1 //===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting a description of a target
10 // register file for a code generator. It uses instances of the Register,
11 // RegisterAliases, and RegisterClass classes to gather this information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "SequenceToOffsetTable.h"
18 #include "Types.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Format.h"
29 #include "llvm/Support/MachineValueType.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include "llvm/TableGen/SetTheory.h"
34 #include "llvm/TableGen/TableGenBackend.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <deque>
40 #include <iterator>
41 #include <set>
42 #include <string>
43 #include <vector>
44
45 using namespace llvm;
46
47 cl::OptionCategory RegisterInfoCat("Options for -gen-register-info");
48
49 static cl::opt<bool>
50 RegisterInfoDebug("register-info-debug", cl::init(false),
51 cl::desc("Dump register information to help debugging"),
52 cl::cat(RegisterInfoCat));
53
54 namespace {
55
56 class RegisterInfoEmitter {
57 CodeGenTarget Target;
58 RecordKeeper &Records;
59
60 public:
RegisterInfoEmitter(RecordKeeper & R)61 RegisterInfoEmitter(RecordKeeper &R) : Target(R), Records(R) {
62 CodeGenRegBank &RegBank = Target.getRegBank();
63 RegBank.computeDerivedInfo();
64 }
65
66 // runEnums - Print out enum values for all of the registers.
67 void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank);
68
69 // runMCDesc - Print out MC register descriptions.
70 void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank);
71
72 // runTargetHeader - Emit a header fragment for the register info emitter.
73 void runTargetHeader(raw_ostream &o, CodeGenTarget &Target,
74 CodeGenRegBank &Bank);
75
76 // runTargetDesc - Output the target register and register file descriptions.
77 void runTargetDesc(raw_ostream &o, CodeGenTarget &Target,
78 CodeGenRegBank &Bank);
79
80 // run - Output the register file description.
81 void run(raw_ostream &o);
82
83 void debugDump(raw_ostream &OS);
84
85 private:
86 void EmitRegMapping(raw_ostream &o, const std::deque<CodeGenRegister> &Regs,
87 bool isCtor);
88 void EmitRegMappingTables(raw_ostream &o,
89 const std::deque<CodeGenRegister> &Regs,
90 bool isCtor);
91 void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank,
92 const std::string &ClassName);
93 void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank,
94 const std::string &ClassName);
95 void emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank,
96 const std::string &ClassName);
97 };
98
99 } // end anonymous namespace
100
101 // runEnums - Print out enum values for all of the registers.
runEnums(raw_ostream & OS,CodeGenTarget & Target,CodeGenRegBank & Bank)102 void RegisterInfoEmitter::runEnums(raw_ostream &OS,
103 CodeGenTarget &Target, CodeGenRegBank &Bank) {
104 const auto &Registers = Bank.getRegisters();
105
106 // Register enums are stored as uint16_t in the tables. Make sure we'll fit.
107 assert(Registers.size() <= 0xffff && "Too many regs to fit in tables");
108
109 StringRef Namespace = Registers.front().TheDef->getValueAsString("Namespace");
110
111 emitSourceFileHeader("Target Register Enum Values", OS);
112
113 OS << "\n#ifdef GET_REGINFO_ENUM\n";
114 OS << "#undef GET_REGINFO_ENUM\n\n";
115
116 OS << "namespace llvm {\n\n";
117
118 OS << "class MCRegisterClass;\n"
119 << "extern const MCRegisterClass " << Target.getName()
120 << "MCRegisterClasses[];\n\n";
121
122 if (!Namespace.empty())
123 OS << "namespace " << Namespace << " {\n";
124 OS << "enum {\n NoRegister,\n";
125
126 for (const auto &Reg : Registers)
127 OS << " " << Reg.getName() << " = " << Reg.EnumValue << ",\n";
128 assert(Registers.size() == Registers.back().EnumValue &&
129 "Register enum value mismatch!");
130 OS << " NUM_TARGET_REGS // " << Registers.size()+1 << "\n";
131 OS << "};\n";
132 if (!Namespace.empty())
133 OS << "} // end namespace " << Namespace << "\n";
134
135 const auto &RegisterClasses = Bank.getRegClasses();
136 if (!RegisterClasses.empty()) {
137
138 // RegisterClass enums are stored as uint16_t in the tables.
139 assert(RegisterClasses.size() <= 0xffff &&
140 "Too many register classes to fit in tables");
141
142 OS << "\n// Register classes\n\n";
143 if (!Namespace.empty())
144 OS << "namespace " << Namespace << " {\n";
145 OS << "enum {\n";
146 for (const auto &RC : RegisterClasses)
147 OS << " " << RC.getName() << "RegClassID"
148 << " = " << RC.EnumValue << ",\n";
149 OS << "\n};\n";
150 if (!Namespace.empty())
151 OS << "} // end namespace " << Namespace << "\n\n";
152 }
153
154 const std::vector<Record*> &RegAltNameIndices = Target.getRegAltNameIndices();
155 // If the only definition is the default NoRegAltName, we don't need to
156 // emit anything.
157 if (RegAltNameIndices.size() > 1) {
158 OS << "\n// Register alternate name indices\n\n";
159 if (!Namespace.empty())
160 OS << "namespace " << Namespace << " {\n";
161 OS << "enum {\n";
162 for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i)
163 OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n";
164 OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n";
165 OS << "};\n";
166 if (!Namespace.empty())
167 OS << "} // end namespace " << Namespace << "\n\n";
168 }
169
170 auto &SubRegIndices = Bank.getSubRegIndices();
171 if (!SubRegIndices.empty()) {
172 OS << "\n// Subregister indices\n\n";
173 std::string Namespace = SubRegIndices.front().getNamespace();
174 if (!Namespace.empty())
175 OS << "namespace " << Namespace << " {\n";
176 OS << "enum : uint16_t {\n NoSubRegister,\n";
177 unsigned i = 0;
178 for (const auto &Idx : SubRegIndices)
179 OS << " " << Idx.getName() << ",\t// " << ++i << "\n";
180 OS << " NUM_TARGET_SUBREGS\n};\n";
181 if (!Namespace.empty())
182 OS << "} // end namespace " << Namespace << "\n\n";
183 }
184
185 OS << "// Register pressure sets enum.\n";
186 if (!Namespace.empty())
187 OS << "namespace " << Namespace << " {\n";
188 OS << "enum RegisterPressureSets {\n";
189 unsigned NumSets = Bank.getNumRegPressureSets();
190 for (unsigned i = 0; i < NumSets; ++i ) {
191 const RegUnitSet &RegUnits = Bank.getRegSetAt(i);
192 OS << " " << RegUnits.Name << " = " << i << ",\n";
193 }
194 OS << "};\n";
195 if (!Namespace.empty())
196 OS << "} // end namespace " << Namespace << '\n';
197 OS << '\n';
198
199 OS << "} // end namespace llvm\n\n";
200 OS << "#endif // GET_REGINFO_ENUM\n\n";
201 }
202
printInt(raw_ostream & OS,int Val)203 static void printInt(raw_ostream &OS, int Val) {
204 OS << Val;
205 }
206
207 void RegisterInfoEmitter::
EmitRegUnitPressure(raw_ostream & OS,const CodeGenRegBank & RegBank,const std::string & ClassName)208 EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank,
209 const std::string &ClassName) {
210 unsigned NumRCs = RegBank.getRegClasses().size();
211 unsigned NumSets = RegBank.getNumRegPressureSets();
212
213 OS << "/// Get the weight in units of pressure for this register class.\n"
214 << "const RegClassWeight &" << ClassName << "::\n"
215 << "getRegClassWeight(const TargetRegisterClass *RC) const {\n"
216 << " static const RegClassWeight RCWeightTable[] = {\n";
217 for (const auto &RC : RegBank.getRegClasses()) {
218 const CodeGenRegister::Vec &Regs = RC.getMembers();
219 OS << " {" << RC.getWeight(RegBank) << ", ";
220 if (Regs.empty() || RC.Artificial)
221 OS << '0';
222 else {
223 std::vector<unsigned> RegUnits;
224 RC.buildRegUnitSet(RegBank, RegUnits);
225 OS << RegBank.getRegUnitSetWeight(RegUnits);
226 }
227 OS << "}, \t// " << RC.getName() << "\n";
228 }
229 OS << " };\n"
230 << " return RCWeightTable[RC->getID()];\n"
231 << "}\n\n";
232
233 // Reasonable targets (not ARMv7) have unit weight for all units, so don't
234 // bother generating a table.
235 bool RegUnitsHaveUnitWeight = true;
236 for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits();
237 UnitIdx < UnitEnd; ++UnitIdx) {
238 if (RegBank.getRegUnit(UnitIdx).Weight > 1)
239 RegUnitsHaveUnitWeight = false;
240 }
241 OS << "/// Get the weight in units of pressure for this register unit.\n"
242 << "unsigned " << ClassName << "::\n"
243 << "getRegUnitWeight(unsigned RegUnit) const {\n"
244 << " assert(RegUnit < " << RegBank.getNumNativeRegUnits()
245 << " && \"invalid register unit\");\n";
246 if (!RegUnitsHaveUnitWeight) {
247 OS << " static const uint8_t RUWeightTable[] = {\n ";
248 for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits();
249 UnitIdx < UnitEnd; ++UnitIdx) {
250 const RegUnit &RU = RegBank.getRegUnit(UnitIdx);
251 assert(RU.Weight < 256 && "RegUnit too heavy");
252 OS << RU.Weight << ", ";
253 }
254 OS << "};\n"
255 << " return RUWeightTable[RegUnit];\n";
256 }
257 else {
258 OS << " // All register units have unit weight.\n"
259 << " return 1;\n";
260 }
261 OS << "}\n\n";
262
263 OS << "\n"
264 << "// Get the number of dimensions of register pressure.\n"
265 << "unsigned " << ClassName << "::getNumRegPressureSets() const {\n"
266 << " return " << NumSets << ";\n}\n\n";
267
268 OS << "// Get the name of this register unit pressure set.\n"
269 << "const char *" << ClassName << "::\n"
270 << "getRegPressureSetName(unsigned Idx) const {\n"
271 << " static const char *PressureNameTable[] = {\n";
272 unsigned MaxRegUnitWeight = 0;
273 for (unsigned i = 0; i < NumSets; ++i ) {
274 const RegUnitSet &RegUnits = RegBank.getRegSetAt(i);
275 MaxRegUnitWeight = std::max(MaxRegUnitWeight, RegUnits.Weight);
276 OS << " \"" << RegUnits.Name << "\",\n";
277 }
278 OS << " };\n"
279 << " return PressureNameTable[Idx];\n"
280 << "}\n\n";
281
282 OS << "// Get the register unit pressure limit for this dimension.\n"
283 << "// This limit must be adjusted dynamically for reserved registers.\n"
284 << "unsigned " << ClassName << "::\n"
285 << "getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const "
286 "{\n"
287 << " static const " << getMinimalTypeForRange(MaxRegUnitWeight, 32)
288 << " PressureLimitTable[] = {\n";
289 for (unsigned i = 0; i < NumSets; ++i ) {
290 const RegUnitSet &RegUnits = RegBank.getRegSetAt(i);
291 OS << " " << RegUnits.Weight << ", \t// " << i << ": "
292 << RegUnits.Name << "\n";
293 }
294 OS << " };\n"
295 << " return PressureLimitTable[Idx];\n"
296 << "}\n\n";
297
298 SequenceToOffsetTable<std::vector<int>> PSetsSeqs;
299
300 // This table may be larger than NumRCs if some register units needed a list
301 // of unit sets that did not correspond to a register class.
