1F) << 6) |
209 (*(Position + 1) & 0x3F);
210 if (codepoint >= 0x80)
211 return std::make_pair(codepoint, 2);
212 }
213 // 3 bytes: [0x8000, 0xffff]
214 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
215 if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
216 ((*(Position + 1) & 0xC0) == 0x80) &&
217 ((*(Position + 2) & 0xC0) == 0x80)) {
218 uint32_t codepoint = ((*Position & 0x0F) << 12) |
219 ((*(Position + 1) & 0x3F) << 6) |
220 (*(Position + 2) & 0x3F);
221 // Codepoints between 0xD800 and 0xDFFF are invalid, as
222 // they are high / low surrogate halves used by UTF-16.
223 if (codepoint >= 0x800 &&
224 (codepoint < 0xD800 || codepoint > 0xDFFF))
225 return std::make_pair(codepoint, 3);
226 }
227 // 4 bytes: [0x10000, 0x10FFFF]
228 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
229 if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
230 ((*(Position + 1) & 0xC0) == 0x80) &&
231 ((*(Position + 2) & 0xC0) == 0x80) &&
232 ((*(Position + 3) & 0xC0) == 0x80)) {
233 uint32_t codepoint = ((*Position & 0x07) << 18) |
234 ((*(Position + 1) & 0x3F) << 12) |
235 ((*(Position + 2) & 0x3F) << 6) |
236 (*(Position + 3) & 0x3F);
237 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
238 return std::make_pair(codepoint, 4);
239 }
240 return std::make_pair(0, 0);
241 }
242
243 namespace llvm {
244 namespace yaml {
245
246 /// Scans YAML tokens from a MemoryBuffer.
247 class Scanner {
248 public:
249 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
250 std::error_code *EC = nullptr);
251 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
252 std::error_code *EC = nullptr);
253
254 /// Parse the next token and return it without popping it.
255 Token &peekNext();
256
257 /// Parse the next token and pop it from the queue.
258 Token getNext();
259
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=std::nullopt)260 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
261 ArrayRef<SMRange> Ranges = std::nullopt) {
262 SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ std::nullopt,
263 ShowColors);
264 }
265
setError(const Twine & Message,StringRef::iterator Position)266 void setError(const Twine &Message, StringRef::iterator Position) {
267 if (Position >= End)
268 Position = End - 1;
269
270 // propagate the error if possible
271 if (EC)
272 *EC = make_error_code(std::errc::invalid_argument);
273
274 // Don't print out more errors after the first one we encounter. The rest
275 // are just the result of the first, and have no meaning.
276 if (!Failed)
277 printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
278 Failed = true;
279 }
280
281 /// Returns true if an error occurred while parsing.
failed()282 bool failed() {
283 return Failed;
284 }
285
286 private:
287 void init(MemoryBufferRef Buffer);
288
currentInput()289 StringRef currentInput() {
290 return StringRef(Current, End - Current);
291 }
292
293 /// Decode a UTF-8 minimal well-formed code unit subsequence starting
294 /// at \a Position.
295 ///
296 /// If the UTF-8 code units starting at Position do not form a well-formed
297 /// code unit subsequence, then the Unicode scalar value is 0, and the length
298 /// is 0.
decodeUTF8(StringRef::iterator Position)299 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
300 return ::decodeUTF8(StringRef(Position, End - Position));
301 }
302
303 // The following functions are based on the gramar rules in the YAML spec. The
304 // style of the function names it meant to closely match how they are written
305 // in the spec. The number within the [] is the number of the grammar rule in
306 // the spec.
307 //
308 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
309 //
310 // c-
311 // A production starting and ending with a special character.
312 // b-
313 // A production matching a single line break.
314 // nb-
315 // A production starting and ending with a non-break character.
316 // s-
317 // A production starting and ending with a white space character.
318 // ns-
319 // A production starting and ending with a non-space character.
320 // l-
321 // A production matching complete line(s).
322
323 /// Skip a single nb-char[27] starting at Position.
324 ///
325 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
326 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
327 ///
328 /// @returns The code unit after the nb-char, or Position if it's not an
329 /// nb-char.
330 StringRef::iterator skip_nb_char(StringRef::iterator Position);
331
332 /// Skip a single b-break[28] starting at Position.
333 ///
334 /// A b-break is 0xD 0xA | 0xD | 0xA
335 ///
336 /// @returns The code unit after the b-break, or Position if it's not a
337 /// b-break.
338 StringRef::iterator skip_b_break(StringRef::iterator Position);
339
340 /// Skip a single s-space[31] starting at Position.
341 ///
342 /// An s-space is 0x20
343 ///
344 /// @returns The code unit after the s-space, or Position if it's not a
345 /// s-space.
346 StringRef::iterator skip_s_space(StringRef::iterator Position);
347
348 /// Skip a single s-white[33] starting at Position.
349 ///
350 /// A s-white is 0x20 | 0x9
351 ///
352 /// @returns The code unit after the s-white, or Position if it's not a
353 /// s-white.
354 StringRef::iterator skip_s_white(StringRef::iterator Position);
355
356 /// Skip a single ns-char[34] starting at Position.
357 ///
358 /// A ns-char is nb-char - s-white
359 ///
360 /// @returns The code unit after the ns-char, or Position if it's not a
361 /// ns-char.
362 StringRef::iterator skip_ns_char(StringRef::iterator Position);
363
364 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
365
366 /// Skip minimal well-formed code unit subsequences until Func
367 /// returns its input.
368 ///
369 /// @returns The code unit after the last minimal well-formed code unit
370 /// subsequence that Func accepted.
371 StringRef::iterator skip_while( SkipWhileFunc Func
372 , StringRef::iterator Position);
373
374 /// Skip minimal well-formed code unit subsequences until Func returns its
375 /// input.
376 void advanceWhile(SkipWhileFunc Func);
377
378 /// Scan ns-uri-char[39]s starting at Cur.
379 ///
380 /// This updates Cur and Column while scanning.
381 void scan_ns_uri_char();
382
383 /// Consume a minimal well-formed code unit subsequence starting at
384 /// \a Cur. Return false if it is not the same Unicode scalar value as
385 /// \a Expected. This updates \a Column.
386 bool consume(uint32_t Expected);
387
388 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
389 void skip(uint32_t Distance);
390
391 /// Return true if the minimal well-formed code unit subsequence at
392 /// Pos is whitespace or a new line
393 bool isBlankOrBreak(StringRef::iterator Position);
394
395 /// Return true if the line is a line break, false otherwise.
396 bool isLineEmpty(StringRef Line);
397
398 /// Consume a single b-break[28] if it's present at the current position.
399 ///
400 /// Return false if the code unit at the current position isn't a line break.
401 bool consumeLineBreakIfPresent();
402
403 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
404 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
405 , unsigned AtColumn
406 , bool IsRequired);
407
408 /// Remove simple keys that can no longer be valid simple keys.
409 ///
410 /// Invalid simple keys are not on the current line or are further than 1024
411 /// columns back.
412 void removeStaleSimpleKeyCandidates();
413
414 /// Remove all simple keys on FlowLevel \a Level.
415 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
416
417 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
418 /// tokens if needed.
419 bool unrollIndent(int ToColumn);
420
421 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
422 /// if needed.
423 bool rollIndent( int ToColumn
424 , Token::TokenKind Kind
425 , TokenQueueT::iterator InsertPoint);
426
427 /// Skip a single-line comment when the comment starts at the current
428 /// position of the scanner.
429 void skipComment();
430
431 /// Skip whitespace and comments until the start of the next token.
432 void scanToNextToken();
433
434 /// Must be the first token generated.
435 bool scanStreamStart();
436
437 /// Generate tokens needed to close out the stream.
438 bool scanStreamEnd();
439
440 /// Scan a %BLAH directive.
441 bool scanDirective();
442
443 /// Scan a ... or ---.
444 bool scanDocumentIndicator(bool IsStart);
445
446 /// Scan a [ or { and generate the proper flow collection start token.
447 bool scanFlowCollectionStart(bool IsSequence);
448
449 /// Scan a ] or } and generate the proper flow collection end token.
450 bool scanFlowCollectionEnd(bool IsSequence);
451
452 /// Scan the , that separates entries in a flow collection.
453 bool scanFlowEntry();
454
455 /// Scan the - that starts block sequence entries.
456 bool scanBlockEntry();
457
458 /// Scan an explicit ? indicating a key.
459 bool scanKey();
460
461 /// Scan an explicit : indicating a value.
462 bool scanValue();
463
464 /// Scan a quoted scalar.
465 bool scanFlowScalar(bool IsDoubleQuoted);
466
467 /// Scan an unquoted scalar.
468 bool scanPlainScalar();
469
470 /// Scan an Alias or Anchor starting with * or &.
471 bool scanAliasOrAnchor(bool IsAlias);
472
473 /// Scan a block scalar starting with | or >.
474 bool scanBlockScalar(bool IsLiteral);
475
476 /// Scan a block scalar style indicator and header.
477 ///
478 /// Note: This is distinct from scanBlockScalarHeader to mirror the fact that
479 /// YAML does not consider the style indicator to be a part of the header.
480 ///
481 /// Return false if an error occurred.
482 bool scanBlockScalarIndicators(char &StyleIndicator, char &ChompingIndicator,
483 unsigned &IndentIndicator, bool &IsDone);
484
485 /// Scan a style indicator in a block scalar header.
486 char scanBlockStyleIndicator();
487
488 /// Scan a chomping indicator in a block scalar header.
489 char scanBlockChompingIndicator();
490
491 /// Scan an indentation indicator in a block scalar header.
492 unsigned scanBlockIndentationIndicator();
493
494 /// Scan a block scalar header.
495 ///
496 /// Return false if an error occurred.
