1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header defines the implementation of the LLVM difference
10 // engine, which structurally compares global values within a module.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DifferenceEngine.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/type_traits.h"
29 #include <utility>
30
31 using namespace llvm;
32
33 namespace {
34
35 /// A priority queue, implemented as a heap.
36 template <class T, class Sorter, unsigned InlineCapacity>
37 class PriorityQueue {
38 Sorter Precedes;
39 llvm::SmallVector<T, InlineCapacity> Storage;
40
41 public:
PriorityQueue(const Sorter & Precedes)42 PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43
44 /// Checks whether the heap is empty.
empty() const45 bool empty() const { return Storage.empty(); }
46
47 /// Insert a new value on the heap.
insert(const T & V)48 void insert(const T &V) {
49 unsigned Index = Storage.size();
50 Storage.push_back(V);
51 if (Index == 0) return;
52
53 T *data = Storage.data();
54 while (true) {
55 unsigned Target = (Index + 1) / 2 - 1;
56 if (!Precedes(data[Index], data[Target])) return;
57 std::swap(data[Index], data[Target]);
58 if (Target == 0) return;
59 Index = Target;
60 }
61 }
62
63 /// Remove the minimum value in the heap. Only valid on a non-empty heap.
remove_min()64 T remove_min() {
65 assert(!empty());
66 T tmp = Storage[0];
67
68 unsigned NewSize = Storage.size() - 1;
69 if (NewSize) {
70 // Move the slot at the end to the beginning.
71 if (std::is_trivially_copyable<T>::value)
72 Storage[0] = Storage[NewSize];
73 else
74 std::swap(Storage[0], Storage[NewSize]);
75
76 // Bubble the root up as necessary.
77 unsigned Index = 0;
78 while (true) {
79 // With a 1-based index, the children would be Index*2 and Index*2+1.
80 unsigned R = (Index + 1) * 2;
81 unsigned L = R - 1;
82
83 // If R is out of bounds, we're done after this in any case.
84 if (R >= NewSize) {
85 // If L is also out of bounds, we're done immediately.
86 if (L >= NewSize) break;
87
88 // Otherwise, test whether we should swap L and Index.
89 if (Precedes(Storage[L], Storage[Index]))
90 std::swap(Storage[L], Storage[Index]);
91 break;
92 }
93
94 // Otherwise, we need to compare with the smaller of L and R.
95 // Prefer R because it's closer to the end of the array.
96 unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97
98 // If Index is >= the min of L and R, then heap ordering is restored.
99 if (!Precedes(Storage[IndexToTest], Storage[Index]))
100 break;
101
102 // Otherwise, keep bubbling up.
103 std::swap(Storage[IndexToTest], Storage[Index]);
104 Index = IndexToTest;
105 }
106 }
107 Storage.pop_back();
108
109 return tmp;
110 }
111 };
112
113 /// A function-scope difference engine.
114 class FunctionDifferenceEngine {
115 DifferenceEngine &Engine;
116
117 // Some initializers may reference the variable we're currently checking. This
118 // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119 // recursing.
120 const Value *SavedLHS;
121 const Value *SavedRHS;
122
123 // The current mapping from old local values to new local values.
124 DenseMap<const Value *, const Value *> Values;
125
126 // The current mapping from old blocks to new blocks.
127 DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128
129 // The tentative mapping from old local values while comparing a pair of
130 // basic blocks. Once the pair has been processed, the tentative mapping is
131 // committed to the Values map.
132 DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133
134 // Equivalence Assumptions
135 //
136 // For basic blocks in loops, some values in phi nodes may depend on
137 // values from not yet processed basic blocks in the loop. When encountering
138 // such values, we optimistically asssume their equivalence and store this
139 // assumption in a BlockDiffCandidate for the pair of compared BBs.
140 //
141 // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142 // stored assumptions using the Values map that stores proven equivalences
143 // between the old and new values, and report a diff if an assumption cannot
144 // be proven to be true.
145 //
146 // Note that after having made an assumption, all further determined
147 // equivalences implicitly depend on that assumption. These will not be
148 // reverted or reported if the assumption proves to be false, because these
149 // are considered indirect diffs caused by earlier direct diffs.