302 unsigned NumRCUnitSets = RegBank.getNumRegClassPressureSetLists();
303 std::vector<std::vector<int>> PSets(NumRCUnitSets);
304
305 for (unsigned i = 0, e = NumRCUnitSets; i != e; ++i) {
306 ArrayRef<unsigned> PSetIDs = RegBank.getRCPressureSetIDs(i);
307 PSets[i].reserve(PSetIDs.size());
308 for (unsigned PSetID : PSetIDs) {
309 PSets[i].push_back(RegBank.getRegPressureSet(PSetID).Order);
310 }
311 llvm::sort(PSets[i]);
312 PSetsSeqs.add(PSets[i]);
313 }
314
315 PSetsSeqs.layout();
316
317 OS << "/// Table of pressure sets per register class or unit.\n"
318 << "static const int RCSetsTable[] = {\n";
319 PSetsSeqs.emit(OS, printInt, "-1");
320 OS << "};\n\n";
321
322 OS << "/// Get the dimensions of register pressure impacted by this "
323 << "register class.\n"
324 << "/// Returns a -1 terminated array of pressure set IDs\n"
325 << "const int *" << ClassName << "::\n"
326 << "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n";
327 OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size() - 1, 32)
328 << " RCSetStartTable[] = {\n ";
329 for (unsigned i = 0, e = NumRCs; i != e; ++i) {
330 OS << PSetsSeqs.get(PSets[i]) << ",";
331 }
332 OS << "};\n"
333 << " return &RCSetsTable[RCSetStartTable[RC->getID()]];\n"
334 << "}\n\n";
335
336 OS << "/// Get the dimensions of register pressure impacted by this "
337 << "register unit.\n"
338 << "/// Returns a -1 terminated array of pressure set IDs\n"
339 << "const int *" << ClassName << "::\n"
340 << "getRegUnitPressureSets(unsigned RegUnit) const {\n"
341 << " assert(RegUnit < " << RegBank.getNumNativeRegUnits()
342 << " && \"invalid register unit\");\n";
343 OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size() - 1, 32)
344 << " RUSetStartTable[] = {\n ";
345 for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits();
346 UnitIdx < UnitEnd; ++UnitIdx) {
347 OS << PSetsSeqs.get(PSets[RegBank.getRegUnit(UnitIdx).RegClassUnitSetsIdx])
348 << ",";
349 }
350 OS << "};\n"
351 << " return &RCSetsTable[RUSetStartTable[RegUnit]];\n"
352 << "}\n\n";
353 }
354
355 using DwarfRegNumsMapPair = std::pair<Record*, std::vector<int64_t>>;
356 using DwarfRegNumsVecTy = std::vector<DwarfRegNumsMapPair>;
357
finalizeDwarfRegNumsKeys(DwarfRegNumsVecTy & DwarfRegNums)358 static void finalizeDwarfRegNumsKeys(DwarfRegNumsVecTy &DwarfRegNums) {
359 // Sort and unique to get a map-like vector. We want the last assignment to
360 // match previous behaviour.
361 llvm::stable_sort(DwarfRegNums, on_first<LessRecordRegister>());
362 // Warn about duplicate assignments.
363 const Record *LastSeenReg = nullptr;
364 for (const auto &X : DwarfRegNums) {
365 const auto &Reg = X.first;
366 // The only way LessRecordRegister can return equal is if they're the same
367 // string. Use simple equality instead.
368 if (LastSeenReg && Reg->getName() == LastSeenReg->getName())
369 PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") +
370 getQualifiedName(Reg) +
371 "specified multiple times");
372 LastSeenReg = Reg;
373 }
374 auto Last = std::unique(
375 DwarfRegNums.begin(), DwarfRegNums.end(),
376 [](const DwarfRegNumsMapPair &A, const DwarfRegNumsMapPair &B) {
377 return A.first->getName() == B.first->getName();
378 });
379 DwarfRegNums.erase(Last, DwarfRegNums.end());
380 }
381
EmitRegMappingTables(raw_ostream & OS,const std::deque<CodeGenRegister> & Regs,bool isCtor)382 void RegisterInfoEmitter::EmitRegMappingTables(
383 raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) {
384 // Collect all information about dwarf register numbers
385 DwarfRegNumsVecTy DwarfRegNums;
386
387 // First, just pull all provided information to the map
388 unsigned maxLength = 0;
389 for (auto &RE : Regs) {
390 Record *Reg = RE.TheDef;
391 std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
392 maxLength = std::max((size_t)maxLength, RegNums.size());
393 DwarfRegNums.emplace_back(Reg, std::move(RegNums));
394 }
395 finalizeDwarfRegNumsKeys(DwarfRegNums);
396
397 if (!maxLength)
398 return;
399
400 // Now we know maximal length of number list. Append -1's, where needed
401 for (auto &DwarfRegNum : DwarfRegNums)
402 for (unsigned I = DwarfRegNum.second.size(), E = maxLength; I != E; ++I)
403 DwarfRegNum.second.push_back(-1);
404
405 StringRef Namespace = Regs.front().TheDef->getValueAsString("Namespace");
406
407 OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n";
408
409 // Emit reverse information about the dwarf register numbers.
410 for (unsigned j = 0; j < 2; ++j) {
411 for (unsigned I = 0, E = maxLength; I != E; ++I) {
412 OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace;
413 OS << (j == 0 ? "DwarfFlavour" : "EHFlavour");
414 OS << I << "Dwarf2L[]";
415
416 if (!isCtor) {
417 OS << " = {\n";
418
419 // Store the mapping sorted by the LLVM reg num so lookup can be done
420 // with a binary search.
421 std::map<uint64_t, Record*> Dwarf2LMap;
422 for (auto &DwarfRegNum : DwarfRegNums) {
423 int DwarfRegNo = DwarfRegNum.second[I];
424 if (DwarfRegNo < 0)
425 continue;
426 Dwarf2LMap[DwarfRegNo] = DwarfRegNum.first;
427 }
428
429 for (auto &I : Dwarf2LMap)
430 OS << " { " << I.first << "U, " << getQualifiedName(I.second)
431 << " },\n";
432
433 OS << "};\n";
434 } else {
435 OS << ";\n";
436 }
437
438 // We have to store the size in a const global, it's used in multiple
439 // places.
440 OS << "extern const unsigned " << Namespace
441 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << I << "Dwarf2LSize";
442 if (!isCtor)
443 OS << " = std::size(" << Namespace
444 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << I << "Dwarf2L);\n\n";
445 else
446 OS << ";\n\n";
447 }
448 }
449
450 for (auto &RE : Regs) {
451 Record *Reg = RE.TheDef;
452 const RecordVal *V = Reg->getValue("DwarfAlias");
453 if (!V || !V->getValue())
454 continue;
455
456 DefInit *DI = cast<DefInit>(V->getValue());
457 Record *Alias = DI->getDef();
458 const auto &AliasIter = llvm::lower_bound(
459 DwarfRegNums, Alias, [](const DwarfRegNumsMapPair &A, const Record *B) {
460 return LessRecordRegister()(A.first, B);
461 });
462 assert(AliasIter != DwarfRegNums.end() && AliasIter->first == Alias &&
463 "Expected Alias to be present in map");
464 const auto &RegIter = llvm::lower_bound(
465 DwarfRegNums, Reg, [](const DwarfRegNumsMapPair &A, const Record *B) {
466 return LessRecordRegister()(A.first, B);
467 });
468 assert(RegIter != DwarfRegNums.end() && RegIter->first == Reg &&
469 "Expected Reg to be present in map");
470 RegIter->second = AliasIter->second;
471 }
472
473 // Emit information about the dwarf register numbers.
474 for (unsigned j = 0; j < 2; ++j) {
475 for (unsigned i = 0, e = maxLength; i != e; ++i) {
476 OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace;
477 OS << (j == 0 ? "DwarfFlavour" : "EHFlavour");
478 OS << i << "L2Dwarf[]";
479 if (!isCtor) {
480 OS << " = {\n";
481 // Store the mapping sorted by the Dwarf reg num so lookup can be done
482 // with a binary search.
483 for (auto &DwarfRegNum : DwarfRegNums) {
484 int RegNo = DwarfRegNum.second[i];
485 if (RegNo == -1) // -1 is the default value, don't emit a mapping.
486 continue;
487
488 OS << " { " << getQualifiedName(DwarfRegNum.first) << ", " << RegNo
489 << "U },\n";
490 }
491 OS << "};\n";
492 } else {
493 OS << ";\n";
494 }
495
496 // We have to store the size in a const global, it's used in multiple
497 // places.
498 OS << "extern const unsigned " << Namespace
499 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize";
500 if (!isCtor)
501 OS << " = std::size(" << Namespace
502 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf);\n\n";
503 else
504 OS << ";\n\n";
505 }
506 }
507 }
508
EmitRegMapping(raw_ostream & OS,const std::deque<CodeGenRegister> & Regs,bool isCtor)509 void RegisterInfoEmitter::EmitRegMapping(
510 raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) {
511 // Emit the initializer so the tables from EmitRegMappingTables get wired up
512 // to the MCRegisterInfo object.
513 unsigned maxLength = 0;
514 for (auto &RE : Regs) {
515 Record *Reg = RE.TheDef;
516 maxLength = std::max((size_t)maxLength,
517 Reg->getValueAsListOfInts("DwarfNumbers").size());
518 }
519
520 if (!maxLength)
521 return;
522
523 StringRef Namespace = Regs.front().TheDef->getValueAsString("Namespace");
524
525 // Emit reverse information about the dwarf register numbers.
