1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/PostDominators.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Utils/CodeExtractor.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <limits>
59 #include <string>
60 
61 #define DEBUG_TYPE "hotcoldsplit"
62 
63 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
64 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis",
69                                           cl::init(true), cl::Hidden);
70 
71 static cl::opt<int>
72     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
73                        cl::desc("Base penalty for splitting cold code (as a "
74                                 "multiple of TCC_Basic)"));
75 
76 static cl::opt<bool> EnableColdSection(
77     "enable-cold-section", cl::init(false), cl::Hidden,
78     cl::desc("Enable placement of extracted cold functions"
79              " into a separate section after hot-cold splitting."));
80 
81 static cl::opt<std::string>
82     ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"),
83                     cl::Hidden,
84                     cl::desc("Name for the section containing cold functions "
85                              "extracted by hot-cold splitting."));
86 
87 static cl::opt<int> MaxParametersForSplit(
88     "hotcoldsplit-max-params", cl::init(4), cl::Hidden,
89     cl::desc("Maximum number of parameters for a split function"));
90 
91 namespace {
92 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
93 // this function unless you modify the MBB version as well.
94 //
95 /// A no successor, non-return block probably ends in unreachable and is cold.
96 /// Also consider a block that ends in an indirect branch to be a return block,
97 /// since many targets use plain indirect branches to return.
blockEndsInUnreachable(const BasicBlock & BB)98 bool blockEndsInUnreachable(const BasicBlock &BB) {
99   if (!succ_empty(&BB))
100     return false;
101   if (BB.empty())
102     return true;
103   const Instruction *I = BB.getTerminator();
104   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
105 }
106 
unlikelyExecuted(BasicBlock & BB)107 bool unlikelyExecuted(BasicBlock &BB) {
108   // Exception handling blocks are unlikely executed.
109   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
110     return true;
111 
112   // The block is cold if it calls/invokes a cold function. However, do not
113   // mark sanitizer traps as cold.
114   for (Instruction &I : BB)
115     if (auto *CB = dyn_cast<CallBase>(&I))
116       if (CB->hasFnAttr(Attribute::Cold) &&
117           !CB->getMetadata(LLVMContext::MD_nosanitize))
118         return true;
119 
120   // The block is cold if it has an unreachable terminator, unless it's
121   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
122   if (blockEndsInUnreachable(BB)) {
123     if (auto *CI =
124             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
125       if (CI->hasFnAttr(Attribute::NoReturn))
126         return false;
127     return true;
128   }
129 
130   return false;
131 }
132 
133 /// Check whether it's safe to outline \p BB.
mayExtractBlock(const BasicBlock & BB)134 static bool mayExtractBlock(const BasicBlock &BB) {
135   // EH pads are unsafe to outline because doing so breaks EH type tables. It
136   // follows that invoke instructions cannot be extracted, because CodeExtractor
137   // requires unwind destinations to be within the extraction region.
138   //
139   // Resumes that are not reachable from a cleanup landing pad are considered to
140   // be unreachable. It’s not safe to split them out either.
141   if (BB.hasAddressTaken() || BB.isEHPad())
142     return false;
143   auto Term = BB.getTerminator();
144   return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term);
145 }
146 
147 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
148 /// If \p UpdateEntryCount is true (set when this is a new split function and
149 /// module has profile data), set entry count to 0 to ensure treated as cold.
150 /// Return true if the function is changed.
markFunctionCold(Function & F,bool UpdateEntryCount=false)151 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
152   assert(!F.hasOptNone() && "Can't mark this cold");
153   bool Changed = false;
154   if (!F.hasFnAttribute(Attribute::Cold)) {
155     F.addFnAttr(Attribute::Cold);
156     Changed = true;
157   }
158   if (!F.hasFnAttribute(Attribute::MinSize)) {
159     F.addFnAttr(Attribute::MinSize);
160     Changed = true;
161   }
162   if (UpdateEntryCount) {
163     // Set the entry count to 0 to ensure it is placed in the unlikely text
164     // section when function sections are enabled.
