1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips_elf_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of the rld_map pointer. */
561 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a GOT entry. */
565 #define MIPS_ELF_GOT_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->arch_size / 8)
567
568 /* The size of a symbol-table entry. */
569 #define MIPS_ELF_SYM_SIZE(abfd) \
570 (get_elf_backend_data (abfd)->s->sizeof_sym)
571
572 /* The default alignment for sections, as a power of two. */
573 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
574 (get_elf_backend_data (abfd)->s->log_file_align)
575
576 /* Get word-sized data. */
577 #define MIPS_ELF_GET_WORD(abfd, ptr) \
578 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
579
580 /* Put out word-sized data. */
581 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
582 (ABI_64_P (abfd) \
583 ? bfd_put_64 (abfd, val, ptr) \
584 : bfd_put_32 (abfd, val, ptr))
585
586 /* Add a dynamic symbol table-entry. */
587 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
588 _bfd_elf_add_dynamic_entry (info, tag, val)
589
590 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
591 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
592
593 /* Determine whether the internal relocation of index REL_IDX is REL
594 (zero) or RELA (non-zero). The assumption is that, if there are
595 two relocation sections for this section, one of them is REL and
596 the other is RELA. If the index of the relocation we're testing is
597 in range for the first relocation section, check that the external
598 relocation size is that for RELA. It is also assumed that, if
599 rel_idx is not in range for the first section, and this first
600 section contains REL relocs, then the relocation is in the second
601 section, that is RELA. */
602 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
603 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
604 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
605 > (bfd_vma)(rel_idx)) \
606 == (elf_section_data (sec)->rel_hdr.sh_entsize \
607 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
608 : sizeof (Elf32_External_Rela))))
609
610 /* The name of the dynamic relocation section. */
611 #define MIPS_ELF_REL_DYN_NAME(INFO) \
612 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
613
614 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
615 from smaller values. Start with zero, widen, *then* decrement. */
616 #define MINUS_ONE (((bfd_vma)0) - 1)
617 #define MINUS_TWO (((bfd_vma)0) - 2)
618
619 /* The number of local .got entries we reserve. */
620 #define MIPS_RESERVED_GOTNO(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
622
623 /* The offset of $gp from the beginning of the .got section. */
624 #define ELF_MIPS_GP_OFFSET(INFO) \
625 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
626
627 /* The maximum size of the GOT for it to be addressable using 16-bit
628 offsets from $gp. */
629 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
630
631 /* Instructions which appear in a stub. */
632 #define STUB_LW(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
635 : 0x8f998010)) /* lw t9,0x8010(gp) */
636 #define STUB_MOVE(abfd) \
637 ((ABI_64_P (abfd) \
638 ? 0x03e0782d /* daddu t7,ra */ \
639 : 0x03e07821)) /* addu t7,ra */
640 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
641 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
642 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
643 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
644 #define STUB_LI16S(abfd, VAL) \
645 ((ABI_64_P (abfd) \
646 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
647 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
648
649 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
650 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
651
652 /* The name of the dynamic interpreter. This is put in the .interp
653 section. */
654
655 #define ELF_DYNAMIC_INTERPRETER(abfd) \
656 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
657 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
658 : "/usr/lib/libc.so.1")
659
660 #ifdef BFD64
661 #define MNAME(bfd,pre,pos) \
662 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
663 #define ELF_R_SYM(bfd, i) \
664 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
665 #define ELF_R_TYPE(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
667 #define ELF_R_INFO(bfd, s, t) \
668 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
669 #else
670 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
671 #define ELF_R_SYM(bfd, i) \
672 (ELF32_R_SYM (i))
673 #define ELF_R_TYPE(bfd, i) \
674 (ELF32_R_TYPE (i))
675 #define ELF_R_INFO(bfd, s, t) \
676 (ELF32_R_INFO (s, t))
677 #endif
678
679 /* The mips16 compiler uses a couple of special sections to handle
680 floating point arguments.
681
682 Section names that look like .mips16.fn.FNNAME contain stubs that
683 copy floating point arguments from the fp regs to the gp regs and
684 then jump to FNNAME. If any 32 bit function calls FNNAME, the
685 call should be redirected to the stub instead. If no 32 bit
686 function calls FNNAME, the stub should be discarded. We need to
687 consider any reference to the function, not just a call, because
688 if the address of the function is taken we will need the stub,
689 since the address might be passed to a 32 bit function.
690
691 Section names that look like .mips16.call.FNNAME contain stubs
692 that copy floating point arguments from the gp regs to the fp
693 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
694 then any 16 bit function that calls FNNAME should be redirected
695 to the stub instead. If FNNAME is not a 32 bit function, the
696 stub should be discarded.
697
698 .mips16.call.fp.FNNAME sections are similar, but contain stubs
699 which call FNNAME and then copy the return value from the fp regs
700 to the gp regs. These stubs store the return value in $18 while
701 calling FNNAME; any function which might call one of these stubs
702 must arrange to save $18 around the call. (This case is not
703 needed for 32 bit functions that call 16 bit functions, because
704 16 bit functions always return floating point values in both
705 $f0/$f1 and $2/$3.)
706
707 Note that in all cases FNNAME might be defined statically.
708 Therefore, FNNAME is not used literally. Instead, the relocation
709 information will indicate which symbol the section is for.
710
711 We record any stubs that we find in the symbol table. */
712
713 #define FN_STUB ".mips16.fn."
714 #define CALL_STUB ".mips16.call."
715 #define CALL_FP_STUB ".mips16.call.fp."
716
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
dtprel_base(struct bfd_link_info * info)782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
tprel_base(struct bfd_link_info * info)791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
mips_elf_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
_bfd_mips_elf_new_section_hook(bfd * abfd,asection * sec)843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 struct _mips_elf_section_data *sdata;
846 bfd_size_type amt = sizeof (*sdata);
847
848 sdata = bfd_zalloc (abfd, amt);
849 if (sdata == NULL)
850 return FALSE;
851 sec->used_by_bfd = sdata;
852
853 return _bfd_elf_new_section_hook (abfd, sec);
854 }
855
856 /* Read ECOFF debugging information from a .mdebug section into a
857 ecoff_debug_info structure. */
858
859 bfd_boolean
_bfd_mips_elf_read_ecoff_info(bfd * abfd,asection * section,struct ecoff_debug_info * debug)860 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
861 struct ecoff_debug_info *debug)
862 {
863 HDRR *symhdr;
864 const struct ecoff_debug_swap *swap;
865 char *ext_hdr;
866
867 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
868 memset (debug, 0, sizeof (*debug));
869
870 ext_hdr = bfd_malloc (swap->external_hdr_size);
871 if (ext_hdr == NULL && swap->external_hdr_size != 0)
872 goto error_return;
873
874 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
875 swap->external_hdr_size))
876 goto error_return;
877
878 symhdr = &debug->symbolic_header;
879 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
880
881 /* The symbolic header contains absolute file offsets and sizes to
882 read. */
883 #define READ(ptr, offset, count, size, type) \
884 if (symhdr->count == 0) \
885 debug->ptr = NULL; \
886 else \
887 { \
888 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
889 debug->ptr = bfd_malloc (amt); \
890 if (debug->ptr == NULL) \
891 goto error_return; \
892 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
893 || bfd_bread (debug->ptr, amt, abfd) != amt) \
894 goto error_return; \
895 }
896
897 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
898 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
899 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
900 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
901 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
902 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
903 union aux_ext *);
904 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
905 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
906 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
907 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
908 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
909 #undef READ
910
911 debug->fdr = NULL;
912
913 return TRUE;
914
915 error_return:
916 if (ext_hdr != NULL)
917 free (ext_hdr);
918 if (debug->line != NULL)
919 free (debug->line);
920 if (debug->external_dnr != NULL)
921 free (debug->external_dnr);
922 if (debug->external_pdr != NULL)
923 free (debug->external_pdr);
924 if (debug->external_sym != NULL)
925 free (debug->external_sym);
926 if (debug->external_opt != NULL)
927 free (debug->external_opt);
928 if (debug->external_aux != NULL)
929 free (debug->external_aux);
930 if (debug->ss != NULL)
931 free (debug->ss);
932 if (debug->ssext != NULL)
933 free (debug->ssext);
934 if (debug->external_fdr != NULL)
935 free (debug->external_fdr);
936 if (debug->external_rfd != NULL)
937 free (debug->external_rfd);
938 if (debug->external_ext != NULL)
939 free (debug->external_ext);
940 return FALSE;
941 }
942
943 /* Swap RPDR (runtime procedure table entry) for output. */
944
945 static void
ecoff_swap_rpdr_out(bfd * abfd,const RPDR * in,struct rpdr_ext * ex)946 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
947 {
948 H_PUT_S32 (abfd, in->adr, ex->p_adr);
949 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
950 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
951 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
952 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
953 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
954
955 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
956 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
957
958 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
959 }
960
961 /* Create a runtime procedure table from the .mdebug section. */
962
963 static bfd_boolean
mips_elf_create_procedure_table(void * handle,bfd * abfd,struct bfd_link_info * info,asection * s,struct ecoff_debug_info * debug)964 mips_elf_create_procedure_table (void *handle, bfd *abfd,
965 struct bfd_link_info *info, asection *s,
966 struct ecoff_debug_info *debug)
967 {
968 const struct ecoff_debug_swap *swap;
969 HDRR *hdr = &debug->symbolic_header;
970 RPDR *rpdr, *rp;
971 struct rpdr_ext *erp;
972 void *rtproc;
973 struct pdr_ext *epdr;
974 struct sym_ext *esym;
975 char *ss, **sv;
976 char *str;
977 bfd_size_type size;
978 bfd_size_type count;
979 unsigned long sindex;
980 unsigned long i;
981 PDR pdr;
982 SYMR sym;
983 const char *no_name_func = _("static procedure (no name)");
984
985 epdr = NULL;
986 rpdr = NULL;
987 esym = NULL;
988 ss = NULL;
989 sv = NULL;
990
991 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
992
993 sindex = strlen (no_name_func) + 1;
994 count = hdr->ipdMax;
995 if (count > 0)
996 {
997 size = swap->external_pdr_size;
998
999 epdr = bfd_malloc (size * count);
1000 if (epdr == NULL)
1001 goto error_return;
1002
1003 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1004 goto error_return;
1005
1006 size = sizeof (RPDR);
1007 rp = rpdr = bfd_malloc (size * count);
1008 if (rpdr == NULL)
1009 goto error_return;
1010
1011 size = sizeof (char *);
1012 sv = bfd_malloc (size * count);
1013 if (sv == NULL)
1014 goto error_return;
1015
1016 count = hdr->isymMax;
1017 size = swap->external_sym_size;
1018 esym = bfd_malloc (size * count);
1019 if (esym == NULL)
1020 goto error_return;
1021
1022 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1023 goto error_return;
1024
1025 count = hdr->issMax;
1026 ss = bfd_malloc (count);
1027 if (ss == NULL)
1028 goto error_return;
1029 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1030 goto error_return;
1031
1032 count = hdr->ipdMax;
1033 for (i = 0; i < (unsigned long) count; i++, rp++)
1034 {
1035 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1036 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1037 rp->adr = sym.value;
1038 rp->regmask = pdr.regmask;
1039 rp->regoffset = pdr.regoffset;
1040 rp->fregmask = pdr.fregmask;
1041 rp->fregoffset = pdr.fregoffset;
1042 rp->frameoffset = pdr.frameoffset;
1043 rp->framereg = pdr.framereg;
1044 rp->pcreg = pdr.pcreg;
1045 rp->irpss = sindex;
1046 sv[i] = ss + sym.iss;
1047 sindex += strlen (sv[i]) + 1;
1048 }
1049 }
1050
1051 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1052 size = BFD_ALIGN (size, 16);
1053 rtproc = bfd_alloc (abfd, size);
1054 if (rtproc == NULL)
1055 {
1056 mips_elf_hash_table (info)->procedure_count = 0;
1057 goto error_return;
1058 }
1059
1060 mips_elf_hash_table (info)->procedure_count = count + 2;
1061
1062 erp = rtproc;
1063 memset (erp, 0, sizeof (struct rpdr_ext));
1064 erp++;
1065 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1066 strcpy (str, no_name_func);
1067 str += strlen (no_name_func) + 1;
1068 for (i = 0; i < count; i++)
1069 {
1070 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1071 strcpy (str, sv[i]);
1072 str += strlen (sv[i]) + 1;
1073 }
1074 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1075
1076 /* Set the size and contents of .rtproc section. */
1077 s->size = size;
1078 s->contents = rtproc;
1079
1080 /* Skip this section later on (I don't think this currently
1081 matters, but someday it might). */
1082 s->map_head.link_order = NULL;
1083
1084 if (epdr != NULL)
1085 free (epdr);
1086 if (rpdr != NULL)
1087 free (rpdr);
1088 if (esym != NULL)
1089 free (esym);
1090 if (ss != NULL)
1091 free (ss);
1092 if (sv != NULL)
1093 free (sv);
1094
1095 return TRUE;
1096
1097 error_return:
1098 if (epdr != NULL)
1099 free (epdr);
1100 if (rpdr != NULL)
1101 free (rpdr);
1102 if (esym != NULL)
1103 free (esym);
1104 if (ss != NULL)
1105 free (ss);
1106 if (sv != NULL)
1107 free (sv);
1108 return FALSE;
1109 }
1110
1111 /* Check the mips16 stubs for a particular symbol, and see if we can
1112 discard them. */
1113
1114 static bfd_boolean
mips_elf_check_mips16_stubs(struct mips_elf_link_hash_entry * h,void * data ATTRIBUTE_UNUSED)1115 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1116 void *data ATTRIBUTE_UNUSED)
1117 {
1118 if (h->root.root.type == bfd_link_hash_warning)
1119 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1120
1121 if (h->fn_stub != NULL
1122 && ! h->need_fn_stub)
1123 {
1124 /* We don't need the fn_stub; the only references to this symbol
1125 are 16 bit calls. Clobber the size to 0 to prevent it from
1126 being included in the link. */
1127 h->fn_stub->size = 0;
1128 h->fn_stub->flags &= ~SEC_RELOC;
1129 h->fn_stub->reloc_count = 0;
1130 h->fn_stub->flags |= SEC_EXCLUDE;
1131 }
1132
1133 if (h->call_stub != NULL
1134 && h->root.other == STO_MIPS16)
1135 {
1136 /* We don't need the call_stub; this is a 16 bit function, so
1137 calls from other 16 bit functions are OK. Clobber the size
1138 to 0 to prevent it from being included in the link. */
1139 h->call_stub->size = 0;
1140 h->call_stub->flags &= ~SEC_RELOC;
1141 h->call_stub->reloc_count = 0;
1142 h->call_stub->flags |= SEC_EXCLUDE;
1143 }
1144
1145 if (h->call_fp_stub != NULL
1146 && h->root.other == STO_MIPS16)
1147 {
1148 /* We don't need the call_stub; this is a 16 bit function, so
1149 calls from other 16 bit functions are OK. Clobber the size
1150 to 0 to prevent it from being included in the link. */
1151 h->call_fp_stub->size = 0;
1152 h->call_fp_stub->flags &= ~SEC_RELOC;
1153 h->call_fp_stub->reloc_count = 0;
1154 h->call_fp_stub->flags |= SEC_EXCLUDE;
1155 }
1156
1157 return TRUE;
1158 }
1159
1160 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1161 Most mips16 instructions are 16 bits, but these instructions
1162 are 32 bits.