526 for (unsigned j = 0; j < 2; ++j) {
527 OS << " switch (";
528 if (j == 0)
529 OS << "DwarfFlavour";
530 else
531 OS << "EHFlavour";
532 OS << ") {\n"
533 << " default:\n"
534 << " llvm_unreachable(\"Unknown DWARF flavour\");\n";
535
536 for (unsigned i = 0, e = maxLength; i != e; ++i) {
537 OS << " case " << i << ":\n";
538 OS << " ";
539 if (!isCtor)
540 OS << "RI->";
541 std::string Tmp;
542 raw_string_ostream(Tmp) << Namespace
543 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
544 << "Dwarf2L";
545 OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, ";
546 if (j == 0)
547 OS << "false";
548 else
549 OS << "true";
550 OS << ");\n";
551 OS << " break;\n";
552 }
553 OS << " }\n";
554 }
555
556 // Emit information about the dwarf register numbers.
557 for (unsigned j = 0; j < 2; ++j) {
558 OS << " switch (";
559 if (j == 0)
560 OS << "DwarfFlavour";
561 else
562 OS << "EHFlavour";
563 OS << ") {\n"
564 << " default:\n"
565 << " llvm_unreachable(\"Unknown DWARF flavour\");\n";
566
567 for (unsigned i = 0, e = maxLength; i != e; ++i) {
568 OS << " case " << i << ":\n";
569 OS << " ";
570 if (!isCtor)
571 OS << "RI->";
572 std::string Tmp;
573 raw_string_ostream(Tmp) << Namespace
574 << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
575 << "L2Dwarf";
576 OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, ";
577 if (j == 0)
578 OS << "false";
579 else
580 OS << "true";
581 OS << ");\n";
582 OS << " break;\n";
583 }
584 OS << " }\n";
585 }
586 }
587
588 // Print a BitVector as a sequence of hex numbers using a little-endian mapping.
589 // Width is the number of bits per hex number.
printBitVectorAsHex(raw_ostream & OS,const BitVector & Bits,unsigned Width)590 static void printBitVectorAsHex(raw_ostream &OS,
591 const BitVector &Bits,
592 unsigned Width) {
593 assert(Width <= 32 && "Width too large");
594 unsigned Digits = (Width + 3) / 4;
595 for (unsigned i = 0, e = Bits.size(); i < e; i += Width) {
596 unsigned Value = 0;
597 for (unsigned j = 0; j != Width && i + j != e; ++j)
598 Value |= Bits.test(i + j) << j;
599 OS << format("0x%0*x, ", Digits, Value);
600 }
601 }
602
603 // Helper to emit a set of bits into a constant byte array.
604 class BitVectorEmitter {
605 BitVector Values;
606 public:
add(unsigned v)607 void add(unsigned v) {
608 if (v >= Values.size())
609 Values.resize(((v/8)+1)*8); // Round up to the next byte.
610 Values[v] = true;
611 }
612
print(raw_ostream & OS)613 void print(raw_ostream &OS) {
614 printBitVectorAsHex(OS, Values, 8);
615 }
616 };
617
printSimpleValueType(raw_ostream & OS,MVT::SimpleValueType VT)618 static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) {
619 OS << getEnumName(VT);
620 }
621
printSubRegIndex(raw_ostream & OS,const CodeGenSubRegIndex * Idx)622 static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) {
623 OS << Idx->EnumValue;
624 }
625
626 // Differentially encoded register and regunit lists allow for better
627 // compression on regular register banks. The sequence is computed from the
628 // differential list as:
629 //
630 // out[0] = InitVal;
631 // out[n+1] = out[n] + diff[n]; // n = 0, 1, ...
632 //
633 // The initial value depends on the specific list. The list is terminated by a
634 // 0 differential which means we can't encode repeated elements.
635
636 typedef SmallVector<uint16_t, 4> DiffVec;
637 typedef SmallVector<LaneBitmask, 4> MaskVec;
638
639 // Differentially encode a sequence of numbers into V. The starting value and
640 // terminating 0 are not added to V, so it will have the same size as List.
641 static
diffEncode(DiffVec & V,unsigned InitVal,SparseBitVector<> List)642 DiffVec &diffEncode(DiffVec &V, unsigned InitVal, SparseBitVector<> List) {
643 assert(V.empty() && "Clear DiffVec before diffEncode.");
644 uint16_t Val = uint16_t(InitVal);
645
646 for (uint16_t Cur : List) {
647 V.push_back(Cur - Val);
648 Val = Cur;
649 }
650 return V;
651 }
652
653 template<typename Iter>
654 static
diffEncode(DiffVec & V,unsigned InitVal,Iter Begin,Iter End)655 DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) {
656 assert(V.empty() && "Clear DiffVec before diffEncode.");
657 uint16_t Val = uint16_t(InitVal);
658 for (Iter I = Begin; I != End; ++I) {
659 uint16_t Cur = (*I)->EnumValue;
660 V.push_back(Cur - Val);
661 Val = Cur;
662 }
663 return V;
664 }
665
printDiff16(raw_ostream & OS,uint16_t Val)666 static void printDiff16(raw_ostream &OS, uint16_t Val) {
667 OS << Val;
668 }
669
printMask(raw_ostream & OS,LaneBitmask Val)670 static void printMask(raw_ostream &OS, LaneBitmask Val) {
671 OS << "LaneBitmask(0x" << PrintLaneMask(Val) << ')';
672 }
673
674 // Try to combine Idx's compose map into Vec if it is compatible.
675 // Return false if it's not possible.
combine(const CodeGenSubRegIndex * Idx,SmallVectorImpl<CodeGenSubRegIndex * > & Vec)676 static bool combine(const CodeGenSubRegIndex *Idx,
677 SmallVectorImpl<CodeGenSubRegIndex*> &Vec) {
678 const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites();
679 for (const auto &I : Map) {
680 CodeGenSubRegIndex *&Entry = Vec[I.first->EnumValue - 1];
681 if (Entry && Entry != I.second)
682 return false;
683 }
684
685 // All entries are compatible. Make it so.
686 for (const auto &I : Map) {
687 auto *&Entry = Vec[I.first->EnumValue - 1];
688 assert((!Entry || Entry == I.second) &&
689 "Expected EnumValue to be unique");
690 Entry = I.second;
691 }
692 return true;
693 }
694
695 void
emitComposeSubRegIndices(raw_ostream & OS,CodeGenRegBank & RegBank,const std::string & ClName)696 RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS,
697 CodeGenRegBank &RegBank,
698 const std::string &ClName) {
699 const auto &SubRegIndices = RegBank.getSubRegIndices();
700 OS << "unsigned " << ClName
701 << "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n";
702
703 // Many sub-register indexes are composition-compatible, meaning that
704 //
705 // compose(IdxA, IdxB) == compose(IdxA', IdxB)
706 //
707 // for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed.
708 // The illegal entries can be use as wildcards to compress the table further.
709
710 // Map each Sub-register index to a compatible table row.
711 SmallVector<unsigned, 4> RowMap;
712 SmallVector<SmallVector<CodeGenSubRegIndex*, 4>, 4> Rows;
713
714 auto SubRegIndicesSize =
715 std::distance(SubRegIndices.begin(), SubRegIndices.end());
716 for (const auto &Idx : SubRegIndices) {
717 unsigned Found = ~0u;
718 for (unsigned r = 0, re = Rows.size(); r != re; ++r) {
719 if (combine(&Idx, Rows[r])) {
720 Found = r;
721 break;
722 }
723 }
724 if (Found == ~0u) {
725 Found = Rows.size();
726 Rows.resize(Found + 1);
727 Rows.back().resize(SubRegIndicesSize);
728 combine(&Idx, Rows.back());
729 }
730 RowMap.push_back(Found);
731 }
732
733 // Output the row map if there is multiple rows.
734 if (Rows.size() > 1) {
735 OS << " static const " << getMinimalTypeForRange(Rows.size(), 32)
736 << " RowMap[" << SubRegIndicesSize << "] = {\n ";
737 for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i)
738 OS << RowMap[i] << ", ";
739 OS << "\n };\n";
740 }
741
742 // Output the rows.
743 OS << " static const " << getMinimalTypeForRange(SubRegIndicesSize + 1, 32)
744 << " Rows[" << Rows.size() << "][" << SubRegIndicesSize << "] = {\n";
745 for (unsigned r = 0, re = Rows.size(); r != re; ++r) {
746 OS << " { ";
747 for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i)
748 if (Rows[r][i])
749 OS << Rows[r][i]->getQualifiedName() << ", ";
750 else
751 OS << "0, ";
752 OS << "},\n";
753 }
754 OS << " };\n\n";
755
756 OS << " --IdxA; assert(IdxA < " << SubRegIndicesSize << "); (void) IdxA;\n"
757 << " --IdxB; assert(IdxB < " << SubRegIndicesSize << ");\n";
758 if (Rows.size() > 1)
759 OS << " return Rows[RowMap[IdxA]][IdxB];\n";
760 else
761 OS << " return Rows[0][IdxB];\n";
762 OS << "}\n\n";
763 }
764
765 void
emitComposeSubRegIndexLaneMask(raw_ostream & OS,CodeGenRegBank & RegBank,const std::string & ClName)766 RegisterInfoEmitter::emitComposeSubRegIndexLaneMask(raw_ostream &OS,
767 CodeGenRegBank &RegBank,
768 const std::string &ClName) {
769 // See the comments in computeSubRegLaneMasks() for our goal here.
770 const auto &SubRegIndices = RegBank.getSubRegIndices();
771
772 // Create a list of Mask+Rotate operations, with equivalent entries merged.