165     F.setEntryCount(0);
166     Changed = true;
167   }
168 
169   return Changed;
170 }
171 
172 class HotColdSplittingLegacyPass : public ModulePass {
173 public:
174   static char ID;
HotColdSplittingLegacyPass()175   HotColdSplittingLegacyPass() : ModulePass(ID) {
176     initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
177   }
178 
getAnalysisUsage(AnalysisUsage & AU) const179   void getAnalysisUsage(AnalysisUsage &AU) const override {
180     AU.addRequired<BlockFrequencyInfoWrapperPass>();
181     AU.addRequired<ProfileSummaryInfoWrapperPass>();
182     AU.addRequired<TargetTransformInfoWrapperPass>();
183     AU.addUsedIfAvailable<AssumptionCacheTracker>();
184   }
185 
186   bool runOnModule(Module &M) override;
187 };
188 
189 } // end anonymous namespace
190 
191 /// Check whether \p F is inherently cold.
isFunctionCold(const Function & F) const192 bool HotColdSplitting::isFunctionCold(const Function &F) const {
193   if (F.hasFnAttribute(Attribute::Cold))
194     return true;
195 
196   if (F.getCallingConv() == CallingConv::Cold)
197     return true;
198 
199   if (PSI->isFunctionEntryCold(&F))
200     return true;
201 
202   return false;
203 }
204 
205 // Returns false if the function should not be considered for hot-cold split
206 // optimization.
shouldOutlineFrom(const Function & F) const207 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
208   if (F.hasFnAttribute(Attribute::AlwaysInline))
209     return false;
210 
211   if (F.hasFnAttribute(Attribute::NoInline))
212     return false;
213 
214   // A function marked `noreturn` may contain unreachable terminators: these
215   // should not be considered cold, as the function may be a trampoline.
216   if (F.hasFnAttribute(Attribute::NoReturn))
217     return false;
218 
219   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
220       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
221       F.hasFnAttribute(Attribute::SanitizeThread) ||
222       F.hasFnAttribute(Attribute::SanitizeMemory))
223     return false;
224 
225   return true;
226 }
227 
228 /// Get the benefit score of outlining \p Region.
getOutliningBenefit(ArrayRef<BasicBlock * > Region,TargetTransformInfo & TTI)229 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region,
230                                            TargetTransformInfo &TTI) {
231   // Sum up the code size costs of non-terminator instructions. Tight coupling
232   // with \ref getOutliningPenalty is needed to model the costs of terminators.
233   InstructionCost Benefit = 0;
234   for (BasicBlock *BB : Region)
235     for (Instruction &I : BB->instructionsWithoutDebug())
236       if (&I != BB->getTerminator())
237         Benefit +=
238             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
239 
240   return Benefit;
241 }
242 
243 /// Get the penalty score for outlining \p Region.
getOutliningPenalty(ArrayRef<BasicBlock * > Region,unsigned NumInputs,unsigned NumOutputs)244 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
245                                unsigned NumInputs, unsigned NumOutputs) {
246   int Penalty = SplittingThreshold;
247   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
248 
249   // If the splitting threshold is set at or below zero, skip the usual
250   // profitability check.
251   if (SplittingThreshold <= 0)
252     return Penalty;
253 
254   // Find the number of distinct exit blocks for the region. Use a conservative
255   // check to determine whether control returns from the region.
256   bool NoBlocksReturn = true;
257   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
258   for (BasicBlock *BB : Region) {
259     // If a block has no successors, only assume it does not return if it's
260     // unreachable.
261     if (succ_empty(BB)) {
262       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
263       continue;
264     }
265 
266     for (BasicBlock *SuccBB : successors(BB)) {
267       if (!is_contained(Region, SuccBB)) {
268         NoBlocksReturn = false;
269         SuccsOutsideRegion.insert(SuccBB);
270       }
271     }
272   }
273 
274   // Count the number of phis in exit blocks with >= 2 incoming values from the
275   // outlining region. These phis are split (\ref severSplitPHINodesOfExits),
276   // and new outputs are created to supply the split phis. CodeExtractor can't
277   // report these new outputs until extraction begins, but it's important to
278   // factor the cost of the outputs into the cost calculation.