1163
1164 The format of these instructions is:
1165
1166 +--------------+--------------------------------+
1167 | JALX | X| Imm 20:16 | Imm 25:21 |
1168 +--------------+--------------------------------+
1169 | Immediate 15:0 |
1170 +-----------------------------------------------+
1171
1172 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1173 Note that the immediate value in the first word is swapped.
1174
1175 When producing a relocatable object file, R_MIPS16_26 is
1176 handled mostly like R_MIPS_26. In particular, the addend is
1177 stored as a straight 26-bit value in a 32-bit instruction.
1178 (gas makes life simpler for itself by never adjusting a
1179 R_MIPS16_26 reloc to be against a section, so the addend is
1180 always zero). However, the 32 bit instruction is stored as 2
1181 16-bit values, rather than a single 32-bit value. In a
1182 big-endian file, the result is the same; in a little-endian
1183 file, the two 16-bit halves of the 32 bit value are swapped.
1184 This is so that a disassembler can recognize the jal
1185 instruction.
1186
1187 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1188 instruction stored as two 16-bit values. The addend A is the
1189 contents of the targ26 field. The calculation is the same as
1190 R_MIPS_26. When storing the calculated value, reorder the
1191 immediate value as shown above, and don't forget to store the
1192 value as two 16-bit values.
1193
1194 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1195 defined as
1196
1197 big-endian:
1198 +--------+----------------------+
1199 | | |
1200 | | targ26-16 |
1201 |31 26|25 0|
1202 +--------+----------------------+
1203
1204 little-endian:
1205 +----------+------+-------------+
1206 | | | |
1207 | sub1 | | sub2 |
1208 |0 9|10 15|16 31|
1209 +----------+--------------------+
1210 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1211 ((sub1 << 16) | sub2)).
1212
1213 When producing a relocatable object file, the calculation is
1214 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1215 When producing a fully linked file, the calculation is
1216 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1217 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1218
1219 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1220 mode. A typical instruction will have a format like this:
1221
1222 +--------------+--------------------------------+
1223 | EXTEND | Imm 10:5 | Imm 15:11 |
1224 +--------------+--------------------------------+
1225 | Major | rx | ry | Imm 4:0 |
1226 +--------------+--------------------------------+
1227
1228 EXTEND is the five bit value 11110. Major is the instruction
1229 opcode.
1230
1231 This is handled exactly like R_MIPS_GPREL16, except that the
1232 addend is retrieved and stored as shown in this diagram; that
1233 is, the Imm fields above replace the V-rel16 field.
1234
1235 All we need to do here is shuffle the bits appropriately. As
1236 above, the two 16-bit halves must be swapped on a
1237 little-endian system.
1238
1239 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1240 access data when neither GP-relative nor PC-relative addressing
1241 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1242 except that the addend is retrieved and stored as shown above
1243 for R_MIPS16_GPREL.
1244 */
1245 void
_bfd_mips16_elf_reloc_unshuffle(bfd * abfd,int r_type,bfd_boolean jal_shuffle,bfd_byte * data)1246 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1247 bfd_boolean jal_shuffle, bfd_byte *data)
1248 {
1249 bfd_vma extend, insn, val;
1250
1251 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1252 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1253 return;
1254
1255 /* Pick up the mips16 extend instruction and the real instruction. */
1256 extend = bfd_get_16 (abfd, data);
1257 insn = bfd_get_16 (abfd, data + 2);
1258 if (r_type == R_MIPS16_26)
1259 {
1260 if (jal_shuffle)
1261 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1262 | ((extend & 0x1f) << 21) | insn;
1263 else
1264 val = extend << 16 | insn;
1265 }
1266 else
1267 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1268 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1269 bfd_put_32 (abfd, val, data);
1270 }
1271
1272 void
_bfd_mips16_elf_reloc_shuffle(bfd * abfd,int r_type,bfd_boolean jal_shuffle,bfd_byte * data)1273 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1274 bfd_boolean jal_shuffle, bfd_byte *data)
1275 {
1276 bfd_vma extend, insn, val;
1277
1278 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1279 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1280 return;
1281
1282 val = bfd_get_32 (abfd, data);
1283 if (r_type == R_MIPS16_26)
1284 {
1285 if (jal_shuffle)
1286 {
1287 insn = val & 0xffff;
1288 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1289 | ((val >> 21) & 0x1f);
1290 }
1291 else
1292 {
1293 insn = val & 0xffff;
1294 extend = val >> 16;
1295 }
1296 }
1297 else
1298 {
1299 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1300 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1301 }
1302 bfd_put_16 (abfd, insn, data + 2);
1303 bfd_put_16 (abfd, extend, data);
1304 }
1305
1306 bfd_reloc_status_type
_bfd_mips_elf_gprel16_with_gp(bfd * abfd,asymbol * symbol,arelent * reloc_entry,asection * input_section,bfd_boolean relocatable,void * data,bfd_vma gp)1307 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1308 arelent *reloc_entry, asection *input_section,
1309 bfd_boolean relocatable, void *data, bfd_vma gp)
1310 {
1311 bfd_vma relocation;
1312 bfd_signed_vma val;
1313 bfd_reloc_status_type status;
1314
1315 if (bfd_is_com_section (symbol->section))
1316 relocation = 0;
1317 else
1318 relocation = symbol->value;
1319
1320 relocation += symbol->section->output_section->vma;
1321 relocation += symbol->section->output_offset;
1322
1323 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1324 return bfd_reloc_outofrange;
1325
1326 /* Set val to the offset into the section or symbol. */
1327 val = reloc_entry->addend;
1328
1329 _bfd_mips_elf_sign_extend (val, 16);
1330
1331 /* Adjust val for the final section location and GP value. If we
1332 are producing relocatable output, we don't want to do this for
1333 an external symbol. */
1334 if (! relocatable
1335 || (symbol->flags & BSF_SECTION_SYM) != 0)
1336 val += relocation - gp;
1337
1338 if (reloc_entry->howto->partial_inplace)
1339 {
1340 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1341 (bfd_byte *) data
1342 + reloc_entry->address);
1343 if (status != bfd_reloc_ok)
1344 return status;
1345 }
1346 else
1347 reloc_entry->addend = val;
1348
1349 if (relocatable)
1350 reloc_entry->address += input_section->output_offset;
1351
1352 return bfd_reloc_ok;
1353 }
1354
1355 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1356 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1357 that contains the relocation field and DATA points to the start of
1358 INPUT_SECTION. */
1359
1360 struct mips_hi16
1361 {
1362 struct mips_hi16 *next;
1363 bfd_byte *data;
1364 asection *input_section;
1365 arelent rel;
1366 };
1367
1368 /* FIXME: This should not be a static variable. */
1369
1370 static struct mips_hi16 *mips_hi16_list;
1371
1372 /* A howto special_function for REL *HI16 relocations. We can only
1373 calculate the correct value once we've seen the partnering
1374 *LO16 relocation, so just save the information for later.
1375
1376 The ABI requires that the *LO16 immediately follow the *HI16.
1377 However, as a GNU extension, we permit an arbitrary number of
1378 *HI16s to be associated with a single *LO16. This significantly
1379 simplies the relocation handling in gcc. */
1380
1381 bfd_reloc_status_type
_bfd_mips_elf_hi16_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol ATTRIBUTE_UNUSED,void * data,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)1382 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1383 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1384 asection *input_section, bfd *output_bfd,
1385 char **error_message ATTRIBUTE_UNUSED)
1386 {
1387 struct mips_hi16 *n;
1388
1389 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1390 return bfd_reloc_outofrange;
1391
1392 n = bfd_malloc (sizeof *n);
1393 if (n == NULL)
1394 return bfd_reloc_outofrange;
1395
1396 n->next = mips_hi16_list;
1397 n->data = data;
1398 n->input_section = input_section;
1399 n->rel = *reloc_entry;
1400 mips_hi16_list = n;
1401
1402 if (output_bfd != NULL)
1403 reloc_entry->address += input_section->output_offset;
1404
1405 return bfd_reloc_ok;
1406 }
1407
1408 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1409 like any other 16-bit relocation when applied to global symbols, but is
1410 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1411
1412 bfd_reloc_status_type
_bfd_mips_elf_got16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)1413 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1414 void *data, asection *input_section,
1415 bfd *output_bfd, char **error_message)
1416 {
1417 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1418 || bfd_is_und_section (bfd_get_section (symbol))
1419 || bfd_is_com_section (bfd_get_section (symbol)))
1420 /* The relocation is against a global symbol. */
1421 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1422 input_section, output_bfd,
1423 error_message);
1424
1425 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1426 input_section, output_bfd, error_message);
1427 }
1428
1429 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1430 is a straightforward 16 bit inplace relocation, but we must deal with
1431 any partnering high-part relocations as well. */
1432
1433 bfd_reloc_status_type
_bfd_mips_elf_lo16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)1434 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1435 void *data, asection *input_section,
1436 bfd *output_bfd, char **error_message)
1437 {
1438 bfd_vma vallo;
1439 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1440
1441 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1442 return bfd_reloc_outofrange;
1443
1444 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1445 location);
1446 vallo = bfd_get_32 (abfd, location);
1447 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449
1450 while (mips_hi16_list != NULL)
1451 {
1452 bfd_reloc_status_type ret;
1453 struct mips_hi16 *hi;
1454
1455 hi = mips_hi16_list;
1456
1457 /* R_MIPS_GOT16 relocations are something of a special case. We
1458 want to install the addend in the same way as for a R_MIPS_HI16
1459 relocation (with a rightshift of 16). However, since GOT16
1460 relocations can also be used with global symbols, their howto
1461 has a rightshift of 0. */
1462 if (hi->rel.howto->type == R_MIPS_GOT16)
1463 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1464
1465 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1466 carry or borrow will induce a change of +1 or -1 in the high part. */
1467 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1468
1469 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1470 hi->input_section, output_bfd,
1471 error_message);
1472 if (ret != bfd_reloc_ok)
1473 return ret;
1474
1475 mips_hi16_list = hi->next;
1476 free (hi);
1477 }
1478
1479 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1480 input_section, output_bfd,
1481 error_message);
1482 }
1483
1484 /* A generic howto special_function. This calculates and installs the
1485 relocation itself, thus avoiding the oft-discussed problems in
1486 bfd_perform_relocation and bfd_install_relocation. */
1487
1488 bfd_reloc_status_type
_bfd_mips_elf_generic_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol,void * data ATTRIBUTE_UNUSED,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)1489 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1490 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1491 asection *input_section, bfd *output_bfd,
1492 char **error_message ATTRIBUTE_UNUSED)
1493 {
1494 bfd_signed_vma val;
1495 bfd_reloc_status_type status;
1496 bfd_boolean relocatable;
1497
1498 relocatable = (output_bfd != NULL);
1499
1500 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1501 return bfd_reloc_outofrange;
1502
1503 /* Build up the field adjustment in VAL. */
1504 val = 0;
1505 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1506 {
1507 /* Either we're calculating the final field value or we have a
1508 relocation against a section symbol. Add in the section's
1509 offset or address. */
1510 val += symbol->section->output_section->vma;
1511 val += symbol->section->output_offset;
1512 }
1513
1514 if (!relocatable)
1515 {
1516 /* We're calculating the final field value. Add in the symbol's value
1517 and, if pc-relative, subtract the address of the field itself. */
1518 val += symbol->value;
1519 if (reloc_entry->howto->pc_relative)
1520 {
1521 val -= input_section->output_section->vma;
1522 val -= input_section->output_offset;
1523 val -= reloc_entry->address;
1524 }
1525 }
