1 /* MMIX-specific support for 64-bit ELF.
2    Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3    Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4 
5 This file is part of BFD, the Binary File Descriptor library.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20 
21 /* No specific ABI or "processor-specific supplement" defined.  */
22 
23 /* TODO:
24    - "Traditional" linker relaxation (shrinking whole sections).
25    - Merge reloc stubs jumping to same location.
26    - GETA stub relaxation (call a stub for out of range new
27      R_MMIX_GETA_STUBBABLE).  */
28 
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/mmix.h"
34 #include "opcode/mmix.h"
35 
36 #define MINUS_ONE	(((bfd_vma) 0) - 1)
37 
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
39 
40 /* Put these everywhere in new code.  */
41 #define FATAL_DEBUG						\
42  _bfd_abort (__FILE__, __LINE__,				\
43 	     "Internal: Non-debugged code (test-case missing)")
44 
45 #define BAD_CASE(x)				\
46  _bfd_abort (__FILE__, __LINE__,		\
47 	     "bad case for " #x)
48 
49 struct _mmix_elf_section_data
50 {
51   struct bfd_elf_section_data elf;
52   union
53   {
54     struct bpo_reloc_section_info *reloc;
55     struct bpo_greg_section_info *greg;
56   } bpo;
57 
58   struct pushj_stub_info
59   {
60     /* Maximum number of stubs needed for this section.  */
61     bfd_size_type n_pushj_relocs;
62 
63     /* Size of stubs after a mmix_elf_relax_section round.  */
64     bfd_size_type stubs_size_sum;
65 
66     /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
67        of these.  Allocated in mmix_elf_check_common_relocs.  */
68     bfd_size_type *stub_size;
69 
70     /* Offset of next stub during relocation.  Somewhat redundant with the
71        above: error coverage is easier and we don't have to reset the
72        stubs_size_sum for relocation.  */
73     bfd_size_type stub_offset;
74   } pjs;
75 };
76 
77 #define mmix_elf_section_data(sec) \
78   ((struct _mmix_elf_section_data *) elf_section_data (sec))
79 
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81    this struct as mmix_elf_section_data (section)->bpo, which is otherwise
82    NULL.  */
83 struct bpo_reloc_section_info
84   {
85     /* The base is 1; this is the first number in this section.  */
86     size_t first_base_plus_offset_reloc;
87 
88     /* Number of BPO-relocs in this section.  */
89     size_t n_bpo_relocs_this_section;
90 
91     /* Running index, used at relocation time.  */
92     size_t bpo_index;
93 
94     /* We don't have access to the bfd_link_info struct in
95        mmix_final_link_relocate.  What we really want to get at is the
96        global single struct greg_relocation, so we stash it here.  */
97     asection *bpo_greg_section;
98   };
99 
100 /* Helper struct (in global context) for the one below.
101    There's one of these created for every BPO reloc.  */
102 struct bpo_reloc_request
103   {
104     bfd_vma value;
105 
106     /* Valid after relaxation.  The base is 0; the first register number
107        must be added.  The offset is in range 0..255.  */
108     size_t regindex;
109     size_t offset;
110 
111     /* The order number for this BPO reloc, corresponding to the order in
112        which BPO relocs were found.  Used to create an index after reloc
113        requests are sorted.  */
114     size_t bpo_reloc_no;
115 
116     /* Set when the value is computed.  Better than coding "guard values"
117        into the other members.  Is FALSE only for BPO relocs in a GC:ed
118        section.  */
119     bfd_boolean valid;
120   };
121 
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123    greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124    which is linked into the register contents section
125    (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
126    linker; using the same hook as for usual with BPO relocs does not
127    collide.  */
128 struct bpo_greg_section_info
129   {
130     /* After GC, this reflects the number of remaining, non-excluded
131        BPO-relocs.  */
132     size_t n_bpo_relocs;
133 
134     /* This is the number of allocated bpo_reloc_requests; the size of
135        sorted_indexes.  Valid after the check.*relocs functions are called
136        for all incoming sections.  It includes the number of BPO relocs in
137        sections that were GC:ed.  */
138     size_t n_max_bpo_relocs;
139 
140     /* A counter used to find out when to fold the BPO gregs, since we
141        don't have a single "after-relaxation" hook.  */
142     size_t n_remaining_bpo_relocs_this_relaxation_round;
143 
144     /* The number of linker-allocated GREGs resulting from BPO relocs.
145        This is an approximation after _bfd_mmix_before_linker_allocation
146        and supposedly accurate after mmix_elf_relax_section is called for
147        all incoming non-collected sections.  */
148     size_t n_allocated_bpo_gregs;
149 
150     /* Index into reloc_request[], sorted on increasing "value", secondary
151        by increasing index for strict sorting order.  */
152     size_t *bpo_reloc_indexes;
153 
154     /* An array of all relocations, with the "value" member filled in by
155        the relaxation function.  */
156     struct bpo_reloc_request *reloc_request;
157   };
158 
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160   PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 	   asection *, struct elf_link_hash_entry *));
162 
163 static bfd_reloc_status_type mmix_elf_reloc
164   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165 
166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167   PARAMS ((bfd *, bfd_reloc_code_real_type));
168 
169 static void mmix_info_to_howto_rela
170   PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
171 
172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173 
174 static bfd_boolean mmix_elf_new_section_hook
175   PARAMS ((bfd *, asection *));
176 
177 static bfd_boolean mmix_elf_check_relocs
178   PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 	   const Elf_Internal_Rela *));
180 
181 static bfd_boolean mmix_elf_check_common_relocs
182   PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 	   const Elf_Internal_Rela *));
184 
185 static bfd_boolean mmix_elf_relocate_section
186   PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188 
189 static asection * mmix_elf_gc_mark_hook
190   PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191 	   struct elf_link_hash_entry *, Elf_Internal_Sym *));
192 
193 static bfd_boolean mmix_elf_gc_sweep_hook
194   PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 	   const Elf_Internal_Rela *));
196 
197 static bfd_reloc_status_type mmix_final_link_relocate
198   PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 	   bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200 
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202   PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203 
204 static bfd_boolean mmix_elf_section_from_bfd_section
205   PARAMS ((bfd *, asection *, int *));
206 
207 static bfd_boolean mmix_elf_add_symbol_hook
208   PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
209 	   const char **, flagword *, asection **, bfd_vma *));
210 
211 static bfd_boolean mmix_elf_is_local_label_name
212   PARAMS ((bfd *, const char *));
213 
214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215 
216 static bfd_boolean mmix_elf_relax_section
217   PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218 	   bfd_boolean *again));
219 
220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
221 
222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223 
224 /* Only intended to be called from a debugger.  */
225 extern void mmix_dump_bpo_gregs
226   PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227 
228 static void
229 mmix_set_relaxable_size
230   PARAMS ((bfd *, asection *, void *));
231 
232 
233 /* Watch out: this currently needs to have elements with the same index as
234    their R_MMIX_ number.  */
235 static reloc_howto_type elf_mmix_howto_table[] =
236  {
237   /* This reloc does nothing.  */
238   HOWTO (R_MMIX_NONE,		/* type */
239 	 0,			/* rightshift */
240 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
241 	 32,			/* bitsize */
242 	 FALSE,			/* pc_relative */
243 	 0,			/* bitpos */
244 	 complain_overflow_bitfield, /* complain_on_overflow */
245 	 bfd_elf_generic_reloc,	/* special_function */
246 	 "R_MMIX_NONE",		/* name */
247 	 FALSE,			/* partial_inplace */
248 	 0,			/* src_mask */
249 	 0,			/* dst_mask */
250 	 FALSE),		/* pcrel_offset */
251 
252   /* An 8 bit absolute relocation.  */
253   HOWTO (R_MMIX_8,		/* type */
254 	 0,			/* rightshift */
255 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
256 	 8,			/* bitsize */
257 	 FALSE,			/* pc_relative */
258 	 0,			/* bitpos */
259 	 complain_overflow_bitfield, /* complain_on_overflow */
260 	 bfd_elf_generic_reloc,	/* special_function */
261 	 "R_MMIX_8",		/* name */
262 	 FALSE,			/* partial_inplace */
263 	 0,			/* src_mask */
264 	 0xff,			/* dst_mask */
265 	 FALSE),		/* pcrel_offset */
266 
267   /* An 16 bit absolute relocation.  */
268   HOWTO (R_MMIX_16,		/* type */
269 	 0,			/* rightshift */
270 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
271 	 16,			/* bitsize */
272 	 FALSE,			/* pc_relative */
273 	 0,			/* bitpos */
274 	 complain_overflow_bitfield, /* complain_on_overflow */
275 	 bfd_elf_generic_reloc,	/* special_function */
276 	 "R_MMIX_16",		/* name */
277 	 FALSE,			/* partial_inplace */
278 	 0,			/* src_mask */
279 	 0xffff,		/* dst_mask */
280 	 FALSE),		/* pcrel_offset */
281 
282   /* An 24 bit absolute relocation.  */
283   HOWTO (R_MMIX_24,		/* type */
284 	 0,			/* rightshift */
285 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
286 	 24,			/* bitsize */
287 	 FALSE,			/* pc_relative */
288 	 0,			/* bitpos */
289 	 complain_overflow_bitfield, /* complain_on_overflow */
290 	 bfd_elf_generic_reloc,	/* special_function */
291 	 "R_MMIX_24",		/* name */
292 	 FALSE,			/* partial_inplace */
293 	 ~0xffffff,		/* src_mask */
294 	 0xffffff,		/* dst_mask */
295 	 FALSE),		/* pcrel_offset */
296 
297   /* A 32 bit absolute relocation.  */
298   HOWTO (R_MMIX_32,		/* type */
299 	 0,			/* rightshift */
300 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
301 	 32,			/* bitsize */
302 	 FALSE,			/* pc_relative */
303 	 0,			/* bitpos */
304 	 complain_overflow_bitfield, /* complain_on_overflow */
305 	 bfd_elf_generic_reloc,	/* special_function */
306 	 "R_MMIX_32",		/* name */
307 	 FALSE,			/* partial_inplace */
308 	 0,			/* src_mask */
309 	 0xffffffff,		/* dst_mask */
310 	 FALSE),		/* pcrel_offset */
311 
312   /* 64 bit relocation.  */
313   HOWTO (R_MMIX_64,		/* type */
314 	 0,			/* rightshift */
315 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
316 	 64,			/* bitsize */
317 	 FALSE,			/* pc_relative */
318 	 0,			/* bitpos */
319 	 complain_overflow_bitfield, /* complain_on_overflow */
320 	 bfd_elf_generic_reloc,	/* special_function */
321 	 "R_MMIX_64",		/* name */
322 	 FALSE,			/* partial_inplace */
323 	 0,			/* src_mask */
324 	 MINUS_ONE,		/* dst_mask */
325 	 FALSE),		/* pcrel_offset */
326 
327   /* An 8 bit PC-relative relocation.  */
328   HOWTO (R_MMIX_PC_8,		/* type */
329 	 0,			/* rightshift */
330 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
331 	 8,			/* bitsize */
332 	 TRUE,			/* pc_relative */
333 	 0,			/* bitpos */
334 	 complain_overflow_bitfield, /* complain_on_overflow */
335 	 bfd_elf_generic_reloc,	/* special_function */
336 	 "R_MMIX_PC_8",		/* name */
337 	 FALSE,			/* partial_inplace */
338 	 0,			/* src_mask */
339 	 0xff,			/* dst_mask */
340 	 TRUE),			/* pcrel_offset */
341 
342   /* An 16 bit PC-relative relocation.  */
343   HOWTO (R_MMIX_PC_16,		/* type */
344 	 0,			/* rightshift */
345 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
346 	 16,			/* bitsize */
347 	 TRUE,			/* pc_relative */
348 	 0,			/* bitpos */
349 	 complain_overflow_bitfield, /* complain_on_overflow */
350 	 bfd_elf_generic_reloc,	/* special_function */
351 	 "R_MMIX_PC_16",	/* name */
352 	 FALSE,			/* partial_inplace */
353 	 0,			/* src_mask */
354 	 0xffff,		/* dst_mask */
355 	 TRUE),			/* pcrel_offset */
356 
357   /* An 24 bit PC-relative relocation.  */
358   HOWTO (R_MMIX_PC_24,		/* type */
359 	 0,			/* rightshift */
360 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
361 	 24,			/* bitsize */
362 	 TRUE,			/* pc_relative */
363 	 0,			/* bitpos */
364 	 complain_overflow_bitfield, /* complain_on_overflow */
365 	 bfd_elf_generic_reloc,	/* special_function */
366 	 "R_MMIX_PC_24",	/* name */
367 	 FALSE,			/* partial_inplace */
368 	 ~0xffffff,		/* src_mask */
369 	 0xffffff,		/* dst_mask */
370 	 TRUE),			/* pcrel_offset */
371 
372   /* A 32 bit absolute PC-relative relocation.  */
373   HOWTO (R_MMIX_PC_32,		/* type */
374 	 0,			/* rightshift */
375 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
376 	 32,			/* bitsize */
377 	 TRUE,			/* pc_relative */
378 	 0,			/* bitpos */
379 	 complain_overflow_bitfield, /* complain_on_overflow */
380 	 bfd_elf_generic_reloc,	/* special_function */
381 	 "R_MMIX_PC_32",	/* name */
382 	 FALSE,			/* partial_inplace */
383 	 0,			/* src_mask */
384 	 0xffffffff,		/* dst_mask */
385 	 TRUE),			/* pcrel_offset */
386 
387   /* 64 bit PC-relative relocation.  */
388   HOWTO (R_MMIX_PC_64,		/* type */
389 	 0,			/* rightshift */
390 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