279   unsigned NumSplitExitPhis = 0;
280   for (BasicBlock *ExitBB : SuccsOutsideRegion) {
281     for (PHINode &PN : ExitBB->phis()) {
282       // Find all incoming values from the outlining region.
283       int NumIncomingVals = 0;
284       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
285         if (llvm::is_contained(Region, PN.getIncomingBlock(i))) {
286           ++NumIncomingVals;
287           if (NumIncomingVals > 1) {
288             ++NumSplitExitPhis;
289             break;
290           }
291         }
292     }
293   }
294 
295   // Apply a penalty for calling the split function. Factor in the cost of
296   // materializing all of the parameters.
297   int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis;
298   int NumParams = NumInputs + NumOutputsAndSplitPhis;
299   if (NumParams > MaxParametersForSplit) {
300     LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis
301                       << " outputs exceeds parameter limit ("
302                       << MaxParametersForSplit << ")\n");
303     return std::numeric_limits<int>::max();
304   }
305   const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic;
306   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n");
307   Penalty += CostForArgMaterialization * NumParams;
308 
309   // Apply the typical code size cost for an output alloca and its associated
310   // reload in the caller. Also penalize the associated store in the callee.
311   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis
312                     << " outputs/split phis\n");
313   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
314   Penalty += CostForRegionOutput * NumOutputsAndSplitPhis;
315 
316   // Apply a `noreturn` bonus.
317   if (NoBlocksReturn) {
318     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
319                       << " non-returning terminators\n");
320     Penalty -= Region.size();
321   }
322 
323   // Apply a penalty for having more than one successor outside of the region.
324   // This penalty accounts for the switch needed in the caller.
325   if (SuccsOutsideRegion.size() > 1) {
326     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
327                       << " non-region successors\n");
328     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
329   }
330 
331   return Penalty;
332 }
333 
extractColdRegion(const BlockSequence & Region,const CodeExtractorAnalysisCache & CEAC,DominatorTree & DT,BlockFrequencyInfo * BFI,TargetTransformInfo & TTI,OptimizationRemarkEmitter & ORE,AssumptionCache * AC,unsigned Count)334 Function *HotColdSplitting::extractColdRegion(
335     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
336     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
337     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
338   assert(!Region.empty());
339 
340   // TODO: Pass BFI and BPI to update profile information.
341   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
342                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
343                    /* AllowAlloca */ false, /* AllocaBlock */ nullptr,
344                    /* Suffix */ "cold." + std::to_string(Count));
345 
346   // Perform a simple cost/benefit analysis to decide whether or not to permit
347   // splitting.
348   SetVector<Value *> Inputs, Outputs, Sinks;
349   CE.findInputsOutputs(Inputs, Outputs, Sinks);
350   InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI);
351   int OutliningPenalty =
352       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
353   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
354                     << ", penalty = " << OutliningPenalty << "\n");
355   if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty)
356     return nullptr;
357 
358   Function *OrigF = Region[0]->getParent();
359   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
360     User *U = *OutF->user_begin();
361     CallInst *CI = cast<CallInst>(U);
362     NumColdRegionsOutlined++;
363     if (TTI.useColdCCForColdCall(*OutF)) {
364       OutF->setCallingConv(CallingConv::Cold);
365       CI->setCallingConv(CallingConv::Cold);
366     }
367     CI->setIsNoInline();
368 
369     if (EnableColdSection)
370       OutF->setSection(ColdSectionName);
371     else {
372       if (OrigF->hasSection())
373         OutF->setSection(OrigF->getSection());
374     }
375 
376     markFunctionCold(*OutF, BFI != nullptr);
377 
378     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
379     ORE.emit([&]() {
380       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
381                                 &*Region[0]->begin())
382              << ore::NV("Original", OrigF) << " split cold code into "
383              << ore::NV("Split", OutF);
384     });
385     return OutF;
386   }
387 
388   ORE.emit([&]() {
389     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
390                                     &*Region[0]->begin())
391            << "Failed to extract region at block "
392            << ore::NV("Block", Region.front());
393   });
394   return nullptr;
395 }
396 
397 /// A pair of (basic block, score).
