1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/PostDominators.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Utils/CodeExtractor.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <limits>
59 #include <string>
60
61 #define DEBUG_TYPE "hotcoldsplit"
62
63 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
64 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
65
66 using namespace llvm;
67
68 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis",
69 cl::init(true), cl::Hidden);
70
71 static cl::opt<int>
72 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
73 cl::desc("Base penalty for splitting cold code (as a "
74 "multiple of TCC_Basic)"));
75
76 static cl::opt<bool> EnableColdSection(
77 "enable-cold-section", cl::init(false), cl::Hidden,
78 cl::desc("Enable placement of extracted cold functions"
79 " into a separate section after hot-cold splitting."));
80
81 static cl::opt<std::string>
82 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"),
83 cl::Hidden,
84 cl::desc("Name for the section containing cold functions "
85 "extracted by hot-cold splitting."));
86
87 static cl::opt<int> MaxParametersForSplit(
88 "hotcoldsplit-max-params", cl::init(4), cl::Hidden,
89 cl::desc("Maximum number of parameters for a split function"));
90
91 namespace {
92 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
93 // this function unless you modify the MBB version as well.
94 //
95 /// A no successor, non-return block probably ends in unreachable and is cold.
96 /// Also consider a block that ends in an indirect branch to be a return block,
97 /// since many targets use plain indirect branches to return.
blockEndsInUnreachable(const BasicBlock & BB)98 bool blockEndsInUnreachable(const BasicBlock &BB) {
99 if (!succ_empty(&BB))
100 return false;
101 if (BB.empty())
102 return true;
103 const Instruction *I = BB.getTerminator();
104 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
105 }
106
unlikelyExecuted(BasicBlock & BB)107 bool unlikelyExecuted(BasicBlock &BB) {
108 // Exception handling blocks are unlikely executed.
109 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
110 return true;
111
112 // The block is cold if it calls/invokes a cold function. However, do not
113 // mark sanitizer traps as cold.
114 for (Instruction &I : BB)
115 if (auto *CB = dyn_cast<CallBase>(&I))
116 if (CB->hasFnAttr(Attribute::Cold) &&
117 !CB->getMetadata(LLVMContext::MD_nosanitize))
118 return true;
119
120 // The block is cold if it has an unreachable terminator, unless it's
121 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
122 if (blockEndsInUnreachable(BB)) {
123 if (auto *CI =
124 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
125 if (CI->hasFnAttr(Attribute::NoReturn))
126 return false;
127 return true;
128 }
129
130 return false;
131 }
132
133 /// Check whether it's safe to outline \p BB.
mayExtractBlock(const BasicBlock & BB)134 static bool mayExtractBlock(const BasicBlock &BB) {
135 // EH pads are unsafe to outline because doing so breaks EH type tables. It
136 // follows that invoke instructions cannot be extracted, because CodeExtractor
137 // requires unwind destinations to be within the extraction region.
138 //
139 // Resumes that are not reachable from a cleanup landing pad are considered to
140 // be unreachable. It’s not safe to split them out either.
141 if (BB.hasAddressTaken() || BB.isEHPad())
142 return false;
143 auto Term = BB.getTerminator();
144 return !isa<InvokeInst>(Term) && !isa<ResumeInst>(Term);
145 }
146
147 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
148 /// If \p UpdateEntryCount is true (set when this is a new split function and
149 /// module has profile data), set entry count to 0 to ensure treated as cold.
150 /// Return true if the function is changed.
markFunctionCold(Function & F,bool UpdateEntryCount=false)151 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
152 assert(!F.hasOptNone() && "Can't mark this cold");
153 bool Changed = false;
154 if (!F.hasFnAttribute(Attribute::Cold)) {
155 F.addFnAttr(Attribute::Cold);
156 Changed = true;
157 }
158 if (!F.hasFnAttribute(Attribute::MinSize)) {
159 F.addFnAttr(Attribute::MinSize);
160 Changed = true;
161 }
162 if (UpdateEntryCount) {
163 // Set the entry count to 0 to ensure it is placed in the unlikely text
164 // section when function sections are enabled.