497 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
498 bool &IsDone);
499
500 /// Look for the indentation level of a block scalar.
501 ///
502 /// Return false if an error occurred.
503 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
504 unsigned &LineBreaks, bool &IsDone);
505
506 /// Scan the indentation of a text line in a block scalar.
507 ///
508 /// Return false if an error occurred.
509 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
510 bool &IsDone);
511
512 /// Scan a tag of the form !stuff.
513 bool scanTag();
514
515 /// Dispatch to the next scanning function based on \a *Cur.
516 bool fetchMoreTokens();
517
518 /// The SourceMgr used for diagnostics and buffer management.
519 SourceMgr &SM;
520
521 /// The original input.
522 MemoryBufferRef InputBuffer;
523
524 /// The current position of the scanner.
525 StringRef::iterator Current;
526
527 /// The end of the input (one past the last character).
528 StringRef::iterator End;
529
530 /// Current YAML indentation level in spaces.
531 int Indent;
532
533 /// Current column number in Unicode code points.
534 unsigned Column;
535
536 /// Current line number.
537 unsigned Line;
538
539 /// How deep we are in flow style containers. 0 Means at block level.
540 unsigned FlowLevel;
541
542 /// Are we at the start of the stream?
543 bool IsStartOfStream;
544
545 /// Can the next token be the start of a simple key?
546 bool IsSimpleKeyAllowed;
547
548 /// True if an error has occurred.
549 bool Failed;
550
551 /// Should colors be used when printing out the diagnostic messages?
552 bool ShowColors;
553
554 /// Queue of tokens. This is required to queue up tokens while looking
555 /// for the end of a simple key. And for cases where a single character
556 /// can produce multiple tokens (e.g. BlockEnd).
557 TokenQueueT TokenQueue;
558
559 /// Indentation levels.
560 SmallVector<int, 4> Indents;
561
562 /// Potential simple keys.
563 SmallVector<SimpleKey, 4> SimpleKeys;
564
565 std::error_code *EC;
566 };
567
568 } // end namespace yaml
569 } // end namespace llvm
570
571 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)572 static void encodeUTF8( uint32_t UnicodeScalarValue
573 , SmallVectorImpl<char> &Result) {
574 if (UnicodeScalarValue <= 0x7F) {
575 Result.push_back(UnicodeScalarValue & 0x7F);
576 } else if (UnicodeScalarValue <= 0x7FF) {
577 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
578 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
579 Result.push_back(FirstByte);
580 Result.push_back(SecondByte);
581 } else if (UnicodeScalarValue <= 0xFFFF) {
582 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
583 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
584 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
585 Result.push_back(FirstByte);
586 Result.push_back(SecondByte);
587 Result.push_back(ThirdByte);
588 } else if (UnicodeScalarValue <= 0x10FFFF) {
589 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
590 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
591 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
592 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
593 Result.push_back(FirstByte);
594 Result.push_back(SecondByte);
595 Result.push_back(ThirdByte);
596 Result.push_back(FourthByte);
597 }
598 }
599
dumpTokens(StringRef Input,raw_ostream & OS)600 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
601 SourceMgr SM;
602 Scanner scanner(Input, SM);
603 while (true) {
604 Token T = scanner.getNext();
605 switch (T.Kind) {
606 case Token::TK_StreamStart:
607 OS << "Stream-Start: ";
608 break;
609 case Token::TK_StreamEnd:
610 OS << "Stream-End: ";
611 break;
612 case Token::TK_VersionDirective:
613 OS << "Version-Directive: ";
614 break;
615 case Token::TK_TagDirective:
616 OS << "Tag-Directive: ";
617 break;
618 case Token::TK_DocumentStart:
619 OS << "Document-Start: ";
620 break;
621 case Token::TK_DocumentEnd:
622 OS << "Document-End: ";
623 break;
624 case Token::TK_BlockEntry:
625 OS << "Block-Entry: ";
626 break;
627 case Token::TK_BlockEnd:
628 OS << "Block-End: ";
629 break;
630 case Token::TK_BlockSequenceStart:
631 OS << "Block-Sequence-Start: ";
632 break;
633 case Token::TK_BlockMappingStart:
634 OS << "Block-Mapping-Start: ";
635 break;
636 case Token::TK_FlowEntry:
637 OS << "Flow-Entry: ";
638 break;
639 case Token::TK_FlowSequenceStart:
640 OS << "Flow-Sequence-Start: ";
641 break;
642 case Token::TK_FlowSequenceEnd:
643 OS << "Flow-Sequence-End: ";
644 break;
645 case Token::TK_FlowMappingStart:
646 OS << "Flow-Mapping-Start: ";
647 break;
648 case Token::TK_FlowMappingEnd:
649 OS << "Flow-Mapping-End: ";
650 break;
651 case Token::TK_Key:
652 OS << "Key: ";
653 break;
654 case Token::TK_Value:
655 OS << "Value: ";
656 break;
657 case Token::TK_Scalar:
658 OS << "Scalar: ";
659 break;
660 case Token::TK_BlockScalar:
661 OS << "Block Scalar: ";
662 break;
663 case Token::TK_Alias:
664 OS << "Alias: ";
665 break;
666 case Token::TK_Anchor:
667 OS << "Anchor: ";
668 break;
669 case Token::TK_Tag:
670 OS << "Tag: ";
671 break;
672 case Token::TK_Error:
673 break;
674 }
675 OS << T.Range << "\n";
676 if (T.Kind == Token::TK_StreamEnd)
677 break;
678 else if (T.Kind == Token::TK_Error)
679 return false;
680 }
681 return true;
682 }
683
scanTokens(StringRef Input)684 bool yaml::scanTokens(StringRef Input) {
685 SourceMgr SM;
686 Scanner scanner(Input, SM);
687 while (true) {
688 Token T = scanner.getNext();
689 if (T.Kind == Token::TK_StreamEnd)
690 break;
691 else if (T.Kind == Token::TK_Error)
692 return false;
693 }
694 return true;
695 }
696
escape(StringRef Input,bool EscapePrintable)697 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
698 std::string EscapedInput;
699 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
700 if (*i == '\\')
701 EscapedInput += "\\\\";
702 else if (*i == '"')
703 EscapedInput += "\\\"";
704 else if (*i == 0)
705 EscapedInput += "\\0";
706 else if (*i == 0x07)
707 EscapedInput += "\\a";
708 else if (*i == 0x08)
709 EscapedInput += "\\b";
710 else if (*i == 0x09)
711 EscapedInput += "\\t";
712 else if (*i == 0x0A)
713 EscapedInput += "\\n";
714 else if (*i == 0x0B)
715 EscapedInput += "\\v";
716 else if (*i == 0x0C)
717 EscapedInput += "\\f";
718 else if (*i == 0x0D)
719 EscapedInput += "\\r";
720 else if (*i == 0x1B)
721 EscapedInput += "\\e";
722 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
723 std::string HexStr = utohexstr(*i);
724 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
725 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
726 UTF8Decoded UnicodeScalarValue
727 = decodeUTF8(StringRef(i, Input.end() - i));
728 if (UnicodeScalarValue.second == 0) {
729 // Found invalid char.
730 SmallString<4> Val;
731 encodeUTF8(0xFFFD, Val);
732 llvm::append_range(EscapedInput, Val);
733 // FIXME: Error reporting.
734 return EscapedInput;
735 }
736 if (UnicodeScalarValue.first == 0x85)
737 EscapedInput += "\\N";
738 else if (UnicodeScalarValue.first == 0xA0)
739 EscapedInput += "\\_";
740 else if (UnicodeScalarValue.first == 0x2028)
741 EscapedInput += "\\L";
742 else if (UnicodeScalarValue.first == 0x2029)
743 EscapedInput += "\\P";
744 else if (!EscapePrintable &&
745 sys::unicode::isPrintable(UnicodeScalarValue.first))
746 EscapedInput += StringRef(i, UnicodeScalarValue.second);
747 else {
748 std::string HexStr = utohexstr(UnicodeScalarValue.first);
749 if (HexStr.size() <= 2)
750 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
751 else if (HexStr.size() <= 4)
752 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
753 else if (HexStr.size() <= 8)
754 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
755 }
756 i += UnicodeScalarValue.second - 1;
757 } else
758 EscapedInput.push_back(*i);
759 }
760 return EscapedInput;
761 }
762
parseBool(StringRef S)763 std::optional<bool> yaml::parseBool(StringRef S) {
764 switch (S.size()) {
765 case 1:
766 switch (S.front()) {
767 case 'y':
768 case 'Y':
769 return true;
770 case 'n':
771 case 'N':
772 return false;
773 default:
774 return std::nullopt;
775 }
776 case 2:
777 switch (S.front()) {
778 case 'O':
779 if (S[1] == 'N') // ON
780 return true;
781 [[fallthrough]];
782 case 'o':
783 if (S[1] == 'n') //[Oo]n
784 return true;
785 return std::nullopt;
786 case 'N':
787 if (S[1] == 'O') // NO
788 return false;
789 [[fallthrough]];
790 case 'n':
791 if (S[1] == 'o') //[Nn]o
792 return false;
793 return std::nullopt;
794 default:
795 return std::nullopt;
796 }
797 case 3:
798 switch (S.front()) {
799 case 'O':
800 if (S.drop_front() == "FF") // OFF
801 return false;
802 [[fallthrough]];
803 case 'o':
804 if (S.drop_front() == "ff") //[Oo]ff
805 return false;
806 return std::nullopt;
807 case 'Y':
808 if (S.drop_front() == "ES") // YES
809 return true;
810 [[fallthrough]];
811 case 'y':
812 if (S.drop_front() == "es") //[Yy]es
813 return true;
814 return std::nullopt;
815 default:
816 return std::nullopt;
817 }
818 case 4:
819 switch (S.front()) {
820 case 'T':
821 if (S.drop_front() == "RUE") // TRUE
822 return true;
823 [[fallthrough]];
824 case 't':
825 if (S.drop_front() == "rue") //[Tt]rue
826 return true;
827 return std::nullopt;
828 default:
829 return std::nullopt;
830 }
831 case 5:
832 switch (S.front()) {
833 case 'F':
834 if (S.drop_front() == "ALSE") // FALSE
835 return false;
836 [[fallthrough]];
837 case 'f':
838 if (S.drop_front() == "alse") //[Ff]alse
839 return false;
840 return std::nullopt;
841 default:
842 return std::nullopt;
843 }
844 default:
845 return std::nullopt;
846 }
847 }
848
Scanner(StringRef Input,SourceMgr & sm,bool ShowColors,std::error_code * EC)849 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
850 std::error_code *EC)
851 : SM(sm), ShowColors(ShowColors), EC(EC) {
852 init(MemoryBufferRef(Input, "YAML"));
853 }
854
Scanner(MemoryBufferRef Buffer,SourceMgr & SM_,bool ShowColors,std::error_code * EC)855 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
856 std::error_code *EC)
857 : SM(SM_), ShowColors(ShowColors), EC(EC) {
858 init(Buffer);
859 }
860
init(MemoryBufferRef Buffer)861 void Scanner::init(MemoryBufferRef Buffer) {
862 InputBuffer = Buffer;
863 Current = InputBuffer.getBufferStart();
864 End = InputBuffer.getBufferEnd();
865 Indent = -1;
866 Column = 0;
867 Line = 0;
868 FlowLevel = 0;
869 IsStartOfStream = true;
870 IsSimpleKeyAllowed = true;
871 Failed = false;
872 std::unique_ptr<MemoryBuffer> InputBufferOwner =
873 MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false);
874 SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
875 }
876
peekNext()877 Token &Scanner::peekNext() {
878 // If the current token is a possible simple key, keep parsing until we
879 // can confirm.