398 using BlockTy = std::pair<BasicBlock *, unsigned>;
399 
400 namespace {
401 /// A maximal outlining region. This contains all blocks post-dominated by a
402 /// sink block, the sink block itself, and all blocks dominated by the sink.
403 /// If sink-predecessors and sink-successors cannot be extracted in one region,
404 /// the static constructor returns a list of suitable extraction regions.
405 class OutliningRegion {
406   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
407   /// viable sub-region entry point. Blocks with higher scores are better entry
408   /// points (i.e. they are more distant ancestors of the sink block).
409   SmallVector<BlockTy, 0> Blocks = {};
410 
411   /// The suggested entry point into the region. If the region has multiple
412   /// entry points, all blocks within the region may not be reachable from this
413   /// entry point.
414   BasicBlock *SuggestedEntryPoint = nullptr;
415 
416   /// Whether the entire function is cold.
417   bool EntireFunctionCold = false;
418 
419   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
getEntryPointScore(BasicBlock & BB,unsigned Score)420   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
421     return mayExtractBlock(BB) ? Score : 0;
422   }
423 
424   /// These scores should be lower than the score for predecessor blocks,
425   /// because regions starting at predecessor blocks are typically larger.
426   static constexpr unsigned ScoreForSuccBlock = 1;
427   static constexpr unsigned ScoreForSinkBlock = 1;
428 
429   OutliningRegion(const OutliningRegion &) = delete;
430   OutliningRegion &operator=(const OutliningRegion &) = delete;
431 
432 public:
433   OutliningRegion() = default;
434   OutliningRegion(OutliningRegion &&) = default;
435   OutliningRegion &operator=(OutliningRegion &&) = default;
436 
create(BasicBlock & SinkBB,const DominatorTree & DT,const PostDominatorTree & PDT)437   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
438                                              const DominatorTree &DT,
439                                              const PostDominatorTree &PDT) {
440     std::vector<OutliningRegion> Regions;
441     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
442 
443     Regions.emplace_back();
444     OutliningRegion *ColdRegion = &Regions.back();
445 
446     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
447       RegionBlocks.insert(BB);
448       ColdRegion->Blocks.emplace_back(BB, Score);
449     };
450 
451     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
452     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
453     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
454     unsigned BestScore = SinkScore;
455 
456     // Visit SinkBB's ancestors using inverse DFS.
457     auto PredIt = ++idf_begin(&SinkBB);
458     auto PredEnd = idf_end(&SinkBB);
459     while (PredIt != PredEnd) {
460       BasicBlock &PredBB = **PredIt;
461       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
462 
463       // If the predecessor is cold and has no predecessors, the entire
464       // function must be cold.
465       if (SinkPostDom && pred_empty(&PredBB)) {
466         ColdRegion->EntireFunctionCold = true;
467         return Regions;
468       }
469 
470       // If SinkBB does not post-dominate a predecessor, do not mark the
471       // predecessor (or any of its predecessors) cold.
472       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
473         PredIt.skipChildren();
474         continue;
475       }
476 
477       // Keep track of the post-dominated ancestor farthest away from the sink.
478       // The path length is always >= 2, ensuring that predecessor blocks are
479       // considered as entry points before the sink block.
480       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
481       if (PredScore > BestScore) {
482         ColdRegion->SuggestedEntryPoint = &PredBB;
483         BestScore = PredScore;
484       }
485 
486       addBlockToRegion(&PredBB, PredScore);
487       ++PredIt;
488     }
489 
490     // If the sink can be added to the cold region, do so. It's considered as
491     // an entry point before any sink-successor blocks.
492     //
493     // Otherwise, split cold sink-successor blocks using a separate region.
494     // This satisfies the requirement that all extraction blocks other than the
495     // first have predecessors within the extraction region.
496     if (mayExtractBlock(SinkBB)) {
497       addBlockToRegion(&SinkBB, SinkScore);
498       if (pred_empty(&SinkBB)) {
499         ColdRegion->EntireFunctionCold = true;
500         return Regions;
501       }
502     } else {
503       Regions.emplace_back();
504       ColdRegion = &Regions.back();
505       BestScore = 0;
506     }
507 
508     // Find all successors of SinkBB dominated by SinkBB using DFS.