165 F.setEntryCount(0);
166 Changed = true;
167 }
168
169 return Changed;
170 }
171
172 class HotColdSplittingLegacyPass : public ModulePass {
173 public:
174 static char ID;
HotColdSplittingLegacyPass()175 HotColdSplittingLegacyPass() : ModulePass(ID) {
176 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
177 }
178
getAnalysisUsage(AnalysisUsage & AU) const179 void getAnalysisUsage(AnalysisUsage &AU) const override {
180 AU.addRequired<BlockFrequencyInfoWrapperPass>();
181 AU.addRequired<ProfileSummaryInfoWrapperPass>();
182 AU.addRequired<TargetTransformInfoWrapperPass>();
183 AU.addUsedIfAvailable<AssumptionCacheTracker>();
184 }
185
186 bool runOnModule(Module &M) override;
187 };
188
189 } // end anonymous namespace
190
191 /// Check whether \p F is inherently cold.
isFunctionCold(const Function & F) const192 bool HotColdSplitting::isFunctionCold(const Function &F) const {
193 if (F.hasFnAttribute(Attribute::Cold))
194 return true;
195
196 if (F.getCallingConv() == CallingConv::Cold)
197 return true;
198
199 if (PSI->isFunctionEntryCold(&F))
200 return true;
201
202 return false;
203 }
204
205 // Returns false if the function should not be considered for hot-cold split
206 // optimization.
shouldOutlineFrom(const Function & F) const207 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
208 if (F.hasFnAttribute(Attribute::AlwaysInline))
209 return false;
210
211 if (F.hasFnAttribute(Attribute::NoInline))
212 return false;
213
214 // A function marked `noreturn` may contain unreachable terminators: these
215 // should not be considered cold, as the function may be a trampoline.
216 if (F.hasFnAttribute(Attribute::NoReturn))
217 return false;
218
219 if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
220 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
221 F.hasFnAttribute(Attribute::SanitizeThread) ||
222 F.hasFnAttribute(Attribute::SanitizeMemory))
223 return false;
224
225 return true;
226 }
227
228 /// Get the benefit score of outlining \p Region.
getOutliningBenefit(ArrayRef<BasicBlock * > Region,TargetTransformInfo & TTI)229 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region,
230 TargetTransformInfo &TTI) {
231 // Sum up the code size costs of non-terminator instructions. Tight coupling
232 // with \ref getOutliningPenalty is needed to model the costs of terminators.
233 InstructionCost Benefit = 0;
234 for (BasicBlock *BB : Region)
235 for (Instruction &I : BB->instructionsWithoutDebug())
236 if (&I != BB->getTerminator())
237 Benefit +=
238 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
239
240 return Benefit;
241 }
242
243 /// Get the penalty score for outlining \p Region.
getOutliningPenalty(ArrayRef<BasicBlock * > Region,unsigned NumInputs,unsigned NumOutputs)244 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
245 unsigned NumInputs, unsigned NumOutputs) {
246 int Penalty = SplittingThreshold;
247 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
248
249 // If the splitting threshold is set at or below zero, skip the usual
250 // profitability check.
251 if (SplittingThreshold <= 0)
252 return Penalty;
253
254 // Find the number of distinct exit blocks for the region. Use a conservative
255 // check to determine whether control returns from the region.
256 bool NoBlocksReturn = true;
257 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
258 for (BasicBlock *BB : Region) {
259 // If a block has no successors, only assume it does not return if it's
260 // unreachable.
261 if (succ_empty(BB)) {
262 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
263 continue;
264 }
265
266 for (BasicBlock *SuccBB : successors(BB)) {
267 if (!is_contained(Region, SuccBB)) {
268 NoBlocksReturn = false;
269 SuccsOutsideRegion.insert(SuccBB);
270 }
271 }
272 }
273
274 // Count the number of phis in exit blocks with >= 2 incoming values from the
275 // outlining region. These phis are split (\ref severSplitPHINodesOfExits),
276 // and new outputs are created to supply the split phis. CodeExtractor can't
277 // report these new outputs until extraction begins, but it's important to
278 // factor the cost of the outputs into the cost calculation.
279 unsigned NumSplitExitPhis = 0;
280 for (BasicBlock *ExitBB : SuccsOutsideRegion) {
281 for (PHINode &PN : ExitBB->phis()) {
282 // Find all incoming values from the outlining region.