391 	 64,			/* bitsize */
392 	 TRUE,			/* pc_relative */
393 	 0,			/* bitpos */
394 	 complain_overflow_bitfield, /* complain_on_overflow */
395 	 bfd_elf_generic_reloc,	/* special_function */
396 	 "R_MMIX_PC_64",	/* name */
397 	 FALSE,			/* partial_inplace */
398 	 0,			/* src_mask */
399 	 MINUS_ONE,		/* dst_mask */
400 	 TRUE),			/* pcrel_offset */
401 
402   /* GNU extension to record C++ vtable hierarchy.  */
403   HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
404 	 0,			/* rightshift */
405 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
406 	 0,			/* bitsize */
407 	 FALSE,			/* pc_relative */
408 	 0,			/* bitpos */
409 	 complain_overflow_dont, /* complain_on_overflow */
410 	 NULL,			/* special_function */
411 	 "R_MMIX_GNU_VTINHERIT", /* name */
412 	 FALSE,			/* partial_inplace */
413 	 0,			/* src_mask */
414 	 0,			/* dst_mask */
415 	 TRUE),			/* pcrel_offset */
416 
417   /* GNU extension to record C++ vtable member usage.  */
418   HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
419 	 0,			/* rightshift */
420 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
421 	 0,			/* bitsize */
422 	 FALSE,			/* pc_relative */
423 	 0,			/* bitpos */
424 	 complain_overflow_dont, /* complain_on_overflow */
425 	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
426 	 "R_MMIX_GNU_VTENTRY", /* name */
427 	 FALSE,			/* partial_inplace */
428 	 0,			/* src_mask */
429 	 0,			/* dst_mask */
430 	 FALSE),		/* pcrel_offset */
431 
432   /* The GETA relocation is supposed to get any address that could
433      possibly be reached by the GETA instruction.  It can silently expand
434      to get a 64-bit operand, but will complain if any of the two least
435      significant bits are set.  The howto members reflect a simple GETA.  */
436   HOWTO (R_MMIX_GETA,		/* type */
437 	 2,			/* rightshift */
438 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
439 	 19,			/* bitsize */
440 	 TRUE,			/* pc_relative */
441 	 0,			/* bitpos */
442 	 complain_overflow_signed, /* complain_on_overflow */
443 	 mmix_elf_reloc,	/* special_function */
444 	 "R_MMIX_GETA",		/* name */
445 	 FALSE,			/* partial_inplace */
446 	 ~0x0100ffff,		/* src_mask */
447 	 0x0100ffff,		/* dst_mask */
448 	 TRUE),			/* pcrel_offset */
449 
450   HOWTO (R_MMIX_GETA_1,		/* type */
451 	 2,			/* rightshift */
452 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
453 	 19,			/* bitsize */
454 	 TRUE,			/* pc_relative */
455 	 0,			/* bitpos */
456 	 complain_overflow_signed, /* complain_on_overflow */
457 	 mmix_elf_reloc,	/* special_function */
458 	 "R_MMIX_GETA_1",		/* name */
459 	 FALSE,			/* partial_inplace */
460 	 ~0x0100ffff,		/* src_mask */
461 	 0x0100ffff,		/* dst_mask */
462 	 TRUE),			/* pcrel_offset */
463 
464   HOWTO (R_MMIX_GETA_2,		/* type */
465 	 2,			/* rightshift */
466 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
467 	 19,			/* bitsize */
468 	 TRUE,			/* pc_relative */
469 	 0,			/* bitpos */
470 	 complain_overflow_signed, /* complain_on_overflow */
471 	 mmix_elf_reloc,	/* special_function */
472 	 "R_MMIX_GETA_2",		/* name */
473 	 FALSE,			/* partial_inplace */
474 	 ~0x0100ffff,		/* src_mask */
475 	 0x0100ffff,		/* dst_mask */
476 	 TRUE),			/* pcrel_offset */
477 
478   HOWTO (R_MMIX_GETA_3,		/* type */
479 	 2,			/* rightshift */
480 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
481 	 19,			/* bitsize */
482 	 TRUE,			/* pc_relative */
483 	 0,			/* bitpos */
484 	 complain_overflow_signed, /* complain_on_overflow */
485 	 mmix_elf_reloc,	/* special_function */
486 	 "R_MMIX_GETA_3",		/* name */
487 	 FALSE,			/* partial_inplace */
488 	 ~0x0100ffff,		/* src_mask */
489 	 0x0100ffff,		/* dst_mask */
490 	 TRUE),			/* pcrel_offset */
491 
492   /* The conditional branches are supposed to reach any (code) address.
493      It can silently expand to a 64-bit operand, but will emit an error if
494      any of the two least significant bits are set.  The howto members
495      reflect a simple branch.  */
496   HOWTO (R_MMIX_CBRANCH,	/* type */
497 	 2,			/* rightshift */
498 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
499 	 19,			/* bitsize */
500 	 TRUE,			/* pc_relative */
501 	 0,			/* bitpos */
502 	 complain_overflow_signed, /* complain_on_overflow */
503 	 mmix_elf_reloc,	/* special_function */
504 	 "R_MMIX_CBRANCH",	/* name */
505 	 FALSE,			/* partial_inplace */
506 	 ~0x0100ffff,		/* src_mask */
507 	 0x0100ffff,		/* dst_mask */
508 	 TRUE),		       	/* pcrel_offset */
509 
510   HOWTO (R_MMIX_CBRANCH_J,	/* type */
511 	 2,			/* rightshift */
512 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
513 	 19,			/* bitsize */
514 	 TRUE,			/* pc_relative */
515 	 0,			/* bitpos */
516 	 complain_overflow_signed, /* complain_on_overflow */
517 	 mmix_elf_reloc,	/* special_function */
518 	 "R_MMIX_CBRANCH_J",	/* name */
519 	 FALSE,			/* partial_inplace */
520 	 ~0x0100ffff,		/* src_mask */
521 	 0x0100ffff,		/* dst_mask */
522 	 TRUE),			/* pcrel_offset */
523 
524   HOWTO (R_MMIX_CBRANCH_1,	/* type */
525 	 2,			/* rightshift */
526 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
527 	 19,			/* bitsize */
528 	 TRUE,			/* pc_relative */
529 	 0,			/* bitpos */
530 	 complain_overflow_signed, /* complain_on_overflow */
531 	 mmix_elf_reloc,	/* special_function */
532 	 "R_MMIX_CBRANCH_1",	/* name */
533 	 FALSE,			/* partial_inplace */
534 	 ~0x0100ffff,		/* src_mask */
535 	 0x0100ffff,		/* dst_mask */
536 	 TRUE),			/* pcrel_offset */
537 
538   HOWTO (R_MMIX_CBRANCH_2,	/* type */
539 	 2,			/* rightshift */
540 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
541 	 19,			/* bitsize */
542 	 TRUE,			/* pc_relative */
543 	 0,			/* bitpos */
544 	 complain_overflow_signed, /* complain_on_overflow */
545 	 mmix_elf_reloc,	/* special_function */
546 	 "R_MMIX_CBRANCH_2",	/* name */
547 	 FALSE,			/* partial_inplace */
548 	 ~0x0100ffff,		/* src_mask */
549 	 0x0100ffff,		/* dst_mask */
550 	 TRUE),			/* pcrel_offset */
551 
552   HOWTO (R_MMIX_CBRANCH_3,	/* type */
553 	 2,			/* rightshift */
554 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
555 	 19,			/* bitsize */
556 	 TRUE,			/* pc_relative */
557 	 0,			/* bitpos */
558 	 complain_overflow_signed, /* complain_on_overflow */
559 	 mmix_elf_reloc,	/* special_function */
560 	 "R_MMIX_CBRANCH_3",	/* name */
561 	 FALSE,			/* partial_inplace */
562 	 ~0x0100ffff,		/* src_mask */
563 	 0x0100ffff,		/* dst_mask */
564 	 TRUE),			/* pcrel_offset */
565 
566   /* The PUSHJ instruction can reach any (code) address, as long as it's
567      the beginning of a function (no usable restriction).  It can silently
568      expand to a 64-bit operand, but will emit an error if any of the two
569      least significant bits are set.  It can also expand into a call to a
570      stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
571      PUSHJ.  */
572   HOWTO (R_MMIX_PUSHJ,		/* type */
573 	 2,			/* rightshift */
574 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
575 	 19,			/* bitsize */
576 	 TRUE,			/* pc_relative */
577 	 0,			/* bitpos */
578 	 complain_overflow_signed, /* complain_on_overflow */
579 	 mmix_elf_reloc,	/* special_function */
580 	 "R_MMIX_PUSHJ",	/* name */
581 	 FALSE,			/* partial_inplace */
582 	 ~0x0100ffff,		/* src_mask */
583 	 0x0100ffff,		/* dst_mask */
584 	 TRUE),			/* pcrel_offset */
585 
586   HOWTO (R_MMIX_PUSHJ_1,	/* type */
587 	 2,			/* rightshift */
588 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
589 	 19,			/* bitsize */
590 	 TRUE,			/* pc_relative */
591 	 0,			/* bitpos */
592 	 complain_overflow_signed, /* complain_on_overflow */
593 	 mmix_elf_reloc,	/* special_function */
594 	 "R_MMIX_PUSHJ_1",	/* name */
595 	 FALSE,			/* partial_inplace */
596 	 ~0x0100ffff,		/* src_mask */
597 	 0x0100ffff,		/* dst_mask */
598 	 TRUE),			/* pcrel_offset */
599 
600   HOWTO (R_MMIX_PUSHJ_2,	/* type */
601 	 2,			/* rightshift */
602 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
603 	 19,			/* bitsize */
604 	 TRUE,			/* pc_relative */
605 	 0,			/* bitpos */
606 	 complain_overflow_signed, /* complain_on_overflow */
607 	 mmix_elf_reloc,	/* special_function */
608 	 "R_MMIX_PUSHJ_2",	/* name */
609 	 FALSE,			/* partial_inplace */
610 	 ~0x0100ffff,		/* src_mask */
611 	 0x0100ffff,		/* dst_mask */
612 	 TRUE),			/* pcrel_offset */
613 
614   HOWTO (R_MMIX_PUSHJ_3,	/* type */
615 	 2,			/* rightshift */
616 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
617 	 19,			/* bitsize */
618 	 TRUE,			/* pc_relative */
619 	 0,			/* bitpos */
620 	 complain_overflow_signed, /* complain_on_overflow */
621 	 mmix_elf_reloc,	/* special_function */
622 	 "R_MMIX_PUSHJ_3",	/* name */
623 	 FALSE,			/* partial_inplace */
624 	 ~0x0100ffff,		/* src_mask */
625 	 0x0100ffff,		/* dst_mask */
626 	 TRUE),			/* pcrel_offset */
627 
628   /* A JMP is supposed to reach any (code) address.  By itself, it can
629      reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
630      limit is soon reached if you link the program in wildly different
631      memory segments.  The howto members reflect a trivial JMP.  */
632   HOWTO (R_MMIX_JMP,		/* type */
633 	 2,			/* rightshift */
634 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
635 	 27,			/* bitsize */
636 	 TRUE,			/* pc_relative */
637 	 0,			/* bitpos */
638 	 complain_overflow_signed, /* complain_on_overflow */
639 	 mmix_elf_reloc,	/* special_function */
640 	 "R_MMIX_JMP",		/* name */
641 	 FALSE,			/* partial_inplace */
642 	 ~0x1ffffff,		/* src_mask */
643 	 0x1ffffff,		/* dst_mask */
644 	 TRUE),			/* pcrel_offset */
645 
646   HOWTO (R_MMIX_JMP_1,		/* type */
647 	 2,			/* rightshift */
648 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
649 	 27,			/* bitsize */
650 	 TRUE,			/* pc_relative */
651 	 0,			/* bitpos */
652 	 complain_overflow_signed, /* complain_on_overflow */
653 	 mmix_elf_reloc,	/* special_function */
654 	 "R_MMIX_JMP_1",	/* name */
655 	 FALSE,			/* partial_inplace */
656 	 ~0x1ffffff,		/* src_mask */
657 	 0x1ffffff,		/* dst_mask */
658 	 TRUE),			/* pcrel_offset */
659 
660   HOWTO (R_MMIX_JMP_2,		/* type */
661 	 2,			/* rightshift */
662 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
663 	 27,			/* bitsize */
664 	 TRUE,			/* pc_relative */
665 	 0,			/* bitpos */
666 	 complain_overflow_signed, /* complain_on_overflow */
667 	 mmix_elf_reloc,	/* special_function */
668 	 "R_MMIX_JMP_2",	/* name */
669 	 FALSE,			/* partial_inplace */
670 	 ~0x1ffffff,		/* src_mask */
671 	 0x1ffffff,		/* dst_mask */
672 	 TRUE),			/* pcrel_offset */
673 
674   HOWTO (R_MMIX_JMP_3,		/* type */
675 	 2,			/* rightshift */
676 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
677 	 27,			/* bitsize */
678 	 TRUE,			/* pc_relative */
679 	 0,			/* bitpos */
680 	 complain_overflow_signed, /* complain_on_overflow */
681 	 mmix_elf_reloc,	/* special_function */
682 	 "R_MMIX_JMP_3",	/* name */
683 	 FALSE,			/* partial_inplace */
684 	 ~0x1ffffff,		/* src_mask */
685 	 0x1ffffff,		/* dst_mask */
686 	 TRUE),			/* pcrel_offset */
687 
688   /* When we don't emit link-time-relaxable code from the assembler, or
689      when relaxation has done all it can do, these relocs are used.  For
690      GETA/PUSHJ/branches.  */
691   HOWTO (R_MMIX_ADDR19,		/* type */
692 	 2,			/* rightshift */
693 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
694 	 19,			/* bitsize */
695 	 TRUE,			/* pc_relative */
696 	 0,			/* bitpos */
697 	 complain_overflow_signed, /* complain_on_overflow */
698 	 mmix_elf_reloc,	/* special_function */
699 	 "R_MMIX_ADDR19",	/* name */
700 	 FALSE,			/* partial_inplace */
701 	 ~0x0100ffff,		/* src_mask */
702 	 0x0100ffff,		/* dst_mask */
703 	 TRUE),			/* pcrel_offset */
704 
705   /* For JMP.  */
706   HOWTO (R_MMIX_ADDR27,		/* type */
707 	 2,			/* rightshift */
708 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
709 	 27,			/* bitsize */
710 	 TRUE,			/* pc_relative */
711 	 0,			/* bitpos */
712 	 complain_overflow_signed, /* complain_on_overflow */
713 	 mmix_elf_reloc,	/* special_function */
714 	 "R_MMIX_ADDR27",	/* name */
715 	 FALSE,			/* partial_inplace */
716 	 ~0x1ffffff,		/* src_mask */
717 	 0x1ffffff,		/* dst_mask */
718 	 TRUE),			/* pcrel_offset */
719 
720   /* A general register or the value 0..255.  If a value, then the
721      instruction (offset -3) needs adjusting.  */
722   HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
723 	 0,			/* rightshift */
724 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
725 	 8,			/* bitsize */
726 	 FALSE,			/* pc_relative */
727 	 0,			/* bitpos */
728 	 complain_overflow_bitfield, /* complain_on_overflow */
729 	 mmix_elf_reloc,	/* special_function */
730 	 "R_MMIX_REG_OR_BYTE",	/* name */
731 	 FALSE,			/* partial_inplace */
732 	 0,			/* src_mask */
733 	 0xff,			/* dst_mask */
734 	 FALSE),		/* pcrel_offset */
735 
736   /* A general register.  */
737   HOWTO (R_MMIX_REG,		/* type */
738 	 0,			/* rightshift */
739 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
740 	 8,			/* bitsize */
741 	 FALSE,			/* pc_relative */
742 	 0,			/* bitpos */
743 	 complain_overflow_bitfield, /* complain_on_overflow */
744 	 mmix_elf_reloc,	/* special_function */
745 	 "R_MMIX_REG",		/* name */
746 	 FALSE,			/* partial_inplace */
747 	 0,			/* src_mask */
748 	 0xff,			/* dst_mask */
749 	 FALSE),		/* pcrel_offset */
750 
751   /* A register plus an index, corresponding to the relocation expression.