773 SmallVector<unsigned, 4> SubReg2SequenceIndexMap;
774 SmallVector<SmallVector<MaskRolPair, 1>, 4> Sequences;
775 for (const auto &Idx : SubRegIndices) {
776 const SmallVector<MaskRolPair, 1> &IdxSequence
777 = Idx.CompositionLaneMaskTransform;
778
779 unsigned Found = ~0u;
780 unsigned SIdx = 0;
781 unsigned NextSIdx;
782 for (size_t s = 0, se = Sequences.size(); s != se; ++s, SIdx = NextSIdx) {
783 SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s];
784 NextSIdx = SIdx + Sequence.size() + 1;
785 if (Sequence == IdxSequence) {
786 Found = SIdx;
787 break;
788 }
789 }
790 if (Found == ~0u) {
791 Sequences.push_back(IdxSequence);
792 Found = SIdx;
793 }
794 SubReg2SequenceIndexMap.push_back(Found);
795 }
796
797 OS << " struct MaskRolOp {\n"
798 " LaneBitmask Mask;\n"
799 " uint8_t RotateLeft;\n"
800 " };\n"
801 " static const MaskRolOp LaneMaskComposeSequences[] = {\n";
802 unsigned Idx = 0;
803 for (size_t s = 0, se = Sequences.size(); s != se; ++s) {
804 OS << " ";
805 const SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s];
806 for (size_t p = 0, pe = Sequence.size(); p != pe; ++p) {
807 const MaskRolPair &P = Sequence[p];
808 printMask(OS << "{ ", P.Mask);
809 OS << format(", %2u }, ", P.RotateLeft);
810 }
811 OS << "{ LaneBitmask::getNone(), 0 }";
812 if (s+1 != se)
813 OS << ", ";
814 OS << " // Sequence " << Idx << "\n";
815 Idx += Sequence.size() + 1;
816 }
817 auto *IntType = getMinimalTypeForRange(*std::max_element(
818 SubReg2SequenceIndexMap.begin(), SubReg2SequenceIndexMap.end()));
819 OS << " };\n"
820 " static const "
821 << IntType << " CompositeSequences[] = {\n";
822 for (size_t i = 0, e = SubRegIndices.size(); i != e; ++i) {
823 OS << " ";
824 OS << SubReg2SequenceIndexMap[i];
825 if (i+1 != e)
826 OS << ",";
827 OS << " // to " << SubRegIndices[i].getName() << "\n";
828 }
829 OS << " };\n\n";
830
831 OS << "LaneBitmask " << ClName
832 << "::composeSubRegIndexLaneMaskImpl(unsigned IdxA, LaneBitmask LaneMask)"
833 " const {\n"
834 " --IdxA; assert(IdxA < " << SubRegIndices.size()
835 << " && \"Subregister index out of bounds\");\n"
836 " LaneBitmask Result;\n"
837 " for (const MaskRolOp *Ops =\n"
838 " &LaneMaskComposeSequences[CompositeSequences[IdxA]];\n"
839 " Ops->Mask.any(); ++Ops) {\n"
840 " LaneBitmask::Type M = LaneMask.getAsInteger() & Ops->Mask.getAsInteger();\n"
841 " if (unsigned S = Ops->RotateLeft)\n"
842 " Result |= LaneBitmask((M << S) | (M >> (LaneBitmask::BitWidth - S)));\n"
843 " else\n"
844 " Result |= LaneBitmask(M);\n"
845 " }\n"
846 " return Result;\n"
847 "}\n\n";
848
849 OS << "LaneBitmask " << ClName
850 << "::reverseComposeSubRegIndexLaneMaskImpl(unsigned IdxA, "
851 " LaneBitmask LaneMask) const {\n"
852 " LaneMask &= getSubRegIndexLaneMask(IdxA);\n"
853 " --IdxA; assert(IdxA < " << SubRegIndices.size()
854 << " && \"Subregister index out of bounds\");\n"
855 " LaneBitmask Result;\n"
856 " for (const MaskRolOp *Ops =\n"
857 " &LaneMaskComposeSequences[CompositeSequences[IdxA]];\n"
858 " Ops->Mask.any(); ++Ops) {\n"
859 " LaneBitmask::Type M = LaneMask.getAsInteger();\n"
860 " if (unsigned S = Ops->RotateLeft)\n"
861 " Result |= LaneBitmask((M >> S) | (M << (LaneBitmask::BitWidth - S)));\n"
862 " else\n"
863 " Result |= LaneBitmask(M);\n"
864 " }\n"
865 " return Result;\n"
866 "}\n\n";
867 }
868
869 //
870 // runMCDesc - Print out MC register descriptions.
871 //
872 void
runMCDesc(raw_ostream & OS,CodeGenTarget & Target,CodeGenRegBank & RegBank)873 RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target,
874 CodeGenRegBank &RegBank) {
875 emitSourceFileHeader("MC Register Information", OS);
876
877 OS << "\n#ifdef GET_REGINFO_MC_DESC\n";
878 OS << "#undef GET_REGINFO_MC_DESC\n\n";
879
880 const auto &Regs = RegBank.getRegisters();
881
882 auto &SubRegIndices = RegBank.getSubRegIndices();
883 // The lists of sub-registers and super-registers go in the same array. That
884 // allows us to share suffixes.
885 typedef std::vector<const CodeGenRegister*> RegVec;
886
887 // Differentially encoded lists.
888 SequenceToOffsetTable<DiffVec> DiffSeqs;
889 SmallVector<DiffVec, 4> SubRegLists(Regs.size());
890 SmallVector<DiffVec, 4> SuperRegLists(Regs.size());
891 SmallVector<DiffVec, 4> RegUnitLists(Regs.size());
892 SmallVector<unsigned, 4> RegUnitInitScale(Regs.size());
893
894 // List of lane masks accompanying register unit sequences.
895 SequenceToOffsetTable<MaskVec> LaneMaskSeqs;
896 SmallVector<MaskVec, 4> RegUnitLaneMasks(Regs.size());
897
898 // Keep track of sub-register names as well. These are not differentially
899 // encoded.
900 typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec;
901 SequenceToOffsetTable<SubRegIdxVec, deref<std::less<>>> SubRegIdxSeqs;
902 SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size());
903
904 SequenceToOffsetTable<std::string> RegStrings;
905
906 // Precompute register lists for the SequenceToOffsetTable.
907 unsigned i = 0;
908 for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I, ++i) {
909 const auto &Reg = *I;
910 RegStrings.add(std::string(Reg.getName()));
911
912 // Compute the ordered sub-register list.
913 SetVector<const CodeGenRegister*> SR;
914 Reg.addSubRegsPreOrder(SR, RegBank);
915 diffEncode(SubRegLists[i], Reg.EnumValue, SR.begin(), SR.end());
916 DiffSeqs.add(SubRegLists[i]);
917
918 // Compute the corresponding sub-register indexes.
919 SubRegIdxVec &SRIs = SubRegIdxLists[i];
920 for (const CodeGenRegister *S : SR)
921 SRIs.push_back(Reg.getSubRegIndex(S));
922 SubRegIdxSeqs.add(SRIs);
923
924 // Super-registers are already computed.
925 const RegVec &SuperRegList = Reg.getSuperRegs();
926 diffEncode(SuperRegLists[i], Reg.EnumValue, SuperRegList.begin(),
927 SuperRegList.end());
928 DiffSeqs.add(SuperRegLists[i]);
929
930 // Differentially encode the register unit list, seeded by register number.
931 // First compute a scale factor that allows more diff-lists to be reused:
932 //
933 // D0 -> (S0, S1)
934 // D1 -> (S2, S3)
935 //
936 // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial
937 // value for the differential decoder is the register number multiplied by
938 // the scale.
939 //
940 // Check the neighboring registers for arithmetic progressions.
941 unsigned ScaleA = ~0u, ScaleB = ~0u;
942 SparseBitVector<> RUs = Reg.getNativeRegUnits();
943 if (I != Regs.begin() &&
944 std::prev(I)->getNativeRegUnits().count() == RUs.count())
945 ScaleB = *RUs.begin() - *std::prev(I)->getNativeRegUnits().begin();
946 if (std::next(I) != Regs.end() &&
947 std::next(I)->getNativeRegUnits().count() == RUs.count())
948 ScaleA = *std::next(I)->getNativeRegUnits().begin() - *RUs.begin();
949 unsigned Scale = std::min(ScaleB, ScaleA);
950 // Default the scale to 0 if it can't be encoded in 4 bits.
951 if (Scale >= 16)
952 Scale = 0;
953 RegUnitInitScale[i] = Scale;
954 DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg.EnumValue, RUs));
955
956 const auto &RUMasks = Reg.getRegUnitLaneMasks();
957 MaskVec &LaneMaskVec = RegUnitLaneMasks[i];
958 assert(LaneMaskVec.empty());
959 llvm::append_range(LaneMaskVec, RUMasks);
960 // Terminator mask should not be used inside of the list.
961 #ifndef NDEBUG
962 for (LaneBitmask M : LaneMaskVec) {
963 assert(!M.all() && "terminator mask should not be part of the list");
964 }
965 #endif
966 LaneMaskSeqs.add(LaneMaskVec);
967 }
968
969 // Compute the final layout of the sequence table.
970 DiffSeqs.layout();
971 LaneMaskSeqs.layout();
972 SubRegIdxSeqs.layout();
973
974 OS << "namespace llvm {\n\n";
975
976 const std::string &TargetName = std::string(Target.getName());
977
978 // Emit the shared table of differential lists.
979 OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n";
980 DiffSeqs.emit(OS, printDiff16);
981 OS << "};\n\n";
982
983 // Emit the shared table of regunit lane mask sequences.
984 OS << "extern const LaneBitmask " << TargetName << "LaneMaskLists[] = {\n";
985 LaneMaskSeqs.emit(OS, printMask, "LaneBitmask::getAll()");
986 OS << "};\n\n";
987
988 // Emit the table of sub-register indexes.
989 OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n";
990 SubRegIdxSeqs.emit(OS, printSubRegIndex);
991 OS << "};\n\n";
992
993 // Emit the table of sub-register index sizes.
994 OS << "extern const MCRegisterInfo::SubRegCoveredBits "
995 << TargetName << "SubRegIdxRanges[] = {\n";
996 OS << " { " << (uint16_t)-1 << ", " << (uint16_t)-1 << " },\n";
997 for (const auto &Idx : SubRegIndices) {
998 OS << " { " << Idx.Offset << ", " << Idx.Size << " },\t// "
999 << Idx.getName() << "\n";
1000 }
1001 OS << "};\n\n";
1002
1003 // Emit the string table.
1004 RegStrings.layout();
1005 RegStrings.emitStringLiteralDef(OS, Twine("extern const char ") + TargetName +
1006 "RegStrings[]");
1007
1008 OS << "extern const MCRegisterDesc " << TargetName
1009 << "RegDesc[] = { // Descriptors\n";
1010 OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n";
1011
1012 // Emit the register descriptors now.
1013 i = 0;
1014 for (const auto &Reg : Regs) {
1015 OS << " { " << RegStrings.get(std::string(Reg.getName())) << ", "
1016 << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i])
1017 << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", "
1018 << (DiffSeqs.get(RegUnitLists[i]) * 16 + RegUnitInitScale[i]) << ", "
1019 << LaneMaskSeqs.get(RegUnitLaneMasks[i]) << " },\n";
1020 ++i;
1021 }
1022 OS << "};\n\n"; // End of register descriptors...
1023
1024 // Emit the table of register unit roots. Each regunit has one or two root
1025 // registers.