880 bool NeedMore = false;
881 while (true) {
882 if (TokenQueue.empty() || NeedMore) {
883 if (!fetchMoreTokens()) {
884 TokenQueue.clear();
885 SimpleKeys.clear();
886 TokenQueue.push_back(Token());
887 return TokenQueue.front();
888 }
889 }
890 assert(!TokenQueue.empty() &&
891 "fetchMoreTokens lied about getting tokens!");
892
893 removeStaleSimpleKeyCandidates();
894 SimpleKey SK;
895 SK.Tok = TokenQueue.begin();
896 if (!is_contained(SimpleKeys, SK))
897 break;
898 else
899 NeedMore = true;
900 }
901 return TokenQueue.front();
902 }
903
getNext()904 Token Scanner::getNext() {
905 Token Ret = peekNext();
906 // TokenQueue can be empty if there was an error getting the next token.
907 if (!TokenQueue.empty())
908 TokenQueue.pop_front();
909
910 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
911 // quick deallocation of them all.
912 if (TokenQueue.empty())
913 TokenQueue.resetAlloc();
914
915 return Ret;
916 }
917
skip_nb_char(StringRef::iterator Position)918 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
919 if (Position == End)
920 return Position;
921 // Check 7 bit c-printable - b-char.
922 if ( *Position == 0x09
923 || (*Position >= 0x20 && *Position <= 0x7E))
924 return Position + 1;
925
926 // Check for valid UTF-8.
927 if (uint8_t(*Position) & 0x80) {
928 UTF8Decoded u8d = decodeUTF8(Position);
929 if ( u8d.second != 0
930 && u8d.first != 0xFEFF
931 && ( u8d.first == 0x85
932 || ( u8d.first >= 0xA0
933 && u8d.first <= 0xD7FF)
934 || ( u8d.first >= 0xE000
935 && u8d.first <= 0xFFFD)
936 || ( u8d.first >= 0x10000
937 && u8d.first <= 0x10FFFF)))
938 return Position + u8d.second;
939 }
940 return Position;
941 }
942
skip_b_break(StringRef::iterator Position)943 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
944 if (Position == End)
945 return Position;
946 if (*Position == 0x0D) {
947 if (Position + 1 != End && *(Position + 1) == 0x0A)
948 return Position + 2;
949 return Position + 1;
950 }
951
952 if (*Position == 0x0A)
953 return Position + 1;
954 return Position;
955 }
956
skip_s_space(StringRef::iterator Position)957 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
958 if (Position == End)
959 return Position;
960 if (*Position == ' ')
961 return Position + 1;
962 return Position;
963 }
964
skip_s_white(StringRef::iterator Position)965 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
966 if (Position == End)
967 return Position;
968 if (*Position == ' ' || *Position == '\t')
969 return Position + 1;
970 return Position;
971 }
972
skip_ns_char(StringRef::iterator Position)973 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
974 if (Position == End)
975 return Position;
976 if (*Position == ' ' || *Position == '\t')
977 return Position;
978 return skip_nb_char(Position);
979 }
980
skip_while(SkipWhileFunc Func,StringRef::iterator Position)981 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
982 , StringRef::iterator Position) {
983 while (true) {
984 StringRef::iterator i = (this->*Func)(Position);
985 if (i == Position)
986 break;
987 Position = i;
988 }
989 return Position;
990 }
991
advanceWhile(SkipWhileFunc Func)992 void Scanner::advanceWhile(SkipWhileFunc Func) {
993 auto Final = skip_while(Func, Current);
994 Column += Final - Current;
995 Current = Final;
996 }
997
is_ns_hex_digit(const char C)998 static bool is_ns_hex_digit(const char C) { return isAlnum(C); }
999
is_ns_word_char(const char C)1000 static bool is_ns_word_char(const char C) { return C == '-' || isAlpha(C); }
1001
scan_ns_uri_char()1002 void Scanner::scan_ns_uri_char() {
1003 while (true) {
1004 if (Current == End)
1005 break;
1006 if (( *Current == '%'
1007 && Current + 2 < End
1008 && is_ns_hex_digit(*(Current + 1))
1009 && is_ns_hex_digit(*(Current + 2)))
1010 || is_ns_word_char(*Current)
1011 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
1012 != StringRef::npos) {
1013 ++Current;
1014 ++Column;
1015 } else
1016 break;
1017 }
1018 }
1019
consume(uint32_t Expected)1020 bool Scanner::consume(uint32_t Expected) {
1021 if (Expected >= 0x80) {
1022 setError("Cannot consume non-ascii characters", Current);
1023 return false;
1024 }
1025 if (Current == End)
1026 return false;
1027 if (uint8_t(*Current) >= 0x80) {
1028 setError("Cannot consume non-ascii characters", Current);
1029 return false;
1030 }
1031 if (uint8_t(*Current) == Expected) {
1032 ++Current;
1033 ++Column;
1034 return true;
1035 }
1036 return false;
1037 }
1038
skip(uint32_t Distance)1039 void Scanner::skip(uint32_t Distance) {
1040 Current += Distance;
1041 Column += Distance;
1042 assert(Current <= End && "Skipped past the end");
1043 }
1044
isBlankOrBreak(StringRef::iterator Position)1045 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
1046 if (Position == End)
1047 return false;
1048 return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
1049 *Position == '\n';
1050 }
1051
isLineEmpty(StringRef Line)1052 bool Scanner::isLineEmpty(StringRef Line) {
1053 for (const auto *Position = Line.begin(); Position != Line.end(); ++Position)
1054 if (!isBlankOrBreak(Position))
1055 return false;
1056 return true;
1057 }
1058
consumeLineBreakIfPresent()1059 bool Scanner::consumeLineBreakIfPresent() {
1060 auto Next = skip_b_break(Current);
1061 if (Next == Current)
1062 return false;
1063 Column = 0;
1064 ++Line;
1065 Current = Next;
1066 return true;
1067 }
1068
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)1069 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
1070 , unsigned AtColumn
1071 , bool IsRequired) {
1072 if (IsSimpleKeyAllowed) {
1073 SimpleKey SK;
1074 SK.Tok = Tok;
1075 SK.Line = Line;
1076 SK.Column = AtColumn;
1077 SK.IsRequired = IsRequired;
1078 SK.FlowLevel = FlowLevel;
1079 SimpleKeys.push_back(SK);
1080 }
1081 }
1082
removeStaleSimpleKeyCandidates()1083 void Scanner::removeStaleSimpleKeyCandidates() {
1084 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
1085 i != SimpleKeys.end();) {
1086 if (i->Line != Line || i->Column + 1024 < Column) {
1087 if (i->IsRequired)
1088 setError( "Could not find expected : for simple key"
1089 , i->Tok->Range.begin());
1090 i = SimpleKeys.erase(i);
1091 } else
1092 ++i;
1093 }
1094 }
1095
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)1096 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1097 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1098 SimpleKeys.pop_back();
1099 }
1100
unrollIndent(int ToColumn)1101 bool Scanner::unrollIndent(int ToColumn) {
1102 Token T;
1103 // Indentation is ignored in flow.
1104 if (FlowLevel != 0)
1105 return true;
1106
1107 while (Indent > ToColumn) {
1108 T.Kind = Token::TK_BlockEnd;
1109 T.Range = StringRef(Current, 1);
1110 TokenQueue.push_back(T);
1111 Indent = Indents.pop_back_val();
1112 }
1113
1114 return true;
1115 }
1116
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)1117 bool Scanner::rollIndent( int ToColumn
1118 , Token::TokenKind Kind
1119 , TokenQueueT::iterator InsertPoint) {
1120 if (FlowLevel)
1121 return true;
1122 if (Indent < ToColumn) {
1123 Indents.push_back(Indent);
1124 Indent = ToColumn;
1125
1126 Token T;
1127 T.Kind = Kind;
1128 T.Range = StringRef(Current, 0);
1129 TokenQueue.insert(InsertPoint, T);
1130 }
1131 return true;
1132 }
1133
skipComment()1134 void Scanner::skipComment() {
1135 if (Current == End || *Current != '#')
1136 return;
1137 while (true) {
1138 // This may skip more than one byte, thus Column is only incremented
1139 // for code points.