1526
1527 /* VAL is now the final adjustment. If we're keeping this relocation
1528 in the output file, and if the relocation uses a separate addend,
1529 we just need to add VAL to that addend. Otherwise we need to add
1530 VAL to the relocation field itself. */
1531 if (relocatable && !reloc_entry->howto->partial_inplace)
1532 reloc_entry->addend += val;
1533 else
1534 {
1535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1536
1537 /* Add in the separate addend, if any. */
1538 val += reloc_entry->addend;
1539
1540 /* Add VAL to the relocation field. */
1541 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1542 location);
1543 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1544 location);
1545 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1546 location);
1547
1548 if (status != bfd_reloc_ok)
1549 return status;
1550 }
1551
1552 if (relocatable)
1553 reloc_entry->address += input_section->output_offset;
1554
1555 return bfd_reloc_ok;
1556 }
1557
1558 /* Swap an entry in a .gptab section. Note that these routines rely
1559 on the equivalence of the two elements of the union. */
1560
1561 static void
bfd_mips_elf32_swap_gptab_in(bfd * abfd,const Elf32_External_gptab * ex,Elf32_gptab * in)1562 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1563 Elf32_gptab *in)
1564 {
1565 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1566 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1567 }
1568
1569 static void
bfd_mips_elf32_swap_gptab_out(bfd * abfd,const Elf32_gptab * in,Elf32_External_gptab * ex)1570 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1571 Elf32_External_gptab *ex)
1572 {
1573 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1574 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1575 }
1576
1577 static void
bfd_elf32_swap_compact_rel_out(bfd * abfd,const Elf32_compact_rel * in,Elf32_External_compact_rel * ex)1578 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1579 Elf32_External_compact_rel *ex)
1580 {
1581 H_PUT_32 (abfd, in->id1, ex->id1);
1582 H_PUT_32 (abfd, in->num, ex->num);
1583 H_PUT_32 (abfd, in->id2, ex->id2);
1584 H_PUT_32 (abfd, in->offset, ex->offset);
1585 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1586 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1587 }
1588
1589 static void
bfd_elf32_swap_crinfo_out(bfd * abfd,const Elf32_crinfo * in,Elf32_External_crinfo * ex)1590 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1591 Elf32_External_crinfo *ex)
1592 {
1593 unsigned long l;
1594
1595 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1596 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1597 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1598 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1599 H_PUT_32 (abfd, l, ex->info);
1600 H_PUT_32 (abfd, in->konst, ex->konst);
1601 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1602 }
1603
1604 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1605 routines swap this structure in and out. They are used outside of
1606 BFD, so they are globally visible. */
1607
1608 void
bfd_mips_elf32_swap_reginfo_in(bfd * abfd,const Elf32_External_RegInfo * ex,Elf32_RegInfo * in)1609 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1610 Elf32_RegInfo *in)
1611 {
1612 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1613 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1614 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1615 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1616 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1617 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1618 }
1619
1620 void
bfd_mips_elf32_swap_reginfo_out(bfd * abfd,const Elf32_RegInfo * in,Elf32_External_RegInfo * ex)1621 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1622 Elf32_External_RegInfo *ex)
1623 {
1624 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1625 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1626 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1627 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1628 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1629 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1630 }
1631
1632 /* In the 64 bit ABI, the .MIPS.options section holds register
1633 information in an Elf64_Reginfo structure. These routines swap
1634 them in and out. They are globally visible because they are used
1635 outside of BFD. These routines are here so that gas can call them
1636 without worrying about whether the 64 bit ABI has been included. */
1637
1638 void
bfd_mips_elf64_swap_reginfo_in(bfd * abfd,const Elf64_External_RegInfo * ex,Elf64_Internal_RegInfo * in)1639 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1640 Elf64_Internal_RegInfo *in)
1641 {
1642 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1643 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1644 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1645 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1646 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1647 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1648 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1649 }
1650
1651 void
bfd_mips_elf64_swap_reginfo_out(bfd * abfd,const Elf64_Internal_RegInfo * in,Elf64_External_RegInfo * ex)1652 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1653 Elf64_External_RegInfo *ex)
1654 {
1655 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1656 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1657 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1658 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1659 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1660 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1661 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1662 }
1663
1664 /* Swap in an options header. */
1665
1666 void
bfd_mips_elf_swap_options_in(bfd * abfd,const Elf_External_Options * ex,Elf_Internal_Options * in)1667 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1668 Elf_Internal_Options *in)
1669 {
1670 in->kind = H_GET_8 (abfd, ex->kind);
1671 in->size = H_GET_8 (abfd, ex->size);
1672 in->section = H_GET_16 (abfd, ex->section);
1673 in->info = H_GET_32 (abfd, ex->info);
1674 }
1675
1676 /* Swap out an options header. */
1677
1678 void
bfd_mips_elf_swap_options_out(bfd * abfd,const Elf_Internal_Options * in,Elf_External_Options * ex)1679 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1680 Elf_External_Options *ex)
1681 {
1682 H_PUT_8 (abfd, in->kind, ex->kind);
1683 H_PUT_8 (abfd, in->size, ex->size);
1684 H_PUT_16 (abfd, in->section, ex->section);
1685 H_PUT_32 (abfd, in->info, ex->info);
1686 }
1687
1688 /* This function is called via qsort() to sort the dynamic relocation
1689 entries by increasing r_symndx value. */
1690
1691 static int
sort_dynamic_relocs(const void * arg1,const void * arg2)1692 sort_dynamic_relocs (const void *arg1, const void *arg2)
1693 {
1694 Elf_Internal_Rela int_reloc1;
1695 Elf_Internal_Rela int_reloc2;
1696
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1698 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1699
1700 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1701 }
1702
1703 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1704
1705 static int
sort_dynamic_relocs_64(const void * arg1 ATTRIBUTE_UNUSED,const void * arg2 ATTRIBUTE_UNUSED)1706 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1707 const void *arg2 ATTRIBUTE_UNUSED)
1708 {
1709 #ifdef BFD64
1710 Elf_Internal_Rela int_reloc1[3];
1711 Elf_Internal_Rela int_reloc2[3];
1712
1713 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1714 (reldyn_sorting_bfd, arg1, int_reloc1);
1715 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1716 (reldyn_sorting_bfd, arg2, int_reloc2);
1717
1718 return (ELF64_R_SYM (int_reloc1[0].r_info)
1719 - ELF64_R_SYM (int_reloc2[0].r_info));
1720 #else
1721 abort ();
1722 #endif
1723 }
1724
1725
1726 /* This routine is used to write out ECOFF debugging external symbol
1727 information. It is called via mips_elf_link_hash_traverse. The
1728 ECOFF external symbol information must match the ELF external
1729 symbol information. Unfortunately, at this point we don't know
1730 whether a symbol is required by reloc information, so the two
1731 tables may wind up being different. We must sort out the external
1732 symbol information before we can set the final size of the .mdebug
1733 section, and we must set the size of the .mdebug section before we
1734 can relocate any sections, and we can't know which symbols are
1735 required by relocation until we relocate the sections.
1736 Fortunately, it is relatively unlikely that any symbol will be
1737 stripped but required by a reloc. In particular, it can not happen
1738 when generating a final executable. */
1739
1740 static bfd_boolean
mips_elf_output_extsym(struct mips_elf_link_hash_entry * h,void * data)1741 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1742 {
1743 struct extsym_info *einfo = data;
1744 bfd_boolean strip;
1745 asection *sec, *output_section;
1746
1747 if (h->root.root.type == bfd_link_hash_warning)
1748 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1749
1750 if (h->root.indx == -2)
1751 strip = FALSE;
1752 else if ((h->root.def_dynamic
1753 || h->root.ref_dynamic
1754 || h->root.type == bfd_link_hash_new)
1755 && !h->root.def_regular
1756 && !h->root.ref_regular)
1757 strip = TRUE;
1758 else if (einfo->info->strip == strip_all
1759 || (einfo->info->strip == strip_some
1760 && bfd_hash_lookup (einfo->info->keep_hash,
1761 h->root.root.root.string,
1762 FALSE, FALSE) == NULL))
1763 strip = TRUE;
1764 else
1765 strip = FALSE;
1766
1767 if (strip)
1768 return TRUE;
1769
1770 if (h->esym.ifd == -2)
1771 {
1772 h->esym.jmptbl = 0;
1773 h->esym.cobol_main = 0;
1774 h->esym.weakext = 0;
1775 h->esym.reserved = 0;
1776 h->esym.ifd = ifdNil;
1777 h->esym.asym.value = 0;
1778 h->esym.asym.st = stGlobal;
1779
1780 if (h->root.root.type == bfd_link_hash_undefined
1781 || h->root.root.type == bfd_link_hash_undefweak)
1782 {
1783 const char *name;
1784
1785 /* Use undefined class. Also, set class and type for some
1786 special symbols. */
1787 name = h->root.root.root.string;
1788 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1789 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1790 {
1791 h->esym.asym.sc = scData;
1792 h->esym.asym.st = stLabel;
1793 h->esym.asym.value = 0;
1794 }
1795 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1796 {
1797 h->esym.asym.sc = scAbs;
1798 h->esym.asym.st = stLabel;
1799 h->esym.asym.value =
1800 mips_elf_hash_table (einfo->info)->procedure_count;
1801 }
1802 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1803 {
1804 h->esym.asym.sc = scAbs;
1805 h->esym.asym.st = stLabel;
1806 h->esym.asym.value = elf_gp (einfo->abfd);
1807 }
1808 else
1809 h->esym.asym.sc = scUndefined;
1810 }
1811 else if (h->root.root.type != bfd_link_hash_defined
1812 && h->root.root.type != bfd_link_hash_defweak)
1813 h->esym.asym.sc = scAbs;
1814 else
1815 {
1816 const char *name;
1817
1818 sec = h->root.root.u.def.section;
1819 output_section = sec->output_section;
1820
1821 /* When making a shared library and symbol h is the one from
1822 the another shared library, OUTPUT_SECTION may be null. */
1823 if (output_section == NULL)
1824 h->esym.asym.sc = scUndefined;
1825 else
1826 {
1827 name = bfd_section_name (output_section->owner, output_section);
1828
1829 if (strcmp (name, ".text") == 0)
1830 h->esym.asym.sc = scText;
1831 else if (strcmp (name, ".data") == 0)
1832 h->esym.asym.sc = scData;
1833 else if (strcmp (name, ".sdata") == 0)
1834 h->esym.asym.sc = scSData;
1835 else if (strcmp (name, ".rodata") == 0
1836 || strcmp (name, ".rdata") == 0)
1837 h->esym.asym.sc = scRData;
1838 else if (strcmp (name, ".bss") == 0)
1839 h->esym.asym.sc = scBss;
1840 else if (strcmp (name, ".sbss") == 0)
1841 h->esym.asym.sc = scSBss;
1842 else if (strcmp (name, ".init") == 0)
1843 h->esym.asym.sc = scInit;
1844 else if (strcmp (name, ".fini") == 0)
1845 h->esym.asym.sc = scFini;
1846 else
1847 h->esym.asym.sc = scAbs;
1848 }
1849 }
1850
1851 h->esym.asym.reserved = 0;
1852 h->esym.asym.index = indexNil;
1853 }
1854
1855 if (h->root.root.type == bfd_link_hash_common)
1856 h->esym.asym.value = h->root.root.u.c.size;
1857 else if (h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 {
1860 if (h->esym.asym.sc == scCommon)
1861 h->esym.asym.sc = scBss;
1862 else if (h->esym.asym.sc == scSCommon)
1863 h->esym.asym.sc = scSBss;
1864
1865 sec = h->root.root.u.def.section;
1866 output_section = sec->output_section;
1867 if (output_section != NULL)
1868 h->esym.asym.value = (h->root.root.u.def.value
1869 + sec->output_offset
1870 + output_section->vma);
1871 else
1872 h->esym.asym.value = 0;
1873 }
1874 else if (h->root.needs_plt)
1875 {
1876 struct mips_elf_link_hash_entry *hd = h;
1877 bfd_boolean no_fn_stub = h->no_fn_stub;
1878