150 //
151 // We aim to avoid false negatives in llvm-diff, that is, ensure that
152 // whenever no diff is reported, the functions are indeed equal. If
153 // assumptions were made, this is not entirely clear, because in principle we
154 // could end up with a circular proof where the proof of equivalence of two
155 // nodes is depending on the assumption of their equivalence.
156 //
157 // To see that assumptions do not add false negatives, note that if we do not
158 // report a diff, this means that there is an equivalence mapping between old
159 // and new values that is consistent with all assumptions made. The circular
160 // dependency that exists on an IR value level does not exist at run time,
161 // because the values selected by the phi nodes must always already have been
162 // computed. Hence, we can prove equivalence of the old and new functions by
163 // considering step-wise parallel execution, and incrementally proving
164 // equivalence of every new computed value. Another way to think about it is
165 // to imagine cloning the loop BBs for every iteration, turning the loops
166 // into (possibly infinite) DAGs, and proving equivalence by induction on the
167 // iteration, using the computed value mapping.
168
169 // The class BlockDiffCandidate stores pairs which either have already been
170 // proven to differ, or pairs whose equivalence depends on assumptions to be
171 // verified later.
172 struct BlockDiffCandidate {
173 const BasicBlock *LBB;
174 const BasicBlock *RBB;
175 // Maps old values to assumed-to-be-equivalent new values
176 SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177 // If set, we already know the blocks differ.
178 bool KnownToDiffer;
179 };
180
181 // List of block diff candidates in the order found by processing.
182 // We generate reports in this order.
183 // For every LBB, there may only be one corresponding RBB.
184 SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185 // Maps LBB to the index of its BlockDiffCandidate, if existing.
186 DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187
188 // Note: Every LBB must always be queried together with the same RBB.
189 // The returned reference is not permanently valid and should not be stored.
getOrCreateBlockDiffCandidate(const BasicBlock * LBB,const BasicBlock * RBB)190 BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191 const BasicBlock *RBB) {
192 auto It = BlockDiffCandidateIndices.find(LBB);
193 // Check if LBB already has a diff candidate
194 if (It == BlockDiffCandidateIndices.end()) {
195 // Add new one
196 BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197 BlockDiffCandidates.push_back(
198 {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199 return BlockDiffCandidates.back();
200 }
201 // Use existing one
202 BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203 assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204 return Result;
205 }
206
207 // Optionally passed to equivalence checker functions, so these can add
208 // assumptions in BlockDiffCandidates. Its presence controls whether
209 // assumptions are generated.
210 struct AssumptionContext {
211 // The two basic blocks that need the two compared values to be equivalent.
212 const BasicBlock *LBB;
213 const BasicBlock *RBB;
214 };
215
getUnprocPredCount(const BasicBlock * Block) const216 unsigned getUnprocPredCount(const BasicBlock *Block) const {
217 unsigned Count = 0;
218 for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
219 ++I)
220 if (!Blocks.count(*I)) Count++;
221 return Count;
222 }
223
224 typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
225
226 /// A type which sorts a priority queue by the number of unprocessed
227 /// predecessor blocks it has remaining.
228 ///
229 /// This is actually really expensive to calculate.
230 struct QueueSorter {
231 const FunctionDifferenceEngine &fde;
QueueSorter__anonec66ef2e0111::FunctionDifferenceEngine::QueueSorter232 explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
233
operator ()__anonec66ef2e0111::FunctionDifferenceEngine::QueueSorter234 bool operator()(BlockPair &Old, BlockPair &New) {
235 return fde.getUnprocPredCount(Old.first)
236 < fde.getUnprocPredCount(New.first);
237 }
238 };
239
240 /// A queue of unified blocks to process.
241 PriorityQueue<BlockPair, QueueSorter, 20> Queue;
242
243 /// Try to unify the given two blocks. Enqueues them for processing
244 /// if they haven't already been processed.