1140 StringRef::iterator I = skip_nb_char(Current);
1141 if (I == Current)
1142 break;
1143 Current = I;
1144 ++Column;
1145 }
1146 }
1147
scanToNextToken()1148 void Scanner::scanToNextToken() {
1149 while (true) {
1150 while (Current != End && (*Current == ' ' || *Current == '\t')) {
1151 skip(1);
1152 }
1153
1154 skipComment();
1155
1156 // Skip EOL.
1157 StringRef::iterator i = skip_b_break(Current);
1158 if (i == Current)
1159 break;
1160 Current = i;
1161 ++Line;
1162 Column = 0;
1163 // New lines may start a simple key.
1164 if (!FlowLevel)
1165 IsSimpleKeyAllowed = true;
1166 }
1167 }
1168
scanStreamStart()1169 bool Scanner::scanStreamStart() {
1170 IsStartOfStream = false;
1171
1172 EncodingInfo EI = getUnicodeEncoding(currentInput());
1173
1174 Token T;
1175 T.Kind = Token::TK_StreamStart;
1176 T.Range = StringRef(Current, EI.second);
1177 TokenQueue.push_back(T);
1178 Current += EI.second;
1179 return true;
1180 }
1181
scanStreamEnd()1182 bool Scanner::scanStreamEnd() {
1183 // Force an ending new line if one isn't present.
1184 if (Column != 0) {
1185 Column = 0;
1186 ++Line;
1187 }
1188
1189 unrollIndent(-1);
1190 SimpleKeys.clear();
1191 IsSimpleKeyAllowed = false;
1192
1193 Token T;
1194 T.Kind = Token::TK_StreamEnd;
1195 T.Range = StringRef(Current, 0);
1196 TokenQueue.push_back(T);
1197 return true;
1198 }
1199
scanDirective()1200 bool Scanner::scanDirective() {
1201 // Reset the indentation level.
1202 unrollIndent(-1);
1203 SimpleKeys.clear();
1204 IsSimpleKeyAllowed = false;
1205
1206 StringRef::iterator Start = Current;
1207 consume('%');
1208 StringRef::iterator NameStart = Current;
1209 Current = skip_while(&Scanner::skip_ns_char, Current);
1210 StringRef Name(NameStart, Current - NameStart);
1211 Current = skip_while(&Scanner::skip_s_white, Current);
1212
1213 Token T;
1214 if (Name == "YAML") {
1215 Current = skip_while(&Scanner::skip_ns_char, Current);
1216 T.Kind = Token::TK_VersionDirective;
1217 T.Range = StringRef(Start, Current - Start);
1218 TokenQueue.push_back(T);
1219 return true;
1220 } else if(Name == "TAG") {
1221 Current = skip_while(&Scanner::skip_ns_char, Current);
1222 Current = skip_while(&Scanner::skip_s_white, Current);
1223 Current = skip_while(&Scanner::skip_ns_char, Current);
1224 T.Kind = Token::TK_TagDirective;
1225 T.Range = StringRef(Start, Current - Start);
1226 TokenQueue.push_back(T);
1227 return true;
1228 }
1229 return false;
1230 }
1231
scanDocumentIndicator(bool IsStart)1232 bool Scanner::scanDocumentIndicator(bool IsStart) {
1233 unrollIndent(-1);
1234 SimpleKeys.clear();
1235 IsSimpleKeyAllowed = false;
1236
1237 Token T;
1238 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1239 T.Range = StringRef(Current, 3);
1240 skip(3);
1241 TokenQueue.push_back(T);
1242 return true;
1243 }
1244
scanFlowCollectionStart(bool IsSequence)1245 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1246 Token T;
1247 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1248 : Token::TK_FlowMappingStart;
1249 T.Range = StringRef(Current, 1);
1250 skip(1);
1251 TokenQueue.push_back(T);
1252
1253 // [ and { may begin a simple key.
1254 saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1255
1256 // And may also be followed by a simple key.
1257 IsSimpleKeyAllowed = true;
1258 ++FlowLevel;
1259 return true;
1260 }
1261
scanFlowCollectionEnd(bool IsSequence)1262 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1263 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1264 IsSimpleKeyAllowed = false;
1265 Token T;
1266 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1267 : Token::TK_FlowMappingEnd;
1268 T.Range = StringRef(Current, 1);
1269 skip(1);
1270 TokenQueue.push_back(T);
1271 if (FlowLevel)
1272 --FlowLevel;
1273 return true;
1274 }
1275
scanFlowEntry()1276 bool Scanner::scanFlowEntry() {
1277 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1278 IsSimpleKeyAllowed = true;
1279 Token T;
1280 T.Kind = Token::TK_FlowEntry;
1281 T.Range = StringRef(Current, 1);
1282 skip(1);
1283 TokenQueue.push_back(T);
1284 return true;
1285 }
1286
scanBlockEntry()1287 bool Scanner::scanBlockEntry() {
1288 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1289 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1290 IsSimpleKeyAllowed = true;
1291 Token T;
1292 T.Kind = Token::TK_BlockEntry;
1293 T.Range = StringRef(Current, 1);
1294 skip(1);
1295 TokenQueue.push_back(T);
1296 return true;
1297 }
1298
scanKey()1299 bool Scanner::scanKey() {
1300 if (!FlowLevel)
1301 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1302
1303 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1304 IsSimpleKeyAllowed = !FlowLevel;
1305
1306 Token T;
1307 T.Kind = Token::TK_Key;
1308 T.Range = StringRef(Current, 1);
1309 skip(1);
1310 TokenQueue.push_back(T);
1311 return true;
1312 }
1313
scanValue()1314 bool Scanner::scanValue() {
1315 // If the previous token could have been a simple key, insert the key token
1316 // into the token queue.
1317 if (!SimpleKeys.empty()) {
1318 SimpleKey SK = SimpleKeys.pop_back_val();
1319 Token T;
1320 T.Kind = Token::TK_Key;
1321 T.Range = SK.Tok->Range;
1322 TokenQueueT::iterator i, e;
1323 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1324 if (i == SK.Tok)
1325 break;
1326 }
1327 if (i == e) {
1328 Failed = true;
1329 return false;
1330 }
1331 i = TokenQueue.insert(i, T);
1332
1333 // We may also need to add a Block-Mapping-Start token.
1334 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1335
1336 IsSimpleKeyAllowed = false;
1337 } else {
1338 if (!FlowLevel)
1339 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1340 IsSimpleKeyAllowed = !FlowLevel;
1341 }
1342
1343 Token T;
1344 T.Kind = Token::TK_Value;
1345 T.Range = StringRef(Current, 1);
1346 skip(1);
1347 TokenQueue.push_back(T);
1348 return true;
1349 }
1350
1351 // Forbidding inlining improves performance by roughly 20%.
1352 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1353 LLVM_ATTRIBUTE_NOINLINE static bool
1354 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1355
1356 // Returns whether a character at 'Position' was escaped with a leading '\'.
1357 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1358 static bool wasEscaped(StringRef::iterator First,
1359 StringRef::iterator Position) {
1360 assert(Position - 1 >= First);
1361 StringRef::iterator I = Position - 1;
1362 // We calculate the number of consecutive '\'s before the current position
1363 // by iterating backwards through our string.
1364 while (I >= First && *I == '\\') --I;
1365 // (Position - 1 - I) now contains the number of '\'s before the current
1366 // position. If it is odd, the character at 'Position' was escaped.
1367 return (Position - 1 - I) % 2 == 1;
1368 }
1369
scanFlowScalar(bool IsDoubleQuoted)1370 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1371 StringRef::iterator Start = Current;
1372 unsigned ColStart = Column;
1373 if (IsDoubleQuoted) {
1374 do {
1375 ++Current;
1376 while (Current != End && *Current != '"')
1377 ++Current;
1378 // Repeat until the previous character was not a '\' or was an escaped
1379 // backslash.
1380 } while ( Current != End
1381 && *(Current - 1) == '\\'
1382 && wasEscaped(Start + 1, Current));
1383 } else {
1384 skip(1);
1385 while (Current != End) {
1386 // Skip a ' followed by another '.
1387 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1388 skip(2);
1389 continue;
1390 } else if (*Current == '\'')
1391 break;
1392 StringRef::iterator i = skip_nb_char(Current);
1393 if (i == Current) {
1394 i = skip_b_break(Current);
1395 if (i == Current)
1396 break;
1397 Current = i;
1398 Column = 0;
1399 ++Line;
1400 } else {
1401 if (i == End)
1402 break;
1403 Current = i;
1404 ++Column;
1405 }
1406 }
1407 }
1408
1409 if (Current == End) {
1410 setError("Expected quote at end of scalar", Current);
1411 return false;
1412 }
1413
1414 skip(1); // Skip ending quote.