509     auto SuccIt = ++df_begin(&SinkBB);
510     auto SuccEnd = df_end(&SinkBB);
511     while (SuccIt != SuccEnd) {
512       BasicBlock &SuccBB = **SuccIt;
513       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
514 
515       // Don't allow the backwards & forwards DFSes to mark the same block.
516       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
517 
518       // If SinkBB does not dominate a successor, do not mark the successor (or
519       // any of its successors) cold.
520       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
521         SuccIt.skipChildren();
522         continue;
523       }
524 
525       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
526       if (SuccScore > BestScore) {
527         ColdRegion->SuggestedEntryPoint = &SuccBB;
528         BestScore = SuccScore;
529       }
530 
531       addBlockToRegion(&SuccBB, SuccScore);
532       ++SuccIt;
533     }
534 
535     return Regions;
536   }
537 
538   /// Whether this region has nothing to extract.
empty() const539   bool empty() const { return !SuggestedEntryPoint; }
540 
541   /// The blocks in this region.
blocks() const542   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
543 
544   /// Whether the entire function containing this region is cold.
isEntireFunctionCold() const545   bool isEntireFunctionCold() const { return EntireFunctionCold; }
546 
547   /// Remove a sub-region from this region and return it as a block sequence.
takeSingleEntrySubRegion(DominatorTree & DT)548   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
549     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
550 
551     // Remove blocks dominated by the suggested entry point from this region.
552     // During the removal, identify the next best entry point into the region.
553     // Ensure that the first extracted block is the suggested entry point.
554     BlockSequence SubRegion = {SuggestedEntryPoint};
555     BasicBlock *NextEntryPoint = nullptr;
556     unsigned NextScore = 0;
557     auto RegionEndIt = Blocks.end();
558     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
559       BasicBlock *BB = Block.first;
560       unsigned Score = Block.second;
561       bool InSubRegion =
562           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
563       if (!InSubRegion && Score > NextScore) {
564         NextEntryPoint = BB;
565         NextScore = Score;
566       }
567       if (InSubRegion && BB != SuggestedEntryPoint)
568         SubRegion.push_back(BB);
569       return InSubRegion;
570     });
571     Blocks.erase(RegionStartIt, RegionEndIt);
572 
573     // Update the suggested entry point.
574     SuggestedEntryPoint = NextEntryPoint;
575 
576     return SubRegion;
577   }
578 };
579 } // namespace
580 
outlineColdRegions(Function & F,bool HasProfileSummary)581 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
582   bool Changed = false;
583 
584   // The set of cold blocks.
585   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
586 
587   // The worklist of non-intersecting regions left to outline.
588   SmallVector<OutliningRegion, 2> OutliningWorklist;
589 
590   // Set up an RPO traversal. Experimentally, this performs better (outlines
591   // more) than a PO traversal, because we prevent region overlap by keeping
592   // the first region to contain a block.
593   ReversePostOrderTraversal<Function *> RPOT(&F);
594 
595   // Calculate domtrees lazily. This reduces compile-time significantly.
596   std::unique_ptr<DominatorTree> DT;
597   std::unique_ptr<PostDominatorTree> PDT;
598 
599   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
600   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
601   // be able to salvage its domtrees instead of recomputing them.
602   BlockFrequencyInfo *BFI = nullptr;
603   if (HasProfileSummary)
604     BFI = GetBFI(F);
605 
606   TargetTransformInfo &TTI = GetTTI(F);
607   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
608   AssumptionCache *AC = LookupAC(F);
609 
610   // Find all cold regions.
611   for (BasicBlock *BB : RPOT) {
612     // This block is already part of some outlining region.
613     if (ColdBlocks.count(BB))
614       continue;
615 
616     bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
617                 (EnableStaticAnalysis && unlikelyExecuted(*BB));
618     if (!Cold)
619       continue;
620 
621     LLVM_DEBUG({
622       dbgs() << "Found a cold block:\n";
623       BB->dump();
624     });
625 
626     if (!DT)
627       DT = std::make_unique<DominatorTree>(F);
628     if (!PDT)
629       PDT = std::make_unique<PostDominatorTree>(F);
630 
631     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
632     for (OutliningRegion &Region : Regions) {
633       if (Region.empty())
634         continue;
635 
636       if (Region.isEntireFunctionCold()) {
637         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
638         return markFunctionCold(F);
639       }
640 
641       // If this outlining region intersects with another, drop the new region.