245 ///
246 /// Returns true if there was a problem unifying them.
tryUnify(const BasicBlock * L,const BasicBlock * R)247 bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
248 const BasicBlock *&Ref = Blocks[L];
249
250 if (Ref) {
251 if (Ref == R) return false;
252
253 Engine.logf("successor %l cannot be equivalent to %r; "
254 "it's already equivalent to %r")
255 << L << R << Ref;
256 return true;
257 }
258
259 Ref = R;
260 Queue.insert(BlockPair(L, R));
261 return false;
262 }
263
264 /// Unifies two instructions, given that they're known not to have
265 /// structural differences.
unify(const Instruction * L,const Instruction * R)266 void unify(const Instruction *L, const Instruction *R) {
267 DifferenceEngine::Context C(Engine, L, R);
268
269 bool Result = diff(L, R, true, true, true);
270 assert(!Result && "structural differences second time around?");
271 (void) Result;
272 if (!L->use_empty())
273 Values[L] = R;
274 }
275
processQueue()276 void processQueue() {
277 while (!Queue.empty()) {
278 BlockPair Pair = Queue.remove_min();
279 diff(Pair.first, Pair.second);
280 }
281 }
282
checkAndReportDiffCandidates()283 void checkAndReportDiffCandidates() {
284 for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
285
286 // Check assumptions
287 for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
288 auto It = Values.find(L);
289 if (It == Values.end() || It->second != R) {
290 BDC.KnownToDiffer = true;
291 break;
292 }
293 }
294
295 // Run block diff if the BBs differ
296 if (BDC.KnownToDiffer) {
297 DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
298 runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
299 }
300 }
301 }
302
diff(const BasicBlock * L,const BasicBlock * R)303 void diff(const BasicBlock *L, const BasicBlock *R) {
304 DifferenceEngine::Context C(Engine, L, R);
305
306 BasicBlock::const_iterator LI = L->begin(), LE = L->end();
307 BasicBlock::const_iterator RI = R->begin();
308
309 do {
310 assert(LI != LE && RI != R->end());
311 const Instruction *LeftI = &*LI, *RightI = &*RI;
312
313 // If the instructions differ, start the more sophisticated diff
314 // algorithm at the start of the block.
315 if (diff(LeftI, RightI, false, false, true)) {
316 TentativeValues.clear();
317 // Register (L, R) as diffing pair. Note that we could directly emit a
318 // block diff here, but this way we ensure all diffs are emitted in one
319 // consistent order, independent of whether the diffs were detected
320 // immediately or via invalid assumptions.
321 getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
322 return;
323 }
324
325 // Otherwise, tentatively unify them.
326 if (!LeftI->use_empty())
327 TentativeValues.insert(std::make_pair(LeftI, RightI));
328
329 ++LI;
330 ++RI;
331 } while (LI != LE); // This is sufficient: we can't get equality of
332 // terminators if there are residual instructions.
333
334 // Unify everything in the block, non-tentatively this time.
335 TentativeValues.clear();
336 for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
337 unify(&*LI, &*RI);
338 }
339
340 bool matchForBlockDiff(const Instruction *L, const Instruction *R);
341 void runBlockDiff(BasicBlock::const_iterator LI,
342 BasicBlock::const_iterator RI);
343
diffCallSites(const CallBase & L,const CallBase & R,bool Complain)344 bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
345 // FIXME: call attributes
346 AssumptionContext AC = {L.getParent(), R.getParent()};
347 if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
348 &AC)) {
349 if (Complain) Engine.log("called functions differ");
350 return true;
351 }
352 if (L.arg_size() != R.arg_size()) {
353 if (Complain) Engine.log("argument counts differ");
354 return true;
355 }
356 for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
357 if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
358 if (Complain)
359 Engine.logf("arguments %l and %r differ")
360 << L.getArgOperand(I) << R.getArgOperand(I);
361 return true;
362 }
363 return false;
364 }
365
366 // If AllowAssumptions is enabled, whenever we encounter a pair of values
367 // that we cannot prove to be equivalent, we assume equivalence and store that
368 // assumption to be checked later in BlockDiffCandidates.
diff(const Instruction * L,const Instruction * R,bool Complain,bool TryUnify,bool AllowAssumptions)369 bool diff(const Instruction *L, const Instruction *R, bool Complain,
370 bool TryUnify, bool AllowAssumptions) {
371 // FIXME: metadata (if Complain is set)
372 AssumptionContext ACValue = {L->getParent(), R->getParent()};
373 // nullptr AssumptionContext disables assumption generation.
374 const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
375
376 // Different opcodes always imply different operations.