1415 Token T;
1416 T.Kind = Token::TK_Scalar;
1417 T.Range = StringRef(Start, Current - Start);
1418 TokenQueue.push_back(T);
1419
1420 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1421
1422 IsSimpleKeyAllowed = false;
1423
1424 return true;
1425 }
1426
scanPlainScalar()1427 bool Scanner::scanPlainScalar() {
1428 StringRef::iterator Start = Current;
1429 unsigned ColStart = Column;
1430 unsigned LeadingBlanks = 0;
1431 assert(Indent >= -1 && "Indent must be >= -1 !");
1432 unsigned indent = static_cast<unsigned>(Indent + 1);
1433 while (Current != End) {
1434 if (*Current == '#')
1435 break;
1436
1437 while (Current != End && !isBlankOrBreak(Current)) {
1438 if (FlowLevel && *Current == ':' &&
1439 (Current + 1 == End ||
1440 !(isBlankOrBreak(Current + 1) || *(Current + 1) == ','))) {
1441 setError("Found unexpected ':' while scanning a plain scalar", Current);
1442 return false;
1443 }
1444
1445 // Check for the end of the plain scalar.
1446 if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1447 || ( FlowLevel
1448 && (StringRef(Current, 1).find_first_of(",:?[]{}")
1449 != StringRef::npos)))
1450 break;
1451
1452 StringRef::iterator i = skip_nb_char(Current);
1453 if (i == Current)
1454 break;
1455 Current = i;
1456 ++Column;
1457 }
1458
1459 // Are we at the end?
1460 if (!isBlankOrBreak(Current))
1461 break;
1462
1463 // Eat blanks.
1464 StringRef::iterator Tmp = Current;
1465 while (isBlankOrBreak(Tmp)) {
1466 StringRef::iterator i = skip_s_white(Tmp);
1467 if (i != Tmp) {
1468 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1469 setError("Found invalid tab character in indentation", Tmp);
1470 return false;
1471 }
1472 Tmp = i;
1473 ++Column;
1474 } else {
1475 i = skip_b_break(Tmp);
1476 if (!LeadingBlanks)
1477 LeadingBlanks = 1;
1478 Tmp = i;
1479 Column = 0;
1480 ++Line;
1481 }
1482 }
1483
1484 if (!FlowLevel && Column < indent)
1485 break;
1486
1487 Current = Tmp;
1488 }
1489 if (Start == Current) {
1490 setError("Got empty plain scalar", Start);
1491 return false;
1492 }
1493 Token T;
1494 T.Kind = Token::TK_Scalar;
1495 T.Range = StringRef(Start, Current - Start);
1496 TokenQueue.push_back(T);
1497
1498 // Plain scalars can be simple keys.
1499 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1500
1501 IsSimpleKeyAllowed = false;
1502
1503 return true;
1504 }
1505
scanAliasOrAnchor(bool IsAlias)1506 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1507 StringRef::iterator Start = Current;
1508 unsigned ColStart = Column;
1509 skip(1);
1510 while (Current != End) {
1511 if ( *Current == '[' || *Current == ']'
1512 || *Current == '{' || *Current == '}'
1513 || *Current == ','
1514 || *Current == ':')
1515 break;
1516 StringRef::iterator i = skip_ns_char(Current);
1517 if (i == Current)
1518 break;
1519 Current = i;
1520 ++Column;
1521 }
1522
1523 if (Start + 1 == Current) {
1524 setError("Got empty alias or anchor", Start);
1525 return false;
1526 }
1527
1528 Token T;
1529 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1530 T.Range = StringRef(Start, Current - Start);
1531 TokenQueue.push_back(T);
1532
1533 // Alias and anchors can be simple keys.
1534 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1535
1536 IsSimpleKeyAllowed = false;
1537
1538 return true;
1539 }
1540
scanBlockScalarIndicators(char & StyleIndicator,char & ChompingIndicator,unsigned & IndentIndicator,bool & IsDone)1541 bool Scanner::scanBlockScalarIndicators(char &StyleIndicator,
1542 char &ChompingIndicator,
1543 unsigned &IndentIndicator,
1544 bool &IsDone) {
1545 StyleIndicator = scanBlockStyleIndicator();
1546 if (!scanBlockScalarHeader(ChompingIndicator, IndentIndicator, IsDone))
1547 return false;
1548 return true;
1549 }
1550
scanBlockStyleIndicator()1551 char Scanner::scanBlockStyleIndicator() {
1552 char Indicator = ' ';
1553 if (Current != End && (*Current == '>' || *Current == '|')) {
1554 Indicator = *Current;
1555 skip(1);
1556 }
1557 return Indicator;
1558 }
1559
scanBlockChompingIndicator()1560 char Scanner::scanBlockChompingIndicator() {
1561 char Indicator = ' ';
1562 if (Current != End && (*Current == '+' || *Current == '-')) {
1563 Indicator = *Current;
1564 skip(1);
1565 }
1566 return Indicator;
1567 }
1568
1569 /// Get the number of line breaks after chomping.
1570 ///
1571 /// Return the number of trailing line breaks to emit, depending on
1572 /// \p ChompingIndicator.
getChompedLineBreaks(char ChompingIndicator,unsigned LineBreaks,StringRef Str)1573 static unsigned getChompedLineBreaks(char ChompingIndicator,
1574 unsigned LineBreaks, StringRef Str) {
1575 if (ChompingIndicator == '-') // Strip all line breaks.
1576 return 0;
1577 if (ChompingIndicator == '+') // Keep all line breaks.
1578 return LineBreaks;
1579 // Clip trailing lines.
1580 return Str.empty() ? 0 : 1;
1581 }
1582
scanBlockIndentationIndicator()1583 unsigned Scanner::scanBlockIndentationIndicator() {
1584 unsigned Indent = 0;
1585 if (Current != End && (*Current >= '1' && *Current <= '9')) {
1586 Indent = unsigned(*Current - '0');
1587 skip(1);
1588 }
1589 return Indent;
1590 }
1591
scanBlockScalarHeader(char & ChompingIndicator,unsigned & IndentIndicator,bool & IsDone)1592 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1593 unsigned &IndentIndicator, bool &IsDone) {
1594 auto Start = Current;
1595
1596 ChompingIndicator = scanBlockChompingIndicator();
1597 IndentIndicator = scanBlockIndentationIndicator();
1598 // Check for the chomping indicator once again.
1599 if (ChompingIndicator == ' ')
1600 ChompingIndicator = scanBlockChompingIndicator();
1601 Current = skip_while(&Scanner::skip_s_white, Current);
1602 skipComment();
1603
1604 if (Current == End) { // EOF, we have an empty scalar.
1605 Token T;
1606 T.Kind = Token::TK_BlockScalar;
1607 T.Range = StringRef(Start, Current - Start);
1608 TokenQueue.push_back(T);
1609 IsDone = true;
1610 return true;
1611 }
1612
1613 if (!consumeLineBreakIfPresent()) {
1614 setError("Expected a line break after block scalar header", Current);
1615 return false;
1616 }
1617 return true;
1618 }
1619
findBlockScalarIndent(unsigned & BlockIndent,unsigned BlockExitIndent,unsigned & LineBreaks,bool & IsDone)1620 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1621 unsigned BlockExitIndent,
1622 unsigned &LineBreaks, bool &IsDone) {
1623 unsigned MaxAllSpaceLineCharacters = 0;
1624 StringRef::iterator LongestAllSpaceLine;
1625
1626 while (true) {
1627 advanceWhile(&Scanner::skip_s_space);
1628 if (skip_nb_char(Current) != Current) {
1629 // This line isn't empty, so try and find the indentation.
1630 if (Column <= BlockExitIndent) { // End of the block literal.
1631 IsDone = true;
1632 return true;
1633 }
1634 // We found the block's indentation.
1635 BlockIndent = Column;
1636 if (MaxAllSpaceLineCharacters > BlockIndent) {
1637 setError(
1638 "Leading all-spaces line must be smaller than the block indent",
1639 LongestAllSpaceLine);
1640 return false;
1641 }
1642 return true;
1643 }
1644 if (skip_b_break(Current) != Current &&
1645 Column > MaxAllSpaceLineCharacters) {
1646 // Record the longest all-space line in case it's longer than the
1647 // discovered block indent.
1648 MaxAllSpaceLineCharacters = Column;
1649 LongestAllSpaceLine = Current;
1650 }
1651
1652 // Check for EOF.
1653 if (Current == End) {
1654 IsDone = true;
1655 return true;
1656 }
1657
1658 if (!consumeLineBreakIfPresent()) {
1659 IsDone = true;
1660 return true;
1661 }
1662 ++LineBreaks;
1663 }
1664 return true;
1665 }
1666
scanBlockScalarIndent(unsigned BlockIndent,unsigned BlockExitIndent,bool & IsDone)1667 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1668 unsigned BlockExitIndent, bool &IsDone) {
1669 // Skip the indentation.
1670 while (Column < BlockIndent) {
1671 auto I = skip_s_space(Current);
1672 if (I == Current)
1673 break;
1674 Current = I;
1675 ++Column;
1676 }
1677
1678 if (skip_nb_char(Current) == Current)
1679 return true;
1680
1681 if (Column <= BlockExitIndent) { // End of the block literal.
1682 IsDone = true;
1683 return true;
1684 }
1685
1686 if (Column < BlockIndent) {
1687 if (Current != End && *Current == '#') { // Trailing comment.
1688 IsDone = true;
1689 return true;
1690 }
1691 setError("A text line is less indented than the block scalar", Current);
1692 return false;
1693 }
1694 return true; // A normal text line.
1695 }
1696
scanBlockScalar(bool IsLiteral)1697 bool Scanner::scanBlockScalar(bool IsLiteral) {
1698 assert(*Current == '|' || *Current == '>');
1699 char StyleIndicator;
1700 char ChompingIndicator;
1701 unsigned BlockIndent;
1702 bool IsDone = false;
1703 if (!scanBlockScalarIndicators(StyleIndicator, ChompingIndicator, BlockIndent,
1704 IsDone))
1705 return false;
1706 if (IsDone)
1707 return true;
1708 bool IsFolded = StyleIndicator == '>';
1709
1710 const auto *Start = Current;
1711 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1712 unsigned LineBreaks = 0;
1713 if (BlockIndent == 0) {
1714 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1715 IsDone))
1716 return false;
1717 }
1718
1719 // Scan the block's scalars body.