1879 while (hd->root.root.type == bfd_link_hash_indirect)
1880 {
1881 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1882 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1883 }
1884
1885 if (!no_fn_stub)
1886 {
1887 /* Set type and value for a symbol with a function stub. */
1888 h->esym.asym.st = stProc;
1889 sec = hd->root.root.u.def.section;
1890 if (sec == NULL)
1891 h->esym.asym.value = 0;
1892 else
1893 {
1894 output_section = sec->output_section;
1895 if (output_section != NULL)
1896 h->esym.asym.value = (hd->root.plt.offset
1897 + sec->output_offset
1898 + output_section->vma);
1899 else
1900 h->esym.asym.value = 0;
1901 }
1902 }
1903 }
1904
1905 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1906 h->root.root.root.string,
1907 &h->esym))
1908 {
1909 einfo->failed = TRUE;
1910 return FALSE;
1911 }
1912
1913 return TRUE;
1914 }
1915
1916 /* A comparison routine used to sort .gptab entries. */
1917
1918 static int
gptab_compare(const void * p1,const void * p2)1919 gptab_compare (const void *p1, const void *p2)
1920 {
1921 const Elf32_gptab *a1 = p1;
1922 const Elf32_gptab *a2 = p2;
1923
1924 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1925 }
1926
1927 /* Functions to manage the got entry hash table. */
1928
1929 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1930 hash number. */
1931
1932 static INLINE hashval_t
mips_elf_hash_bfd_vma(bfd_vma addr)1933 mips_elf_hash_bfd_vma (bfd_vma addr)
1934 {
1935 #ifdef BFD64
1936 return addr + (addr >> 32);
1937 #else
1938 return addr;
1939 #endif
1940 }
1941
1942 /* got_entries only match if they're identical, except for gotidx, so
1943 use all fields to compute the hash, and compare the appropriate
1944 union members. */
1945
1946 static hashval_t
mips_elf_got_entry_hash(const void * entry_)1947 mips_elf_got_entry_hash (const void *entry_)
1948 {
1949 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1950
1951 return entry->symndx
1952 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1953 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1954 : entry->abfd->id
1955 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1956 : entry->d.h->root.root.root.hash));
1957 }
1958
1959 static int
mips_elf_got_entry_eq(const void * entry1,const void * entry2)1960 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1961 {
1962 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1963 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1964
1965 /* An LDM entry can only match another LDM entry. */
1966 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1967 return 0;
1968
1969 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1970 && (! e1->abfd ? e1->d.address == e2->d.address
1971 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1972 : e1->d.h == e2->d.h);
1973 }
1974
1975 /* multi_got_entries are still a match in the case of global objects,
1976 even if the input bfd in which they're referenced differs, so the
1977 hash computation and compare functions are adjusted
1978 accordingly. */
1979
1980 static hashval_t
mips_elf_multi_got_entry_hash(const void * entry_)1981 mips_elf_multi_got_entry_hash (const void *entry_)
1982 {
1983 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1984
1985 return entry->symndx
1986 + (! entry->abfd
1987 ? mips_elf_hash_bfd_vma (entry->d.address)
1988 : entry->symndx >= 0
1989 ? ((entry->tls_type & GOT_TLS_LDM)
1990 ? (GOT_TLS_LDM << 17)
1991 : (entry->abfd->id
1992 + mips_elf_hash_bfd_vma (entry->d.addend)))
1993 : entry->d.h->root.root.root.hash);
1994 }
1995
1996 static int
mips_elf_multi_got_entry_eq(const void * entry1,const void * entry2)1997 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1998 {
1999 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2000 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2001
2002 /* Any two LDM entries match. */
2003 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2004 return 1;
2005
2006 /* Nothing else matches an LDM entry. */
2007 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2008 return 0;
2009
2010 return e1->symndx == e2->symndx
2011 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2012 : e1->abfd == NULL || e2->abfd == NULL
2013 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2014 : e1->d.h == e2->d.h);
2015 }
2016
2017 /* Return the dynamic relocation section. If it doesn't exist, try to
2018 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2019 if creation fails. */
2020
2021 static asection *
mips_elf_rel_dyn_section(struct bfd_link_info * info,bfd_boolean create_p)2022 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2023 {
2024 const char *dname;
2025 asection *sreloc;
2026 bfd *dynobj;
2027
2028 dname = MIPS_ELF_REL_DYN_NAME (info);
2029 dynobj = elf_hash_table (info)->dynobj;
2030 sreloc = bfd_get_section_by_name (dynobj, dname);
2031 if (sreloc == NULL && create_p)
2032 {
2033 sreloc = bfd_make_section_with_flags (dynobj, dname,
2034 (SEC_ALLOC
2035 | SEC_LOAD
2036 | SEC_HAS_CONTENTS
2037 | SEC_IN_MEMORY
2038 | SEC_LINKER_CREATED
2039 | SEC_READONLY));
2040 if (sreloc == NULL
2041 || ! bfd_set_section_alignment (dynobj, sreloc,
2042 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2043 return NULL;
2044 }
2045 return sreloc;
2046 }
2047
2048 /* Returns the GOT section for ABFD. */
2049
2050 static asection *
mips_elf_got_section(bfd * abfd,bfd_boolean maybe_excluded)2051 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2052 {
2053 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2054 if (sgot == NULL
2055 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2056 return NULL;
2057 return sgot;
2058 }
2059
2060 /* Returns the GOT information associated with the link indicated by
2061 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2062 section. */
2063
2064 static struct mips_got_info *
mips_elf_got_info(bfd * abfd,asection ** sgotp)2065 mips_elf_got_info (bfd *abfd, asection **sgotp)
2066 {
2067 asection *sgot;
2068 struct mips_got_info *g;
2069
2070 sgot = mips_elf_got_section (abfd, TRUE);
2071 BFD_ASSERT (sgot != NULL);
2072 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2073 g = mips_elf_section_data (sgot)->u.got_info;
2074 BFD_ASSERT (g != NULL);
2075
2076 if (sgotp)
2077 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2078
2079 return g;
2080 }
2081
2082 /* Count the number of relocations needed for a TLS GOT entry, with
2083 access types from TLS_TYPE, and symbol H (or a local symbol if H
2084 is NULL). */
2085
2086 static int
mips_tls_got_relocs(struct bfd_link_info * info,unsigned char tls_type,struct elf_link_hash_entry * h)2087 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2088 struct elf_link_hash_entry *h)
2089 {
2090 int indx = 0;
2091 int ret = 0;
2092 bfd_boolean need_relocs = FALSE;
2093 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2094
2095 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2096 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2097 indx = h->dynindx;
2098
2099 if ((info->shared || indx != 0)
2100 && (h == NULL
2101 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2102 || h->root.type != bfd_link_hash_undefweak))
2103 need_relocs = TRUE;
2104
2105 if (!need_relocs)
2106 return FALSE;
2107
2108 if (tls_type & GOT_TLS_GD)
2109 {
2110 ret++;
2111 if (indx != 0)
2112 ret++;
2113 }
2114
2115 if (tls_type & GOT_TLS_IE)
2116 ret++;
2117
2118 if ((tls_type & GOT_TLS_LDM) && info->shared)
2119 ret++;
2120
2121 return ret;
2122 }
2123
2124 /* Count the number of TLS relocations required for the GOT entry in
2125 ARG1, if it describes a local symbol. */
2126
2127 static int
mips_elf_count_local_tls_relocs(void ** arg1,void * arg2)2128 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2129 {
2130 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2131 struct mips_elf_count_tls_arg *arg = arg2;
2132
2133 if (entry->abfd != NULL && entry->symndx != -1)
2134 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2135
2136 return 1;
2137 }
2138
2139 /* Count the number of TLS GOT entries required for the global (or
2140 forced-local) symbol in ARG1. */
2141
2142 static int
mips_elf_count_global_tls_entries(void * arg1,void * arg2)2143 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2144 {
2145 struct mips_elf_link_hash_entry *hm
2146 = (struct mips_elf_link_hash_entry *) arg1;
2147 struct mips_elf_count_tls_arg *arg = arg2;
2148
2149 if (hm->tls_type & GOT_TLS_GD)
2150 arg->needed += 2;
2151 if (hm->tls_type & GOT_TLS_IE)
2152 arg->needed += 1;
2153
2154 return 1;
2155 }
2156
2157 /* Count the number of TLS relocations required for the global (or
2158 forced-local) symbol in ARG1. */
2159
2160 static int
mips_elf_count_global_tls_relocs(void * arg1,void * arg2)2161 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2162 {
2163 struct mips_elf_link_hash_entry *hm
2164 = (struct mips_elf_link_hash_entry *) arg1;
2165 struct mips_elf_count_tls_arg *arg = arg2;
2166
2167 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2168
2169 return 1;
2170 }
2171
2172 /* Output a simple dynamic relocation into SRELOC. */
2173
2174 static void
mips_elf_output_dynamic_relocation(bfd * output_bfd,asection * sreloc,unsigned long indx,int r_type,bfd_vma offset)2175 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2176 asection *sreloc,
2177 unsigned long indx,
2178 int r_type,
2179 bfd_vma offset)
2180 {
2181 Elf_Internal_Rela rel[3];
2182
2183 memset (rel, 0, sizeof (rel));
2184
2185 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2186 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2187
2188 if (ABI_64_P (output_bfd))
2189 {
2190 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2191 (output_bfd, &rel[0],
2192 (sreloc->contents
2193 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2194 }
2195 else
2196 bfd_elf32_swap_reloc_out
2197 (output_bfd, &rel[0],
2198 (sreloc->contents
2199 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2200 ++sreloc->reloc_count;
2201 }
2202
2203 /* Initialize a set of TLS GOT entries for one symbol. */
2204
2205 static void
mips_elf_initialize_tls_slots(bfd * abfd,bfd_vma got_offset,unsigned char * tls_type_p,struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,bfd_vma value)2206 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2207 unsigned char *tls_type_p,
2208 struct bfd_link_info *info,
2209 struct mips_elf_link_hash_entry *h,
2210 bfd_vma value)
2211 {
2212 int indx;
2213 asection *sreloc, *sgot;
2214 bfd_vma offset, offset2;
2215 bfd *dynobj;
2216 bfd_boolean need_relocs = FALSE;
2217
2218 dynobj = elf_hash_table (info)->dynobj;
2219 sgot = mips_elf_got_section (dynobj, FALSE);
2220
2221 indx = 0;
2222 if (h != NULL)
2223 {
2224 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2225
2226 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2227 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2228 indx = h->root.dynindx;
2229 }
2230
2231 if (*tls_type_p & GOT_TLS_DONE)
2232 return;
2233
2234 if ((info->shared || indx != 0)
2235 && (h == NULL
2236 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2237 || h->root.type != bfd_link_hash_undefweak))
2238 need_relocs = TRUE;
2239
2240 /* MINUS_ONE means the symbol is not defined in this object. It may not
2241 be defined at all; assume that the value doesn't matter in that
2242 case. Otherwise complain if we would use the value. */
2243 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2244 || h->root.root.type == bfd_link_hash_undefweak);
2245
2246 /* Emit necessary relocations. */
2247 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2248
2249 /* General Dynamic. */
2250 if (*tls_type_p & GOT_TLS_GD)
2251 {
2252 offset = got_offset;
2253 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2254
2255 if (need_relocs)
2256 {
2257 mips_elf_output_dynamic_relocation
2258 (abfd, sreloc, indx,
2259 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2260 sgot->output_offset + sgot->output_section->vma + offset);
2261
2262 if (indx)
2263 mips_elf_output_dynamic_relocation
2264 (abfd, sreloc, indx,
2265 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2266 sgot->output_offset + sgot->output_section->vma + offset2);
2267 else
2268 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2269 sgot->contents + offset2);
2270 }
2271 else
2272 {
2273 MIPS_ELF_PUT_WORD (abfd, 1,
2274 sgot->contents + offset);
2275 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2276 sgot->contents + offset2);
2277 }
2278
2279 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2280 }
2281
2282 /* Initial Exec model. */
2283 if (*tls_type_p & GOT_TLS_IE)
2284 {
2285 offset = got_offset;
2286
2287 if (need_relocs)
2288 {
2289 if (indx == 0)
2290 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2291 sgot->contents + offset);
2292 else
2293 MIPS_ELF_PUT_WORD (abfd, 0,
2294 sgot->contents + offset);
2295
2296 mips_elf_output_dynamic_relocation
2297 (abfd, sreloc, indx,
2298 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2299 sgot->output_offset + sgot->output_section->vma + offset);