377 if (L->getOpcode() != R->getOpcode()) {
378 if (Complain) Engine.log("different instruction types");
379 return true;
380 }
381
382 if (isa<CmpInst>(L)) {
383 if (cast<CmpInst>(L)->getPredicate()
384 != cast<CmpInst>(R)->getPredicate()) {
385 if (Complain) Engine.log("different predicates");
386 return true;
387 }
388 } else if (isa<CallInst>(L)) {
389 return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
390 } else if (isa<PHINode>(L)) {
391 const PHINode &LI = cast<PHINode>(*L);
392 const PHINode &RI = cast<PHINode>(*R);
393
394 // This is really weird; type uniquing is broken?
395 if (LI.getType() != RI.getType()) {
396 if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
397 if (Complain) Engine.log("different phi types");
398 return true;
399 }
400 }
401
402 if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
403 if (Complain)
404 Engine.log("PHI node # of incoming values differ");
405 return true;
406 }
407
408 for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
409 if (TryUnify)
410 tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
411
412 if (!equivalentAsOperands(LI.getIncomingValue(I),
413 RI.getIncomingValue(I), AC)) {
414 if (Complain)
415 Engine.log("PHI node incoming values differ");
416 return true;
417 }
418 }
419
420 return false;
421
422 // Terminators.
423 } else if (isa<InvokeInst>(L)) {
424 const InvokeInst &LI = cast<InvokeInst>(*L);
425 const InvokeInst &RI = cast<InvokeInst>(*R);
426 if (diffCallSites(LI, RI, Complain))
427 return true;
428
429 if (TryUnify) {
430 tryUnify(LI.getNormalDest(), RI.getNormalDest());
431 tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
432 }
433 return false;
434
435 } else if (isa<CallBrInst>(L)) {
436 const CallBrInst &LI = cast<CallBrInst>(*L);
437 const CallBrInst &RI = cast<CallBrInst>(*R);
438 if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
439 if (Complain)
440 Engine.log("callbr # of indirect destinations differ");
441 return true;
442 }
443
444 // Perform the "try unify" step so that we can equate the indirect
445 // destinations before checking the call site.
446 for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
447 tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
448
449 if (diffCallSites(LI, RI, Complain))
450 return true;
451
452 if (TryUnify)
453 tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
454 return false;
455
456 } else if (isa<BranchInst>(L)) {
457 const BranchInst *LI = cast<BranchInst>(L);
458 const BranchInst *RI = cast<BranchInst>(R);
459 if (LI->isConditional() != RI->isConditional()) {
460 if (Complain) Engine.log("branch conditionality differs");
461 return true;
462 }
463
464 if (LI->isConditional()) {
465 if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
466 if (Complain) Engine.log("branch conditions differ");
467 return true;
468 }
469 if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
470 }
471 if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
472 return false;
473
474 } else if (isa<IndirectBrInst>(L)) {
475 const IndirectBrInst *LI = cast<IndirectBrInst>(L);
476 const IndirectBrInst *RI = cast<IndirectBrInst>(R);
477 if (LI->getNumDestinations() != RI->getNumDestinations()) {
478 if (Complain) Engine.log("indirectbr # of destinations differ");
479 return true;
480 }
481
482 if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
483 if (Complain) Engine.log("indirectbr addresses differ");
484 return true;
485 }
486
487 if (TryUnify) {
488 for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
489 tryUnify(LI->getDestination(i), RI->getDestination(i));
490 }
491 }
492 return false;
493
494 } else if (isa<SwitchInst>(L)) {
495 const SwitchInst *LI = cast<SwitchInst>(L);
496 const SwitchInst *RI = cast<SwitchInst>(R);
497 if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
498 if (Complain) Engine.log("switch conditions differ");
499 return true;
500 }
501 if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
502
503 bool Difference = false;
504
505 DenseMap<const ConstantInt *, const BasicBlock *> LCases;
506 for (auto Case : LI->cases())
507 LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
508
509 for (auto Case : RI->cases()) {
510 const ConstantInt *CaseValue = Case.getCaseValue();
511 const BasicBlock *LCase = LCases[CaseValue];
512 if (LCase) {
513 if (TryUnify)
514 tryUnify(LCase, Case.getCaseSuccessor());
515 LCases.erase(CaseValue);
516 } else if (Complain || !Difference) {
517 if (Complain)
518 Engine.logf("right switch has extra case %r") << CaseValue;
519 Difference = true;
520 }
521 }
522 if (!Difference)
523 for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
524 I = LCases.begin(),
525 E = LCases.end();
526 I != E; ++I) {
527 if (Complain)
528 Engine.logf("left switch has extra case %l") << I->first;
529 Difference = true;
530 }
531 return Difference;
532 } else if (isa<UnreachableInst>(L)) {
533 return false;
534 }
535
536 if (L->getNumOperands() != R->getNumOperands()) {
537 if (Complain) Engine.log("instructions have different operand counts");
538 return true;
539 }
540
541 for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
542 Value *LO = L->getOperand(I), *RO = R->getOperand(I);
543 if (!equivalentAsOperands(LO, RO, AC)) {
544 if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
545 return true;
546 }
547 }
548
549 return false;
550 }
551
552 public:
equivalentAsOperands(const Constant * L,const Constant * R,const AssumptionContext * AC)553 bool equivalentAsOperands(const Constant *L, const Constant *R,
554 const AssumptionContext *AC) {
555 // Use equality as a preliminary filter.