1026 OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2] = {\n";
1027 for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) {
1028 ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots();
1029 assert(!Roots.empty() && "All regunits must have a root register.");
1030 assert(Roots.size() <= 2 && "More than two roots not supported yet.");
1031 OS << " { ";
1032 ListSeparator LS;
1033 for (const CodeGenRegister *R : Roots)
1034 OS << LS << getQualifiedName(R->TheDef);
1035 OS << " },\n";
1036 }
1037 OS << "};\n\n";
1038
1039 const auto &RegisterClasses = RegBank.getRegClasses();
1040
1041 // Loop over all of the register classes... emitting each one.
1042 OS << "namespace { // Register classes...\n";
1043
1044 SequenceToOffsetTable<std::string> RegClassStrings;
1045
1046 // Emit the register enum value arrays for each RegisterClass
1047 for (const auto &RC : RegisterClasses) {
1048 ArrayRef<Record*> Order = RC.getOrder();
1049
1050 // Give the register class a legal C name if it's anonymous.
1051 const std::string &Name = RC.getName();
1052
1053 RegClassStrings.add(Name);
1054
1055 // Emit the register list now (unless it would be a zero-length array).
1056 if (!Order.empty()) {
1057 OS << " // " << Name << " Register Class...\n"
1058 << " const MCPhysReg " << Name << "[] = {\n ";
1059 for (Record *Reg : Order) {
1060 OS << getQualifiedName(Reg) << ", ";
1061 }
1062 OS << "\n };\n\n";
1063
1064 OS << " // " << Name << " Bit set.\n"
1065 << " const uint8_t " << Name << "Bits[] = {\n ";
1066 BitVectorEmitter BVE;
1067 for (Record *Reg : Order) {
1068 BVE.add(Target.getRegBank().getReg(Reg)->EnumValue);
1069 }
1070 BVE.print(OS);
1071 OS << "\n };\n\n";
1072 }
1073 }
1074 OS << "} // end anonymous namespace\n\n";
1075
1076 RegClassStrings.layout();
1077 RegClassStrings.emitStringLiteralDef(
1078 OS, Twine("extern const char ") + TargetName + "RegClassStrings[]");
1079
1080 OS << "extern const MCRegisterClass " << TargetName
1081 << "MCRegisterClasses[] = {\n";
1082
1083 for (const auto &RC : RegisterClasses) {
1084 ArrayRef<Record *> Order = RC.getOrder();
1085 std::string RCName = Order.empty() ? "nullptr" : RC.getName();
1086 std::string RCBitsName = Order.empty() ? "nullptr" : RC.getName() + "Bits";
1087 std::string RCBitsSize = Order.empty() ? "0" : "sizeof(" + RCBitsName + ")";
1088 assert(isInt<8>(RC.CopyCost) && "Copy cost too large.");
1089 uint32_t RegSize = 0;
1090 if (RC.RSI.isSimple())
1091 RegSize = RC.RSI.getSimple().RegSize;
1092 OS << " { " << RCName << ", " << RCBitsName << ", "
1093 << RegClassStrings.get(RC.getName()) << ", " << RC.getOrder().size()
1094 << ", " << RCBitsSize << ", " << RC.getQualifiedName() + "RegClassID"
1095 << ", " << RegSize << ", " << RC.CopyCost << ", "
1096 << (RC.Allocatable ? "true" : "false") << " },\n";
1097 }
1098
1099 OS << "};\n\n";
1100
1101 EmitRegMappingTables(OS, Regs, false);
1102
1103 // Emit Reg encoding table
1104 OS << "extern const uint16_t " << TargetName;
1105 OS << "RegEncodingTable[] = {\n";
1106 // Add entry for NoRegister
1107 OS << " 0,\n";
1108 for (const auto &RE : Regs) {
1109 Record *Reg = RE.TheDef;
1110 BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding");
1111 uint64_t Value = 0;
1112 for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) {
1113 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(b)))
1114 Value |= (uint64_t)B->getValue() << b;
1115 }
1116 OS << " " << Value << ",\n";
1117 }
1118 OS << "};\n"; // End of HW encoding table
1119
1120 // MCRegisterInfo initialization routine.
1121 OS << "static inline void Init" << TargetName
1122 << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, "
1123 << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0, unsigned PC = 0) "
1124 "{\n"
1125 << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, "
1126 << Regs.size() + 1 << ", RA, PC, " << TargetName << "MCRegisterClasses, "
1127 << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, "
1128 << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, "
1129 << TargetName << "LaneMaskLists, " << TargetName << "RegStrings, "
1130 << TargetName << "RegClassStrings, " << TargetName << "SubRegIdxLists, "
1131 << (std::distance(SubRegIndices.begin(), SubRegIndices.end()) + 1) << ",\n"
1132 << TargetName << "SubRegIdxRanges, " << TargetName
1133 << "RegEncodingTable);\n\n";
1134
1135 EmitRegMapping(OS, Regs, false);
1136
1137 OS << "}\n\n";
1138
1139 OS << "} // end namespace llvm\n\n";
1140 OS << "#endif // GET_REGINFO_MC_DESC\n\n";
1141 }
1142
1143 void
runTargetHeader(raw_ostream & OS,CodeGenTarget & Target,CodeGenRegBank & RegBank)1144 RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target,
1145 CodeGenRegBank &RegBank) {
1146 emitSourceFileHeader("Register Information Header Fragment", OS);
1147
1148 OS << "\n#ifdef GET_REGINFO_HEADER\n";
1149 OS << "#undef GET_REGINFO_HEADER\n\n";
1150
1151 const std::string &TargetName = std::string(Target.getName());
1152 std::string ClassName = TargetName + "GenRegisterInfo";
1153
1154 OS << "#include \"llvm/CodeGen/TargetRegisterInfo.h\"\n\n";
1155
1156 OS << "namespace llvm {\n\n";
1157
1158 OS << "class " << TargetName << "FrameLowering;\n\n";
1159
1160 OS << "struct " << ClassName << " : public TargetRegisterInfo {\n"
1161 << " explicit " << ClassName
1162 << "(unsigned RA, unsigned D = 0, unsigned E = 0,\n"
1163 << " unsigned PC = 0, unsigned HwMode = 0);\n";
1164 if (!RegBank.getSubRegIndices().empty()) {
1165 OS << " unsigned composeSubRegIndicesImpl"
1166 << "(unsigned, unsigned) const override;\n"
1167 << " LaneBitmask composeSubRegIndexLaneMaskImpl"
1168 << "(unsigned, LaneBitmask) const override;\n"
1169 << " LaneBitmask reverseComposeSubRegIndexLaneMaskImpl"
1170 << "(unsigned, LaneBitmask) const override;\n"
1171 << " const TargetRegisterClass *getSubClassWithSubReg"
1172 << "(const TargetRegisterClass *, unsigned) const override;\n"
1173 << " const TargetRegisterClass *getSubRegisterClass"
1174 << "(const TargetRegisterClass *, unsigned) const override;\n";
1175 }
1176 OS << " const RegClassWeight &getRegClassWeight("
1177 << "const TargetRegisterClass *RC) const override;\n"
1178 << " unsigned getRegUnitWeight(unsigned RegUnit) const override;\n"
1179 << " unsigned getNumRegPressureSets() const override;\n"
1180 << " const char *getRegPressureSetName(unsigned Idx) const override;\n"
1181 << " unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned "
1182 "Idx) const override;\n"
1183 << " const int *getRegClassPressureSets("
1184 << "const TargetRegisterClass *RC) const override;\n"
1185 << " const int *getRegUnitPressureSets("
1186 << "unsigned RegUnit) const override;\n"
1187 << " ArrayRef<const char *> getRegMaskNames() const override;\n"
1188 << " ArrayRef<const uint32_t *> getRegMasks() const override;\n"
1189 << " bool isGeneralPurposeRegister(const MachineFunction &, "
1190 << "MCRegister) const override;\n"
1191 << " bool isFixedRegister(const MachineFunction &, "
1192 << "MCRegister) const override;\n"
1193 << " bool isArgumentRegister(const MachineFunction &, "
1194 << "MCRegister) const override;\n"
1195 << " bool isConstantPhysReg(MCRegister PhysReg) const override final;\n"
1196 << " /// Devirtualized TargetFrameLowering.\n"
1197 << " static const " << TargetName << "FrameLowering *getFrameLowering(\n"
1198 << " const MachineFunction &MF);\n";
1199
1200 const auto &RegisterClasses = RegBank.getRegClasses();
1201 if (llvm::any_of(RegisterClasses, [](const auto &RC) { return RC.getBaseClassOrder(); })) {
1202 OS << " const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const override;\n";
1203 }
1204
1205 OS << "};\n\n";
1206
1207 if (!RegisterClasses.empty()) {
1208 OS << "namespace " << RegisterClasses.front().Namespace
1209 << " { // Register classes\n";
1210
1211 for (const auto &RC : RegisterClasses) {
1212 const std::string &Name = RC.getName();
1213
1214 // Output the extern for the instance.
1215 OS << " extern const TargetRegisterClass " << Name << "RegClass;\n";
1216 }
1217 OS << "} // end namespace " << RegisterClasses.front().Namespace << "\n\n";
1218 }
1219 OS << "} // end namespace llvm\n\n";
1220 OS << "#endif // GET_REGINFO_HEADER\n\n";
1221 }
1222
1223 //
1224 // runTargetDesc - Output the target register and register file descriptions.
1225 //
1226 void
runTargetDesc(raw_ostream & OS,CodeGenTarget & Target,CodeGenRegBank & RegBank)1227 RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target,
1228 CodeGenRegBank &RegBank){
1229 emitSourceFileHeader("Target Register and Register Classes Information", OS);
1230
1231 OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n";
1232 OS << "#undef GET_REGINFO_TARGET_DESC\n\n";
1233
1234 OS << "namespace llvm {\n\n";
1235
1236 // Get access to MCRegisterClass data.
1237 OS << "extern const MCRegisterClass " << Target.getName()
1238 << "MCRegisterClasses[];\n";
1239
1240 // Start out by emitting each of the register classes.
1241 const auto &RegisterClasses = RegBank.getRegClasses();
1242 const auto &SubRegIndices = RegBank.getSubRegIndices();
1243
1244 // Collect all registers belonging to any allocatable class.