752      The sizes must correspond to the valid range of the expression, while
753      the bitmasks correspond to what we store in the image.  */
754   HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
755 	 0,			/* rightshift */
756 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
757 	 64,			/* bitsize */
758 	 FALSE,			/* pc_relative */
759 	 0,			/* bitpos */
760 	 complain_overflow_bitfield, /* complain_on_overflow */
761 	 mmix_elf_reloc,	/* special_function */
762 	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
763 	 FALSE,			/* partial_inplace */
764 	 0,			/* src_mask */
765 	 0xffff,		/* dst_mask */
766 	 FALSE),		/* pcrel_offset */
767 
768   /* A "magic" relocation for a LOCAL expression, asserting that the
769      expression is less than the number of global registers.  No actual
770      modification of the contents is done.  Implementing this as a
771      relocation was less intrusive than e.g. putting such expressions in a
772      section to discard *after* relocation.  */
773   HOWTO (R_MMIX_LOCAL,		/* type */
774 	 0,			/* rightshift */
775 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
776 	 0,			/* bitsize */
777 	 FALSE,			/* pc_relative */
778 	 0,			/* bitpos */
779 	 complain_overflow_dont, /* complain_on_overflow */
780 	 mmix_elf_reloc,	/* special_function */
781 	 "R_MMIX_LOCAL",	/* name */
782 	 FALSE,			/* partial_inplace */
783 	 0,			/* src_mask */
784 	 0,			/* dst_mask */
785 	 FALSE),		/* pcrel_offset */
786 
787   HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
788 	 2,			/* rightshift */
789 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
790 	 19,			/* bitsize */
791 	 TRUE,			/* pc_relative */
792 	 0,			/* bitpos */
793 	 complain_overflow_signed, /* complain_on_overflow */
794 	 mmix_elf_reloc,	/* special_function */
795 	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
796 	 FALSE,			/* partial_inplace */
797 	 ~0x0100ffff,		/* src_mask */
798 	 0x0100ffff,		/* dst_mask */
799 	 TRUE)			/* pcrel_offset */
800  };
801 
802 
803 /* Map BFD reloc types to MMIX ELF reloc types.  */
804 
805 struct mmix_reloc_map
806   {
807     bfd_reloc_code_real_type bfd_reloc_val;
808     enum elf_mmix_reloc_type elf_reloc_val;
809   };
810 
811 
812 static const struct mmix_reloc_map mmix_reloc_map[] =
813   {
814     {BFD_RELOC_NONE, R_MMIX_NONE},
815     {BFD_RELOC_8, R_MMIX_8},
816     {BFD_RELOC_16, R_MMIX_16},
817     {BFD_RELOC_24, R_MMIX_24},
818     {BFD_RELOC_32, R_MMIX_32},
819     {BFD_RELOC_64, R_MMIX_64},
820     {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
821     {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
822     {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
823     {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
824     {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
825     {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
826     {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
827     {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
828     {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
829     {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
830     {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
831     {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
832     {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
833     {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
834     {BFD_RELOC_MMIX_REG, R_MMIX_REG},
835     {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
836     {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
837     {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
838   };
839 
840 static reloc_howto_type *
bfd_elf64_bfd_reloc_type_lookup(abfd,code)841 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
842      bfd *abfd ATTRIBUTE_UNUSED;
843      bfd_reloc_code_real_type code;
844 {
845   unsigned int i;
846 
847   for (i = 0;
848        i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
849        i++)
850     {
851       if (mmix_reloc_map[i].bfd_reloc_val == code)
852 	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
853     }
854 
855   return NULL;
856 }
857 
858 static bfd_boolean
mmix_elf_new_section_hook(abfd,sec)859 mmix_elf_new_section_hook (abfd, sec)
860      bfd *abfd;
861      asection *sec;
862 {
863   struct _mmix_elf_section_data *sdata;
864   bfd_size_type amt = sizeof (*sdata);
865 
866   sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
867   if (sdata == NULL)
868     return FALSE;
869   sec->used_by_bfd = (PTR) sdata;
870 
871   return _bfd_elf_new_section_hook (abfd, sec);
872 }
873 
874 
875 /* This function performs the actual bitfiddling and sanity check for a
876    final relocation.  Each relocation gets its *worst*-case expansion
877    in size when it arrives here; any reduction in size should have been
878    caught in linker relaxation earlier.  When we get here, the relocation
879    looks like the smallest instruction with SWYM:s (nop:s) appended to the
880    max size.  We fill in those nop:s.
881 
882    R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
883     GETA $N,foo
884    ->
885     SETL $N,foo & 0xffff
886     INCML $N,(foo >> 16) & 0xffff
887     INCMH $N,(foo >> 32) & 0xffff
888     INCH $N,(foo >> 48) & 0xffff
889 
890    R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
891    condbranches needing relaxation might be rare enough to not be
892    worthwhile.)
893     [P]Bcc $N,foo
894    ->
895     [~P]B~cc $N,.+20
896     SETL $255,foo & ...
897     INCML ...
898     INCMH ...
899     INCH ...
900     GO $255,$255,0
901 
902    R_MMIX_PUSHJ: (FIXME: Relaxation...)
903     PUSHJ $N,foo
904    ->
905     SETL $255,foo & ...
906     INCML ...
907     INCMH ...
908     INCH ...
909     PUSHGO $N,$255,0
910 
911    R_MMIX_JMP: (FIXME: Relaxation...)
912     JMP foo
913    ->
914     SETL $255,foo & ...
915     INCML ...
916     INCMH ...
917     INCH ...
918     GO $255,$255,0
919 
920    R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
921 
922 static bfd_reloc_status_type
mmix_elf_perform_relocation(isec,howto,datap,addr,value)923 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
924      asection *isec;
925      reloc_howto_type *howto;
926      PTR datap;
927      bfd_vma addr;
928      bfd_vma value;
929 {
930   bfd *abfd = isec->owner;
931   bfd_reloc_status_type flag = bfd_reloc_ok;
932   bfd_reloc_status_type r;
933   int offs = 0;
934   int reg = 255;
935 
936   /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
937      We handle the differences here and the common sequence later.  */
938   switch (howto->type)
939     {
940     case R_MMIX_GETA:
941       offs = 0;
942       reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
943 
944       /* We change to an absolute value.  */
945       value += addr;
946       break;
947 
948     case R_MMIX_CBRANCH:
949       {
950 	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
951 
952 	/* Invert the condition and prediction bit, and set the offset
953 	   to five instructions ahead.
954 
955 	   We *can* do better if we want to.  If the branch is found to be
956 	   within limits, we could leave the branch as is; there'll just
957 	   be a bunch of NOP:s after it.  But we shouldn't see this
958 	   sequence often enough that it's worth doing it.  */
959 
960 	bfd_put_32 (abfd,
961 		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
962 		     | (24/4)),
963 		    (bfd_byte *) datap);
964 
965 	/* Put a "GO $255,$255,0" after the common sequence.  */
966 	bfd_put_32 (abfd,
967 		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
968 		    (bfd_byte *) datap + 20);
969 
970 	/* Common sequence starts at offset 4.  */
971 	offs = 4;
972 
973 	/* We change to an absolute value.  */
974 	value += addr;
975       }
976       break;
977 
978     case R_MMIX_PUSHJ_STUBBABLE:
979       /* If the address fits, we're fine.  */
980       if ((value & 3) == 0
981 	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
982 	  && (r = bfd_check_overflow (complain_overflow_signed,
983 				      howto->bitsize,
984 				      0,
985 				      bfd_arch_bits_per_address (abfd),
986 				      value)) == bfd_reloc_ok)
987 	goto pcrel_mmix_reloc_fits;
988       else
989 	{
990 	  bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
991 
992 	  /* We have the bytes at the PUSHJ insn and need to get the
993 	     position for the stub.  There's supposed to be room allocated
994 	     for the stub.  */
995 	  bfd_byte *stubcontents
996 	    = ((bfd_byte *) datap
997 	       - (addr - (isec->output_section->vma + isec->output_offset))
998 	       + size
999 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1000 	  bfd_vma stubaddr;
1001 
1002 	  /* The address doesn't fit, so redirect the PUSHJ to the
1003 	     location of the stub.  */
1004 	  r = mmix_elf_perform_relocation (isec,
1005 					   &elf_mmix_howto_table
1006 					   [R_MMIX_ADDR19],
1007 					   datap,
1008 					   addr,
1009 					   isec->output_section->vma
1010 					   + isec->output_offset
1011 					   + size
1012 					   + (mmix_elf_section_data (isec)
1013 					      ->pjs.stub_offset)
1014 					   - addr);
1015 	  if (r != bfd_reloc_ok)
1016 	    return r;
1017 
1018 	  stubaddr
1019 	    = (isec->output_section->vma
1020 	       + isec->output_offset
1021 	       + size
1022 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1023 
1024 	  /* We generate a simple JMP if that suffices, else the whole 5
1025 	     insn stub.  */
1026 	  if (bfd_check_overflow (complain_overflow_signed,
1027 				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1028 				  0,
1029 				  bfd_arch_bits_per_address (abfd),
1030 				  addr + value - stubaddr) == bfd_reloc_ok)
1031 	    {
1032 	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1033 	      r = mmix_elf_perform_relocation (isec,
1034 					       &elf_mmix_howto_table
1035 					       [R_MMIX_ADDR27],
1036 					       stubcontents,
1037 					       stubaddr,
1038 					       value + addr - stubaddr);
1039 	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040 
1041 	      if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 		  > isec->size)
1043 		abort ();
1044 
1045 	      return r;
1046 	    }
1047 	  else
1048 	    {
1049 	      /* Put a "GO $255,0" after the common sequence.  */
1050 	      bfd_put_32 (abfd,
1051 			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 			  | 0xff00, (bfd_byte *) stubcontents + 16);
1053 
1054 	      /* Prepare for the general code to set the first part of the
1055 		 linker stub, and */
1056 	      value += addr;
1057 	      datap = stubcontents;
1058 	      mmix_elf_section_data (isec)->pjs.stub_offset
1059 		+= MAX_PUSHJ_STUB_SIZE;
1060 	    }
1061 	}
1062       break;
1063 
1064     case R_MMIX_PUSHJ:
1065       {
1066 	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067 
1068 	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1069 	bfd_put_32 (abfd,
1070 		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 		    | (inreg << 16)
1072 		    | 0xff00,
1073 		    (bfd_byte *) datap + 16);
1074 
1075 	/* We change to an absolute value.  */
1076 	value += addr;
1077       }
1078       break;
1079 
1080     case R_MMIX_JMP:
1081       /* This one is a little special.  If we get here on a non-relaxing
1082 	 link, and the destination is actually in range, we don't need to
1083 	 execute the nops.