556 if (L == R)
557 return true;
558
559 if (L->getValueID() != R->getValueID())
560 return false;
561
562 // Ask the engine about global values.
563 if (isa<GlobalValue>(L))
564 return Engine.equivalentAsOperands(cast<GlobalValue>(L),
565 cast<GlobalValue>(R));
566
567 // Compare constant expressions structurally.
568 if (isa<ConstantExpr>(L))
569 return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
570 AC);
571
572 // Constants of the "same type" don't always actually have the same
573 // type; I don't know why. Just white-list them.
574 if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
575 return true;
576
577 // Block addresses only match if we've already encountered the
578 // block. FIXME: tentative matches?
579 if (isa<BlockAddress>(L))
580 return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
581 == cast<BlockAddress>(R)->getBasicBlock();
582
583 // If L and R are ConstantVectors, compare each element
584 if (isa<ConstantVector>(L)) {
585 const ConstantVector *CVL = cast<ConstantVector>(L);
586 const ConstantVector *CVR = cast<ConstantVector>(R);
587 if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
588 return false;
589 for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
590 if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
591 return false;
592 }
593 return true;
594 }
595
596 // If L and R are ConstantArrays, compare the element count and types.
597 if (isa<ConstantArray>(L)) {
598 const ConstantArray *CAL = cast<ConstantArray>(L);
599 const ConstantArray *CAR = cast<ConstantArray>(R);
600 // Sometimes a type may be equivalent, but not uniquified---e.g. it may
601 // contain a GEP instruction. Do a deeper comparison of the types.
602 if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
603 return false;
604
605 for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
606 if (!equivalentAsOperands(CAL->getAggregateElement(I),
607 CAR->getAggregateElement(I), AC))
608 return false;
609 }
610
611 return true;
612 }
613
614 // If L and R are ConstantStructs, compare each field and type.
615 if (isa<ConstantStruct>(L)) {
616 const ConstantStruct *CSL = cast<ConstantStruct>(L);
617 const ConstantStruct *CSR = cast<ConstantStruct>(R);
618
619 const StructType *LTy = cast<StructType>(CSL->getType());
620 const StructType *RTy = cast<StructType>(CSR->getType());
621
622 // The StructTypes should have the same attributes. Don't use
623 // isLayoutIdentical(), because that just checks the element pointers,
624 // which may not work here.
625 if (LTy->getNumElements() != RTy->getNumElements() ||
626 LTy->isPacked() != RTy->isPacked())
627 return false;
628
629 for (unsigned I = 0; I < LTy->getNumElements(); I++) {
630 const Value *LAgg = CSL->getAggregateElement(I);
631 const Value *RAgg = CSR->getAggregateElement(I);
632
633 if (LAgg == SavedLHS || RAgg == SavedRHS) {
634 if (LAgg != SavedLHS || RAgg != SavedRHS)
635 // If the left and right operands aren't both re-analyzing the
636 // variable, then the initialiers don't match, so report "false".
637 // Otherwise, we skip these operands..
638 return false;
639
640 continue;
641 }
642
643 if (!equivalentAsOperands(LAgg, RAgg, AC)) {
644 return false;
645 }
646 }
647
648 return true;
649 }
650
651 return false;
652 }
653
equivalentAsOperands(const ConstantExpr * L,const ConstantExpr * R,const AssumptionContext * AC)654 bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
655 const AssumptionContext *AC) {
656 if (L == R)
657 return true;
658
659 if (L->getOpcode() != R->getOpcode())
660 return false;
661
662 switch (L->getOpcode()) {
663 case Instruction::ICmp:
664 case Instruction::FCmp:
665 if (L->getPredicate() != R->getPredicate())
666 return false;
667 break;
668
669 case Instruction::GetElementPtr:
670 // FIXME: inbounds?