283 int NumIncomingVals = 0;
284 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
285 if (llvm::is_contained(Region, PN.getIncomingBlock(i))) {
286 ++NumIncomingVals;
287 if (NumIncomingVals > 1) {
288 ++NumSplitExitPhis;
289 break;
290 }
291 }
292 }
293 }
294
295 // Apply a penalty for calling the split function. Factor in the cost of
296 // materializing all of the parameters.
297 int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis;
298 int NumParams = NumInputs + NumOutputsAndSplitPhis;
299 if (NumParams > MaxParametersForSplit) {
300 LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis
301 << " outputs exceeds parameter limit ("
302 << MaxParametersForSplit << ")\n");
303 return std::numeric_limits<int>::max();
304 }
305 const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic;
306 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n");
307 Penalty += CostForArgMaterialization * NumParams;
308
309 // Apply the typical code size cost for an output alloca and its associated
310 // reload in the caller. Also penalize the associated store in the callee.
311 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis
312 << " outputs/split phis\n");
313 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
314 Penalty += CostForRegionOutput * NumOutputsAndSplitPhis;
315
316 // Apply a `noreturn` bonus.
317 if (NoBlocksReturn) {
318 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
319 << " non-returning terminators\n");
320 Penalty -= Region.size();
321 }
322
323 // Apply a penalty for having more than one successor outside of the region.
324 // This penalty accounts for the switch needed in the caller.
325 if (SuccsOutsideRegion.size() > 1) {
326 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
327 << " non-region successors\n");
328 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
329 }
330
331 return Penalty;
332 }
333
extractColdRegion(const BlockSequence & Region,const CodeExtractorAnalysisCache & CEAC,DominatorTree & DT,BlockFrequencyInfo * BFI,TargetTransformInfo & TTI,OptimizationRemarkEmitter & ORE,AssumptionCache * AC,unsigned Count)334 Function *HotColdSplitting::extractColdRegion(
335 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
336 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
337 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
338 assert(!Region.empty());
339
340 // TODO: Pass BFI and BPI to update profile information.
341 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
342 /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
343 /* AllowAlloca */ false, /* AllocaBlock */ nullptr,
344 /* Suffix */ "cold." + std::to_string(Count));
345
346 // Perform a simple cost/benefit analysis to decide whether or not to permit
347 // splitting.
348 SetVector<Value *> Inputs, Outputs, Sinks;
349 CE.findInputsOutputs(Inputs, Outputs, Sinks);
350 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI);
351 int OutliningPenalty =
352 getOutliningPenalty(Region, Inputs.size(), Outputs.size());
353 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
354 << ", penalty = " << OutliningPenalty << "\n");
355 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty)
356 return nullptr;
357
358 Function *OrigF = Region[0]->getParent();
359 if (Function *OutF = CE.extractCodeRegion(CEAC)) {
360 User *U = *OutF->user_begin();
361 CallInst *CI = cast<CallInst>(U);
362 NumColdRegionsOutlined++;
363 if (TTI.useColdCCForColdCall(*OutF)) {
364 OutF->setCallingConv(CallingConv::Cold);
365 CI->setCallingConv(CallingConv::Cold);
366 }
367 CI->setIsNoInline();
368
369 if (EnableColdSection)
370 OutF->setSection(ColdSectionName);
371 else {
372 if (OrigF->hasSection())
373 OutF->setSection(OrigF->getSection());
374 }
375
376 markFunctionCold(*OutF, BFI != nullptr);
377
378 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
379 ORE.emit([&]() {
380 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
381 &*Region[0]->begin())
382 << ore::NV("Original", OrigF) << " split cold code into "
383 << ore::NV("Split", OutF);
384 });
385 return OutF;
386 }
387
388 ORE.emit([&]() {
389 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
390 &*Region[0]->begin())
391 << "Failed to extract region at block "
392 << ore::NV("Block", Region.front());
393 });
394 return nullptr;
395 }
396
397 /// A pair of (basic block, score).
398 using BlockTy = std::pair<BasicBlock *, unsigned>;
399
400 namespace {
401 /// A maximal outlining region. This contains all blocks post-dominated by a
402 /// sink block, the sink block itself, and all blocks dominated by the sink.