1084 	 If so, we fall through to the bit-fiddling relocs.
1085 
1086 	 FIXME: bfd_check_overflow seems broken; the relocation is
1087 	 rightshifted before testing, so supply a zero rightshift.  */
1088 
1089       if (! ((value & 3) == 0
1090 	     && (r = bfd_check_overflow (complain_overflow_signed,
1091 					 howto->bitsize,
1092 					 0,
1093 					 bfd_arch_bits_per_address (abfd),
1094 					 value)) == bfd_reloc_ok))
1095 	{
1096 	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 	     modified below, and put a "GO $255,$255,0" after the
1098 	     address-loading sequence.  */
1099 	  bfd_put_32 (abfd,
1100 		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 		      | 0xffff00,
1102 		      (bfd_byte *) datap + 16);
1103 
1104 	  /* We change to an absolute value.  */
1105 	  value += addr;
1106 	  break;
1107 	}
1108       /* FALLTHROUGH.  */
1109     case R_MMIX_ADDR19:
1110     case R_MMIX_ADDR27:
1111     pcrel_mmix_reloc_fits:
1112       /* These must be in range, or else we emit an error.  */
1113       if ((value & 3) == 0
1114 	  /* Note rightshift 0; see above.  */
1115 	  && (r = bfd_check_overflow (complain_overflow_signed,
1116 				      howto->bitsize,
1117 				      0,
1118 				      bfd_arch_bits_per_address (abfd),
1119 				      value)) == bfd_reloc_ok)
1120 	{
1121 	  bfd_vma in1
1122 	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 	  bfd_vma highbit;
1124 
1125 	  if ((bfd_signed_vma) value < 0)
1126 	    {
1127 	      highbit = 1 << 24;
1128 	      value += (1 << (howto->bitsize - 1));
1129 	    }
1130 	  else
1131 	    highbit = 0;
1132 
1133 	  value >>= 2;
1134 
1135 	  bfd_put_32 (abfd,
1136 		      (in1 & howto->src_mask)
1137 		      | highbit
1138 		      | (value & howto->dst_mask),
1139 		      (bfd_byte *) datap);
1140 
1141 	  return bfd_reloc_ok;
1142 	}
1143       else
1144 	return bfd_reloc_overflow;
1145 
1146     case R_MMIX_BASE_PLUS_OFFSET:
1147       {
1148 	struct bpo_reloc_section_info *bpodata
1149 	  = mmix_elf_section_data (isec)->bpo.reloc;
1150 	asection *bpo_greg_section
1151 	  = bpodata->bpo_greg_section;
1152 	struct bpo_greg_section_info *gregdata
1153 	  = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1154 	size_t bpo_index
1155 	  = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1156 
1157 	/* A consistency check: The value we now have in "relocation" must
1158 	   be the same as the value we stored for that relocation.  It
1159 	   doesn't cost much, so can be left in at all times.  */
1160 	if (value != gregdata->reloc_request[bpo_index].value)
1161 	  {
1162 	    (*_bfd_error_handler)
1163 	      (_("%s: Internal inconsistency error for value for\n\
1164  linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1165 	       bfd_get_filename (isec->owner),
1166 	       (unsigned long) (value >> 32), (unsigned long) value,
1167 	       (unsigned long) (gregdata->reloc_request[bpo_index].value
1168 				>> 32),
1169 	       (unsigned long) gregdata->reloc_request[bpo_index].value);
1170 	    bfd_set_error (bfd_error_bad_value);
1171 	    return bfd_reloc_overflow;
1172 	  }
1173 
1174 	/* Then store the register number and offset for that register
1175 	   into datap and datap + 1 respectively.  */
1176 	bfd_put_8 (abfd,
1177 		   gregdata->reloc_request[bpo_index].regindex
1178 		   + bpo_greg_section->output_section->vma / 8,
1179 		   datap);
1180 	bfd_put_8 (abfd,
1181 		   gregdata->reloc_request[bpo_index].offset,
1182 		   ((unsigned char *) datap) + 1);
1183 	return bfd_reloc_ok;
1184       }
1185 
1186     case R_MMIX_REG_OR_BYTE:
1187     case R_MMIX_REG:
1188       if (value > 255)
1189 	return bfd_reloc_overflow;
1190       bfd_put_8 (abfd, value, datap);
1191       return bfd_reloc_ok;
1192 
1193     default:
1194       BAD_CASE (howto->type);
1195     }
1196 
1197   /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1198      sequence.  */
1199 
1200   /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1201      everything that looks strange.  */
1202   if (value & 3)
1203     flag = bfd_reloc_overflow;
1204 
1205   bfd_put_32 (abfd,
1206 	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1207 	      (bfd_byte *) datap + offs);
1208   bfd_put_32 (abfd,
1209 	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1210 	      (bfd_byte *) datap + offs + 4);
1211   bfd_put_32 (abfd,
1212 	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1213 	      (bfd_byte *) datap + offs + 8);
1214   bfd_put_32 (abfd,
1215 	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1216 	      (bfd_byte *) datap + offs + 12);
1217 
1218   return flag;
1219 }
1220 
1221 /* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1222 
1223 static void
mmix_info_to_howto_rela(abfd,cache_ptr,dst)1224 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1225      bfd *abfd ATTRIBUTE_UNUSED;
1226      arelent *cache_ptr;
1227      Elf_Internal_Rela *dst;
1228 {
1229   unsigned int r_type;
1230 
1231   r_type = ELF64_R_TYPE (dst->r_info);
1232   BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1233   cache_ptr->howto = &elf_mmix_howto_table[r_type];
1234 }
1235 
1236 /* Any MMIX-specific relocation gets here at assembly time or when linking
1237    to other formats (such as mmo); this is the relocation function from
1238    the reloc_table.  We don't get here for final pure ELF linking.  */
1239 
1240 static bfd_reloc_status_type
mmix_elf_reloc(abfd,reloc_entry,symbol,data,input_section,output_bfd,error_message)1241 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1242 		output_bfd, error_message)
1243      bfd *abfd;
1244      arelent *reloc_entry;
1245      asymbol *symbol;
1246      PTR data;
1247      asection *input_section;
1248      bfd *output_bfd;
1249      char **error_message ATTRIBUTE_UNUSED;
1250 {
1251   bfd_vma relocation;
1252   bfd_reloc_status_type r;
1253   asection *reloc_target_output_section;
1254   bfd_reloc_status_type flag = bfd_reloc_ok;
1255   bfd_vma output_base = 0;
1256   bfd_vma addr;
1257 
1258   r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1259 			     input_section, output_bfd, error_message);
1260 
1261   /* If that was all that was needed (i.e. this isn't a final link, only
1262      some segment adjustments), we're done.  */
1263   if (r != bfd_reloc_continue)
1264     return r;
1265 
1266   if (bfd_is_und_section (symbol->section)
1267       && (symbol->flags & BSF_WEAK) == 0
1268       && output_bfd == (bfd *) NULL)
1269     return bfd_reloc_undefined;
1270 
1271   /* Is the address of the relocation really within the section?  */
1272   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1273     return bfd_reloc_outofrange;
1274 
1275   /* Work out which section the relocation is targeted at and the
1276      initial relocation command value.  */
1277 
1278   /* Get symbol value.  (Common symbols are special.)  */
1279   if (bfd_is_com_section (symbol->section))
1280     relocation = 0;
1281   else
1282     relocation = symbol->value;
1283 
1284   reloc_target_output_section = bfd_get_output_section (symbol);
1285 
1286   /* Here the variable relocation holds the final address of the symbol we
1287      are relocating against, plus any addend.  */
1288   if (output_bfd)
1289     output_base = 0;
1290   else
1291     output_base = reloc_target_output_section->vma;
1292 
1293   relocation += output_base + symbol->section->output_offset;
1294 
1295   /* Get position of relocation.  */
1296   addr = (reloc_entry->address + input_section->output_section->vma
1297 	  + input_section->output_offset);
1298   if (output_bfd != (bfd *) NULL)
1299     {
1300       /* Add in supplied addend.  */
1301       relocation += reloc_entry->addend;
1302 
1303       /* This is a partial relocation, and we want to apply the
1304 	 relocation to the reloc entry rather than the raw data.
1305 	 Modify the reloc inplace to reflect what we now know.  */
1306       reloc_entry->addend = relocation;
1307       reloc_entry->address += input_section->output_offset;
1308       return flag;
1309     }
1310 
1311   return mmix_final_link_relocate (reloc_entry->howto, input_section,
1312 				   data, reloc_entry->address,
1313 				   reloc_entry->addend, relocation,
1314 				   bfd_asymbol_name (symbol),
1315 				   reloc_target_output_section);
1316 }
1317 
1318 /* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1319    for guidance if you're thinking of copying this.  */
1320 
1321 static bfd_boolean
mmix_elf_relocate_section(output_bfd,info,input_bfd,input_section,contents,relocs,local_syms,local_sections)1322 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1323 			   contents, relocs, local_syms, local_sections)
1324      bfd *output_bfd ATTRIBUTE_UNUSED;
1325      struct bfd_link_info *info;
1326      bfd *input_bfd;
1327      asection *input_section;
1328      bfd_byte *contents;
1329      Elf_Internal_Rela *relocs;
1330      Elf_Internal_Sym *local_syms;
1331      asection **local_sections;
1332 {
1333   Elf_Internal_Shdr *symtab_hdr;
1334   struct elf_link_hash_entry **sym_hashes;
1335   Elf_Internal_Rela *rel;
1336   Elf_Internal_Rela *relend;
1337   bfd_size_type size;
1338   size_t pjsno = 0;
1339 
1340   size = input_section->rawsize ? input_section->rawsize : input_section->size;
1341   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1342   sym_hashes = elf_sym_hashes (input_bfd);
1343   relend = relocs + input_section->reloc_count;
1344 
1345   /* Zero the stub area before we start.  */
1346   if (input_section->rawsize != 0
1347       && input_section->size > input_section->rawsize)
1348     memset (contents + input_section->rawsize, 0,
1349 	    input_section->size - input_section->rawsize);
1350 
1351   for (rel = relocs; rel < relend; rel ++)
1352     {
1353       reloc_howto_type *howto;
1354       unsigned long r_symndx;
1355       Elf_Internal_Sym *sym;
1356       asection *sec;
1357       struct elf_link_hash_entry *h;
1358       bfd_vma relocation;
1359       bfd_reloc_status_type r;
1360       const char *name = NULL;
1361       int r_type;
1362       bfd_boolean undefined_signalled = FALSE;
1363 
1364       r_type = ELF64_R_TYPE (rel->r_info);
1365 
1366       if (r_type == R_MMIX_GNU_VTINHERIT
1367 	  || r_type == R_MMIX_GNU_VTENTRY)
1368 	continue;
1369 
1370       r_symndx = ELF64_R_SYM (rel->r_info);
1371 
1372       if (info->relocatable)
1373 	{
1374 	  /* This is a relocatable link.  For most relocs we don't have to
1375 	     change anything, unless the reloc is against a section
1376 	     symbol, in which case we have to adjust according to where
1377 	     the section symbol winds up in the output section.  */
1378 	  if (r_symndx < symtab_hdr->sh_info)
1379 	    {
1380 	      sym = local_syms + r_symndx;
1381 
1382 	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1383 		{
1384 		  sec = local_sections [r_symndx];
1385 		  rel->r_addend += sec->output_offset + sym->st_value;
1386 		}
1387 	    }
1388 
1389 	  /* For PUSHJ stub relocs however, we may need to change the
1390 	     reloc and the section contents, if the reloc doesn't reach
1391 	     beyond the end of the output section and previous stubs.