671 break;
672
673 default:
674 break;
675 }
676
677 if (L->getNumOperands() != R->getNumOperands())
678 return false;
679
680 for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
681 const auto *LOp = L->getOperand(I);
682 const auto *ROp = R->getOperand(I);
683
684 if (LOp == SavedLHS || ROp == SavedRHS) {
685 if (LOp != SavedLHS || ROp != SavedRHS)
686 // If the left and right operands aren't both re-analyzing the
687 // variable, then the initialiers don't match, so report "false".
688 // Otherwise, we skip these operands..
689 return false;
690
691 continue;
692 }
693
694 if (!equivalentAsOperands(LOp, ROp, AC))
695 return false;
696 }
697
698 return true;
699 }
700
701 // There are cases where we cannot determine whether two values are
702 // equivalent, because it depends on not yet processed basic blocks -- see the
703 // documentation on assumptions.
704 //
705 // AC is the context in which we are currently performing a diff.
706 // When we encounter a pair of values for which we can neither prove
707 // equivalence nor the opposite, we do the following:
708 // * If AC is nullptr, we treat the pair as non-equivalent.
709 // * If AC is set, we add an assumption for the basic blocks given by AC,
710 // and treat the pair as equivalent. The assumption is checked later.
equivalentAsOperands(const Value * L,const Value * R,const AssumptionContext * AC)711 bool equivalentAsOperands(const Value *L, const Value *R,
712 const AssumptionContext *AC) {
713 // Fall out if the values have different kind.
714 // This possibly shouldn't take priority over oracles.
715 if (L->getValueID() != R->getValueID())
716 return false;
717
718 // Value subtypes: Argument, Constant, Instruction, BasicBlock,
719 // InlineAsm, MDNode, MDString, PseudoSourceValue
720
721 if (isa<Constant>(L))
722 return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
723
724 if (isa<Instruction>(L)) {
725 auto It = Values.find(L);
726 if (It != Values.end())
727 return It->second == R;
728
729 if (TentativeValues.count(std::make_pair(L, R)))
730 return true;
731
732 // L and R might be equivalent, this could depend on not yet processed
733 // basic blocks, so we cannot decide here.
734 if (AC) {
735 // Add an assumption, unless there is a conflict with an existing one
736 BlockDiffCandidate &BDC =
737 getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
738 auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
739 if (!InsertionResult.second && InsertionResult.first->second != R) {
740 // We already have a conflicting equivalence assumption for L, so at
741 // least one must be wrong, and we know that there is a diff.
742 BDC.KnownToDiffer = true;
743 BDC.EquivalenceAssumptions.clear();
744 return false;
745 }
746 // Optimistically assume equivalence, and check later once all BBs
747 // have been processed.
748 return true;
749 }
750
751 // Assumptions disabled, so pessimistically assume non-equivalence.
752 return false;
753 }
754
755 if (isa<Argument>(L))
756 return Values[L] == R;
757
758 if (isa<BasicBlock>(L))
759 return Blocks[cast<BasicBlock>(L)] != R;
760
761 // Pretend everything else is identical.
762 return true;
763 }
764
765 // Avoid a gcc warning about accessing 'this' in an initializer.
this_()766 FunctionDifferenceEngine *this_() { return this; }
767
768 public:
FunctionDifferenceEngine(DifferenceEngine & Engine,const Value * SavedLHS=nullptr,const Value * SavedRHS=nullptr)769 FunctionDifferenceEngine(DifferenceEngine &Engine,
770 const Value *SavedLHS = nullptr,
771 const Value *SavedRHS = nullptr)
772 : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
773 Queue(QueueSorter(*this_())) {}
774
diff(const Function * L,const Function * R)775 void diff(const Function *L, const Function *R) {
776 assert(Values.empty() && "Multiple diffs per engine are not supported!");
777
778 if (L->arg_size() != R->arg_size())
779 Engine.log("different argument counts");
780
781 // Map the arguments.