403 /// If sink-predecessors and sink-successors cannot be extracted in one region,
404 /// the static constructor returns a list of suitable extraction regions.
405 class OutliningRegion {
406 /// A list of (block, score) pairs. A block's score is non-zero iff it's a
407 /// viable sub-region entry point. Blocks with higher scores are better entry
408 /// points (i.e. they are more distant ancestors of the sink block).
409 SmallVector<BlockTy, 0> Blocks = {};
410
411 /// The suggested entry point into the region. If the region has multiple
412 /// entry points, all blocks within the region may not be reachable from this
413 /// entry point.
414 BasicBlock *SuggestedEntryPoint = nullptr;
415
416 /// Whether the entire function is cold.
417 bool EntireFunctionCold = false;
418
419 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
getEntryPointScore(BasicBlock & BB,unsigned Score)420 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
421 return mayExtractBlock(BB) ? Score : 0;
422 }
423
424 /// These scores should be lower than the score for predecessor blocks,
425 /// because regions starting at predecessor blocks are typically larger.
426 static constexpr unsigned ScoreForSuccBlock = 1;
427 static constexpr unsigned ScoreForSinkBlock = 1;
428
429 OutliningRegion(const OutliningRegion &) = delete;
430 OutliningRegion &operator=(const OutliningRegion &) = delete;
431
432 public:
433 OutliningRegion() = default;
434 OutliningRegion(OutliningRegion &&) = default;
435 OutliningRegion &operator=(OutliningRegion &&) = default;
436
create(BasicBlock & SinkBB,const DominatorTree & DT,const PostDominatorTree & PDT)437 static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
438 const DominatorTree &DT,
439 const PostDominatorTree &PDT) {
440 std::vector<OutliningRegion> Regions;
441 SmallPtrSet<BasicBlock *, 4> RegionBlocks;
442
443 Regions.emplace_back();
444 OutliningRegion *ColdRegion = &Regions.back();
445
446 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
447 RegionBlocks.insert(BB);
448 ColdRegion->Blocks.emplace_back(BB, Score);
449 };
450
451 // The ancestor farthest-away from SinkBB, and also post-dominated by it.
452 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
453 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
454 unsigned BestScore = SinkScore;
455
456 // Visit SinkBB's ancestors using inverse DFS.
457 auto PredIt = ++idf_begin(&SinkBB);
458 auto PredEnd = idf_end(&SinkBB);
459 while (PredIt != PredEnd) {
460 BasicBlock &PredBB = **PredIt;
461 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
462
463 // If the predecessor is cold and has no predecessors, the entire
464 // function must be cold.
465 if (SinkPostDom && pred_empty(&PredBB)) {
466 ColdRegion->EntireFunctionCold = true;
467 return Regions;
468 }
469
470 // If SinkBB does not post-dominate a predecessor, do not mark the
471 // predecessor (or any of its predecessors) cold.
472 if (!SinkPostDom || !mayExtractBlock(PredBB)) {
473 PredIt.skipChildren();
474 continue;
475 }
476
477 // Keep track of the post-dominated ancestor farthest away from the sink.
478 // The path length is always >= 2, ensuring that predecessor blocks are
479 // considered as entry points before the sink block.
480 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
481 if (PredScore > BestScore) {
482 ColdRegion->SuggestedEntryPoint = &PredBB;
483 BestScore = PredScore;
484 }
485
486 addBlockToRegion(&PredBB, PredScore);
487 ++PredIt;
488 }
489
490 // If the sink can be added to the cold region, do so. It's considered as
491 // an entry point before any sink-successor blocks.
492 //
493 // Otherwise, split cold sink-successor blocks using a separate region.
494 // This satisfies the requirement that all extraction blocks other than the
495 // first have predecessors within the extraction region.
496 if (mayExtractBlock(SinkBB)) {
497 addBlockToRegion(&SinkBB, SinkScore);
498 if (pred_empty(&SinkBB)) {
499 ColdRegion->EntireFunctionCold = true;
500 return Regions;
501 }
502 } else {
503 Regions.emplace_back();
504 ColdRegion = &Regions.back();
505 BestScore = 0;
506 }
507
508 // Find all successors of SinkBB dominated by SinkBB using DFS.