2300 }
2301 else
2302 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2303 sgot->contents + offset);
2304 }
2305
2306 if (*tls_type_p & GOT_TLS_LDM)
2307 {
2308 /* The initial offset is zero, and the LD offsets will include the
2309 bias by DTP_OFFSET. */
2310 MIPS_ELF_PUT_WORD (abfd, 0,
2311 sgot->contents + got_offset
2312 + MIPS_ELF_GOT_SIZE (abfd));
2313
2314 if (!info->shared)
2315 MIPS_ELF_PUT_WORD (abfd, 1,
2316 sgot->contents + got_offset);
2317 else
2318 mips_elf_output_dynamic_relocation
2319 (abfd, sreloc, indx,
2320 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2321 sgot->output_offset + sgot->output_section->vma + got_offset);
2322 }
2323
2324 *tls_type_p |= GOT_TLS_DONE;
2325 }
2326
2327 /* Return the GOT index to use for a relocation of type R_TYPE against
2328 a symbol accessed using TLS_TYPE models. The GOT entries for this
2329 symbol in this GOT start at GOT_INDEX. This function initializes the
2330 GOT entries and corresponding relocations. */
2331
2332 static bfd_vma
mips_tls_got_index(bfd * abfd,bfd_vma got_index,unsigned char * tls_type,int r_type,struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,bfd_vma symbol)2333 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2334 int r_type, struct bfd_link_info *info,
2335 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2336 {
2337 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2338 || r_type == R_MIPS_TLS_LDM);
2339
2340 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2341
2342 if (r_type == R_MIPS_TLS_GOTTPREL)
2343 {
2344 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2345 if (*tls_type & GOT_TLS_GD)
2346 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2347 else
2348 return got_index;
2349 }
2350
2351 if (r_type == R_MIPS_TLS_GD)
2352 {
2353 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2354 return got_index;
2355 }
2356
2357 if (r_type == R_MIPS_TLS_LDM)
2358 {
2359 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2360 return got_index;
2361 }
2362
2363 return got_index;
2364 }
2365
2366 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2367 for global symbol H. .got.plt comes before the GOT, so the offset
2368 will be negative. */
2369
2370 static bfd_vma
mips_elf_gotplt_index(struct bfd_link_info * info,struct elf_link_hash_entry * h)2371 mips_elf_gotplt_index (struct bfd_link_info *info,
2372 struct elf_link_hash_entry *h)
2373 {
2374 bfd_vma plt_index, got_address, got_value;
2375 struct mips_elf_link_hash_table *htab;
2376
2377 htab = mips_elf_hash_table (info);
2378 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2379
2380 /* Calculate the index of the symbol's PLT entry. */
2381 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2382
2383 /* Calculate the address of the associated .got.plt entry. */
2384 got_address = (htab->sgotplt->output_section->vma
2385 + htab->sgotplt->output_offset
2386 + plt_index * 4);
2387
2388 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2389 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2390 + htab->root.hgot->root.u.def.section->output_offset
2391 + htab->root.hgot->root.u.def.value);
2392
2393 return got_address - got_value;
2394 }
2395
2396 /* Return the GOT offset for address VALUE, which was derived from
2397 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2398 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2399 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2400 offset can be found. */
2401
2402 static bfd_vma
mips_elf_local_got_index(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,asection * input_section,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)2403 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2404 asection *input_section, bfd_vma value,
2405 unsigned long r_symndx,
2406 struct mips_elf_link_hash_entry *h, int r_type)
2407 {
2408 asection *sgot;
2409 struct mips_got_info *g;
2410 struct mips_got_entry *entry;
2411
2412 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2413
2414 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2415 input_section, value,
2416 r_symndx, h, r_type);
2417 if (!entry)
2418 return MINUS_ONE;
2419
2420 if (TLS_RELOC_P (r_type))
2421 {
2422 if (entry->symndx == -1 && g->next == NULL)
2423 /* A type (3) entry in the single-GOT case. We use the symbol's
2424 hash table entry to track the index. */
2425 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2426 r_type, info, h, value);
2427 else
2428 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2429 r_type, info, h, value);
2430 }
2431 else
2432 return entry->gotidx;
2433 }
2434
2435 /* Returns the GOT index for the global symbol indicated by H. */
2436
2437 static bfd_vma
mips_elf_global_got_index(bfd * abfd,bfd * ibfd,struct elf_link_hash_entry * h,int r_type,struct bfd_link_info * info)2438 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2439 int r_type, struct bfd_link_info *info)
2440 {
2441 bfd_vma index;
2442 asection *sgot;
2443 struct mips_got_info *g, *gg;
2444 long global_got_dynindx = 0;
2445
2446 gg = g = mips_elf_got_info (abfd, &sgot);
2447 if (g->bfd2got && ibfd)
2448 {
2449 struct mips_got_entry e, *p;
2450
2451 BFD_ASSERT (h->dynindx >= 0);
2452
2453 g = mips_elf_got_for_ibfd (g, ibfd);
2454 if (g->next != gg || TLS_RELOC_P (r_type))
2455 {
2456 e.abfd = ibfd;
2457 e.symndx = -1;
2458 e.d.h = (struct mips_elf_link_hash_entry *)h;
2459 e.tls_type = 0;
2460
2461 p = htab_find (g->got_entries, &e);
2462
2463 BFD_ASSERT (p->gotidx > 0);
2464
2465 if (TLS_RELOC_P (r_type))
2466 {
2467 bfd_vma value = MINUS_ONE;
2468 if ((h->root.type == bfd_link_hash_defined
2469 || h->root.type == bfd_link_hash_defweak)
2470 && h->root.u.def.section->output_section)
2471 value = (h->root.u.def.value
2472 + h->root.u.def.section->output_offset
2473 + h->root.u.def.section->output_section->vma);
2474
2475 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2476 info, e.d.h, value);
2477 }
2478 else
2479 return p->gotidx;
2480 }
2481 }
2482
2483 if (gg->global_gotsym != NULL)
2484 global_got_dynindx = gg->global_gotsym->dynindx;
2485
2486 if (TLS_RELOC_P (r_type))
2487 {
2488 struct mips_elf_link_hash_entry *hm
2489 = (struct mips_elf_link_hash_entry *) h;
2490 bfd_vma value = MINUS_ONE;
2491
2492 if ((h->root.type == bfd_link_hash_defined
2493 || h->root.type == bfd_link_hash_defweak)
2494 && h->root.u.def.section->output_section)
2495 value = (h->root.u.def.value
2496 + h->root.u.def.section->output_offset
2497 + h->root.u.def.section->output_section->vma);
2498
2499 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2500 r_type, info, hm, value);
2501 }
2502 else
2503 {
2504 /* Once we determine the global GOT entry with the lowest dynamic
2505 symbol table index, we must put all dynamic symbols with greater
2506 indices into the GOT. That makes it easy to calculate the GOT
2507 offset. */
2508 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2509 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2510 * MIPS_ELF_GOT_SIZE (abfd));
2511 }
2512 BFD_ASSERT (index < sgot->size);
2513
2514 return index;
2515 }
2516
2517 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2518 calculated from a symbol belonging to INPUT_SECTION. These entries
2519 are supposed to be placed at small offsets in the GOT, i.e., within
2520 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2521 could be created. If OFFSETP is nonnull, use it to return the
2522 offset of the GOT entry from VALUE. */
2523
2524 static bfd_vma
mips_elf_got_page(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,asection * input_section,bfd_vma value,bfd_vma * offsetp)2525 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2526 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2527 {
2528 asection *sgot;
2529 struct mips_got_info *g;
2530 bfd_vma page, index;
2531 struct mips_got_entry *entry;
2532
2533 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2534
2535 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2536 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2537 input_section, page, 0,
2538 NULL, R_MIPS_GOT_PAGE);
2539
2540 if (!entry)
2541 return MINUS_ONE;
2542
2543 index = entry->gotidx;
2544
2545 if (offsetp)
2546 *offsetp = value - entry->d.address;
2547
2548 return index;
2549 }
2550
2551 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2552 which was calculated from a symbol belonging to INPUT_SECTION.
2553 EXTERNAL is true if the relocation was against a global symbol
2554 that has been forced local. */
2555
2556 static bfd_vma
mips_elf_got16_entry(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,asection * input_section,bfd_vma value,bfd_boolean external)2557 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2558 asection *input_section, bfd_vma value,
2559 bfd_boolean external)
2560 {
2561 asection *sgot;
2562 struct mips_got_info *g;
2563 struct mips_got_entry *entry;
2564
2565 /* GOT16 relocations against local symbols are followed by a LO16
2566 relocation; those against global symbols are not. Thus if the
2567 symbol was originally local, the GOT16 relocation should load the
2568 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2569 if (! external)
2570 value = mips_elf_high (value) << 16;
2571
2572 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2573
2574 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2575 input_section, value, 0,
2576 NULL, R_MIPS_GOT16);
2577 if (entry)
2578 return entry->gotidx;
2579 else
2580 return MINUS_ONE;
2581 }
2582
2583 /* Returns the offset for the entry at the INDEXth position
2584 in the GOT. */
2585
2586 static bfd_vma
mips_elf_got_offset_from_index(bfd * dynobj,bfd * output_bfd,bfd * input_bfd,bfd_vma index)2587 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2588 bfd *input_bfd, bfd_vma index)
2589 {
2590 asection *sgot;
2591 bfd_vma gp;
2592 struct mips_got_info *g;
2593
2594 g = mips_elf_got_info (dynobj, &sgot);
2595 gp = _bfd_get_gp_value (output_bfd)
2596 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2597
2598 return sgot->output_section->vma + sgot->output_offset + index - gp;
2599 }
2600
2601 /* Create and return a local GOT entry for VALUE, which was calculated
2602 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2603 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2604 instead. */
2605
2606 static struct mips_got_entry *
mips_elf_create_local_got_entry(bfd * abfd,struct bfd_link_info * info,bfd * ibfd,struct mips_got_info * gg,asection * sgot,asection * input_section,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)2607 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2608 bfd *ibfd, struct mips_got_info *gg,
2609 asection *sgot, asection *input_section,
2610 bfd_vma value, unsigned long r_symndx,
2611 struct mips_elf_link_hash_entry *h,
2612 int r_type)
2613 {
2614 struct mips_got_entry entry, **loc;
2615 struct mips_got_info *g;
2616 struct mips_elf_link_hash_table *htab;
2617
2618 htab = mips_elf_hash_table (info);
2619
2620 entry.abfd = NULL;
2621 entry.symndx = -1;
2622 entry.d.address = value;
2623 entry.tls_type = 0;
2624
2625 g = mips_elf_got_for_ibfd (gg, ibfd);
2626 if (g == NULL)
2627 {
2628 g = mips_elf_got_for_ibfd (gg, abfd);
2629 BFD_ASSERT (g != NULL);
2630 }
2631
2632 /* We might have a symbol, H, if it has been forced local. Use the
2633 global entry then. It doesn't matter whether an entry is local
2634 or global for TLS, since the dynamic linker does not
2635 automatically relocate TLS GOT entries. */
2636 BFD_ASSERT (h == NULL || h->root.forced_local);
2637 if (TLS_RELOC_P (r_type))
2638 {
2639 struct mips_got_entry *p;
2640
2641 entry.abfd = ibfd;
2642 if (r_type == R_MIPS_TLS_LDM)
2643 {
2644 entry.tls_type = GOT_TLS_LDM;
2645 entry.symndx = 0;
2646 entry.d.addend = 0;
2647 }
2648 else if (h == NULL)
2649 {
2650 entry.symndx = r_symndx;
2651 entry.d.addend = 0;
2652 }
2653 else
2654 entry.d.h = h;
2655
2656 p = (struct mips_got_entry *)
2657 htab_find (g->got_entries, &entry);
2658
2659 BFD_ASSERT (p);
2660 return p;
2661 }
2662
2663 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2664 INSERT);
2665 if (*loc)
2666 return *loc;
2667
2668 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2669 entry.tls_type = 0;
2670
2671 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2672
2673 if (! *loc)
2674 return NULL;
2675
2676 memcpy (*loc, &entry, sizeof entry);
2677
2678 if (g->assigned_gotno >= g->local_gotno)
2679 {
2680 (*loc)->gotidx = -1;
2681 /* We didn't allocate enough space in the GOT. */
2682 (*_bfd_error_handler)
2683 (_("not enough GOT space for local GOT entries"));
2684 bfd_set_error (bfd_error_bad_value);
2685 return NULL;
2686 }
2687
2688 MIPS_ELF_PUT_WORD (abfd, value,
2689 (sgot->contents + entry.gotidx));
2690
2691 /* These GOT entries need a dynamic relocation on VxWorks. Because
2692 the offset between segments is not fixed, the relocation must be
2693 against a symbol in the same segment as the original symbol.