1245 std::set<Record*> AllocatableRegs;
1246
1247 // Collect allocatable registers.
1248 for (const auto &RC : RegisterClasses) {
1249 ArrayRef<Record*> Order = RC.getOrder();
1250
1251 if (RC.Allocatable)
1252 AllocatableRegs.insert(Order.begin(), Order.end());
1253 }
1254
1255 const CodeGenHwModes &CGH = Target.getHwModes();
1256 unsigned NumModes = CGH.getNumModeIds();
1257
1258 // Build a shared array of value types.
1259 SequenceToOffsetTable<std::vector<MVT::SimpleValueType>> VTSeqs;
1260 for (unsigned M = 0; M < NumModes; ++M) {
1261 for (const auto &RC : RegisterClasses) {
1262 std::vector<MVT::SimpleValueType> S;
1263 for (const ValueTypeByHwMode &VVT : RC.VTs)
1264 S.push_back(VVT.get(M).SimpleTy);
1265 VTSeqs.add(S);
1266 }
1267 }
1268 VTSeqs.layout();
1269 OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n";
1270 VTSeqs.emit(OS, printSimpleValueType, "MVT::Other");
1271 OS << "};\n";
1272
1273 // Emit SubRegIndex names, skipping 0.
1274 OS << "\nstatic const char *SubRegIndexNameTable[] = { \"";
1275
1276 for (const auto &Idx : SubRegIndices) {
1277 OS << Idx.getName();
1278 OS << "\", \"";
1279 }
1280 OS << "\" };\n\n";
1281
1282 // Emit SubRegIndex lane masks, including 0.
1283 OS << "\nstatic const LaneBitmask SubRegIndexLaneMaskTable[] = {\n "
1284 "LaneBitmask::getAll(),\n";
1285 for (const auto &Idx : SubRegIndices) {
1286 printMask(OS << " ", Idx.LaneMask);
1287 OS << ", // " << Idx.getName() << '\n';
1288 }
1289 OS << " };\n\n";
1290
1291 OS << "\n";
1292
1293 // Now that all of the structs have been emitted, emit the instances.
1294 if (!RegisterClasses.empty()) {
1295 OS << "\nstatic const TargetRegisterInfo::RegClassInfo RegClassInfos[]"
1296 << " = {\n";
1297 for (unsigned M = 0; M < NumModes; ++M) {
1298 unsigned EV = 0;
1299 OS << " // Mode = " << M << " (";
1300 if (M == 0)
1301 OS << "Default";
1302 else
1303 OS << CGH.getMode(M).Name;
1304 OS << ")\n";
1305 for (const auto &RC : RegisterClasses) {
1306 assert(RC.EnumValue == EV && "Unexpected order of register classes");
1307 ++EV;
1308 (void)EV;
1309 const RegSizeInfo &RI = RC.RSI.get(M);
1310 OS << " { " << RI.RegSize << ", " << RI.SpillSize << ", "
1311 << RI.SpillAlignment;
1312 std::vector<MVT::SimpleValueType> VTs;
1313 for (const ValueTypeByHwMode &VVT : RC.VTs)
1314 VTs.push_back(VVT.get(M).SimpleTy);
1315 OS << ", VTLists+" << VTSeqs.get(VTs) << " }, // "
1316 << RC.getName() << '\n';
1317 }
1318 }
1319 OS << "};\n";
1320
1321
1322 OS << "\nstatic const TargetRegisterClass *const "
1323 << "NullRegClasses[] = { nullptr };\n\n";
1324
1325 // Emit register class bit mask tables. The first bit mask emitted for a
1326 // register class, RC, is the set of sub-classes, including RC itself.
1327 //
1328 // If RC has super-registers, also create a list of subreg indices and bit
1329 // masks, (Idx, Mask). The bit mask has a bit for every superreg regclass,
1330 // SuperRC, that satisfies:
1331 //
1332 // For all SuperReg in SuperRC: SuperReg:Idx in RC
1333 //
1334 // The 0-terminated list of subreg indices starts at:
1335 //
1336 // RC->getSuperRegIndices() = SuperRegIdxSeqs + ...
1337 //
1338 // The corresponding bitmasks follow the sub-class mask in memory. Each
1339 // mask has RCMaskWords uint32_t entries.
1340 //
1341 // Every bit mask present in the list has at least one bit set.
1342
1343 // Compress the sub-reg index lists.
1344 typedef std::vector<const CodeGenSubRegIndex*> IdxList;
1345 SmallVector<IdxList, 8> SuperRegIdxLists(RegisterClasses.size());
1346 SequenceToOffsetTable<IdxList, deref<std::less<>>> SuperRegIdxSeqs;
1347 BitVector MaskBV(RegisterClasses.size());
1348
1349 for (const auto &RC : RegisterClasses) {
1350 OS << "static const uint32_t " << RC.getName()
1351 << "SubClassMask[] = {\n ";
1352 printBitVectorAsHex(OS, RC.getSubClasses(), 32);
1353
1354 // Emit super-reg class masks for any relevant SubRegIndices that can
1355 // project into RC.
1356 IdxList &SRIList = SuperRegIdxLists[RC.EnumValue];
1357 for (auto &Idx : SubRegIndices) {
1358 MaskBV.reset();
1359 RC.getSuperRegClasses(&Idx, MaskBV);
1360 if (MaskBV.none())
1361 continue;
1362 SRIList.push_back(&Idx);
1363 OS << "\n ";
1364 printBitVectorAsHex(OS, MaskBV, 32);
1365 OS << "// " << Idx.getName();
1366 }
1367 SuperRegIdxSeqs.add(SRIList);
1368 OS << "\n};\n\n";
1369 }
1370
1371 OS << "static const uint16_t SuperRegIdxSeqs[] = {\n";
1372 SuperRegIdxSeqs.layout();
1373 SuperRegIdxSeqs.emit(OS, printSubRegIndex);
1374 OS << "};\n\n";
1375
1376 // Emit NULL terminated super-class lists.
1377 for (const auto &RC : RegisterClasses) {
1378 ArrayRef<CodeGenRegisterClass*> Supers = RC.getSuperClasses();
1379
1380 // Skip classes without supers. We can reuse NullRegClasses.
1381 if (Supers.empty())
1382 continue;
1383
1384 OS << "static const TargetRegisterClass *const "
1385 << RC.getName() << "Superclasses[] = {\n";
1386 for (const auto *Super : Supers)
1387 OS << " &" << Super->getQualifiedName() << "RegClass,\n";
1388 OS << " nullptr\n};\n\n";
1389 }
1390
1391 // Emit methods.
1392 for (const auto &RC : RegisterClasses) {
1393 if (!RC.AltOrderSelect.empty()) {
1394 OS << "\nstatic inline unsigned " << RC.getName()
1395 << "AltOrderSelect(const MachineFunction &MF) {"
1396 << RC.AltOrderSelect << "}\n\n"
1397 << "static ArrayRef<MCPhysReg> " << RC.getName()
1398 << "GetRawAllocationOrder(const MachineFunction &MF) {\n";
1399 for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) {
1400 ArrayRef<Record*> Elems = RC.getOrder(oi);
1401 if (!Elems.empty()) {
1402 OS << " static const MCPhysReg AltOrder" << oi << "[] = {";
1403 for (unsigned elem = 0; elem != Elems.size(); ++elem)
1404 OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]);
1405 OS << " };\n";
1406 }
1407 }
1408 OS << " const MCRegisterClass &MCR = " << Target.getName()
1409 << "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n"
1410 << " const ArrayRef<MCPhysReg> Order[] = {\n"
1411 << " ArrayRef(MCR.begin(), MCR.getNumRegs()";
1412 for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi)
1413 if (RC.getOrder(oi).empty())
1414 OS << "),\n ArrayRef<MCPhysReg>(";
1415 else
1416 OS << "),\n ArrayRef(AltOrder" << oi;
1417 OS << ")\n };\n const unsigned Select = " << RC.getName()
1418 << "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders()
1419 << ");\n return Order[Select];\n}\n";
1420 }
1421 }
1422
1423 // Now emit the actual value-initialized register class instances.
1424 OS << "\nnamespace " << RegisterClasses.front().Namespace
1425 << " { // Register class instances\n";
1426
1427 for (const auto &RC : RegisterClasses) {
1428 OS << " extern const TargetRegisterClass " << RC.getName()
1429 << "RegClass = {\n " << '&' << Target.getName()
1430 << "MCRegisterClasses[" << RC.getName() << "RegClassID],\n "
1431 << RC.getName() << "SubClassMask,\n SuperRegIdxSeqs + "
1432 << SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n ";
1433 printMask(OS, RC.LaneMask);
1434 OS << ",\n " << (unsigned)RC.AllocationPriority << ",\n "
1435 << (RC.GlobalPriority ? "true" : "false") << ",\n "
1436 << format("0x%02x", RC.TSFlags) << ", /* TSFlags */\n "
1437 << (RC.HasDisjunctSubRegs ? "true" : "false")
1438 << ", /* HasDisjunctSubRegs */\n "
1439 << (RC.CoveredBySubRegs ? "true" : "false")
1440 << ", /* CoveredBySubRegs */\n ";
1441 if (RC.getSuperClasses().empty())
1442 OS << "NullRegClasses,\n ";
1443 else
1444 OS << RC.getName() << "Superclasses,\n ";
1445 if (RC.AltOrderSelect.empty())
1446 OS << "nullptr\n";
1447 else
1448 OS << RC.getName() << "GetRawAllocationOrder\n";
1449 OS << " };\n\n";
1450 }
1451
1452 OS << "} // end namespace " << RegisterClasses.front().Namespace << "\n";
1453 }
1454
1455 OS << "\nnamespace {\n";
1456 OS << " const TargetRegisterClass *const RegisterClasses[] = {\n";
1457 for (const auto &RC : RegisterClasses)
1458 OS << " &" << RC.getQualifiedName() << "RegClass,\n";
1459 OS << " };\n";
1460 OS << "} // end anonymous namespace\n";
1461
1462 // Emit extra information about registers.
1463 const std::string &TargetName = std::string(Target.getName());
1464 const auto &Regs = RegBank.getRegisters();
1465 unsigned NumRegCosts = 1;
1466 for (const auto &Reg : Regs)
1467 NumRegCosts = std::max((size_t)NumRegCosts, Reg.CostPerUse.size());
1468
1469 std::vector<unsigned> AllRegCostPerUse;
1470 llvm::BitVector InAllocClass(Regs.size() + 1, false);
1471 AllRegCostPerUse.insert(AllRegCostPerUse.end(), NumRegCosts, 0);
1472
1473 // Populate the vector RegCosts with the CostPerUse list of the registers
1474 // in the order they are read. Have at most NumRegCosts entries for
1475 // each register. Fill with zero for values which are not explicitly given.