642       //
643       // TODO: It's theoretically possible to outline more by only keeping the
644       // largest region which contains a block, but the extra bookkeeping to do
645       // this is tricky/expensive.
646       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
647         return !ColdBlocks.insert(Block.first).second;
648       });
649       if (RegionsOverlap)
650         continue;
651 
652       OutliningWorklist.emplace_back(std::move(Region));
653       ++NumColdRegionsFound;
654     }
655   }
656 
657   if (OutliningWorklist.empty())
658     return Changed;
659 
660   // Outline single-entry cold regions, splitting up larger regions as needed.
661   unsigned OutlinedFunctionID = 1;
662   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
663   CodeExtractorAnalysisCache CEAC(F);
664   do {
665     OutliningRegion Region = OutliningWorklist.pop_back_val();
666     assert(!Region.empty() && "Empty outlining region in worklist");
667     do {
668       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
669       LLVM_DEBUG({
670         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
671         for (BasicBlock *BB : SubRegion)
672           BB->dump();
673       });
674 
675       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
676                                              ORE, AC, OutlinedFunctionID);
677       if (Outlined) {
678         ++OutlinedFunctionID;
679         Changed = true;
680       }
681     } while (!Region.empty());
682   } while (!OutliningWorklist.empty());
683 
684   return Changed;
685 }
686 
run(Module & M)687 bool HotColdSplitting::run(Module &M) {
688   bool Changed = false;
689   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
690   for (Function &F : M) {
691     // Do not touch declarations.
692     if (F.isDeclaration())
693       continue;
694 
695     // Do not modify `optnone` functions.
696     if (F.hasOptNone())
697       continue;
698 
699     // Detect inherently cold functions and mark them as such.
700     if (isFunctionCold(F)) {
701       Changed |= markFunctionCold(F);
702       continue;
703     }
704 
705     if (!shouldOutlineFrom(F)) {
706       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
707       continue;
708     }
709 
710     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
711     Changed |= outlineColdRegions(F, HasProfileSummary);
712   }
713   return Changed;
714 }
715 
runOnModule(Module & M)716 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
717   if (skipModule(M))
718     return false;
719   ProfileSummaryInfo *PSI =
720       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
721   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
722     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
723   };
724   auto GBFI = [this](Function &F) {
725     return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
726   };
727   std::unique_ptr<OptimizationRemarkEmitter> ORE;
728   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
729       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
730     ORE.reset(new OptimizationRemarkEmitter(&F));
731     return *ORE;
732   };
733   auto LookupAC = [this](Function &F) -> AssumptionCache * {
734     if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
735       return ACT->lookupAssumptionCache(F);
736     return nullptr;
737   };
738 
739   return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
740 }
741 
742 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)743 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
744   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
745 
746   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
747     return FAM.getCachedResult<AssumptionAnalysis>(F);
748   };
749 
750   auto GBFI = [&FAM](Function &F) {
751     return &FAM.getResult<BlockFrequencyAnalysis>(F);
752   };
753 
754   std::function<TargetTransformInfo &(Function &)> GTTI =
755       [&FAM](Function &F) -> TargetTransformInfo & {
756     return FAM.getResult<TargetIRAnalysis>(F);
757   };
758 
759   std::unique_ptr<OptimizationRemarkEmitter> ORE;
760   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
761       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
762     ORE.reset(new OptimizationRemarkEmitter(&F));
763     return *ORE;
764   };
765 
766   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
767 
768   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
769     return PreservedAnalyses::none();
770   return PreservedAnalyses::all();
771 }
772 
773 char HotColdSplittingLegacyPass::ID = 0;
774 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
775                       "Hot Cold Splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)776 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
777 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
778 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
779                     "Hot Cold Splitting", false, false)
780 
781 ModulePass *llvm::createHotColdSplittingPass() {
782   return new HotColdSplittingLegacyPass();
783 }
784