509 auto SuccIt = ++df_begin(&SinkBB);
510 auto SuccEnd = df_end(&SinkBB);
511 while (SuccIt != SuccEnd) {
512 BasicBlock &SuccBB = **SuccIt;
513 bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
514
515 // Don't allow the backwards & forwards DFSes to mark the same block.
516 bool DuplicateBlock = RegionBlocks.count(&SuccBB);
517
518 // If SinkBB does not dominate a successor, do not mark the successor (or
519 // any of its successors) cold.
520 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
521 SuccIt.skipChildren();
522 continue;
523 }
524
525 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
526 if (SuccScore > BestScore) {
527 ColdRegion->SuggestedEntryPoint = &SuccBB;
528 BestScore = SuccScore;
529 }
530
531 addBlockToRegion(&SuccBB, SuccScore);
532 ++SuccIt;
533 }
534
535 return Regions;
536 }
537
538 /// Whether this region has nothing to extract.
empty() const539 bool empty() const { return !SuggestedEntryPoint; }
540
541 /// The blocks in this region.
blocks() const542 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
543
544 /// Whether the entire function containing this region is cold.
isEntireFunctionCold() const545 bool isEntireFunctionCold() const { return EntireFunctionCold; }
546
547 /// Remove a sub-region from this region and return it as a block sequence.
takeSingleEntrySubRegion(DominatorTree & DT)548 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
549 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
550
551 // Remove blocks dominated by the suggested entry point from this region.
552 // During the removal, identify the next best entry point into the region.
553 // Ensure that the first extracted block is the suggested entry point.
554 BlockSequence SubRegion = {SuggestedEntryPoint};
555 BasicBlock *NextEntryPoint = nullptr;
556 unsigned NextScore = 0;
557 auto RegionEndIt = Blocks.end();
558 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
559 BasicBlock *BB = Block.first;
560 unsigned Score = Block.second;
561 bool InSubRegion =
562 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
563 if (!InSubRegion && Score > NextScore) {
564 NextEntryPoint = BB;
565 NextScore = Score;
566 }
567 if (InSubRegion && BB != SuggestedEntryPoint)
568 SubRegion.push_back(BB);
569 return InSubRegion;
570 });
571 Blocks.erase(RegionStartIt, RegionEndIt);
572
573 // Update the suggested entry point.
574 SuggestedEntryPoint = NextEntryPoint;
575
576 return SubRegion;
577 }
578 };
579 } // namespace
580
outlineColdRegions(Function & F,bool HasProfileSummary)581 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
582 bool Changed = false;
583
584 // The set of cold blocks.
585 SmallPtrSet<BasicBlock *, 4> ColdBlocks;
586
587 // The worklist of non-intersecting regions left to outline.
588 SmallVector<OutliningRegion, 2> OutliningWorklist;
589
590 // Set up an RPO traversal. Experimentally, this performs better (outlines
591 // more) than a PO traversal, because we prevent region overlap by keeping
592 // the first region to contain a block.
593 ReversePostOrderTraversal<Function *> RPOT(&F);
594
595 // Calculate domtrees lazily. This reduces compile-time significantly.
596 std::unique_ptr<DominatorTree> DT;
597 std::unique_ptr<PostDominatorTree> PDT;
598
599 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
600 // reduces compile-time significantly. TODO: When we *do* use BFI, we should
601 // be able to salvage its domtrees instead of recomputing them.
602 BlockFrequencyInfo *BFI = nullptr;
603 if (HasProfileSummary)
604 BFI = GetBFI(F);
605
606 TargetTransformInfo &TTI = GetTTI(F);
607 OptimizationRemarkEmitter &ORE = (*GetORE)(F);
608 AssumptionCache *AC = LookupAC(F);
609
610 // Find all cold regions.
611 for (BasicBlock *BB : RPOT) {
612 // This block is already part of some outlining region.
613 if (ColdBlocks.count(BB))
614 continue;
615
616 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
617 (EnableStaticAnalysis && unlikelyExecuted(*BB));
618 if (!Cold)
619 continue;
620
621 LLVM_DEBUG({
622 dbgs() << "Found a cold block:\n";
623 BB->dump();
624 });
625
626 if (!DT)
627 DT = std::make_unique<DominatorTree>(F);
628 if (!PDT)
629 PDT = std::make_unique<PostDominatorTree>(F);
630
631 auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
632 for (OutliningRegion &Region : Regions) {
633 if (Region.empty())
634 continue;
635
636 if (Region.isEntireFunctionCold()) {
637 LLVM_DEBUG(dbgs() << "Entire function is cold\n");
638 return markFunctionCold(F);
639 }
640
641 // If this outlining region intersects with another, drop the new region.