2694 The easiest way to do this is to take INPUT_SECTION's output
2695 section and emit a relocation against its section symbol. */
2696 if (htab->is_vxworks)
2697 {
2698 Elf_Internal_Rela outrel;
2699 asection *s, *output_section;
2700 bfd_byte *loc;
2701 bfd_vma got_address;
2702 int dynindx;
2703
2704 s = mips_elf_rel_dyn_section (info, FALSE);
2705 output_section = input_section->output_section;
2706 dynindx = elf_section_data (output_section)->dynindx;
2707 got_address = (sgot->output_section->vma
2708 + sgot->output_offset
2709 + entry.gotidx);
2710
2711 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2712 outrel.r_offset = got_address;
2713 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2714 outrel.r_addend = value - output_section->vma;
2715 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2716 }
2717
2718 return *loc;
2719 }
2720
2721 /* Sort the dynamic symbol table so that symbols that need GOT entries
2722 appear towards the end. This reduces the amount of GOT space
2723 required. MAX_LOCAL is used to set the number of local symbols
2724 known to be in the dynamic symbol table. During
2725 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2726 section symbols are added and the count is higher. */
2727
2728 static bfd_boolean
mips_elf_sort_hash_table(struct bfd_link_info * info,unsigned long max_local)2729 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2730 {
2731 struct mips_elf_hash_sort_data hsd;
2732 struct mips_got_info *g;
2733 bfd *dynobj;
2734
2735 dynobj = elf_hash_table (info)->dynobj;
2736
2737 g = mips_elf_got_info (dynobj, NULL);
2738
2739 hsd.low = NULL;
2740 hsd.max_unref_got_dynindx =
2741 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2742 /* In the multi-got case, assigned_gotno of the master got_info
2743 indicate the number of entries that aren't referenced in the
2744 primary GOT, but that must have entries because there are
2745 dynamic relocations that reference it. Since they aren't
2746 referenced, we move them to the end of the GOT, so that they
2747 don't prevent other entries that are referenced from getting
2748 too large offsets. */
2749 - (g->next ? g->assigned_gotno : 0);
2750 hsd.max_non_got_dynindx = max_local;
2751 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2752 elf_hash_table (info)),
2753 mips_elf_sort_hash_table_f,
2754 &hsd);
2755
2756 /* There should have been enough room in the symbol table to
2757 accommodate both the GOT and non-GOT symbols. */
2758 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2759 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2760 <= elf_hash_table (info)->dynsymcount);
2761
2762 /* Now we know which dynamic symbol has the lowest dynamic symbol
2763 table index in the GOT. */
2764 g->global_gotsym = hsd.low;
2765
2766 return TRUE;
2767 }
2768
2769 /* If H needs a GOT entry, assign it the highest available dynamic
2770 index. Otherwise, assign it the lowest available dynamic
2771 index. */
2772
2773 static bfd_boolean
mips_elf_sort_hash_table_f(struct mips_elf_link_hash_entry * h,void * data)2774 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2775 {
2776 struct mips_elf_hash_sort_data *hsd = data;
2777
2778 if (h->root.root.type == bfd_link_hash_warning)
2779 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2780
2781 /* Symbols without dynamic symbol table entries aren't interesting
2782 at all. */
2783 if (h->root.dynindx == -1)
2784 return TRUE;
2785
2786 /* Global symbols that need GOT entries that are not explicitly
2787 referenced are marked with got offset 2. Those that are
2788 referenced get a 1, and those that don't need GOT entries get
2789 -1. Forced local symbols may also be marked with got offset 1,
2790 but are never given global GOT entries. */
2791 if (h->root.got.offset == 2)
2792 {
2793 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2794
2795 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2796 hsd->low = (struct elf_link_hash_entry *) h;
2797 h->root.dynindx = hsd->max_unref_got_dynindx++;
2798 }
2799 else if (h->root.got.offset != 1 || h->forced_local)
2800 h->root.dynindx = hsd->max_non_got_dynindx++;
2801 else
2802 {
2803 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2804
2805 h->root.dynindx = --hsd->min_got_dynindx;
2806 hsd->low = (struct elf_link_hash_entry *) h;
2807 }
2808
2809 return TRUE;
2810 }
2811
2812 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2813 symbol table index lower than any we've seen to date, record it for
2814 posterity. */
2815
2816 static bfd_boolean
mips_elf_record_global_got_symbol(struct elf_link_hash_entry * h,bfd * abfd,struct bfd_link_info * info,struct mips_got_info * g,unsigned char tls_flag)2817 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2818 bfd *abfd, struct bfd_link_info *info,
2819 struct mips_got_info *g,
2820 unsigned char tls_flag)
2821 {
2822 struct mips_got_entry entry, **loc;
2823
2824 /* A global symbol in the GOT must also be in the dynamic symbol
2825 table. */
2826 if (h->dynindx == -1)
2827 {
2828 switch (ELF_ST_VISIBILITY (h->other))
2829 {
2830 case STV_INTERNAL:
2831 case STV_HIDDEN:
2832 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2833 break;
2834 }
2835 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2836 return FALSE;
2837 }
2838
2839 /* Make sure we have a GOT to put this entry into. */
2840 BFD_ASSERT (g != NULL);
2841
2842 entry.abfd = abfd;
2843 entry.symndx = -1;
2844 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2845 entry.tls_type = 0;
2846
2847 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2848 INSERT);
2849
2850 /* If we've already marked this entry as needing GOT space, we don't
2851 need to do it again. */
2852 if (*loc)
2853 {
2854 (*loc)->tls_type |= tls_flag;
2855 return TRUE;
2856 }
2857
2858 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2859
2860 if (! *loc)
2861 return FALSE;
2862
2863 entry.gotidx = -1;
2864 entry.tls_type = tls_flag;
2865
2866 memcpy (*loc, &entry, sizeof entry);
2867
2868 if (h->got.offset != MINUS_ONE)
2869 return TRUE;
2870
2871 /* By setting this to a value other than -1, we are indicating that
2872 there needs to be a GOT entry for H. Avoid using zero, as the
2873 generic ELF copy_indirect_symbol tests for <= 0. */
2874 if (tls_flag == 0)
2875 h->got.offset = 1;
2876
2877 return TRUE;
2878 }
2879
2880 /* Reserve space in G for a GOT entry containing the value of symbol
2881 SYMNDX in input bfd ABDF, plus ADDEND. */
2882
2883 static bfd_boolean
mips_elf_record_local_got_symbol(bfd * abfd,long symndx,bfd_vma addend,struct mips_got_info * g,unsigned char tls_flag)2884 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2885 struct mips_got_info *g,
2886 unsigned char tls_flag)
2887 {
2888 struct mips_got_entry entry, **loc;
2889
2890 entry.abfd = abfd;
2891 entry.symndx = symndx;
2892 entry.d.addend = addend;
2893 entry.tls_type = tls_flag;
2894 loc = (struct mips_got_entry **)
2895 htab_find_slot (g->got_entries, &entry, INSERT);
2896
2897 if (*loc)
2898 {
2899 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2900 {
2901 g->tls_gotno += 2;
2902 (*loc)->tls_type |= tls_flag;
2903 }
2904 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2905 {
2906 g->tls_gotno += 1;
2907 (*loc)->tls_type |= tls_flag;
2908 }
2909 return TRUE;
2910 }
2911
2912 if (tls_flag != 0)
2913 {
2914 entry.gotidx = -1;
2915 entry.tls_type = tls_flag;
2916 if (tls_flag == GOT_TLS_IE)
2917 g->tls_gotno += 1;
2918 else if (tls_flag == GOT_TLS_GD)
2919 g->tls_gotno += 2;
2920 else if (g->tls_ldm_offset == MINUS_ONE)
2921 {
2922 g->tls_ldm_offset = MINUS_TWO;
2923 g->tls_gotno += 2;
2924 }
2925 }
2926 else
2927 {
2928 entry.gotidx = g->local_gotno++;
2929 entry.tls_type = 0;
2930 }
2931
2932 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2933
2934 if (! *loc)
2935 return FALSE;
2936
2937 memcpy (*loc, &entry, sizeof entry);
2938
2939 return TRUE;
2940 }
2941
2942 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2943
2944 static hashval_t
mips_elf_bfd2got_entry_hash(const void * entry_)2945 mips_elf_bfd2got_entry_hash (const void *entry_)
2946 {
2947 const struct mips_elf_bfd2got_hash *entry
2948 = (struct mips_elf_bfd2got_hash *)entry_;
2949
2950 return entry->bfd->id;
2951 }
2952
2953 /* Check whether two hash entries have the same bfd. */
2954
2955 static int
mips_elf_bfd2got_entry_eq(const void * entry1,const void * entry2)2956 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2957 {
2958 const struct mips_elf_bfd2got_hash *e1
2959 = (const struct mips_elf_bfd2got_hash *)entry1;
2960 const struct mips_elf_bfd2got_hash *e2
2961 = (const struct mips_elf_bfd2got_hash *)entry2;
2962
2963 return e1->bfd == e2->bfd;
2964 }
2965
2966 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2967 be the master GOT data. */
2968
2969 static struct mips_got_info *
mips_elf_got_for_ibfd(struct mips_got_info * g,bfd * ibfd)2970 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2971 {
2972 struct mips_elf_bfd2got_hash e, *p;
2973
2974 if (! g->bfd2got)
2975 return g;
2976
2977 e.bfd = ibfd;
2978 p = htab_find (g->bfd2got, &e);
2979 return p ? p->g : NULL;
2980 }
2981
2982 /* Create one separate got for each bfd that has entries in the global
2983 got, such that we can tell how many local and global entries each
2984 bfd requires. */
2985
2986 static int
mips_elf_make_got_per_bfd(void ** entryp,void * p)2987 mips_elf_make_got_per_bfd (void **entryp, void *p)
2988 {
2989 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2990 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2991 htab_t bfd2got = arg->bfd2got;
2992 struct mips_got_info *g;
2993 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2994 void **bfdgotp;
2995
2996 /* Find the got_info for this GOT entry's input bfd. Create one if
2997 none exists. */
2998 bfdgot_entry.bfd = entry->abfd;
2999 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3000 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3001
3002 if (bfdgot != NULL)
3003 g = bfdgot->g;
3004 else
3005 {
3006 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3007 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3008
3009 if (bfdgot == NULL)
3010 {
3011 arg->obfd = 0;
3012 return 0;
3013 }
3014
3015 *bfdgotp = bfdgot;
3016
3017 bfdgot->bfd = entry->abfd;
3018 bfdgot->g = g = (struct mips_got_info *)
3019 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3020 if (g == NULL)
3021 {
3022 arg->obfd = 0;
3023 return 0;
3024 }
3025
3026 g->global_gotsym = NULL;
3027 g->global_gotno = 0;
3028 g->local_gotno = 0;
3029 g->assigned_gotno = -1;
3030 g->tls_gotno = 0;
3031 g->tls_assigned_gotno = 0;
3032 g->tls_ldm_offset = MINUS_ONE;
3033 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3034 mips_elf_multi_got_entry_eq, NULL);
3035 if (g->got_entries == NULL)
3036 {
3037 arg->obfd = 0;
3038 return 0;
3039 }
3040
3041 g->bfd2got = NULL;
3042 g->next = NULL;
3043 }
3044
3045 /* Insert the GOT entry in the bfd's got entry hash table. */
3046 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3047 if (*entryp != NULL)
3048 return 1;
3049
3050 *entryp = entry;
3051
3052 if (entry->tls_type)
3053 {
3054 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3055 g->tls_gotno += 2;
3056 if (entry->tls_type & GOT_TLS_IE)
3057 g->tls_gotno += 1;
3058 }
3059 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3060 ++g->local_gotno;
3061 else
3062 ++g->global_gotno;
3063
3064 return 1;
3065 }
3066
3067 /* Attempt to merge gots of different input bfds. Try to use as much
3068 as possible of the primary got, since it doesn't require explicit
3069 dynamic relocations, but don't use bfds that would reference global
3070 symbols out of the addressable range. Failing the primary got,
3071 attempt to merge with the current got, or finish the current got
3072 and then make make the new got current. */
3073
3074 static int
mips_elf_merge_gots(void ** bfd2got_,void * p)3075 mips_elf_merge_gots (void **bfd2got_, void *p)
3076 {
3077 struct mips_elf_bfd2got_hash *bfd2got
3078 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3079 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3080 unsigned int lcount = bfd2got->g->local_gotno;
3081 unsigned int gcount = bfd2got->g->global_gotno;
3082 unsigned int tcount = bfd2got->g->tls_gotno;
3083 unsigned int maxcnt = arg->max_count;
3084 bfd_boolean too_many_for_tls = FALSE;
3085
3086 /* We place TLS GOT entries after both locals and globals. The globals
3087 for the primary GOT may overflow the normal GOT size limit, so be
3088 sure not to merge a GOT which requires TLS with the primary GOT in that
3089 case. This doesn't affect non-primary GOTs. */
3090 if (tcount > 0)
3091 {
3092 unsigned int primary_total = lcount + tcount + arg->global_count;
3093 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3094 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3095 too_many_for_tls = TRUE;
3096 }
3097
3098 /* If we don't have a primary GOT and this is not too big, use it as
3099 a starting point for the primary GOT. */
3100 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3101 && ! too_many_for_tls)
3102 {
3103 arg->primary = bfd2got->g;
3104 arg->primary_count = lcount + gcount;
3105 }
3106 /* If it looks like we can merge this bfd's entries with those of
3107 the primary, merge them. The heuristics is conservative, but we
3108 don't have to squeeze it too hard. */
3109 else if (arg->primary && ! too_many_for_tls
3110 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3111 {
3112 struct mips_got_info *g = bfd2got->g;
3113 int old_lcount = arg->primary->local_gotno;
3114 int old_gcount = arg->primary->global_gotno;
3115 int old_tcount = arg->primary->tls_gotno;
3116
3117 bfd2got->g = arg->primary;
3118
3119 htab_traverse (g->got_entries,
3120 mips_elf_make_got_per_bfd,
3121 arg);
3122 if (arg->obfd == NULL)
3123 return 0;
3124
3125 htab_delete (g->got_entries);
3126 /* We don't have to worry about releasing memory of the actual
3127 got entries, since they're all in the master got_entries hash
3128 table anyway. */
3129
3130 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3131 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3132 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3133
3134 arg->primary_count = arg->primary->local_gotno
3135 + arg->primary->global_gotno + arg->primary->tls_gotno;
3136 }
3137 /* If we can merge with the last-created got, do it. */
3138 else if (arg->current
3139 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3140 {
3141 struct mips_got_info *g = bfd2got->g;
3142 int old_lcount = arg->current->local_gotno;
3143 int old_gcount = arg->current->global_gotno;
3144 int old_tcount = arg->current->tls_gotno;
3145
3146 bfd2got->g = arg->current;
3147
3148 htab_traverse (g->got_entries,
3149 mips_elf_make_got_per_bfd,
3150 arg);
3151 if (arg->obfd == NULL)
3152 return 0;
3153
3154 htab_delete (g->got_entries);
3155
3156 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3157 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3158 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3159
3160 arg->current_count = arg->current->local_gotno
3161 + arg->current->global_gotno + arg->current->tls_gotno;
3162 }
3163 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3164 fits; if it turns out that it doesn't, we'll get relocation
3165 overflows anyway. */
3166 else
3167 {
3168 bfd2got->g->next = arg->current;
3169 arg->current = bfd2got->g;
3170
3171 arg->current_count = lcount + gcount + 2 * tcount;
3172 }
3173
3174 return 1;
3175 }
3176
3177 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3178 is null iff there is just a single GOT. */
3179
3180 static int
mips_elf_initialize_tls_index(void ** entryp,void * p)3181 mips_elf_initialize_tls_index (void **entryp, void *p)
3182 {
3183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3184 struct mips_got_info *g = p;
3185 bfd_vma next_index;
3186
3187 /* We're only interested in TLS symbols. */
3188 if (entry->tls_type == 0)
3189 return 1;
3190
3191 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3192
3193 if (entry->symndx == -1 && g->next == NULL)
3194 {
3195 /* A type (3) got entry in the single-GOT case. We use the symbol's
3196 hash table entry to track its index. */
3197 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3198 return 1;
3199 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3200 entry->d.h->tls_got_offset = next_index;
3201 }
3202 else
3203 {
3204 if (entry->tls_type & GOT_TLS_LDM)
3205 {
3206 /* There are separate mips_got_entry objects for each input bfd
3207 that requires an LDM entry. Make sure that all LDM entries in
3208 a GOT resolve to the same index. */
3209 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3210 {
3211 entry->gotidx = g->tls_ldm_offset;
3212 return 1;
3213 }
3214 g->tls_ldm_offset = next_index;
3215 }
3216 entry->gotidx = next_index;
3217 }
3218
3219 /* Account for the entries we've just allocated. */
3220 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3221 g->tls_assigned_gotno += 2;
3222 if (entry->tls_type & GOT_TLS_IE)
3223 g->tls_assigned_gotno += 1;
3224
3225 return 1;
3226 }
3227
3228 /* If passed a NULL mips_got_info in the argument, set the marker used
3229 to tell whether a global symbol needs a got entry (in the primary
3230 got) to the given VALUE.