1720 SmallString<256> Str;
1721 while (!IsDone) {
1722 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1723 return false;
1724 if (IsDone)
1725 break;
1726
1727 // Parse the current line.
1728 auto LineStart = Current;
1729 advanceWhile(&Scanner::skip_nb_char);
1730 if (LineStart != Current) {
1731 if (LineBreaks && IsFolded && !Scanner::isLineEmpty(Str)) {
1732 // The folded style "folds" any single line break between content into a
1733 // single space, except when that content is "empty" (only contains
1734 // whitespace) in which case the line break is left as-is.
1735 if (LineBreaks == 1) {
1736 Str.append(LineBreaks,
1737 isLineEmpty(StringRef(LineStart, Current - LineStart))
1738 ? '\n'
1739 : ' ');
1740 }
1741 // If we saw a single line break, we are completely replacing it and so
1742 // want `LineBreaks == 0`. Otherwise this decrement accounts for the
1743 // fact that the first line break is "trimmed", only being used to
1744 // signal a sequence of line breaks which should not be folded.
1745 LineBreaks--;
1746 }
1747 Str.append(LineBreaks, '\n');
1748 Str.append(StringRef(LineStart, Current - LineStart));
1749 LineBreaks = 0;
1750 }
1751
1752 // Check for EOF.
1753 if (Current == End)
1754 break;
1755
1756 if (!consumeLineBreakIfPresent())
1757 break;
1758 ++LineBreaks;
1759 }
1760
1761 if (Current == End && !LineBreaks)
1762 // Ensure that there is at least one line break before the end of file.
1763 LineBreaks = 1;
1764 Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1765
1766 // New lines may start a simple key.
1767 if (!FlowLevel)
1768 IsSimpleKeyAllowed = true;
1769
1770 Token T;
1771 T.Kind = Token::TK_BlockScalar;
1772 T.Range = StringRef(Start, Current - Start);
1773 T.Value = std::string(Str);
1774 TokenQueue.push_back(T);
1775 return true;
1776 }
1777
scanTag()1778 bool Scanner::scanTag() {
1779 StringRef::iterator Start = Current;
1780 unsigned ColStart = Column;
1781 skip(1); // Eat !.
1782 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1783 else if (*Current == '<') {
1784 skip(1);
1785 scan_ns_uri_char();
1786 if (!consume('>'))
1787 return false;
1788 } else {
1789 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1790 Current = skip_while(&Scanner::skip_ns_char, Current);
1791 }
1792
1793 Token T;
1794 T.Kind = Token::TK_Tag;
1795 T.Range = StringRef(Start, Current - Start);
1796 TokenQueue.push_back(T);
1797
1798 // Tags can be simple keys.
1799 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1800
1801 IsSimpleKeyAllowed = false;
1802
1803 return true;
1804 }
1805
fetchMoreTokens()1806 bool Scanner::fetchMoreTokens() {
1807 if (IsStartOfStream)
1808 return scanStreamStart();
1809
1810 scanToNextToken();
1811
1812 if (Current == End)
1813 return scanStreamEnd();
1814
1815 removeStaleSimpleKeyCandidates();
1816
1817 unrollIndent(Column);
1818
1819 if (Column == 0 && *Current == '%')
1820 return scanDirective();
1821
1822 if (Column == 0 && Current + 4 <= End
1823 && *Current == '-'
1824 && *(Current + 1) == '-'
1825 && *(Current + 2) == '-'
1826 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1827 return scanDocumentIndicator(true);
1828
1829 if (Column == 0 && Current + 4 <= End
1830 && *Current == '.'
1831 && *(Current + 1) == '.'
1832 && *(Current + 2) == '.'
1833 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1834 return scanDocumentIndicator(false);
1835
1836 if (*Current == '[')
1837 return scanFlowCollectionStart(true);
1838
1839 if (*Current == '{')
1840 return scanFlowCollectionStart(false);
1841
1842 if (*Current == ']')
1843 return scanFlowCollectionEnd(true);
1844
1845 if (*Current == '}')
1846 return scanFlowCollectionEnd(false);
1847
1848 if (*Current == ',')
1849 return scanFlowEntry();
1850
1851 if (*Current == '-' && isBlankOrBreak(Current + 1))
1852 return scanBlockEntry();
1853
1854 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1855 return scanKey();
1856
1857 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1858 return scanValue();
1859
1860 if (*Current == '*')
1861 return scanAliasOrAnchor(true);
1862
1863 if (*Current == '&')
1864 return scanAliasOrAnchor(false);
1865
1866 if (*Current == '!')
1867 return scanTag();
1868
1869 if (*Current == '|' && !FlowLevel)
1870 return scanBlockScalar(true);
1871
1872 if (*Current == '>' && !FlowLevel)
1873 return scanBlockScalar(false);
1874
1875 if (*Current == '\'')
1876 return scanFlowScalar(false);
1877
1878 if (*Current == '"')
1879 return scanFlowScalar(true);
1880
1881 // Get a plain scalar.
1882 StringRef FirstChar(Current, 1);
1883 if (!(isBlankOrBreak(Current)
1884 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1885 || (*Current == '-' && !isBlankOrBreak(Current + 1))
1886 || (!FlowLevel && (*Current == '?' || *Current == ':')
1887 && isBlankOrBreak(Current + 1))
1888 || (!FlowLevel && *Current == ':'
1889 && Current + 2 < End
1890 && *(Current + 1) == ':'
1891 && !isBlankOrBreak(Current + 2)))
1892 return scanPlainScalar();
1893
1894 setError("Unrecognized character while tokenizing.", Current);
1895 return false;
1896 }
1897
Stream(StringRef Input,SourceMgr & SM,bool ShowColors,std::error_code * EC)1898 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1899 std::error_code *EC)
1900 : scanner(new Scanner(Input, SM, ShowColors, EC)) {}
1901
Stream(MemoryBufferRef InputBuffer,SourceMgr & SM,bool ShowColors,std::error_code * EC)1902 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1903 std::error_code *EC)
1904 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)) {}
1905
1906 Stream::~Stream() = default;
1907
failed()1908 bool Stream::failed() { return scanner->failed(); }
1909
printError(Node * N,const Twine & Msg,SourceMgr::DiagKind Kind)1910 void Stream::printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind) {
1911 printError(N ? N->getSourceRange() : SMRange(), Msg, Kind);
1912 }
1913
printError(const SMRange & Range,const Twine & Msg,SourceMgr::DiagKind Kind)1914 void Stream::printError(const SMRange &Range, const Twine &Msg,
1915 SourceMgr::DiagKind Kind) {
1916 scanner->printError(Range.Start, Kind, Msg, Range);
1917 }
1918
begin()1919 document_iterator Stream::begin() {
1920 if (CurrentDoc)
1921 report_fatal_error("Can only iterate over the stream once");
1922
1923 // Skip Stream-Start.
1924 scanner->getNext();
1925
1926 CurrentDoc.reset(new Document(*this));
1927 return document_iterator(CurrentDoc);
1928 }
1929
end()1930 document_iterator Stream::end() {
1931 return document_iterator();
1932 }
1933
skip()1934 void Stream::skip() {
1935 for (Document &Doc : *this)
1936 Doc.skip();
1937 }
1938
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1939 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1940 StringRef T)
1941 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1942 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1943 SourceRange = SMRange(Start, Start);
1944 }
1945
getVerbatimTag() const1946 std::string Node::getVerbatimTag() const {
1947 StringRef Raw = getRawTag();
1948 if (!Raw.empty() && Raw != "!") {
1949 std::string Ret;
1950 if (Raw.find_last_of('!') == 0) {
1951 Ret = std::string(Doc->getTagMap().find("!")->second);
1952 Ret += Raw.substr(1);
1953 return Ret;
1954 } else if (Raw.startswith("!!")) {
1955 Ret = std::string(Doc->getTagMap().find("!!")->second);
1956 Ret += Raw.substr(2);
1957 return Ret;
1958 } else {
1959 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1960 std::map<StringRef, StringRef>::const_iterator It =
1961 Doc->getTagMap().find(TagHandle);
1962 if (It != Doc->getTagMap().end())
1963 Ret = std::string(It->second);
1964 else {
1965 Token T;
1966 T.Kind = Token::TK_Tag;
1967 T.Range = TagHandle;
1968 setError(Twine("Unknown tag handle ") + TagHandle, T);
1969 }
1970 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1971 return Ret;
1972 }
1973 }
1974
1975 switch (getType()) {
1976 case NK_Null:
1977 return "tag:yaml.org,2002:null";
1978 case NK_Scalar:
1979 case NK_BlockScalar:
1980 // TODO: Tag resolution.
1981 return "tag:yaml.org,2002:str";
1982 case NK_Mapping:
1983 return "tag:yaml.org,2002:map";
1984 case NK_Sequence:
1985 return "tag:yaml.org,2002:seq";
1986 }
1987
1988 return "";
1989 }
1990
peekNext()1991 Token &Node::peekNext() {
1992 return Doc->peekNext();
1993 }
1994
getNext()1995 Token Node::getNext() {
1996 return Doc->getNext();
1997 }
1998
parseBlockNode()1999 Node *Node::parseBlockNode() {
2000 return Doc->parseBlockNode();
2001 }
2002
getAllocator()2003 BumpPtrAllocator &Node::getAllocator() {
2004 return Doc->NodeAllocator;
2005 }
2006
setError(const Twine & Msg,Token & Tok) const2007 void Node::setError(const Twine &Msg, Token &Tok) const {
2008 Doc->setError(Msg, Tok);
2009 }
2010
failed() const2011 bool Node::failed() const {
2012 return Doc->failed();
2013 }
2014
getValue(SmallVectorImpl<char> & Storage) const2015 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
2016 // TODO: Handle newlines properly. We need to remove leading whitespace.