1476 for (const auto &Reg : Regs) {
1477 auto Costs = Reg.CostPerUse;
1478 AllRegCostPerUse.insert(AllRegCostPerUse.end(), Costs.begin(), Costs.end());
1479 if (NumRegCosts > Costs.size())
1480 AllRegCostPerUse.insert(AllRegCostPerUse.end(),
1481 NumRegCosts - Costs.size(), 0);
1482
1483 if (AllocatableRegs.count(Reg.TheDef))
1484 InAllocClass.set(Reg.EnumValue);
1485 }
1486
1487 // Emit the cost values as a 1D-array after grouping them by their indices,
1488 // i.e. the costs for all registers corresponds to index 0, 1, 2, etc.
1489 // Size of the emitted array should be NumRegCosts * (Regs.size() + 1).
1490 OS << "\nstatic const uint8_t "
1491 << "CostPerUseTable[] = { \n";
1492 for (unsigned int I = 0; I < NumRegCosts; ++I) {
1493 for (unsigned J = I, E = AllRegCostPerUse.size(); J < E; J += NumRegCosts)
1494 OS << AllRegCostPerUse[J] << ", ";
1495 }
1496 OS << "};\n\n";
1497
1498 OS << "\nstatic const bool "
1499 << "InAllocatableClassTable[] = { \n";
1500 for (unsigned I = 0, E = InAllocClass.size(); I < E; ++I) {
1501 OS << (InAllocClass[I] ? "true" : "false") << ", ";
1502 }
1503 OS << "};\n\n";
1504
1505 OS << "\nstatic const TargetRegisterInfoDesc " << TargetName
1506 << "RegInfoDesc = { // Extra Descriptors\n";
1507 OS << "CostPerUseTable, " << NumRegCosts << ", "
1508 << "InAllocatableClassTable";
1509 OS << "};\n\n"; // End of register descriptors...
1510
1511 std::string ClassName = Target.getName().str() + "GenRegisterInfo";
1512
1513 auto SubRegIndicesSize =
1514 std::distance(SubRegIndices.begin(), SubRegIndices.end());
1515
1516 if (!SubRegIndices.empty()) {
1517 emitComposeSubRegIndices(OS, RegBank, ClassName);
1518 emitComposeSubRegIndexLaneMask(OS, RegBank, ClassName);
1519 }
1520
1521 if (!SubRegIndices.empty()) {
1522 // Emit getSubClassWithSubReg.
1523 OS << "const TargetRegisterClass *" << ClassName
1524 << "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)"
1525 << " const {\n";
1526 // Use the smallest type that can hold a regclass ID with room for a
1527 // sentinel.
1528 if (RegisterClasses.size() <= UINT8_MAX)
1529 OS << " static const uint8_t Table[";
1530 else if (RegisterClasses.size() <= UINT16_MAX)
1531 OS << " static const uint16_t Table[";
1532 else
1533 PrintFatalError("Too many register classes.");
1534 OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n";
1535 for (const auto &RC : RegisterClasses) {
1536 OS << " {\t// " << RC.getName() << "\n";
1537 for (auto &Idx : SubRegIndices) {
1538 if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(&Idx))
1539 OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx.getName()
1540 << " -> " << SRC->getName() << "\n";
1541 else
1542 OS << " 0,\t// " << Idx.getName() << "\n";
1543 }
1544 OS << " },\n";
1545 }
1546 OS << " };\n assert(RC && \"Missing regclass\");\n"
1547 << " if (!Idx) return RC;\n --Idx;\n"
1548 << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n"
1549 << " unsigned TV = Table[RC->getID()][Idx];\n"
1550 << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n";
1551
1552 // Emit getSubRegisterClass
1553 OS << "const TargetRegisterClass *" << ClassName
1554 << "::getSubRegisterClass(const TargetRegisterClass *RC, unsigned Idx)"
1555 << " const {\n";
1556
1557 // Use the smallest type that can hold a regclass ID with room for a
1558 // sentinel.
1559 if (RegisterClasses.size() <= UINT8_MAX)
1560 OS << " static const uint8_t Table[";
1561 else if (RegisterClasses.size() <= UINT16_MAX)
1562 OS << " static const uint16_t Table[";
1563 else
1564 PrintFatalError("Too many register classes.");
1565
1566 OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n";
1567
1568 for (const auto &RC : RegisterClasses) {
1569 OS << " {\t// " << RC.getName() << '\n';
1570 for (auto &Idx : SubRegIndices) {
1571 std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
1572 MatchingSubClass = RC.getMatchingSubClassWithSubRegs(RegBank, &Idx);
1573
1574 unsigned EnumValue = 0;
1575 if (MatchingSubClass) {
1576 CodeGenRegisterClass *SubRegClass = MatchingSubClass->second;
1577 EnumValue = SubRegClass->EnumValue + 1;
1578 }
1579
1580 OS << " " << EnumValue << ",\t// "
1581 << RC.getName() << ':' << Idx.getName();
1582
1583 if (MatchingSubClass) {
1584 CodeGenRegisterClass *SubRegClass = MatchingSubClass->second;
1585 OS << " -> " << SubRegClass->getName();
1586 }
1587
1588 OS << '\n';
1589 }
1590
1591 OS << " },\n";
1592 }
1593 OS << " };\n assert(RC && \"Missing regclass\");\n"
1594 << " if (!Idx) return RC;\n --Idx;\n"
1595 << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n"
1596 << " unsigned TV = Table[RC->getID()][Idx];\n"
1597 << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n";
1598 }
1599
1600 EmitRegUnitPressure(OS, RegBank, ClassName);
1601
1602 // Emit register base class mapper
1603 if (!RegisterClasses.empty()) {
1604 // Collect base classes
1605 SmallVector<const CodeGenRegisterClass*> BaseClasses;
1606 for (const auto &RC : RegisterClasses) {
1607 if (RC.getBaseClassOrder())
1608 BaseClasses.push_back(&RC);
1609 }
1610 if (!BaseClasses.empty()) {
1611 // Represent class indexes with uint8_t and allocate one index for nullptr
1612 assert(BaseClasses.size() <= UINT8_MAX && "Too many base register classes");
1613
1614 // Apply order
1615 struct BaseClassOrdering {
1616 bool operator()(const CodeGenRegisterClass *LHS, const CodeGenRegisterClass *RHS) const {
1617 return std::pair(*LHS->getBaseClassOrder(), LHS->EnumValue)
1618 < std::pair(*RHS->getBaseClassOrder(), RHS->EnumValue);
1619 }
1620 };
1621 llvm::stable_sort(BaseClasses, BaseClassOrdering());
1622
1623 // Build mapping for Regs (+1 for NoRegister)
1624 std::vector<uint8_t> Mapping(Regs.size() + 1, 0);
1625 for (int RCIdx = BaseClasses.size() - 1; RCIdx >= 0; --RCIdx) {
1626 for (const auto Reg : BaseClasses[RCIdx]->getMembers())
1627 Mapping[Reg->EnumValue] = RCIdx + 1;
1628 }
1629
1630 OS << "\n// Register to base register class mapping\n\n";
1631 OS << "\n";
1632 OS << "const TargetRegisterClass *" << ClassName
1633 << "::getPhysRegBaseClass(MCRegister Reg)"
1634 << " const {\n";
1635 OS << " static const TargetRegisterClass *BaseClasses[" << (BaseClasses.size() + 1) << "] = {\n";
1636 OS << " nullptr,\n";
1637 for (const auto RC : BaseClasses)
1638 OS << " &" << RC->getQualifiedName() << "RegClass,\n";
1639 OS << " };\n";
1640 OS << " static const uint8_t Mapping[" << Mapping.size() << "] = {\n ";
1641 for (const uint8_t Value : Mapping)
1642 OS << (unsigned)Value << ",";
1643 OS << " };\n\n";
1644 OS << " assert(Reg < sizeof(Mapping));\n";
1645 OS << " return BaseClasses[Mapping[Reg]];\n";
1646 OS << "}\n";
1647 }
1648 }
1649
1650 // Emit the constructor of the class...
1651 OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n";
1652 OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n";
1653 OS << "extern const LaneBitmask " << TargetName << "LaneMaskLists[];\n";
1654 OS << "extern const char " << TargetName << "RegStrings[];\n";
1655 OS << "extern const char " << TargetName << "RegClassStrings[];\n";
1656 OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2];\n";
1657 OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n";
1658 OS << "extern const MCRegisterInfo::SubRegCoveredBits "
1659 << TargetName << "SubRegIdxRanges[];\n";
1660 OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n";
1661
1662 EmitRegMappingTables(OS, Regs, true);
1663
1664 OS << ClassName << "::\n"
1665 << ClassName
1666 << "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour,\n"
1667 " unsigned PC, unsigned HwMode)\n"
1668 << " : TargetRegisterInfo(&" << TargetName << "RegInfoDesc"
1669 << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() << ",\n"
1670 << " SubRegIndexNameTable, SubRegIndexLaneMaskTable,\n"
1671 << " ";
1672 printMask(OS, RegBank.CoveringLanes);
1673 OS << ", RegClassInfos, HwMode) {\n"
1674 << " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1
1675 << ", RA, PC,\n " << TargetName
1676 << "MCRegisterClasses, " << RegisterClasses.size() << ",\n"
1677 << " " << TargetName << "RegUnitRoots,\n"
1678 << " " << RegBank.getNumNativeRegUnits() << ",\n"
1679 << " " << TargetName << "RegDiffLists,\n"
1680 << " " << TargetName << "LaneMaskLists,\n"
1681 << " " << TargetName << "RegStrings,\n"
1682 << " " << TargetName << "RegClassStrings,\n"
1683 << " " << TargetName << "SubRegIdxLists,\n"
1684 << " " << SubRegIndicesSize + 1 << ",\n"
1685 << " " << TargetName << "SubRegIdxRanges,\n"
1686 << " " << TargetName << "RegEncodingTable);\n\n";
1687
1688 EmitRegMapping(OS, Regs, true);
1689
1690 OS << "}\n\n";
1691
1692 // Emit CalleeSavedRegs information.