3231
3232 If passed a pointer G to a mips_got_info in the argument (it must
3233 not be the primary GOT), compute the offset from the beginning of
3234 the (primary) GOT section to the entry in G corresponding to the
3235 global symbol. G's assigned_gotno must contain the index of the
3236 first available global GOT entry in G. VALUE must contain the size
3237 of a GOT entry in bytes. For each global GOT entry that requires a
3238 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3239 marked as not eligible for lazy resolution through a function
3240 stub. */
3241 static int
mips_elf_set_global_got_offset(void ** entryp,void * p)3242 mips_elf_set_global_got_offset (void **entryp, void *p)
3243 {
3244 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3245 struct mips_elf_set_global_got_offset_arg *arg
3246 = (struct mips_elf_set_global_got_offset_arg *)p;
3247 struct mips_got_info *g = arg->g;
3248
3249 if (g && entry->tls_type != GOT_NORMAL)
3250 arg->needed_relocs +=
3251 mips_tls_got_relocs (arg->info, entry->tls_type,
3252 entry->symndx == -1 ? &entry->d.h->root : NULL);
3253
3254 if (entry->abfd != NULL && entry->symndx == -1
3255 && entry->d.h->root.dynindx != -1
3256 && !entry->d.h->forced_local
3257 && entry->d.h->tls_type == GOT_NORMAL)
3258 {
3259 if (g)
3260 {
3261 BFD_ASSERT (g->global_gotsym == NULL);
3262
3263 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3264 if (arg->info->shared
3265 || (elf_hash_table (arg->info)->dynamic_sections_created
3266 && entry->d.h->root.def_dynamic
3267 && !entry->d.h->root.def_regular))
3268 ++arg->needed_relocs;
3269 }
3270 else
3271 entry->d.h->root.got.offset = arg->value;
3272 }
3273
3274 return 1;
3275 }
3276
3277 /* Mark any global symbols referenced in the GOT we are iterating over
3278 as inelligible for lazy resolution stubs. */
3279 static int
mips_elf_set_no_stub(void ** entryp,void * p ATTRIBUTE_UNUSED)3280 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3281 {
3282 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3283
3284 if (entry->abfd != NULL
3285 && entry->symndx == -1
3286 && entry->d.h->root.dynindx != -1)
3287 entry->d.h->no_fn_stub = TRUE;
3288
3289 return 1;
3290 }
3291
3292 /* Follow indirect and warning hash entries so that each got entry
3293 points to the final symbol definition. P must point to a pointer
3294 to the hash table we're traversing. Since this traversal may
3295 modify the hash table, we set this pointer to NULL to indicate
3296 we've made a potentially-destructive change to the hash table, so
3297 the traversal must be restarted. */
3298 static int
mips_elf_resolve_final_got_entry(void ** entryp,void * p)3299 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3300 {
3301 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3302 htab_t got_entries = *(htab_t *)p;
3303
3304 if (entry->abfd != NULL && entry->symndx == -1)
3305 {
3306 struct mips_elf_link_hash_entry *h = entry->d.h;
3307
3308 while (h->root.root.type == bfd_link_hash_indirect
3309 || h->root.root.type == bfd_link_hash_warning)
3310 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3311
3312 if (entry->d.h == h)
3313 return 1;
3314
3315 entry->d.h = h;
3316
3317 /* If we can't find this entry with the new bfd hash, re-insert
3318 it, and get the traversal restarted. */
3319 if (! htab_find (got_entries, entry))
3320 {
3321 htab_clear_slot (got_entries, entryp);
3322 entryp = htab_find_slot (got_entries, entry, INSERT);
3323 if (! *entryp)
3324 *entryp = entry;
3325 /* Abort the traversal, since the whole table may have
3326 moved, and leave it up to the parent to restart the
3327 process. */
3328 *(htab_t *)p = NULL;
3329 return 0;
3330 }
3331 /* We might want to decrement the global_gotno count, but it's
3332 either too early or too late for that at this point. */
3333 }
3334
3335 return 1;
3336 }
3337
3338 /* Turn indirect got entries in a got_entries table into their final
3339 locations. */
3340 static void
mips_elf_resolve_final_got_entries(struct mips_got_info * g)3341 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3342 {
3343 htab_t got_entries;
3344
3345 do
3346 {
3347 got_entries = g->got_entries;
3348
3349 htab_traverse (got_entries,
3350 mips_elf_resolve_final_got_entry,
3351 &got_entries);
3352 }
3353 while (got_entries == NULL);
3354 }
3355
3356 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3357 the primary GOT. */
3358 static bfd_vma
mips_elf_adjust_gp(bfd * abfd,struct mips_got_info * g,bfd * ibfd)3359 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3360 {
3361 if (g->bfd2got == NULL)
3362 return 0;
3363
3364 g = mips_elf_got_for_ibfd (g, ibfd);
3365 if (! g)
3366 return 0;
3367
3368 BFD_ASSERT (g->next);
3369
3370 g = g->next;
3371
3372 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3373 * MIPS_ELF_GOT_SIZE (abfd);
3374 }
3375
3376 /* Turn a single GOT that is too big for 16-bit addressing into
3377 a sequence of GOTs, each one 16-bit addressable. */
3378
3379 static bfd_boolean
mips_elf_multi_got(bfd * abfd,struct bfd_link_info * info,struct mips_got_info * g,asection * got,bfd_size_type pages)3380 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3381 struct mips_got_info *g, asection *got,
3382 bfd_size_type pages)
3383 {
3384 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3385 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3386 struct mips_got_info *gg;
3387 unsigned int assign;
3388
3389 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3390 mips_elf_bfd2got_entry_eq, NULL);
3391 if (g->bfd2got == NULL)
3392 return FALSE;
3393
3394 got_per_bfd_arg.bfd2got = g->bfd2got;
3395 got_per_bfd_arg.obfd = abfd;
3396 got_per_bfd_arg.info = info;
3397
3398 /* Count how many GOT entries each input bfd requires, creating a
3399 map from bfd to got info while at that. */
3400 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3401 if (got_per_bfd_arg.obfd == NULL)
3402 return FALSE;
3403
3404 got_per_bfd_arg.current = NULL;
3405 got_per_bfd_arg.primary = NULL;
3406 /* Taking out PAGES entries is a worst-case estimate. We could
3407 compute the maximum number of pages that each separate input bfd
3408 uses, but it's probably not worth it. */
3409 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3410 / MIPS_ELF_GOT_SIZE (abfd))
3411 - MIPS_RESERVED_GOTNO (info) - pages);
3412 /* The number of globals that will be included in the primary GOT.
3413 See the calls to mips_elf_set_global_got_offset below for more
3414 information. */
3415 got_per_bfd_arg.global_count = g->global_gotno;
3416
3417 /* Try to merge the GOTs of input bfds together, as long as they
3418 don't seem to exceed the maximum GOT size, choosing one of them
3419 to be the primary GOT. */
3420 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3421 if (got_per_bfd_arg.obfd == NULL)
3422 return FALSE;
3423
3424 /* If we do not find any suitable primary GOT, create an empty one. */
3425 if (got_per_bfd_arg.primary == NULL)
3426 {
3427 g->next = (struct mips_got_info *)
3428 bfd_alloc (abfd, sizeof (struct mips_got_info));
3429 if (g->next == NULL)
3430 return FALSE;
3431
3432 g->next->global_gotsym = NULL;
3433 g->next->global_gotno = 0;
3434 g->next->local_gotno = 0;
3435 g->next->tls_gotno = 0;
3436 g->next->assigned_gotno = 0;
3437 g->next->tls_assigned_gotno = 0;
3438 g->next->tls_ldm_offset = MINUS_ONE;
3439 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3440 mips_elf_multi_got_entry_eq,
3441 NULL);
3442 if (g->next->got_entries == NULL)
3443 return FALSE;
3444 g->next->bfd2got = NULL;
3445 }
3446 else
3447 g->next = got_per_bfd_arg.primary;
3448 g->next->next = got_per_bfd_arg.current;
3449
3450 /* GG is now the master GOT, and G is the primary GOT. */
3451 gg = g;
3452 g = g->next;
3453
3454 /* Map the output bfd to the primary got. That's what we're going
3455 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3456 didn't mark in check_relocs, and we want a quick way to find it.
3457 We can't just use gg->next because we're going to reverse the
3458 list. */
3459 {
3460 struct mips_elf_bfd2got_hash *bfdgot;
3461 void **bfdgotp;
3462
3463 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3464 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3465
3466 if (bfdgot == NULL)
3467 return FALSE;
3468
3469 bfdgot->bfd = abfd;
3470 bfdgot->g = g;
3471 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3472
3473 BFD_ASSERT (*bfdgotp == NULL);
3474 *bfdgotp = bfdgot;
3475 }
3476
3477 /* The IRIX dynamic linker requires every symbol that is referenced
3478 in a dynamic relocation to be present in the primary GOT, so
3479 arrange for them to appear after those that are actually
3480 referenced.
3481
3482 GNU/Linux could very well do without it, but it would slow down
3483 the dynamic linker, since it would have to resolve every dynamic
3484 symbol referenced in other GOTs more than once, without help from
3485 the cache. Also, knowing that every external symbol has a GOT
3486 helps speed up the resolution of local symbols too, so GNU/Linux
3487 follows IRIX's practice.
3488
3489 The number 2 is used by mips_elf_sort_hash_table_f to count
3490 global GOT symbols that are unreferenced in the primary GOT, with
3491 an initial dynamic index computed from gg->assigned_gotno, where
3492 the number of unreferenced global entries in the primary GOT is
3493 preserved. */
3494 if (1)
3495 {
3496 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3497 g->global_gotno = gg->global_gotno;
3498 set_got_offset_arg.value = 2;
3499 }
3500 else
3501 {
3502 /* This could be used for dynamic linkers that don't optimize
3503 symbol resolution while applying relocations so as to use
3504 primary GOT entries or assuming the symbol is locally-defined.
3505 With this code, we assign lower dynamic indices to global
3506 symbols that are not referenced in the primary GOT, so that
3507 their entries can be omitted. */
3508 gg->assigned_gotno = 0;
3509 set_got_offset_arg.value = -1;
3510 }
3511
3512 /* Reorder dynamic symbols as described above (which behavior
3513 depends on the setting of VALUE). */
3514 set_got_offset_arg.g = NULL;
3515 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 set_got_offset_arg.value = 1;
3518 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3519 &set_got_offset_arg);
3520 if (! mips_elf_sort_hash_table (info, 1))
3521 return FALSE;
3522
3523 /* Now go through the GOTs assigning them offset ranges.