2017 if (Value[0] == '"') { // Double quoted.
2018 // Pull off the leading and trailing "s.
2019 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
2020 // Search for characters that would require unescaping the value.
2021 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
2022 if (i != StringRef::npos)
2023 return unescapeDoubleQuoted(UnquotedValue, i, Storage);
2024 return UnquotedValue;
2025 } else if (Value[0] == '\'') { // Single quoted.
2026 // Pull off the leading and trailing 's.
2027 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
2028 StringRef::size_type i = UnquotedValue.find('\'');
2029 if (i != StringRef::npos) {
2030 // We're going to need Storage.
2031 Storage.clear();
2032 Storage.reserve(UnquotedValue.size());
2033 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
2034 StringRef Valid(UnquotedValue.begin(), i);
2035 llvm::append_range(Storage, Valid);
2036 Storage.push_back('\'');
2037 UnquotedValue = UnquotedValue.substr(i + 2);
2038 }
2039 llvm::append_range(Storage, UnquotedValue);
2040 return StringRef(Storage.begin(), Storage.size());
2041 }
2042 return UnquotedValue;
2043 }
2044 // Plain or block.
2045 return Value.rtrim(' ');
2046 }
2047
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const2048 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
2049 , StringRef::size_type i
2050 , SmallVectorImpl<char> &Storage)
2051 const {
2052 // Use Storage to build proper value.
2053 Storage.clear();
2054 Storage.reserve(UnquotedValue.size());
2055 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
2056 // Insert all previous chars into Storage.
2057 StringRef Valid(UnquotedValue.begin(), i);
2058 llvm::append_range(Storage, Valid);
2059 // Chop off inserted chars.
2060 UnquotedValue = UnquotedValue.substr(i);
2061
2062 assert(!UnquotedValue.empty() && "Can't be empty!");
2063
2064 // Parse escape or line break.
2065 switch (UnquotedValue[0]) {
2066 case '\r':
2067 case '\n':
2068 Storage.push_back('\n');
2069 if ( UnquotedValue.size() > 1
2070 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
2071 UnquotedValue = UnquotedValue.substr(1);
2072 UnquotedValue = UnquotedValue.substr(1);
2073 break;
2074 default:
2075 if (UnquotedValue.size() == 1) {
2076 Token T;
2077 T.Range = StringRef(UnquotedValue.begin(), 1);
2078 setError("Unrecognized escape code", T);
2079 return "";
2080 }
2081 UnquotedValue = UnquotedValue.substr(1);
2082 switch (UnquotedValue[0]) {
2083 default: {
2084 Token T;
2085 T.Range = StringRef(UnquotedValue.begin(), 1);
2086 setError("Unrecognized escape code", T);
2087 return "";
2088 }
2089 case '\r':
2090 case '\n':
2091 // Remove the new line.
2092 if ( UnquotedValue.size() > 1
2093 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
2094 UnquotedValue = UnquotedValue.substr(1);
2095 // If this was just a single byte newline, it will get skipped
2096 // below.
2097 break;
2098 case '0':
2099 Storage.push_back(0x00);
2100 break;
2101 case 'a':
2102 Storage.push_back(0x07);
2103 break;
2104 case 'b':
2105 Storage.push_back(0x08);
2106 break;
2107 case 't':
2108 case 0x09:
2109 Storage.push_back(0x09);
2110 break;
2111 case 'n':
2112 Storage.push_back(0x0A);
2113 break;
2114 case 'v':
2115 Storage.push_back(0x0B);
2116 break;
2117 case 'f':
2118 Storage.push_back(0x0C);
2119 break;
2120 case 'r':
2121 Storage.push_back(0x0D);
2122 break;
2123 case 'e':
2124 Storage.push_back(0x1B);
2125 break;
2126 case ' ':
2127 Storage.push_back(0x20);
2128 break;
2129 case '"':
2130 Storage.push_back(0x22);
2131 break;
2132 case '/':
2133 Storage.push_back(0x2F);
2134 break;
2135 case '\\':
2136 Storage.push_back(0x5C);
2137 break;
2138 case 'N':
2139 encodeUTF8(0x85, Storage);
2140 break;
2141 case '_':
2142 encodeUTF8(0xA0, Storage);
2143 break;
2144 case 'L':
2145 encodeUTF8(0x2028, Storage);
2146 break;
2147 case 'P':
2148 encodeUTF8(0x2029, Storage);
2149 break;
2150 case 'x': {
2151 if (UnquotedValue.size() < 3)
2152 // TODO: Report error.
2153 break;
2154 unsigned int UnicodeScalarValue;
2155 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2156 // TODO: Report error.
2157 UnicodeScalarValue = 0xFFFD;
2158 encodeUTF8(UnicodeScalarValue, Storage);
2159 UnquotedValue = UnquotedValue.substr(2);
2160 break;
2161 }
2162 case 'u': {
2163 if (UnquotedValue.size() < 5)
2164 // TODO: Report error.
2165 break;
2166 unsigned int UnicodeScalarValue;
2167 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2168 // TODO: Report error.
2169 UnicodeScalarValue = 0xFFFD;
2170 encodeUTF8(UnicodeScalarValue, Storage);
2171 UnquotedValue = UnquotedValue.substr(4);
2172 break;
2173 }
2174 case 'U': {
2175 if (UnquotedValue.size() < 9)
2176 // TODO: Report error.
2177 break;
2178 unsigned int UnicodeScalarValue;
2179 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2180 // TODO: Report error.
2181 UnicodeScalarValue = 0xFFFD;
2182 encodeUTF8(UnicodeScalarValue, Storage);
2183 UnquotedValue = UnquotedValue.substr(8);
2184 break;
2185 }
2186 }
2187 UnquotedValue = UnquotedValue.substr(1);
2188 }
2189 }
2190 llvm::append_range(Storage, UnquotedValue);
2191 return StringRef(Storage.begin(), Storage.size());
2192 }
2193
getKey()2194 Node *KeyValueNode::getKey() {
2195 if (Key)
2196 return Key;
2197 // Handle implicit null keys.
2198 {
2199 Token &t = peekNext();
2200 if ( t.Kind == Token::TK_BlockEnd
2201 || t.Kind == Token::TK_Value
2202 || t.Kind == Token::TK_Error) {
2203 return Key = new (getAllocator()) NullNode(Doc);
2204 }
2205 if (t.Kind == Token::TK_Key)
2206 getNext(); // skip TK_Key.
2207 }
2208
2209 // Handle explicit null keys.
2210 Token &t = peekNext();
2211 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2212 return Key = new (getAllocator()) NullNode(Doc);
2213 }
2214
2215 // We've got a normal key.
2216 return Key = parseBlockNode();
2217 }
2218
getValue()2219 Node *KeyValueNode::getValue() {
2220 if (Value)
2221 return Value;
2222
2223 if (Node* Key = getKey())
2224 Key->skip();
2225 else {
2226 setError("Null key in Key Value.", peekNext());
2227 return Value = new (getAllocator()) NullNode(Doc);
2228 }
2229
2230 if (failed())
2231 return Value = new (getAllocator()) NullNode(Doc);
2232
2233 // Handle implicit null values.
2234 {
2235 Token &t = peekNext();
2236 if ( t.Kind == Token::TK_BlockEnd
2237 || t.Kind == Token::TK_FlowMappingEnd
2238 || t.Kind == Token::TK_Key
2239 || t.Kind == Token::TK_FlowEntry
2240 || t.Kind == Token::TK_Error) {
2241 return Value = new (getAllocator()) NullNode(Doc);
2242 }
2243
2244 if (t.Kind != Token::TK_Value) {
2245 setError("Unexpected token in Key Value.", t);
2246 return Value = new (getAllocator()) NullNode(Doc);
2247 }
2248 getNext(); // skip TK_Value.
2249 }
2250
2251 // Handle explicit null values.
2252 Token &t = peekNext();
2253 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2254 return Value = new (getAllocator()) NullNode(Doc);
2255 }
2256
2257 // We got a normal value.
2258 return Value = parseBlockNode();
2259 }
2260
increment()2261 void MappingNode::increment() {
2262 if (failed()) {
2263 IsAtEnd = true;
2264 CurrentEntry = nullptr;
2265 return;
2266 }
2267 if (CurrentEntry) {
2268 CurrentEntry->skip();
2269 if (Type == MT_Inline) {
2270 IsAtEnd = true;
2271 CurrentEntry = nullptr;
2272 return;
2273 }
2274 }
2275 Token T = peekNext();
2276 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2277 // KeyValueNode eats the TK_Key. That way it can detect null keys.
2278 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2279 } else if (Type == MT_Block) {
2280 switch (T.Kind) {
2281 case Token::TK_BlockEnd:
2282 getNext();
2283 IsAtEnd = true;
2284 CurrentEntry = nullptr;
2285 break;
2286 default:
2287 setError("Unexpected token. Expected Key or Block End", T);
2288 [[fallthrough]];
2289 case Token::TK_Error:
2290 IsAtEnd = true;
2291 CurrentEntry = nullptr;
2292 }
2293 } else {
2294 switch (T.Kind) {
2295 case Token::TK_FlowEntry:
2296 // Eat the flow entry and recurse.
2297 getNext();
2298 return increment();
2299 case Token::TK_FlowMappingEnd:
2300 getNext();
2301 [[fallthrough]];
2302 case Token::TK_Error:
2303 // Set this to end iterator.
2304 IsAtEnd = true;
2305 CurrentEntry = nullptr;
2306 break;
2307 default:
2308 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2309 "Mapping End."