1392 	     Then we change the section contents to be a PUSHJ to the end
1393 	     of the input section plus stubs (we can do that without using
1394 	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1395 	     at the stub location.  */
1396 	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1397 	    {
1398 	      /* We've already checked whether we need a stub; use that
1399 		 knowledge.  */
1400 	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1401 		  != 0)
1402 		{
1403 		  Elf_Internal_Rela relcpy;
1404 
1405 		  if (mmix_elf_section_data (input_section)
1406 		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1407 		    abort ();
1408 
1409 		  /* There's already a PUSHJ insn there, so just fill in
1410 		     the offset bits to the stub.  */
1411 		  if (mmix_final_link_relocate (elf_mmix_howto_table
1412 						+ R_MMIX_ADDR19,
1413 						input_section,
1414 						contents,
1415 						rel->r_offset,
1416 						0,
1417 						input_section
1418 						->output_section->vma
1419 						+ input_section->output_offset
1420 						+ size
1421 						+ mmix_elf_section_data (input_section)
1422 						->pjs.stub_offset,
1423 						NULL, NULL) != bfd_reloc_ok)
1424 		    return FALSE;
1425 
1426 		  /* Put a JMP insn at the stub; it goes with the
1427 		     R_MMIX_JMP reloc.  */
1428 		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1429 			      contents
1430 			      + size
1431 			      + mmix_elf_section_data (input_section)
1432 			      ->pjs.stub_offset);
1433 
1434 		  /* Change the reloc to be at the stub, and to a full
1435 		     R_MMIX_JMP reloc.  */
1436 		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1437 		  rel->r_offset
1438 		    = (size
1439 		       + mmix_elf_section_data (input_section)
1440 		       ->pjs.stub_offset);
1441 
1442 		  mmix_elf_section_data (input_section)->pjs.stub_offset
1443 		    += MAX_PUSHJ_STUB_SIZE;
1444 
1445 		  /* Shift this reloc to the end of the relocs to maintain
1446 		     the r_offset sorted reloc order.  */
1447 		  relcpy = *rel;
1448 		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1449 		  relend[-1] = relcpy;
1450 
1451 		  /* Back up one reloc, or else we'd skip the next reloc
1452 		   in turn.  */
1453 		  rel--;
1454 		}
1455 
1456 	      pjsno++;
1457 	    }
1458 	  continue;
1459 	}
1460 
1461       /* This is a final link.  */
1462       howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1463       h = NULL;
1464       sym = NULL;
1465       sec = NULL;
1466 
1467       if (r_symndx < symtab_hdr->sh_info)
1468 	{
1469 	  sym = local_syms + r_symndx;
1470 	  sec = local_sections [r_symndx];
1471 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1472 
1473 	  name = bfd_elf_string_from_elf_section (input_bfd,
1474 						  symtab_hdr->sh_link,
1475 						  sym->st_name);
1476 	  if (name == NULL)
1477 	    name = bfd_section_name (input_bfd, sec);
1478 	}
1479       else
1480 	{
1481 	  bfd_boolean unresolved_reloc;
1482 
1483 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1484 				   r_symndx, symtab_hdr, sym_hashes,
1485 				   h, sec, relocation,
1486 				   unresolved_reloc, undefined_signalled);
1487 	  name = h->root.root.string;
1488 	}
1489 
1490       r = mmix_final_link_relocate (howto, input_section,
1491 				    contents, rel->r_offset,
1492 				    rel->r_addend, relocation, name, sec);
1493 
1494       if (r != bfd_reloc_ok)
1495 	{
1496 	  bfd_boolean check_ok = TRUE;
1497 	  const char * msg = (const char *) NULL;
1498 
1499 	  switch (r)
1500 	    {
1501 	    case bfd_reloc_overflow:
1502 	      check_ok = info->callbacks->reloc_overflow
1503 		(info, (h ? &h->root : NULL), name, howto->name,
1504 		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1505 	      break;
1506 
1507 	    case bfd_reloc_undefined:
1508 	      /* We may have sent this message above.  */
1509 	      if (! undefined_signalled)
1510 		check_ok = info->callbacks->undefined_symbol
1511 		  (info, name, input_bfd, input_section, rel->r_offset,
1512 		   TRUE);
1513 	      undefined_signalled = TRUE;
1514 	      break;
1515 
1516 	    case bfd_reloc_outofrange:
1517 	      msg = _("internal error: out of range error");
1518 	      break;
1519 
1520 	    case bfd_reloc_notsupported:
1521 	      msg = _("internal error: unsupported relocation error");
1522 	      break;
1523 
1524 	    case bfd_reloc_dangerous:
1525 	      msg = _("internal error: dangerous relocation");
1526 	      break;
1527 
1528 	    default:
1529 	      msg = _("internal error: unknown error");
1530 	      break;
1531 	    }
1532 
1533 	  if (msg)
1534 	    check_ok = info->callbacks->warning
1535 	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1536 
1537 	  if (! check_ok)
1538 	    return FALSE;
1539 	}
1540     }
1541 
1542   return TRUE;
1543 }
1544 
1545 /* Perform a single relocation.  By default we use the standard BFD
1546    routines.  A few relocs we have to do ourselves.  */
1547 
1548 static bfd_reloc_status_type
mmix_final_link_relocate(howto,input_section,contents,r_offset,r_addend,relocation,symname,symsec)1549 mmix_final_link_relocate (howto, input_section, contents,
1550 			  r_offset, r_addend, relocation, symname, symsec)
1551      reloc_howto_type *howto;
1552      asection *input_section;
1553      bfd_byte *contents;
1554      bfd_vma r_offset;
1555      bfd_signed_vma r_addend;
1556      bfd_vma relocation;
1557      const char *symname;
1558      asection *symsec;
1559 {
1560   bfd_reloc_status_type r = bfd_reloc_ok;
1561   bfd_vma addr
1562     = (input_section->output_section->vma
1563        + input_section->output_offset
1564        + r_offset);
1565   bfd_signed_vma srel
1566     = (bfd_signed_vma) relocation + r_addend;
1567 
1568   switch (howto->type)
1569     {
1570       /* All these are PC-relative.  */
1571     case R_MMIX_PUSHJ_STUBBABLE:
1572     case R_MMIX_PUSHJ:
1573     case R_MMIX_CBRANCH:
1574     case R_MMIX_ADDR19:
1575     case R_MMIX_GETA:
1576     case R_MMIX_ADDR27:
1577     case R_MMIX_JMP:
1578       contents += r_offset;
1579 
1580       srel -= (input_section->output_section->vma
1581 	       + input_section->output_offset
1582 	       + r_offset);
1583 
1584       r = mmix_elf_perform_relocation (input_section, howto, contents,
1585 				       addr, srel);
1586       break;
1587 
1588     case R_MMIX_BASE_PLUS_OFFSET:
1589       if (symsec == NULL)
1590 	return bfd_reloc_undefined;
1591 
1592       /* Check that we're not relocating against a register symbol.  */
1593       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1594 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1595 	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1596 		     MMIX_REG_SECTION_NAME) == 0)
1597 	{
1598 	  /* Note: This is separated out into two messages in order
1599 	     to ease the translation into other languages.  */
1600 	  if (symname == NULL || *symname == 0)
1601 	    (*_bfd_error_handler)
1602 	      (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 	       bfd_get_filename (input_section->owner),
1604 	       bfd_get_section_name (symsec->owner, symsec));
1605 	  else
1606 	    (*_bfd_error_handler)
1607 	      (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 	       bfd_get_filename (input_section->owner), symname,
1609 	       bfd_get_section_name (symsec->owner, symsec));
1610 	  return bfd_reloc_overflow;
1611 	}
1612       goto do_mmix_reloc;
1613 
1614     case R_MMIX_REG_OR_BYTE:
1615     case R_MMIX_REG:
1616       /* For now, we handle these alike.  They must refer to an register
1617 	 symbol, which is either relative to the register section and in
1618 	 the range 0..255, or is in the register contents section with vma
1619 	 regno * 8.  */
1620 
1621       /* FIXME: A better way to check for reg contents section?
1622 	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1623       if (symsec == NULL)
1624 	return bfd_reloc_undefined;
1625 
1626       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1627 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1628 	{
1629 	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1630 	    {
1631 	      /* The bfd_reloc_outofrange return value, though intuitively
1632 		 a better value, will not get us an error.  */
1633 	      return bfd_reloc_overflow;
1634 	    }
1635 	  srel /= 8;
1636 	}
1637       else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1638 		       MMIX_REG_SECTION_NAME) == 0)
1639 	{
1640 	  if (srel < 0 || srel > 255)
1641 	    /* The bfd_reloc_outofrange return value, though intuitively a
1642 	       better value, will not get us an error.  */
1643 	    return bfd_reloc_overflow;
1644 	}
1645       else
1646 	{
1647 	  /* Note: This is separated out into two messages in order
1648 	     to ease the translation into other languages.  */
1649 	  if (symname == NULL || *symname == 0)
1650 	    (*_bfd_error_handler)
1651 	      (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 	       bfd_get_filename (input_section->owner),
1653 	       bfd_get_section_name (symsec->owner, symsec));
1654 	  else
1655 	    (*_bfd_error_handler)
1656 	      (_("%s: register relocation against non-register symbol: %s in %s"),
1657 	       bfd_get_filename (input_section->owner), symname,
1658 	       bfd_get_section_name (symsec->owner, symsec));
1659 
1660 	  /* The bfd_reloc_outofrange return value, though intuitively a
1661 	     better value, will not get us an error.  */
1662 	  return bfd_reloc_overflow;
1663 	}
1664     do_mmix_reloc:
1665       contents += r_offset;
1666       r = mmix_elf_perform_relocation (input_section, howto, contents,
1667 				       addr, srel);
1668       break;
1669 
1670     case R_MMIX_LOCAL:
1671       /* This isn't a real relocation, it's just an assertion that the
1672 	 final relocation value corresponds to a local register.  We
1673 	 ignore the actual relocation; nothing is changed.  */
1674       {
1675 	asection *regsec
1676 	  = bfd_get_section_by_name (input_section->output_section->owner,
1677 				     MMIX_REG_CONTENTS_SECTION_NAME);
1678 	bfd_vma first_global;
1679 
1680 	/* Check that this is an absolute value, or a reference to the
1681 	   register contents section or the register (symbol) section.