782 for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
783 RI = R->arg_begin(), RE = R->arg_end();
784 LI != LE && RI != RE; ++LI, ++RI)
785 Values[&*LI] = &*RI;
786
787 tryUnify(&*L->begin(), &*R->begin());
788 processQueue();
789 checkAndReportDiffCandidates();
790 }
791 };
792
793 struct DiffEntry {
DiffEntry__anonec66ef2e0111::DiffEntry794 DiffEntry() : Cost(0) {}
795
796 unsigned Cost;
797 llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
798 };
799
matchForBlockDiff(const Instruction * L,const Instruction * R)800 bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
801 const Instruction *R) {
802 return !diff(L, R, false, false, false);
803 }
804
runBlockDiff(BasicBlock::const_iterator LStart,BasicBlock::const_iterator RStart)805 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
806 BasicBlock::const_iterator RStart) {
807 BasicBlock::const_iterator LE = LStart->getParent()->end();
808 BasicBlock::const_iterator RE = RStart->getParent()->end();
809
810 unsigned NL = std::distance(LStart, LE);
811
812 SmallVector<DiffEntry, 20> Paths1(NL+1);
813 SmallVector<DiffEntry, 20> Paths2(NL+1);
814
815 DiffEntry *Cur = Paths1.data();
816 DiffEntry *Next = Paths2.data();
817
818 const unsigned LeftCost = 2;
819 const unsigned RightCost = 2;
820 const unsigned MatchCost = 0;
821
822 assert(TentativeValues.empty());
823
824 // Initialize the first column.
825 for (unsigned I = 0; I != NL+1; ++I) {
826 Cur[I].Cost = I * LeftCost;
827 for (unsigned J = 0; J != I; ++J)
828 Cur[I].Path.push_back(DC_left);
829 }
830
831 for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
832 // Initialize the first row.
833 Next[0] = Cur[0];
834 Next[0].Cost += RightCost;
835 Next[0].Path.push_back(DC_right);
836
837 unsigned Index = 1;
838 for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
839 if (matchForBlockDiff(&*LI, &*RI)) {
840 Next[Index] = Cur[Index-1];
841 Next[Index].Cost += MatchCost;
842 Next[Index].Path.push_back(DC_match);
843 TentativeValues.insert(std::make_pair(&*LI, &*RI));
844 } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
845 Next[Index] = Next[Index-1];
846 Next[Index].Cost += LeftCost;
847 Next[Index].Path.push_back(DC_left);
848 } else {
849 Next[Index] = Cur[Index];
850 Next[Index].Cost += RightCost;
851 Next[Index].Path.push_back(DC_right);
852 }
853 }
854
855 std::swap(Cur, Next);
856 }
857
858 // We don't need the tentative values anymore; everything from here
859 // on out should be non-tentative.
860 TentativeValues.clear();
861
862 SmallVectorImpl<char> &Path = Cur[NL].Path;
863 BasicBlock::const_iterator LI = LStart, RI = RStart;
864
865 DiffLogBuilder Diff(Engine.getConsumer());
866
867 // Drop trailing matches.
868 while (Path.size() && Path.back() == DC_match)
869 Path.pop_back();
870
871 // Skip leading matches.
872 SmallVectorImpl<char>::iterator
873 PI = Path.begin(), PE = Path.end();
874 while (PI != PE && *PI == DC_match) {
875 unify(&*LI, &*RI);
876 ++PI;
877 ++LI;
878 ++RI;
879 }
880
881 for (; PI != PE; ++PI) {
882 switch (static_cast<DiffChange>(*PI)) {
883 case DC_match:
884 assert(LI != LE && RI != RE);
885 {
886 const Instruction *L = &*LI, *R = &*RI;
887 unify(L, R);
888 Diff.addMatch(L, R);
889 }
890 ++LI; ++RI;
891 break;
892
893 case DC_left:
894 assert(LI != LE);
895 Diff.addLeft(&*LI);
896 ++LI;
897 break;
898
899 case DC_right:
900 assert(RI != RE);
901 Diff.addRight(&*RI);
902 ++RI;
903 break;
904 }
905 }
906
907 // Finishing unifying and complaining about the tails of the block,
908 // which should be matches all the way through.