2310 , T);
2311 IsAtEnd = true;
2312 CurrentEntry = nullptr;
2313 }
2314 }
2315 }
2316
increment()2317 void SequenceNode::increment() {
2318 if (failed()) {
2319 IsAtEnd = true;
2320 CurrentEntry = nullptr;
2321 return;
2322 }
2323 if (CurrentEntry)
2324 CurrentEntry->skip();
2325 Token T = peekNext();
2326 if (SeqType == ST_Block) {
2327 switch (T.Kind) {
2328 case Token::TK_BlockEntry:
2329 getNext();
2330 CurrentEntry = parseBlockNode();
2331 if (!CurrentEntry) { // An error occurred.
2332 IsAtEnd = true;
2333 CurrentEntry = nullptr;
2334 }
2335 break;
2336 case Token::TK_BlockEnd:
2337 getNext();
2338 IsAtEnd = true;
2339 CurrentEntry = nullptr;
2340 break;
2341 default:
2342 setError( "Unexpected token. Expected Block Entry or Block End."
2343 , T);
2344 [[fallthrough]];
2345 case Token::TK_Error:
2346 IsAtEnd = true;
2347 CurrentEntry = nullptr;
2348 }
2349 } else if (SeqType == ST_Indentless) {
2350 switch (T.Kind) {
2351 case Token::TK_BlockEntry:
2352 getNext();
2353 CurrentEntry = parseBlockNode();
2354 if (!CurrentEntry) { // An error occurred.
2355 IsAtEnd = true;
2356 CurrentEntry = nullptr;
2357 }
2358 break;
2359 default:
2360 case Token::TK_Error:
2361 IsAtEnd = true;
2362 CurrentEntry = nullptr;
2363 }
2364 } else if (SeqType == ST_Flow) {
2365 switch (T.Kind) {
2366 case Token::TK_FlowEntry:
2367 // Eat the flow entry and recurse.
2368 getNext();
2369 WasPreviousTokenFlowEntry = true;
2370 return increment();
2371 case Token::TK_FlowSequenceEnd:
2372 getNext();
2373 [[fallthrough]];
2374 case Token::TK_Error:
2375 // Set this to end iterator.
2376 IsAtEnd = true;
2377 CurrentEntry = nullptr;
2378 break;
2379 case Token::TK_StreamEnd:
2380 case Token::TK_DocumentEnd:
2381 case Token::TK_DocumentStart:
2382 setError("Could not find closing ]!", T);
2383 // Set this to end iterator.
2384 IsAtEnd = true;
2385 CurrentEntry = nullptr;
2386 break;
2387 default:
2388 if (!WasPreviousTokenFlowEntry) {
2389 setError("Expected , between entries!", T);
2390 IsAtEnd = true;
2391 CurrentEntry = nullptr;
2392 break;
2393 }
2394 // Otherwise it must be a flow entry.
2395 CurrentEntry = parseBlockNode();
2396 if (!CurrentEntry) {
2397 IsAtEnd = true;
2398 }
2399 WasPreviousTokenFlowEntry = false;
2400 break;
2401 }
2402 }
2403 }
2404
Document(Stream & S)2405 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2406 // Tag maps starts with two default mappings.
2407 TagMap["!"] = "!";
2408 TagMap["!!"] = "tag:yaml.org,2002:";
2409
2410 if (parseDirectives())
2411 expectToken(Token::TK_DocumentStart);
2412 Token &T = peekNext();
2413 if (T.Kind == Token::TK_DocumentStart)
2414 getNext();
2415 }
2416
skip()2417 bool Document::skip() {
2418 if (stream.scanner->failed())
2419 return false;
2420 if (!Root && !getRoot())
2421 return false;
2422 Root->skip();
2423 Token &T = peekNext();
2424 if (T.Kind == Token::TK_StreamEnd)
2425 return false;
2426 if (T.Kind == Token::TK_DocumentEnd) {
2427 getNext();
2428 return skip();
2429 }
2430 return true;
2431 }
2432
peekNext()2433 Token &Document::peekNext() {
2434 return stream.scanner->peekNext();
2435 }
2436
getNext()2437 Token Document::getNext() {
2438 return stream.scanner->getNext();
2439 }
2440
setError(const Twine & Message,Token & Location) const2441 void Document::setError(const Twine &Message, Token &Location) const {
2442 stream.scanner->setError(Message, Location.Range.begin());
2443 }
2444
failed() const2445 bool Document::failed() const {
2446 return stream.scanner->failed();
2447 }
2448
parseBlockNode()2449 Node *Document::parseBlockNode() {
2450 Token T = peekNext();
2451 // Handle properties.
2452 Token AnchorInfo;
2453 Token TagInfo;
2454 parse_property:
2455 switch (T.Kind) {
2456 case Token::TK_Alias:
2457 getNext();
2458 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2459 case Token::TK_Anchor:
2460 if (AnchorInfo.Kind == Token::TK_Anchor) {
2461 setError("Already encountered an anchor for this node!", T);
2462 return nullptr;
2463 }
2464 AnchorInfo = getNext(); // Consume TK_Anchor.
2465 T = peekNext();
2466 goto parse_property;
2467 case Token::TK_Tag:
2468 if (TagInfo.Kind == Token::TK_Tag) {
2469 setError("Already encountered a tag for this node!", T);
2470 return nullptr;
2471 }
2472 TagInfo = getNext(); // Consume TK_Tag.
2473 T = peekNext();
2474 goto parse_property;
2475 default:
2476 break;
2477 }
2478
2479 switch (T.Kind) {
2480 case Token::TK_BlockEntry:
2481 // We got an unindented BlockEntry sequence. This is not terminated with
2482 // a BlockEnd.
2483 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2484 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2485 , AnchorInfo.Range.substr(1)
2486 , TagInfo.Range
2487 , SequenceNode::ST_Indentless);
2488 case Token::TK_BlockSequenceStart:
2489 getNext();
2490 return new (NodeAllocator)
2491 SequenceNode( stream.CurrentDoc
2492 , AnchorInfo.Range.substr(1)
2493 , TagInfo.Range
2494 , SequenceNode::ST_Block);
2495 case Token::TK_BlockMappingStart:
2496 getNext();
2497 return new (NodeAllocator)
2498 MappingNode( stream.CurrentDoc
2499 , AnchorInfo.Range.substr(1)
2500 , TagInfo.Range
2501 , MappingNode::MT_Block);
2502 case Token::TK_FlowSequenceStart:
2503 getNext();
2504 return new (NodeAllocator)
2505 SequenceNode( stream.CurrentDoc
2506 , AnchorInfo.Range.substr(1)
2507 , TagInfo.Range
2508 , SequenceNode::ST_Flow);
2509 case Token::TK_FlowMappingStart:
2510 getNext();
2511 return new (NodeAllocator)
2512 MappingNode( stream.CurrentDoc
2513 , AnchorInfo.Range.substr(1)
2514 , TagInfo.Range
2515 , MappingNode::MT_Flow);
2516 case Token::TK_Scalar:
2517 getNext();
2518 return new (NodeAllocator)
2519 ScalarNode( stream.CurrentDoc
2520 , AnchorInfo.Range.substr(1)
2521 , TagInfo.Range
2522 , T.Range);
2523 case Token::TK_BlockScalar: {
2524 getNext();
2525 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2526 StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2527 return new (NodeAllocator)
2528 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2529 TagInfo.Range, StrCopy, T.Range);
2530 }
2531 case Token::TK_Key:
2532 // Don't eat the TK_Key, KeyValueNode expects it.
2533 return new (NodeAllocator)
2534 MappingNode( stream.CurrentDoc
2535 , AnchorInfo.Range.substr(1)
2536 , TagInfo.Range
2537 , MappingNode::MT_Inline);
2538 case Token::TK_DocumentStart:
2539 case Token::TK_DocumentEnd:
2540 case Token::TK_StreamEnd:
2541 default:
2542 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2543 // !!null null.
2544 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2545 case Token::TK_FlowMappingEnd:
2546 case Token::TK_FlowSequenceEnd:
2547 case Token::TK_FlowEntry: {
2548 if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2549 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2550
2551 setError("Unexpected token", T);
2552 return nullptr;
2553 }
2554 case Token::TK_Error:
2555 return nullptr;
2556 }
2557 llvm_unreachable("Control flow shouldn't reach here.");
2558 return nullptr;
2559 }
2560
parseDirectives()2561 bool Document::parseDirectives() {
2562 bool isDirective = false;
2563 while (true) {
2564 Token T = peekNext();
2565 if (T.Kind == Token::TK_TagDirective) {
2566 parseTAGDirective();
2567 isDirective = true;
2568 } else if (T.Kind == Token::TK_VersionDirective) {
2569 parseYAMLDirective();
2570 isDirective = true;
2571 } else
2572 break;
2573 }
2574 return isDirective;
2575 }
2576
parseYAMLDirective()2577 void Document::parseYAMLDirective() {
2578 getNext(); // Eat %YAML <version>
2579 }
2580
parseTAGDirective()2581 void Document::parseTAGDirective() {
2582 Token Tag = getNext(); // %TAG <handle> <prefix>
2583 StringRef T = Tag.Range;
2584 // Strip %TAG
2585 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2586 std::size_t HandleEnd = T.find_first_of(" \t");
2587 StringRef TagHandle = T.substr(0, HandleEnd);
2588 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2589 TagMap[TagHandle] = TagPrefix;
2590 }
2591
expectToken(int TK)2592 bool Document::expectToken(int TK) {
2593 Token T = getNext();
2594 if (T.Kind != TK) {
2595 setError("Unexpected token", T);
2596 return false;
2597 }
2598 return true;
2599 }
2600