1693 std::vector<Record*> CSRSets =
1694 Records.getAllDerivedDefinitions("CalleeSavedRegs");
1695 for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) {
1696 Record *CSRSet = CSRSets[i];
1697 const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet);
1698 assert(Regs && "Cannot expand CalleeSavedRegs instance");
1699
1700 // Emit the *_SaveList list of callee-saved registers.
1701 OS << "static const MCPhysReg " << CSRSet->getName()
1702 << "_SaveList[] = { ";
1703 for (unsigned r = 0, re = Regs->size(); r != re; ++r)
1704 OS << getQualifiedName((*Regs)[r]) << ", ";
1705 OS << "0 };\n";
1706
1707 // Emit the *_RegMask bit mask of call-preserved registers.
1708 BitVector Covered = RegBank.computeCoveredRegisters(*Regs);
1709
1710 // Check for an optional OtherPreserved set.
1711 // Add those registers to RegMask, but not to SaveList.
1712 if (DagInit *OPDag =
1713 dyn_cast<DagInit>(CSRSet->getValueInit("OtherPreserved"))) {
1714 SetTheory::RecSet OPSet;
1715 RegBank.getSets().evaluate(OPDag, OPSet, CSRSet->getLoc());
1716 Covered |= RegBank.computeCoveredRegisters(
1717 ArrayRef<Record*>(OPSet.begin(), OPSet.end()));
1718 }
1719
1720 // Add all constant physical registers to the preserved mask:
1721 SetTheory::RecSet ConstantSet;
1722 for (auto &Reg : RegBank.getRegisters()) {
1723 if (Reg.Constant)
1724 ConstantSet.insert(Reg.TheDef);
1725 }
1726 Covered |= RegBank.computeCoveredRegisters(
1727 ArrayRef<Record *>(ConstantSet.begin(), ConstantSet.end()));
1728
1729 OS << "static const uint32_t " << CSRSet->getName()
1730 << "_RegMask[] = { ";
1731 printBitVectorAsHex(OS, Covered, 32);
1732 OS << "};\n";
1733 }
1734 OS << "\n\n";
1735
1736 OS << "ArrayRef<const uint32_t *> " << ClassName
1737 << "::getRegMasks() const {\n";
1738 if (!CSRSets.empty()) {
1739 OS << " static const uint32_t *const Masks[] = {\n";
1740 for (Record *CSRSet : CSRSets)
1741 OS << " " << CSRSet->getName() << "_RegMask,\n";
1742 OS << " };\n";
1743 OS << " return ArrayRef(Masks);\n";
1744 } else {
1745 OS << " return std::nullopt;\n";
1746 }
1747 OS << "}\n\n";
1748
1749 const std::list<CodeGenRegisterCategory> &RegCategories =
1750 RegBank.getRegCategories();
1751 OS << "bool " << ClassName << "::\n"
1752 << "isGeneralPurposeRegister(const MachineFunction &MF, "
1753 << "MCRegister PhysReg) const {\n"
1754 << " return\n";
1755 for (const CodeGenRegisterCategory &Category : RegCategories)
1756 if (Category.getName() == "GeneralPurposeRegisters") {
1757 for (const CodeGenRegisterClass *RC : Category.getClasses())
1758 OS << " " << RC->getQualifiedName()
1759 << "RegClass.contains(PhysReg) ||\n";
1760 break;
1761 }
1762 OS << " false;\n";
1763 OS << "}\n\n";
1764
1765 OS << "bool " << ClassName << "::\n"
1766 << "isFixedRegister(const MachineFunction &MF, "
1767 << "MCRegister PhysReg) const {\n"
1768 << " return\n";
1769 for (const CodeGenRegisterCategory &Category : RegCategories)
1770 if (Category.getName() == "FixedRegisters") {
1771 for (const CodeGenRegisterClass *RC : Category.getClasses())
1772 OS << " " << RC->getQualifiedName()
1773 << "RegClass.contains(PhysReg) ||\n";
1774 break;
1775 }
1776 OS << " false;\n";
1777 OS << "}\n\n";
1778
1779 OS << "bool " << ClassName << "::\n"
1780 << "isArgumentRegister(const MachineFunction &MF, "
1781 << "MCRegister PhysReg) const {\n"
1782 << " return\n";
1783 for (const CodeGenRegisterCategory &Category : RegCategories)
1784 if (Category.getName() == "ArgumentRegisters") {
1785 for (const CodeGenRegisterClass *RC : Category.getClasses())
1786 OS << " " << RC->getQualifiedName()
1787 << "RegClass.contains(PhysReg) ||\n";
1788 break;
1789 }
1790 OS << " false;\n";
1791 OS << "}\n\n";
1792
1793 OS << "bool " << ClassName << "::\n"
1794 << "isConstantPhysReg(MCRegister PhysReg) const {\n"
1795 << " return\n";
1796 for (const auto &Reg : Regs)
1797 if (Reg.Constant)
1798 OS << " PhysReg == " << getQualifiedName(Reg.TheDef) << " ||\n";
1799 OS << " false;\n";
1800 OS << "}\n\n";
1801
1802 OS << "ArrayRef<const char *> " << ClassName
1803 << "::getRegMaskNames() const {\n";
1804 if (!CSRSets.empty()) {
1805 OS << " static const char *Names[] = {\n";
1806 for (Record *CSRSet : CSRSets)
1807 OS << " " << '"' << CSRSet->getName() << '"' << ",\n";
1808 OS << " };\n";
1809 OS << " return ArrayRef(Names);\n";
1810 } else {
1811 OS << " return std::nullopt;\n";
1812 }
1813 OS << "}\n\n";
1814
1815 OS << "const " << TargetName << "FrameLowering *\n" << TargetName
1816 << "GenRegisterInfo::getFrameLowering(const MachineFunction &MF) {\n"
1817 << " return static_cast<const " << TargetName << "FrameLowering *>(\n"
1818 << " MF.getSubtarget().getFrameLowering());\n"
1819 << "}\n\n";
1820
1821 OS << "} // end namespace llvm\n\n";
1822 OS << "#endif // GET_REGINFO_TARGET_DESC\n\n";
1823 }
1824
run(raw_ostream & OS)1825 void RegisterInfoEmitter::run(raw_ostream &OS) {
1826 CodeGenRegBank &RegBank = Target.getRegBank();
1827 Records.startTimer("Print enums");
1828 runEnums(OS, Target, RegBank);
1829
1830 Records.startTimer("Print MC registers");
1831 runMCDesc(OS, Target, RegBank);
1832
1833 Records.startTimer("Print header fragment");
1834 runTargetHeader(OS, Target, RegBank);
1835
1836 Records.startTimer("Print target registers");
1837 runTargetDesc(OS, Target, RegBank);
1838
1839 if (RegisterInfoDebug)
1840 debugDump(errs());
1841 }
1842
debugDump(raw_ostream & OS)1843 void RegisterInfoEmitter::debugDump(raw_ostream &OS) {
1844 CodeGenRegBank &RegBank = Target.getRegBank();
1845 const CodeGenHwModes &CGH = Target.getHwModes();
1846 unsigned NumModes = CGH.getNumModeIds();
1847 auto getModeName = [CGH] (unsigned M) -> StringRef {
1848 if (M == 0)
1849 return "Default";
1850 return CGH.getMode(M).Name;
1851 };
1852
1853 for (const CodeGenRegisterClass &RC : RegBank.getRegClasses()) {
1854 OS << "RegisterClass " << RC.getName() << ":\n";
1855 OS << "\tSpillSize: {";
1856 for (unsigned M = 0; M != NumModes; ++M)
1857 OS << ' ' << getModeName(M) << ':' << RC.RSI.get(M).SpillSize;
1858 OS << " }\n\tSpillAlignment: {";
1859 for (unsigned M = 0; M != NumModes; ++M)
1860 OS << ' ' << getModeName(M) << ':' << RC.RSI.get(M).SpillAlignment;
1861 OS << " }\n\tNumRegs: " << RC.getMembers().size() << '\n';
1862 OS << "\tLaneMask: " << PrintLaneMask(RC.LaneMask) << '\n';
1863 OS << "\tHasDisjunctSubRegs: " << RC.HasDisjunctSubRegs << '\n';
1864 OS << "\tCoveredBySubRegs: " << RC.CoveredBySubRegs << '\n';
1865 OS << "\tAllocatable: " << RC.Allocatable << '\n';
1866 OS << "\tAllocationPriority: " << unsigned(RC.AllocationPriority) << '\n';
1867 OS << "\tRegs:";
1868 for (const CodeGenRegister *R : RC.getMembers()) {
1869 OS << " " << R->getName();
1870 }
1871 OS << '\n';
1872 OS << "\tSubClasses:";
1873 const BitVector &SubClasses = RC.getSubClasses();
1874 for (const CodeGenRegisterClass &SRC : RegBank.getRegClasses()) {
1875 if (!SubClasses.test(SRC.EnumValue))
1876 continue;
1877 OS << " " << SRC.getName();
1878 }
1879 OS << '\n';
1880 OS << "\tSuperClasses:";
1881 for (const CodeGenRegisterClass *SRC : RC.getSuperClasses()) {
1882 OS << " " << SRC->getName();
1883 }
1884 OS << '\n';
1885 }
1886
1887 for (const CodeGenSubRegIndex &SRI : RegBank.getSubRegIndices()) {
1888 OS << "SubRegIndex " << SRI.getName() << ":\n";
1889 OS << "\tLaneMask: " << PrintLaneMask(SRI.LaneMask) << '\n';
1890 OS << "\tAllSuperRegsCovered: " << SRI.AllSuperRegsCovered << '\n';
1891 OS << "\tOffset, Size: " << SRI.Offset << ", " << SRI.Size << '\n';
1892 }
1893
1894 for (const CodeGenRegister &R : RegBank.getRegisters()) {
1895 OS << "Register " << R.getName() << ":\n";
1896 OS << "\tCostPerUse: ";
1897 for (const auto &Cost : R.CostPerUse)
1898 OS << Cost << " ";
1899 OS << '\n';
1900 OS << "\tCoveredBySubregs: " << R.CoveredBySubRegs << '\n';
1901 OS << "\tHasDisjunctSubRegs: " << R.HasDisjunctSubRegs << '\n';
1902 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : R.getSubRegs()) {
1903 OS << "\tSubReg " << P.first->getName()
1904 << " = " << P.second->getName() << '\n';
1905 }
1906 }
1907 }
1908
1909 namespace llvm {
1910
EmitRegisterInfo(RecordKeeper & RK,raw_ostream & OS)1911 void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) {
1912 RegisterInfoEmitter(RK).run(OS);
1913 }
1914
1915 } // end namespace llvm
1916