1682 	   Absolute numbers can get here as undefined section.  Undefined
1683 	   symbols are signalled elsewhere, so there's no conflict in us
1684 	   accidentally handling it.  */
1685 	if (!bfd_is_abs_section (symsec)
1686 	    && !bfd_is_und_section (symsec)
1687 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1688 		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1689 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1690 		       MMIX_REG_SECTION_NAME) != 0)
1691 	{
1692 	  (*_bfd_error_handler)
1693 	    (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 	     bfd_get_filename (input_section->owner));
1695 
1696 	  return bfd_reloc_overflow;
1697 	}
1698 
1699       /* If we don't have a register contents section, then $255 is the
1700 	 first global register.  */
1701       if (regsec == NULL)
1702 	first_global = 255;
1703       else
1704 	{
1705 	  first_global = bfd_get_section_vma (abfd, regsec) / 8;
1706 	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1708 	    {
1709 	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1710 		/* The bfd_reloc_outofrange return value, though
1711 		   intuitively a better value, will not get us an error.  */
1712 		return bfd_reloc_overflow;
1713 	      srel /= 8;
1714 	    }
1715 	}
1716 
1717 	if ((bfd_vma) srel >= first_global)
1718 	  {
1719 	    /* FIXME: Better error message.  */
1720 	    (*_bfd_error_handler)
1721 	      (_("%s: LOCAL directive: Register $%ld is not a local register.  First global register is $%ld."),
1722 	       bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1723 
1724 	    return bfd_reloc_overflow;
1725 	  }
1726       }
1727       r = bfd_reloc_ok;
1728       break;
1729 
1730     default:
1731       r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1732 				    contents, r_offset,
1733 				    relocation, r_addend);
1734     }
1735 
1736   return r;
1737 }
1738 
1739 /* Return the section that should be marked against GC for a given
1740    relocation.  */
1741 
1742 static asection *
mmix_elf_gc_mark_hook(sec,info,rel,h,sym)1743 mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1744      asection *sec;
1745      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1746      Elf_Internal_Rela *rel;
1747      struct elf_link_hash_entry *h;
1748      Elf_Internal_Sym *sym;
1749 {
1750   if (h != NULL)
1751     {
1752       switch (ELF64_R_TYPE (rel->r_info))
1753 	{
1754 	case R_MMIX_GNU_VTINHERIT:
1755 	case R_MMIX_GNU_VTENTRY:
1756 	  break;
1757 
1758 	default:
1759 	  switch (h->root.type)
1760 	    {
1761 	    case bfd_link_hash_defined:
1762 	    case bfd_link_hash_defweak:
1763 	      return h->root.u.def.section;
1764 
1765 	    case bfd_link_hash_common:
1766 	      return h->root.u.c.p->section;
1767 
1768 	    default:
1769 	      break;
1770 	    }
1771 	}
1772     }
1773   else
1774     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1775 
1776   return NULL;
1777 }
1778 
1779 /* Update relocation info for a GC-excluded section.  We could supposedly
1780    perform the allocation after GC, but there's no suitable hook between
1781    GC (or section merge) and the point when all input sections must be
1782    present.  Better to waste some memory and (perhaps) a little time.  */
1783 
1784 static bfd_boolean
mmix_elf_gc_sweep_hook(abfd,info,sec,relocs)1785 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1786      bfd *abfd ATTRIBUTE_UNUSED;
1787      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1788      asection *sec ATTRIBUTE_UNUSED;
1789      const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1790 {
1791   struct bpo_reloc_section_info *bpodata
1792     = mmix_elf_section_data (sec)->bpo.reloc;
1793   asection *allocated_gregs_section;
1794 
1795   /* If no bpodata here, we have nothing to do.  */
1796   if (bpodata == NULL)
1797     return TRUE;
1798 
1799   allocated_gregs_section = bpodata->bpo_greg_section;
1800 
1801   mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1802     -= bpodata->n_bpo_relocs_this_section;
1803 
1804   return TRUE;
1805 }
1806 
1807 /* Sort register relocs to come before expanding relocs.  */
1808 
1809 static int
mmix_elf_sort_relocs(p1,p2)1810 mmix_elf_sort_relocs (p1, p2)
1811      const PTR p1;
1812      const PTR p2;
1813 {
1814   const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1815   const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1816   int r1_is_reg, r2_is_reg;
1817 
1818   /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1819      insns.  */
1820   if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1821     return 1;
1822   else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1823     return -1;
1824 
1825   r1_is_reg
1826     = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1827        || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1828   r2_is_reg
1829     = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1830        || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1831   if (r1_is_reg != r2_is_reg)
1832     return r2_is_reg - r1_is_reg;
1833 
1834   /* Neither or both are register relocs.  Then sort on full offset.  */
1835   if (r1->r_offset > r2->r_offset)
1836     return 1;
1837   else if (r1->r_offset < r2->r_offset)
1838     return -1;
1839   return 0;
1840 }
1841 
1842 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1843 
1844 static bfd_boolean
mmix_elf_check_common_relocs(abfd,info,sec,relocs)1845 mmix_elf_check_common_relocs  (abfd, info, sec, relocs)
1846      bfd *abfd;
1847      struct bfd_link_info *info;
1848      asection *sec;
1849      const Elf_Internal_Rela *relocs;
1850 {
1851   bfd *bpo_greg_owner = NULL;
1852   asection *allocated_gregs_section = NULL;
1853   struct bpo_greg_section_info *gregdata = NULL;
1854   struct bpo_reloc_section_info *bpodata = NULL;
1855   const Elf_Internal_Rela *rel;
1856   const Elf_Internal_Rela *rel_end;
1857 
1858   /* We currently have to abuse this COFF-specific member, since there's
1859      no target-machine-dedicated member.  There's no alternative outside
1860      the bfd_link_info struct; we can't specialize a hash-table since
1861      they're different between ELF and mmo.  */
1862   bpo_greg_owner = (bfd *) info->base_file;
1863 
1864   rel_end = relocs + sec->reloc_count;
1865   for (rel = relocs; rel < rel_end; rel++)
1866     {
1867       switch (ELF64_R_TYPE (rel->r_info))
1868         {
1869 	  /* This relocation causes a GREG allocation.  We need to count
1870 	     them, and we need to create a section for them, so we need an
1871 	     object to fake as the owner of that section.  We can't use
1872 	     the ELF dynobj for this, since the ELF bits assume lots of
1873 	     DSO-related stuff if that member is non-NULL.  */
1874 	case R_MMIX_BASE_PLUS_OFFSET:
1875 	  /* We don't do anything with this reloc for a relocatable link.  */
1876 	  if (info->relocatable)
1877 	    break;
1878 
1879 	  if (bpo_greg_owner == NULL)
1880 	    {
1881 	      bpo_greg_owner = abfd;
1882 	      info->base_file = (PTR) bpo_greg_owner;
1883 	    }
1884 
1885 	  if (allocated_gregs_section == NULL)
1886 	    allocated_gregs_section
1887 	      = bfd_get_section_by_name (bpo_greg_owner,
1888 					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889 
1890 	  if (allocated_gregs_section == NULL)
1891 	    {
1892 	      allocated_gregs_section
1893 		= bfd_make_section_with_flags (bpo_greg_owner,
1894 					       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1895 					       (SEC_HAS_CONTENTS
1896 						| SEC_IN_MEMORY
1897 						| SEC_LINKER_CREATED));
1898 	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1899 		 treated like any other section, and we'd get errors for
1900 		 address overlap with the text section.  Let's set none of
1901 		 those flags, as that is what currently happens for usual
1902 		 GREG allocations, and that works.  */
1903 	      if (allocated_gregs_section == NULL
1904 		  || !bfd_set_section_alignment (bpo_greg_owner,
1905 						 allocated_gregs_section,
1906 						 3))
1907 		return FALSE;
1908 
1909 	      gregdata = (struct bpo_greg_section_info *)
1910 		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1911 	      if (gregdata == NULL)
1912 		return FALSE;
1913 	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1914 		= gregdata;
1915 	    }
1916 	  else if (gregdata == NULL)
1917 	    gregdata
1918 	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1919 
1920 	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1921 	  if (bpodata == NULL)
1922 	    {
1923 	      /* No use doing a separate iteration pass to find the upper
1924 		 limit - just use the number of relocs.  */
1925 	      bpodata = (struct bpo_reloc_section_info *)
1926 		bfd_alloc (bpo_greg_owner,
1927 			   sizeof (struct bpo_reloc_section_info)
1928 			   * (sec->reloc_count + 1));
1929 	      if (bpodata == NULL)
1930 		return FALSE;
1931 	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1932 	      bpodata->first_base_plus_offset_reloc
1933 		= bpodata->bpo_index
1934 		= gregdata->n_max_bpo_relocs;
1935 	      bpodata->bpo_greg_section
1936 		= allocated_gregs_section;
1937 	      bpodata->n_bpo_relocs_this_section = 0;
1938 	    }
1939 
1940 	  bpodata->n_bpo_relocs_this_section++;
1941 	  gregdata->n_max_bpo_relocs++;
1942 
1943 	  /* We don't get another chance to set this before GC; we've not
1944 	     set up any hook that runs before GC.  */
1945 	  gregdata->n_bpo_relocs
1946 	    = gregdata->n_max_bpo_relocs;
1947 	  break;
1948 
1949 	case R_MMIX_PUSHJ_STUBBABLE:
1950 	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1951 	  break;
1952 	}
1953     }
1954 
1955   /* Allocate per-reloc stub storage and initialize it to the max stub
1956      size.  */
1957   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1958     {
1959       size_t i;
1960 
1961       mmix_elf_section_data (sec)->pjs.stub_size
1962 	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1963 		     * sizeof (mmix_elf_section_data (sec)
1964 			       ->pjs.stub_size[0]));
1965       if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1966 	return FALSE;
1967 
1968       for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1969 	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1970     }
1971 
1972   return TRUE;
1973 }
1974 
1975 /* Look through the relocs for a section during the first phase.  */
1976 
1977 static bfd_boolean
mmix_elf_check_relocs(abfd,info,sec,relocs)1978 mmix_elf_check_relocs (abfd, info, sec, relocs)
1979      bfd *abfd;
1980      struct bfd_link_info *info;
1981      asection *sec;
1982      const Elf_Internal_Rela *relocs;
1983 {
1984   Elf_Internal_Shdr *symtab_hdr;
1985   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1986   const Elf_Internal_Rela *rel;
1987   const Elf_Internal_Rela *rel_end;
1988 
1989   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1990   sym_hashes = elf_sym_hashes (abfd);
1991   sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1992   if (!elf_bad_symtab (abfd))
1993     sym_hashes_end -= symtab_hdr->sh_info;
1994 
1995   /* First we sort the relocs so that any register relocs come before
1996      expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
1997   qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1998 	 mmix_elf_sort_relocs);
1999 
2000   /* Do the common part.  */
2001   if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2002     return FALSE;
2003 
2004   if (info->relocatable)
2005     return TRUE;
2006 
2007   rel_end = relocs + sec->reloc_count;
2008   for (rel = relocs; rel < rel_end; rel++)
2009     {
2010       struct elf_link_hash_entry *h;
2011       unsigned long r_symndx;
2012 
2013       r_symndx = ELF64_R_SYM (rel->r_info);
2014       if (r_symndx < symtab_hdr->sh_info)
2015         h = NULL;
2016       else
2017 	{
2018 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2019 	  while (h->root.type == bfd_link_hash_indirect
2020 		 || h->root.type == bfd_link_hash_warning)
2021 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2022 	}
2023 
2024       switch (ELF64_R_TYPE (rel->r_info))
2025 	{
2026         /* This relocation describes the C++ object vtable hierarchy.
2027            Reconstruct it for later use during GC.  */
2028         case R_MMIX_GNU_VTINHERIT:
2029           if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2030             return FALSE;
2031           break;
2032 
2033         /* This relocation describes which C++ vtable entries are actually
2034            used.  Record for later use during GC.  */
2035         case R_MMIX_GNU_VTENTRY:
2036           if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2037             return FALSE;
2038           break;
2039 	}
2040     }
2041 
2042   return TRUE;
2043 }
2044 
2045 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2046    Copied from elf_link_add_object_symbols.  */
2047 
2048 bfd_boolean
_bfd_mmix_check_all_relocs(abfd,info)2049 _bfd_mmix_check_all_relocs (abfd, info)
2050      bfd *abfd;
2051      struct bfd_link_info *info;
2052 {
2053   asection *o;
2054 
2055   for (o = abfd->sections; o != NULL; o = o->next)
2056     {
2057       Elf_Internal_Rela *internal_relocs;
2058       bfd_boolean ok;
2059 
2060       if ((o->flags & SEC_RELOC) == 0
2061 	  || o->reloc_count == 0
2062 	  || ((info->strip == strip_all || info->strip == strip_debugger)
2063 	      && (o->flags & SEC_DEBUGGING) != 0)
2064 	  || bfd_is_abs_section (o->output_section))
2065 	continue;
2066 
2067       internal_relocs
2068 	= _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2069 				     (Elf_Internal_Rela *) NULL,
2070 				     info->keep_memory);
2071       if (internal_relocs == NULL)
2072 	return FALSE;
2073 
2074       ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2075 
2076       if (! info->keep_memory)
2077 	free (internal_relocs);
2078 
2079       if (! ok)
2080 	return FALSE;
2081     }
2082 
2083   return TRUE;
2084 }
2085 
2086 /* Change symbols relative to the reg contents section to instead be to
2087    the register section, and scale them down to correspond to the register
2088    number.  */
2089 
2090 static bfd_boolean
mmix_elf_link_output_symbol_hook(info,name,sym,input_sec,h)2091 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2092      struct bfd_link_info *info ATTRIBUTE_UNUSED;
2093      const char *name ATTRIBUTE_UNUSED;
2094      Elf_Internal_Sym *sym;
2095      asection *input_sec;
2096      struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2097 {
2098   if (input_sec != NULL
2099       && input_sec->name != NULL
2100       && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2101       && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2102     {
2103       sym->st_value /= 8;
2104       sym->st_shndx = SHN_REGISTER;
2105     }
2106 
2107   return TRUE;
2108 }
2109 
2110 /* We fake a register section that holds values that are register numbers.
2111    Having a SHN_REGISTER and register section translates better to other
2112    formats (e.g. mmo) than for example a STT_REGISTER attribute.
2113    This section faking is based on a construct in elf32-mips.c.  */
2114 static asection mmix_elf_reg_section;
2115 static asymbol mmix_elf_reg_section_symbol;
2116 static asymbol *mmix_elf_reg_section_symbol_ptr;
2117 
2118 /* Handle the special section numbers that a symbol may use.  */
2119 
2120 void
mmix_elf_symbol_processing(abfd,asym)2121 mmix_elf_symbol_processing (abfd, asym)
2122      bfd *abfd ATTRIBUTE_UNUSED;
2123      asymbol *asym;
2124 {
2125   elf_symbol_type *elfsym;
2126 
2127   elfsym = (elf_symbol_type *) asym;
2128   switch (elfsym->internal_elf_sym.st_shndx)
2129     {
2130     case SHN_REGISTER:
2131       if (mmix_elf_reg_section.name == NULL)
2132 	{
2133 	  /* Initialize the register section.  */
2134 	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2135 	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2136 	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2137 	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2138 	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2139 	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2140 	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2141 	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2142 	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2143 	}
2144       asym->section = &mmix_elf_reg_section;
2145       break;
2146 
2147     default:
2148       break;
2149     }
2150 }
2151 
2152 /* Given a BFD section, try to locate the corresponding ELF section
2153    index.  */
2154 
2155 static bfd_boolean
mmix_elf_section_from_bfd_section(abfd,sec,retval)2156 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2157      bfd *                 abfd ATTRIBUTE_UNUSED;
2158      asection *            sec;
2159      int *                 retval;
2160 {
2161   if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2162     *retval = SHN_REGISTER;
2163   else
2164     return FALSE;
2165 
2166   return TRUE;
2167 }
2168 
2169 /* Hook called by the linker routine which adds symbols from an object
2170    file.  We must handle the special SHN_REGISTER section number here.
2171 
2172    We also check that we only have *one* each of the section-start
2173    symbols, since otherwise having two with the same value would cause
2174    them to be "merged", but with the contents serialized.  */
2175 
2176 bfd_boolean
mmix_elf_add_symbol_hook(abfd,info,sym,namep,flagsp,secp,valp)2177 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2178      bfd *abfd;
2179      struct bfd_link_info *info ATTRIBUTE_UNUSED;
2180      Elf_Internal_Sym *sym;
2181      const char **namep ATTRIBUTE_UNUSED;
2182      flagword *flagsp ATTRIBUTE_UNUSED;
2183      asection **secp;
2184      bfd_vma *valp ATTRIBUTE_UNUSED;
2185 {
2186   if (sym->st_shndx == SHN_REGISTER)
2187     {
2188       *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2189       (*secp)->flags |= SEC_LINKER_CREATED;
2190     }
2191   else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2192 	   && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2193 		       strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2194     {
2195       /* See if we have another one.  */
2196       struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2197 							    *namep,
2198 							    FALSE,
2199 							    FALSE,
2200 							    FALSE);
2201 
2202       if (h != NULL && h->type != bfd_link_hash_undefined)
2203 	{
2204 	  /* How do we get the asymbol (or really: the filename) from h?