909 while (LI != LE) {
910 assert(RI != RE);
911 unify(&*LI, &*RI);
912 ++LI;
913 ++RI;
914 }
915
916 // If the terminators have different kinds, but one is an invoke and the
917 // other is an unconditional branch immediately following a call, unify
918 // the results and the destinations.
919 const Instruction *LTerm = LStart->getParent()->getTerminator();
920 const Instruction *RTerm = RStart->getParent()->getTerminator();
921 if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
922 if (cast<BranchInst>(LTerm)->isConditional()) return;
923 BasicBlock::const_iterator I = LTerm->getIterator();
924 if (I == LStart->getParent()->begin()) return;
925 --I;
926 if (!isa<CallInst>(*I)) return;
927 const CallInst *LCall = cast<CallInst>(&*I);
928 const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
929 if (!equivalentAsOperands(LCall->getCalledOperand(),
930 RInvoke->getCalledOperand(), nullptr))
931 return;
932 if (!LCall->use_empty())
933 Values[LCall] = RInvoke;
934 tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
935 } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
936 if (cast<BranchInst>(RTerm)->isConditional()) return;
937 BasicBlock::const_iterator I = RTerm->getIterator();
938 if (I == RStart->getParent()->begin()) return;
939 --I;
940 if (!isa<CallInst>(*I)) return;
941 const CallInst *RCall = cast<CallInst>(I);
942 const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
943 if (!equivalentAsOperands(LInvoke->getCalledOperand(),
944 RCall->getCalledOperand(), nullptr))
945 return;
946 if (!LInvoke->use_empty())
947 Values[LInvoke] = RCall;
948 tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
949 }
950 }
951 }
952
anchor()953 void DifferenceEngine::Oracle::anchor() { }
954
diff(const Function * L,const Function * R)955 void DifferenceEngine::diff(const Function *L, const Function *R) {
956 Context C(*this, L, R);
957
958 // FIXME: types
959 // FIXME: attributes and CC
960 // FIXME: parameter attributes
961
962 // If both are declarations, we're done.
963 if (L->empty() && R->empty())
964 return;
965 else if (L->empty())
966 log("left function is declaration, right function is definition");
967 else if (R->empty())
968 log("right function is declaration, left function is definition");
969 else
970 FunctionDifferenceEngine(*this).diff(L, R);
971 }
972
diff(const Module * L,const Module * R)973 void DifferenceEngine::diff(const Module *L, const Module *R) {
974 StringSet<> LNames;
975 SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
976
977 unsigned LeftAnonCount = 0;
978 unsigned RightAnonCount = 0;
979
980 for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
981 const Function *LFn = &*I;
982 StringRef Name = LFn->getName();
983 if (Name.empty()) {
984 ++LeftAnonCount;
985 continue;
986 }
987
988 LNames.insert(Name);
989
990 if (Function *RFn = R->getFunction(LFn->getName()))
991 Queue.push_back(std::make_pair(LFn, RFn));
992 else
993 logf("function %l exists only in left module") << LFn;
994 }
995
996 for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
997 const Function *RFn = &*I;
998 StringRef Name = RFn->getName();
999 if (Name.empty()) {
1000 ++RightAnonCount;
1001 continue;
1002 }
1003
1004 if (!LNames.count(Name))
1005 logf("function %r exists only in right module") << RFn;
1006 }
1007
1008 if (LeftAnonCount != 0 || RightAnonCount != 0) {
1009 SmallString<32> Tmp;
1010 logf(("not comparing " + Twine(LeftAnonCount) +
1011 " anonymous functions in the left module and " +
1012 Twine(RightAnonCount) + " in the right module")
1013 .toStringRef(Tmp));
1014 }
1015
1016 for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1017 I = Queue.begin(),
1018 E = Queue.end();
1019 I != E; ++I)
1020 diff(I->first, I->second);
1021 }
1022
equivalentAsOperands(const GlobalValue * L,const GlobalValue * R)1023 bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1024 const GlobalValue *R) {
1025 if (globalValueOracle) return (*globalValueOracle)(L, R);
1026
1027 if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1028 const GlobalVariable *GVL = cast<GlobalVariable>(L);
1029 const GlobalVariable *GVR = cast<GlobalVariable>(R);
1030 if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1031 GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1032 return FunctionDifferenceEngine(*this, GVL, GVR)
1033 .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1034 nullptr);
1035 }
1036
1037 return L->getName() == R->getName();
1038 }
1039