642 //
643 // TODO: It's theoretically possible to outline more by only keeping the
644 // largest region which contains a block, but the extra bookkeeping to do
645 // this is tricky/expensive.
646 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
647 return !ColdBlocks.insert(Block.first).second;
648 });
649 if (RegionsOverlap)
650 continue;
651
652 OutliningWorklist.emplace_back(std::move(Region));
653 ++NumColdRegionsFound;
654 }
655 }
656
657 if (OutliningWorklist.empty())
658 return Changed;
659
660 // Outline single-entry cold regions, splitting up larger regions as needed.
661 unsigned OutlinedFunctionID = 1;
662 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
663 CodeExtractorAnalysisCache CEAC(F);
664 do {
665 OutliningRegion Region = OutliningWorklist.pop_back_val();
666 assert(!Region.empty() && "Empty outlining region in worklist");
667 do {
668 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
669 LLVM_DEBUG({
670 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
671 for (BasicBlock *BB : SubRegion)
672 BB->dump();
673 });
674
675 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
676 ORE, AC, OutlinedFunctionID);
677 if (Outlined) {
678 ++OutlinedFunctionID;
679 Changed = true;
680 }
681 } while (!Region.empty());
682 } while (!OutliningWorklist.empty());
683
684 return Changed;
685 }
686
run(Module & M)687 bool HotColdSplitting::run(Module &M) {
688 bool Changed = false;
689 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
690 for (Function &F : M) {
691 // Do not touch declarations.
692 if (F.isDeclaration())
693 continue;
694
695 // Do not modify `optnone` functions.
696 if (F.hasOptNone())
697 continue;
698
699 // Detect inherently cold functions and mark them as such.
700 if (isFunctionCold(F)) {
701 Changed |= markFunctionCold(F);
702 continue;
703 }
704
705 if (!shouldOutlineFrom(F)) {
706 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
707 continue;
708 }
709
710 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
711 Changed |= outlineColdRegions(F, HasProfileSummary);
712 }
713 return Changed;
714 }
715
runOnModule(Module & M)716 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
717 if (skipModule(M))
718 return false;
719 ProfileSummaryInfo *PSI =
720 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
721 auto GTTI = [this](Function &F) -> TargetTransformInfo & {
722 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
723 };
724 auto GBFI = [this](Function &F) {
725 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
726 };
727 std::unique_ptr<OptimizationRemarkEmitter> ORE;
728 std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
729 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
730 ORE.reset(new OptimizationRemarkEmitter(&F));
731 return *ORE;
732 };
733 auto LookupAC = [this](Function &F) -> AssumptionCache * {
734 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
735 return ACT->lookupAssumptionCache(F);
736 return nullptr;
737 };
738
739 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
740 }
741
742 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)743 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
744 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
745
746 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
747 return FAM.getCachedResult<AssumptionAnalysis>(F);
748 };
749
750 auto GBFI = [&FAM](Function &F) {
751 return &FAM.getResult<BlockFrequencyAnalysis>(F);
752 };
753
754 std::function<TargetTransformInfo &(Function &)> GTTI =
755 [&FAM](Function &F) -> TargetTransformInfo & {
756 return FAM.getResult<TargetIRAnalysis>(F);
757 };
758
759 std::unique_ptr<OptimizationRemarkEmitter> ORE;
760 std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
761 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
762 ORE.reset(new OptimizationRemarkEmitter(&F));
763 return *ORE;
764 };
765
766 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
767
768 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
769 return PreservedAnalyses::none();
770 return PreservedAnalyses::all();
771 }
772
773 char HotColdSplittingLegacyPass::ID = 0;
774 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
775 "Hot Cold Splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)776 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
777 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
778 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
779 "Hot Cold Splitting", false, false)
780
781 ModulePass *llvm::createHotColdSplittingPass() {
782 return new HotColdSplittingLegacyPass();
783 }
784