2205 	     h->u.def.section->owner is NULL.  */
2206 	  ((*_bfd_error_handler)
2207 	   (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2208 	    bfd_get_filename (abfd), *namep,
2209 	    *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2210 	   bfd_set_error (bfd_error_bad_value);
2211 	   return FALSE;
2212 	}
2213     }
2214 
2215   return TRUE;
2216 }
2217 
2218 /* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2219 
2220 bfd_boolean
mmix_elf_is_local_label_name(abfd,name)2221 mmix_elf_is_local_label_name (abfd, name)
2222      bfd *abfd;
2223      const char *name;
2224 {
2225   const char *colpos;
2226   int digits;
2227 
2228   /* Also include the default local-label definition.  */
2229   if (_bfd_elf_is_local_label_name (abfd, name))
2230     return TRUE;
2231 
2232   if (*name != 'L')
2233     return FALSE;
2234 
2235   /* If there's no ":", or more than one, it's not a local symbol.  */
2236   colpos = strchr (name, ':');
2237   if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2238     return FALSE;
2239 
2240   /* Check that there are remaining characters and that they are digits.  */
2241   if (colpos[1] == 0)
2242     return FALSE;
2243 
2244   digits = strspn (colpos + 1, "0123456789");
2245   return digits != 0 && colpos[1 + digits] == 0;
2246 }
2247 
2248 /* We get rid of the register section here.  */
2249 
2250 bfd_boolean
mmix_elf_final_link(abfd,info)2251 mmix_elf_final_link (abfd, info)
2252      bfd *abfd;
2253      struct bfd_link_info *info;
2254 {
2255   /* We never output a register section, though we create one for
2256      temporary measures.  Check that nobody entered contents into it.  */
2257   asection *reg_section;
2258 
2259   reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2260 
2261   if (reg_section != NULL)
2262     {
2263       /* FIXME: Pass error state gracefully.  */
2264       if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2265 	_bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2266 
2267       /* Really remove the section, if it hasn't already been done.  */
2268       if (!bfd_section_removed_from_list (abfd, reg_section))
2269 	{
2270 	  bfd_section_list_remove (abfd, reg_section);
2271 	  --abfd->section_count;
2272 	}
2273     }
2274 
2275   if (! bfd_elf_final_link (abfd, info))
2276     return FALSE;
2277 
2278   /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2279      the regular linker machinery.  We do it here, like other targets with
2280      special sections.  */
2281   if (info->base_file != NULL)
2282     {
2283       asection *greg_section
2284 	= bfd_get_section_by_name ((bfd *) info->base_file,
2285 				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2286       if (!bfd_set_section_contents (abfd,
2287 				     greg_section->output_section,
2288 				     greg_section->contents,
2289 				     (file_ptr) greg_section->output_offset,
2290 				     greg_section->size))
2291 	return FALSE;
2292     }
2293   return TRUE;
2294 }
2295 
2296 /* We need to include the maximum size of PUSHJ-stubs in the initial
2297    section size.  This is expected to shrink during linker relaxation.  */
2298 
2299 static void
mmix_set_relaxable_size(abfd,sec,ptr)2300 mmix_set_relaxable_size (abfd, sec, ptr)
2301      bfd *abfd ATTRIBUTE_UNUSED;
2302      asection *sec;
2303      void *ptr;
2304 {
2305   struct bfd_link_info *info = ptr;
2306 
2307   /* Make sure we only do this for section where we know we want this,
2308      otherwise we might end up resetting the size of COMMONs.  */
2309   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2310     return;
2311 
2312   sec->rawsize = sec->size;
2313   sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2314 		* MAX_PUSHJ_STUB_SIZE);
2315 
2316   /* For use in relocatable link, we start with a max stubs size.  See
2317      mmix_elf_relax_section.  */
2318   if (info->relocatable && sec->output_section)
2319     mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2320       += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2321 	  * MAX_PUSHJ_STUB_SIZE);
2322 }
2323 
2324 /* Initialize stuff for the linker-generated GREGs to match
2325    R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2326 
2327 bfd_boolean
_bfd_mmix_before_linker_allocation(abfd,info)2328 _bfd_mmix_before_linker_allocation (abfd, info)
2329      bfd *abfd ATTRIBUTE_UNUSED;
2330      struct bfd_link_info *info;
2331 {
2332   asection *bpo_gregs_section;
2333   bfd *bpo_greg_owner;
2334   struct bpo_greg_section_info *gregdata;
2335   size_t n_gregs;
2336   bfd_vma gregs_size;
2337   size_t i;
2338   size_t *bpo_reloc_indexes;
2339   bfd *ibfd;
2340 
2341   /* Set the initial size of sections.  */
2342   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2343     bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2344 
2345   /* The bpo_greg_owner bfd is supposed to have been set by
2346      mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2347      If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2348   bpo_greg_owner = (bfd *) info->base_file;
2349   if (bpo_greg_owner == NULL)
2350     return TRUE;
2351 
2352   bpo_gregs_section
2353     = bfd_get_section_by_name (bpo_greg_owner,
2354 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2355 
2356   if (bpo_gregs_section == NULL)
2357     return TRUE;
2358 
2359   /* We use the target-data handle in the ELF section data.  */
2360   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2361   if (gregdata == NULL)
2362     return FALSE;
2363 
2364   n_gregs = gregdata->n_bpo_relocs;
2365   gregdata->n_allocated_bpo_gregs = n_gregs;
2366 
2367   /* When this reaches zero during relaxation, all entries have been
2368      filled in and the size of the linker gregs can be calculated.  */
2369   gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2370 
2371   /* Set the zeroth-order estimate for the GREGs size.  */
2372   gregs_size = n_gregs * 8;
2373 
2374   if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2375     return FALSE;
2376 
2377   /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2378      time.  Note that we must use the max number ever noted for the array,
2379      since the index numbers were created before GC.  */
2380   gregdata->reloc_request
2381     = bfd_zalloc (bpo_greg_owner,
2382 		  sizeof (struct bpo_reloc_request)
2383 		  * gregdata->n_max_bpo_relocs);
2384 
2385   gregdata->bpo_reloc_indexes
2386     = bpo_reloc_indexes
2387     = bfd_alloc (bpo_greg_owner,
2388 		 gregdata->n_max_bpo_relocs
2389 		 * sizeof (size_t));
2390   if (bpo_reloc_indexes == NULL)
2391     return FALSE;
2392 
2393   /* The default order is an identity mapping.  */
2394   for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2395     {
2396       bpo_reloc_indexes[i] = i;
2397       gregdata->reloc_request[i].bpo_reloc_no = i;
2398     }
2399 
2400   return TRUE;
2401 }
2402 
2403 /* Fill in contents in the linker allocated gregs.  Everything is
2404    calculated at this point; we just move the contents into place here.  */
2405 
2406 bfd_boolean
_bfd_mmix_after_linker_allocation(abfd,link_info)2407 _bfd_mmix_after_linker_allocation (abfd, link_info)
2408      bfd *abfd ATTRIBUTE_UNUSED;
2409      struct bfd_link_info *link_info;
2410 {
2411   asection *bpo_gregs_section;
2412   bfd *bpo_greg_owner;
2413   struct bpo_greg_section_info *gregdata;
2414   size_t n_gregs;
2415   size_t i, j;
2416   size_t lastreg;
2417   bfd_byte *contents;
2418 
2419   /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2420      when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2421      object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2422   bpo_greg_owner = (bfd *) link_info->base_file;
2423   if (bpo_greg_owner == NULL)
2424     return TRUE;
2425 
2426   bpo_gregs_section
2427     = bfd_get_section_by_name (bpo_greg_owner,
2428 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2429 
2430   /* This can't happen without DSO handling.  When DSOs are handled
2431      without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2432      section.  */
2433   if (bpo_gregs_section == NULL)
2434     return TRUE;
2435 
2436   /* We use the target-data handle in the ELF section data.  */
2437 
2438   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2439   if (gregdata == NULL)
2440     return FALSE;
2441 
2442   n_gregs = gregdata->n_allocated_bpo_gregs;
2443 
2444   bpo_gregs_section->contents
2445     = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2446   if (contents == NULL)
2447     return FALSE;
2448 
2449   /* Sanity check: If these numbers mismatch, some relocation has not been
2450      accounted for and the rest of gregdata is probably inconsistent.
2451      It's a bug, but it's more helpful to identify it than segfaulting
2452      below.  */
2453   if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2454       != gregdata->n_bpo_relocs)
2455     {
2456       (*_bfd_error_handler)
2457 	(_("Internal inconsistency: remaining %u != max %u.\n\
2458   Please report this bug."),
2459 	 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2460 	 gregdata->n_bpo_relocs);
2461       return FALSE;
2462     }
2463 
2464   for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2465     if (gregdata->reloc_request[i].regindex != lastreg)
2466       {
2467 	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2468 		    contents + j * 8);
2469 	lastreg = gregdata->reloc_request[i].regindex;
2470 	j++;
2471       }
2472 
2473   return TRUE;
2474 }
2475 
2476 /* Sort valid relocs to come before non-valid relocs, then on increasing
2477    value.  */
2478 
2479 static int
bpo_reloc_request_sort_fn(p1,p2)2480 bpo_reloc_request_sort_fn (p1, p2)
2481      const PTR p1;
2482      const PTR p2;
2483 {
2484   const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2485   const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2486 
2487   /* Primary function is validity; non-valid relocs sorted after valid
2488      ones.  */
2489   if (r1->valid != r2->valid)
2490     return r2->valid - r1->valid;
2491 
2492   /* Then sort on value.  Don't simplify and return just the difference of
2493      the values: the upper bits of the 64-bit value would be truncated on
2494      a host with 32-bit ints.  */
2495   if (r1->value != r2->value)
2496     return r1->value > r2->value ? 1 : -1;
2497 
2498   /* As a last re-sort, use the relocation number, so we get a stable
2499      sort.  The *addresses* aren't stable since items are swapped during
2500      sorting.  It depends on the qsort implementation if this actually
2501      happens.  */
2502   return r1->bpo_reloc_no > r2->bpo_reloc_no
2503     ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2504 }
2505 
2506 /* For debug use only.  Dumps the global register allocations resulting
2507    from base-plus-offset relocs.  */
2508 
2509 void
mmix_dump_bpo_gregs(link_info,pf)2510 mmix_dump_bpo_gregs (link_info, pf)
2511      struct bfd_link_info *link_info;
2512      bfd_error_handler_type pf;
2513 {
2514   bfd *bpo_greg_owner;
2515   asection *bpo_gregs_section;
2516   struct bpo_greg_section_info *gregdata;
2517   unsigned int i;
2518 
2519   if (link_info == NULL || link_info->base_file == NULL)
2520     return;
2521 
2522   bpo_greg_owner = (bfd *) link_info->base_file;
2523 
2524   bpo_gregs_section
2525     = bfd_get_section_by_name (bpo_greg_owner,
2526 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2527 
2528   if (bpo_gregs_section == NULL)
2529     return;
2530 
2531   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2532   if (gregdata == NULL)
2533     return;
2534 
2535   if (pf == NULL)
2536     pf = _bfd_error_handler;
2537 
2538   /* These format strings are not translated.  They are for debug purposes
2539      only and never displayed to an end user.  Should they escape, we
2540      surely want them in original.  */
2541   (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2542  n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2543      gregdata->n_max_bpo_relocs,
2544      gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2545      gregdata->n_allocated_bpo_gregs);
2546 
2547   if (gregdata->reloc_request)
2548     for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2549       (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2550 	     i,
2551 	     (gregdata->bpo_reloc_indexes != NULL
2552 	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2553 	     gregdata->reloc_request[i].bpo_reloc_no,
2554 	     gregdata->reloc_request[i].valid,
2555 
2556 	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2557 	     (unsigned long) gregdata->reloc_request[i].value,
2558 	     gregdata->reloc_request[i].regindex,
2559 	     gregdata->reloc_request[i].offset);
2560 }
2561 
2562 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2563    when the last such reloc is done, an index-array is sorted according to
2564    the values and iterated over to produce register numbers (indexed by 0
2565    from the first allocated register number) and offsets for use in real
2566    relocation.
2567 
2568    PUSHJ stub accounting is also done here.
2569 
2570    Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2571 
2572 static bfd_boolean
mmix_elf_relax_section(abfd,sec,link_info,again)2573 mmix_elf_relax_section (abfd, sec, link_info, again)
2574      bfd *abfd;
2575      asection *sec;
2576      struct bfd_link_info *link_info;
2577      bfd_boolean *again;
2578 {
2579   Elf_Internal_Shdr *symtab_hdr;
2580   Elf_Internal_Rela *internal_relocs;
2581   Elf_Internal_Rela *irel, *irelend;
2582   asection *bpo_gregs_section = NULL;
2583   struct bpo_greg_section_info *gregdata;
2584   struct bpo_reloc_section_info *bpodata
2585     = mmix_elf_section_data (sec)->bpo.reloc;
2586   /* The initialization is to quiet compiler warnings.  The value is to
2587      spot a missing actual initialization.  */
2588   size_t bpono = (size_t) -1;
2589   size_t pjsno = 0;
2590   bfd *bpo_greg_owner;
2591   Elf_Internal_Sym *isymbuf = NULL;
2592   bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2593 
2594   mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2595 
2596   /* Assume nothing changes.  */
2597   *again = FALSE;
2598 
2599   /* We don't have to do anything if this section does not have relocs, or
2600      if this is not a code section.  */
2601   if ((sec->flags & SEC_RELOC) == 0
2602       || sec->reloc_count == 0
2603       || (sec->flags & SEC_CODE) == 0
2604       || (sec->flags & SEC_LINKER_CREATED) != 0
2605       /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2606          then nothing to do.  */
2607       || (bpodata == NULL
2608 	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2609     return TRUE;
2610 
2611   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2612 
2613   bpo_greg_owner = (bfd *) link_info->base_file;
2614 
2615   if (bpodata != NULL)
2616     {
2617       bpo_gregs_section = bpodata->bpo_greg_section;
2618       gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2619       bpono = bpodata->first_base_plus_offset_reloc;
2620     }
2621   else
2622     gregdata = NULL;
2623 
2624   /* Get a copy of the native relocations.  */
2625   internal_relocs
2626     = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2627 				 (Elf_Internal_Rela *) NULL,
2628 				 link_info->keep_memory);
2629   if (internal_relocs == NULL)
2630     goto error_return;
2631 
2632   /* Walk through them looking for relaxing opportunities.  */
2633   irelend = internal_relocs + sec->reloc_count;
2634   for (irel = internal_relocs; irel < irelend; irel++)
2635     {
2636       bfd_vma symval;
2637       struct elf_link_hash_entry *h = NULL;
2638 
2639       /* We only process two relocs.  */
2640       if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2641 	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2642 	continue;
2643 
2644       /* We process relocs in a distinctly different way when this is a
2645 	 relocatable link (for one, we don't look at symbols), so we avoid
2646 	 mixing its code with that for the "normal" relaxation.  */
2647       if (link_info->relocatable)
2648 	{
2649 	  /* The only transformation in a relocatable link is to generate
2650 	     a full stub at the location of the stub calculated for the
2651 	     input section, if the relocated stub location, the end of the
2652 	     output section plus earlier stubs, cannot be reached.  Thus
2653 	     relocatable linking can only lead to worse code, but it still
2654 	     works.  */
2655 	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2656 	    {
2657 	      /* If we can reach the end of the output-section and beyond
2658 		 any current stubs, then we don't need a stub for this
2659 		 reloc.  The relaxed order of output stub allocation may
2660 		 not exactly match the straightforward order, so we always
2661 		 assume presence of output stubs, which will allow
2662 		 relaxation only on relocations indifferent to the
2663 		 presence of output stub allocations for other relocations
2664 		 and thus the order of output stub allocation.  */
2665 	      if (bfd_check_overflow (complain_overflow_signed,
2666 				      19,
2667 				      0,
2668 				      bfd_arch_bits_per_address (abfd),
2669 				      /* Output-stub location.  */
2670 				      sec->output_section->rawsize
2671 				      + (mmix_elf_section_data (sec
2672 							       ->output_section)
2673 					 ->pjs.stubs_size_sum)
2674 				      /* Location of this PUSHJ reloc.  */
2675 				      - (sec->output_offset + irel->r_offset)
2676 				      /* Don't count *this* stub twice.  */
2677 				      - (mmix_elf_section_data (sec)
2678 					 ->pjs.stub_size[pjsno]
2679 					 + MAX_PUSHJ_STUB_SIZE))
2680 		  == bfd_reloc_ok)
2681 		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2682 
2683 	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2684 		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2685 
2686 	      pjsno++;
2687 	    }
2688 
2689 	  continue;
2690 	}
2691 
2692       /* Get the value of the symbol referred to by the reloc.  */
2693       if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2694 	{
2695 	  /* A local symbol.  */
2696 	  Elf_Internal_Sym *isym;
2697 	  asection *sym_sec;
2698 
2699 	  /* Read this BFD's local symbols if we haven't already.  */
2700 	  if (isymbuf == NULL)
2701 	    {
2702 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2703 	      if (isymbuf == NULL)
2704 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2705 						symtab_hdr->sh_info, 0,
2706 						NULL, NULL, NULL);
2707 	      if (isymbuf == 0)
2708 		goto error_return;
2709 	    }
2710 
2711 	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2712 	  if (isym->st_shndx == SHN_UNDEF)
2713 	    sym_sec = bfd_und_section_ptr;
2714 	  else if (isym->st_shndx == SHN_ABS)
2715 	    sym_sec = bfd_abs_section_ptr;
2716 	  else if (isym->st_shndx == SHN_COMMON)
2717 	    sym_sec = bfd_com_section_ptr;
2718 	  else
2719 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2720 	  symval = (isym->st_value
2721 		    + sym_sec->output_section->vma
2722 		    + sym_sec->output_offset);
2723 	}
2724       else
2725 	{
2726 	  unsigned long indx;
2727 
2728 	  /* An external symbol.  */
2729 	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2730 	  h = elf_sym_hashes (abfd)[indx];
2731 	  BFD_ASSERT (h != NULL);
2732 	  if (h->root.type != bfd_link_hash_defined
2733 	      && h->root.type != bfd_link_hash_defweak)
2734 	    {
2735 	      /* This appears to be a reference to an undefined symbol.  Just
2736 		 ignore it--it will be caught by the regular reloc processing.
2737 		 We need to keep BPO reloc accounting consistent, though
2738 		 else we'll abort instead of emitting an error message.  */
2739 	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2740 		  && gregdata != NULL)
2741 		{
2742 		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2743 		  bpono++;
2744 		}
2745 	      continue;
2746 	    }
2747 
2748 	  symval = (h->root.u.def.value
2749 		    + h->root.u.def.section->output_section->vma
2750 		    + h->root.u.def.section->output_offset);
2751 	}
2752 
2753       if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2754 	{
2755 	  bfd_vma value = symval + irel->r_addend;
2756 	  bfd_vma dot
2757 	    = (sec->output_section->vma
2758 	       + sec->output_offset
2759 	       + irel->r_offset);
2760 	  bfd_vma stubaddr
2761 	    = (sec->output_section->vma
2762 	       + sec->output_offset
2763 	       + size
2764 	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2765 
2766 	  if ((value & 3) == 0
2767 	      && bfd_check_overflow (complain_overflow_signed,
2768 				     19,
2769 				     0,
2770 				     bfd_arch_bits_per_address (abfd),
2771 				     value - dot
2772 				     - (value > dot
2773 					? mmix_elf_section_data (sec)
2774 					->pjs.stub_size[pjsno]
2775 					: 0))
2776 	      == bfd_reloc_ok)
2777 	    /* If the reloc fits, no stub is needed.  */
2778 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2779 	  else
2780 	    /* Maybe we can get away with just a JMP insn?  */
2781 	    if ((value & 3) == 0
2782 		&& bfd_check_overflow (complain_overflow_signed,
2783 				       27,
2784 				       0,
2785 				       bfd_arch_bits_per_address (abfd),
2786 				       value - stubaddr
2787 				       - (value > dot
2788 					  ? mmix_elf_section_data (sec)
2789 					  ->pjs.stub_size[pjsno] - 4
2790 					  : 0))
2791 		== bfd_reloc_ok)
2792 	      /* Yep, account for a stub consisting of a single JMP insn.  */
2793 	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2794 	  else
2795 	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2796 	       emit the intermediate sizes; those will only be useful for
2797 	       a >64M program assuming contiguous code.  */
2798 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2799 	      = MAX_PUSHJ_STUB_SIZE;
2800 
2801 	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2802 	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2803 	  pjsno++;
2804 	  continue;
2805 	}
2806 
2807       /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2808 
2809       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2810 	= symval + irel->r_addend;
2811       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2812       gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2813     }
2814 
2815   /* Check if that was the last BPO-reloc.  If so, sort the values and
2816      calculate how many registers we need to cover them.  Set the size of
2817      the linker gregs, and if the number of registers changed, indicate
2818      that we need to relax some more because we have more work to do.  */
2819   if (gregdata != NULL
2820       && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2821     {
2822       size_t i;
2823       bfd_vma prev_base;
2824       size_t regindex;
2825 
2826       /* First, reset the remaining relocs for the next round.  */
2827       gregdata->n_remaining_bpo_relocs_this_relaxation_round
2828 	= gregdata->n_bpo_relocs;
2829 
2830       qsort ((PTR) gregdata->reloc_request,
2831 	     gregdata->n_max_bpo_relocs,
2832 	     sizeof (struct bpo_reloc_request),
2833 	     bpo_reloc_request_sort_fn);
2834 
2835       /* Recalculate indexes.  When we find a change (however unlikely
2836 	 after the initial iteration), we know we need to relax again,
2837 	 since items in the GREG-array are sorted by increasing value and
2838 	 stored in the relaxation phase.  */
2839       for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2840 	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2841 	    != i)
2842 	  {
2843 	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2844 	      = i;
2845 	    *again = TRUE;
2846 	  }
2847 
2848       /* Allocate register numbers (indexing from 0).  Stop at the first
2849 	 non-valid reloc.  */
2850       for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2851 	   i < gregdata->n_bpo_relocs;
2852 	   i++)
2853 	{
2854 	  if (gregdata->reloc_request[i].value > prev_base + 255)
2855 	    {
2856 	      regindex++;
2857 	      prev_base = gregdata->reloc_request[i].value;
2858 	    }
2859 	  gregdata->reloc_request[i].regindex = regindex;
2860 	  gregdata->reloc_request[i].offset
2861 	    = gregdata->reloc_request[i].value - prev_base;
2862 	}
2863 
2864       /* If it's not the same as the last time, we need to relax again,
2865 	 because the size of the section has changed.  I'm not sure we
2866 	 actually need to do any adjustments since the shrinking happens
2867 	 at the start of this section, but better safe than sorry.  */
2868       if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2869 	{
2870 	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2871 	  *again = TRUE;
2872 	}
2873 
2874       bpo_gregs_section->size = (regindex + 1) * 8;
2875     }
2876 
2877   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2878     {
2879       if (! link_info->keep_memory)
2880 	free (isymbuf);
2881       else
2882 	{
2883 	  /* Cache the symbols for elf_link_input_bfd.  */
2884 	  symtab_hdr->contents = (unsigned char *) isymbuf;
2885 	}
2886     }
2887 
2888   if (internal_relocs != NULL
2889       && elf_section_data (sec)->relocs != internal_relocs)
2890     free (internal_relocs);
2891 
2892   if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2893     abort ();
2894 
2895   if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2896     {
2897       sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2898       *again = TRUE;
2899     }
2900 
2901   return TRUE;
2902 
2903  error_return:
2904   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2905     free (isymbuf);
2906   if (internal_relocs != NULL
2907       && elf_section_data (sec)->relocs != internal_relocs)
2908     free (internal_relocs);
2909   return FALSE;
2910 }
2911 
2912 #define ELF_ARCH		bfd_arch_mmix
2913 #define ELF_MACHINE_CODE 	EM_MMIX
2914 
2915 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2916    However, that's too much for something somewhere in the linker part of
2917    BFD; perhaps the start-address has to be a non-zero multiple of this
2918    number, or larger than this number.  The symptom is that the linker
2919    complains: "warning: allocated section `.text' not in segment".  We
2920    settle for 64k; the page-size used in examples is 8k.
2921    #define ELF_MAXPAGESIZE 0x10000
2922 
2923    Unfortunately, this causes excessive padding in the supposedly small
2924    for-education programs that are the expected usage (where people would
2925    inspect output).  We stick to 256 bytes just to have *some* default
2926    alignment.  */
2927 #define ELF_MAXPAGESIZE 0x100
2928 
2929 #define TARGET_BIG_SYM		bfd_elf64_mmix_vec
2930 #define TARGET_BIG_NAME		"elf64-mmix"
2931 
2932 #define elf_info_to_howto_rel		NULL
2933 #define elf_info_to_howto		mmix_info_to_howto_rela
2934 #define elf_backend_relocate_section	mmix_elf_relocate_section
2935 #define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
2936 #define elf_backend_gc_sweep_hook	mmix_elf_gc_sweep_hook
2937 
2938 #define elf_backend_link_output_symbol_hook \
2939 	mmix_elf_link_output_symbol_hook
2940 #define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
2941 
2942 #define elf_backend_check_relocs	mmix_elf_check_relocs
2943 #define elf_backend_symbol_processing	mmix_elf_symbol_processing
2944 
2945 #define bfd_elf64_bfd_is_local_label_name \
2946 	mmix_elf_is_local_label_name
2947 
2948 #define elf_backend_may_use_rel_p	0
2949 #define elf_backend_may_use_rela_p	1
2950 #define elf_backend_default_use_rela_p	1
2951 
2952 #define elf_backend_can_gc_sections	1
2953 #define elf_backend_section_from_bfd_section \
2954 	mmix_elf_section_from_bfd_section
2955 
2956 #define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
2957 #define bfd_elf64_bfd_final_link	mmix_elf_final_link
2958 #define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
2959 
2960 #include "elf64-target.h"
2961