3524 [assigned_gotno, local_gotno[ will be set to the range of local
3525 entries in each GOT. We can then compute the end of a GOT by
3526 adding local_gotno to global_gotno. We reverse the list and make
3527 it circular since then we'll be able to quickly compute the
3528 beginning of a GOT, by computing the end of its predecessor. To
3529 avoid special cases for the primary GOT, while still preserving
3530 assertions that are valid for both single- and multi-got links,
3531 we arrange for the main got struct to have the right number of
3532 global entries, but set its local_gotno such that the initial
3533 offset of the primary GOT is zero. Remember that the primary GOT
3534 will become the last item in the circular linked list, so it
3535 points back to the master GOT. */
3536 gg->local_gotno = -g->global_gotno;
3537 gg->global_gotno = g->global_gotno;
3538 gg->tls_gotno = 0;
3539 assign = 0;
3540 gg->next = gg;
3541
3542 do
3543 {
3544 struct mips_got_info *gn;
3545
3546 assign += MIPS_RESERVED_GOTNO (info);
3547 g->assigned_gotno = assign;
3548 g->local_gotno += assign + pages;
3549 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3550
3551 /* Take g out of the direct list, and push it onto the reversed
3552 list that gg points to. g->next is guaranteed to be nonnull after
3553 this operation, as required by mips_elf_initialize_tls_index. */
3554 gn = g->next;
3555 g->next = gg->next;
3556 gg->next = g;
3557
3558 /* Set up any TLS entries. We always place the TLS entries after
3559 all non-TLS entries. */
3560 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3561 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3562
3563 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3564 g = gn;
3565
3566 /* Mark global symbols in every non-primary GOT as ineligible for
3567 stubs. */
3568 if (g)
3569 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3570 }
3571 while (g);
3572
3573 got->size = (gg->next->local_gotno
3574 + gg->next->global_gotno
3575 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3576
3577 return TRUE;
3578 }
3579
3580
3581 /* Returns the first relocation of type r_type found, beginning with
3582 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3583
3584 static const Elf_Internal_Rela *
mips_elf_next_relocation(bfd * abfd ATTRIBUTE_UNUSED,unsigned int r_type,const Elf_Internal_Rela * relocation,const Elf_Internal_Rela * relend)3585 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3586 const Elf_Internal_Rela *relocation,
3587 const Elf_Internal_Rela *relend)
3588 {
3589 while (relocation < relend)
3590 {
3591 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3592 return relocation;
3593
3594 ++relocation;
3595 }
3596
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3599 return NULL;
3600 }
3601
3602 /* Return whether a relocation is against a local symbol. */
3603
3604 static bfd_boolean
mips_elf_local_relocation_p(bfd * input_bfd,const Elf_Internal_Rela * relocation,asection ** local_sections,bfd_boolean check_forced)3605 mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
3609 {
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3613 size_t extsymoff;
3614
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3618
3619 if (r_symndx < extsymoff)
3620 return TRUE;
3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3622 return TRUE;
3623
3624 if (check_forced)
3625 {
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3634 if (h->root.forced_local)
3635 return TRUE;
3636 }
3637
3638 return FALSE;
3639 }
3640
3641 /* Sign-extend VALUE, which has the indicated number of BITS. */
3642
3643 bfd_vma
_bfd_mips_elf_sign_extend(bfd_vma value,int bits)3644 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3645 {
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3649
3650 return value;
3651 }
3652
3653 /* Return non-zero if the indicated VALUE has overflowed the maximum
3654 range expressible by a signed number with the indicated number of
3655 BITS. */
3656
3657 static bfd_boolean
mips_elf_overflow_p(bfd_vma value,int bits)3658 mips_elf_overflow_p (bfd_vma value, int bits)
3659 {
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3661
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
3664 return TRUE;
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
3667 return TRUE;
3668
3669 /* All is well. */
3670 return FALSE;
3671 }
3672
3673 /* Calculate the %high function. */
3674
3675 static bfd_vma
mips_elf_high(bfd_vma value)3676 mips_elf_high (bfd_vma value)
3677 {
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3679 }
3680
3681 /* Calculate the %higher function. */
3682
3683 static bfd_vma
mips_elf_higher(bfd_vma value ATTRIBUTE_UNUSED)3684 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3685 {
3686 #ifdef BFD64
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3688 #else
3689 abort ();
3690 return MINUS_ONE;
3691 #endif
3692 }
3693
3694 /* Calculate the %highest function. */
3695
3696 static bfd_vma
mips_elf_highest(bfd_vma value ATTRIBUTE_UNUSED)3697 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3698 {
3699 #ifdef BFD64
3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3701 #else
3702 abort ();
3703 return MINUS_ONE;
3704 #endif
3705 }
3706
3707 /* Create the .compact_rel section. */
3708
3709 static bfd_boolean
mips_elf_create_compact_rel_section(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)3710 mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3712 {
3713 flagword flags;
3714 register asection *s;
3715
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3717 {
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3719 | SEC_READONLY);
3720
3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3722 if (s == NULL
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3725 return FALSE;
3726
3727 s->size = sizeof (Elf32_External_compact_rel);
3728 }
3729
3730 return TRUE;
3731 }
3732
3733 /* Create the .got section to hold the global offset table. */
3734
3735 static bfd_boolean
mips_elf_create_got_section(bfd * abfd,struct bfd_link_info * info,bfd_boolean maybe_exclude)3736 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
3738 {
3739 flagword flags;
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
3742 struct bfd_link_hash_entry *bh;
3743 struct mips_got_info *g;
3744 bfd_size_type amt;
3745 struct mips_elf_link_hash_table *htab;
3746
3747 htab = mips_elf_hash_table (info);
3748
3749 /* This function may be called more than once. */
3750 s = mips_elf_got_section (abfd, TRUE);
3751 if (s)
3752 {
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3755 return TRUE;
3756 }
3757
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3760
3761 if (maybe_exclude)
3762 flags |= SEC_EXCLUDE;
3763
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
3767 if (s == NULL
3768 || ! bfd_set_section_alignment (abfd, s, 4))
3769 return FALSE;
3770
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
3774 bh = NULL;
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3778 return FALSE;
3779
3780 h = (struct elf_link_hash_entry *) bh;
3781 h->non_elf = 0;
3782 h->def_regular = 1;
3783 h->type = STT_OBJECT;
3784 elf_hash_table (info)->hgot = h;
3785
3786 if (info->shared
3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3788 return FALSE;
3789
3790 amt = sizeof (struct mips_got_info);
3791 g = bfd_alloc (abfd, amt);
3792 if (g == NULL)
3793 return FALSE;
3794 g->global_gotsym = NULL;
3795 g->global_gotno = 0;
3796 g->tls_gotno = 0;
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3799 g->bfd2got = NULL;
3800 g->next = NULL;
3801 g->tls_ldm_offset = MINUS_ONE;
3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3803 mips_elf_got_entry_eq, NULL);
3804 if (g->got_entries == NULL)
3805 return FALSE;
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3809
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3812 {
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3817 return FALSE;
3818
3819 htab->sgotplt = s;
3820 }
3821 return TRUE;
3822 }
3823
3824 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3827
3828 static bfd_boolean
is_gott_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)3829 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3830 {
3831 return (mips_elf_hash_table (info)->is_vxworks
3832 && info->shared
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3835 }
3836
3837 /* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3840
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3844
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3849
3850 static bfd_reloc_status_type
mips_elf_calculate_relocation(bfd * abfd,bfd * input_bfd,asection * input_section,struct bfd_link_info * info,const Elf_Internal_Rela * relocation,bfd_vma addend,reloc_howto_type * howto,Elf_Internal_Sym * local_syms,asection ** local_sections,bfd_vma * valuep,const char ** namep,bfd_boolean * require_jalxp,bfd_boolean save_addend)3851 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
3860 {
3861 /* The eventual value we will return. */
3862 bfd_vma value;
3863 /* The address of the symbol against which the relocation is
3864 occurring. */
3865 bfd_vma symbol = 0;
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3870 relocated. */
3871 bfd_vma p;
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3879 located. */
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
3882 /* TRUE if the symbol referred to by this relocation is a local
3883 symbol. */
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
3890 Elf_Internal_Shdr *symtab_hdr;
3891 size_t extsymoff;
3892 unsigned long r_symndx;
3893 int r_type;
3894 /* TRUE if overflow occurred during the calculation of the
3895 relocation value. */
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
3899 struct mips_elf_link_hash_table *htab;
3900 bfd *dynobj;
3901
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
3904
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3911
3912 /* Assume that there will be no overflow. */
3913 overflowed_p = FALSE;
3914
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3919 local_sections, FALSE);
3920 was_local_p = local_p;
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3923 else
3924 {
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3927 extsymoff = 0;
3928 }
3929
3930 /* Figure out the value of the symbol. */
3931 if (local_p)
3932 {
3933 Elf_Internal_Sym *sym;
3934
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3937
3938 symbol = sec->output_section->vma + sec->output_offset;
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
3941 symbol += sym->st_value;
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3944 {
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3946 addend -= symbol;
3947 addend += sec->output_section->vma + sec->output_offset;
3948 }
3949
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3952 ++symbol;
3953
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3957 sym->st_name);
3958 if (*namep == NULL || **namep == '\0')
3959 *namep = bfd_section_name (input_bfd, sec);
3960
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3962 }
3963 else
3964 {
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3966
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3977
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
3980 if (strcmp (*namep, "_gp_disp") == 0
3981 && ! NEWABI_P (input_bfd))
3982 {
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3987 return bfd_reloc_notsupported;
3988
3989 gp_disp_p = TRUE;
3990 }
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3995
3996
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4000 its defined. */
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4004 {
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4010 else
4011 symbol = h->root.root.u.def.value;
4012 }
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4017 addresses. */
4018 symbol = 0;
4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4021 symbol = 0;
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4024 {
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4030 somehow as well. */
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4033 symbol = 0;
4034 }
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4036 {
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4044 symbol = 0;
4045 }
4046 else
4047 {
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
4053 return bfd_reloc_undefined;
4054 symbol = 0;
4055 }
4056
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4058 }
4059
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4062 a stub. */
4063 if (r_type != R_MIPS16_26 && !info->relocatable
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4068 {
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4071 stub. */
4072 if (local_p)
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4074 else
4075 {
4076 BFD_ASSERT (h->need_fn_stub);
4077 sec = h->fn_stub;
4078 }
4079
4080 symbol = sec->output_section->vma + sec->output_offset;
4081 }
4082 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4083 need to redirect the call to the stub. */
4084 else if (r_type == R_MIPS16_26 && !info->relocatable
4085 && h != NULL
4086 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4087 && !target_is_16_bit_code_p)
4088 {
4089 /* If both call_stub and call_fp_stub are defined, we can figure
4090 out which one to use by seeing which one appears in the input
4091 file. */
4092 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4093 {
4094 asection *o;
4095
4096 sec = NULL;
4097 for (o = input_bfd->sections; o != NULL; o = o->next)
4098 {
4099 if (strncmp (bfd_get_section_name (input_bfd, o),
4100 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4101 {
4102 sec = h->call_fp_stub;
4103 break;
4104 }
4105 }
4106 if (sec == NULL)
4107 sec = h->call_stub;
4108 }
4109 else if (h->call_stub != NULL)
4110 sec = h->call_stub;
4111 else
4112 sec = h->call_fp_stub;
4113
4114 BFD_ASSERT (sec->size > 0);
4115 symbol = sec->output_section->vma + sec->output_offset;
4116 }
4117
4118 /* Calls from 16-bit code to 32-bit code and vice versa require the
4119 special jalx instruction. */
4120 *require_jalxp = (!info->relocatable
4121 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4122 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4123
4124 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4125 local_sections, TRUE);
4126
4127 /* If we haven't already determined the GOT offset, or the GP value,
4128 and we're going to need it, get it now. */
4129 switch (r_type)
4130 {
4131 case R_MIPS_GOT_PAGE:
4132 case R_MIPS_GOT_OFST:
4133 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4134 bind locally. */
4135 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4136 if (local_p || r_type == R_MIPS_GOT_OFST)
4137 break;
4138 /* Fall through. */
4139
4140 case R_MIPS_CALL16:
4141 case R_MIPS_GOT16:
4142 case R_MIPS_GOT_DISP:
4143 case R_MIPS_GOT_HI16:
4144 case R_MIPS_CALL_HI16:
4145 case R_MIPS_GOT_LO16:
4146 case R_MIPS_CALL_LO16:
4147 case R_MIPS_TLS_GD:
4148 case R_MIPS_TLS_GOTTPREL:
4149 case R_MIPS_TLS_LDM:
4150 /* Find the index into the GOT where this value is located. */
4151 if (r_type == R_MIPS_TLS_LDM)
4152 {
4153 g = mips_elf_local_got_index (abfd, input_bfd, info,
4154 sec, 0, 0, NULL, r_type);
4155 if (g == MINUS_ONE)
4156 return bfd_reloc_outofrange;
4157 }
4158 else if (!local_p)
4159 {
4160 /* On VxWorks, CALL relocations should refer to the .got.plt
4161 entry, which is initialized to point at the PLT stub. */
4162 if (htab->is_vxworks
4163 && (r_type == R_MIPS_CALL_HI16
4164 || r_type == R_MIPS_CALL_LO16
4165 || r_type == R_MIPS_CALL16))
4166 {
4167 BFD_ASSERT (addend == 0);
4168 BFD_ASSERT (h->root.needs_plt);
4169 g = mips_elf_gotplt_index (info, &h->root);
4170 }
4171 else
4172 {
4173 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4174 GOT_PAGE relocation that decays to GOT_DISP because the
4175 symbol turns out to be global. The addend is then added
4176 as GOT_OFST. */
4177 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4178 g = mips_elf_global_got_index (dynobj, input_bfd,
4179 &h->root, r_type, info);
4180 if (h->tls_type == GOT_NORMAL
4181 && (! elf_hash_table(info)->dynamic_sections_created
4182 || (info->shared
4183 && (info->symbolic || h->root.forced_local)
4184 && h->root.def_regular)))
4185 {
4186 /* This is a static link or a -Bsymbolic link. The
4187 symbol is defined locally, or was forced to be local.
4188 We must initialize this entry in the GOT. */
4189 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4190 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4191 }
4192 }
4193 }
4194 else if (!htab->is_vxworks
4195 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4196 /* The calculation below does not involve "g". */
4197 break;
4198 else
4199 {
4200 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4201 symbol + addend, r_symndx, h, r_type);
4202 if (g == MINUS_ONE)
4203 return bfd_reloc_outofrange;
4204 }
4205
4206 /* Convert GOT indices to actual offsets. */
4207 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4208 break;
4209
4210 case R_MIPS_HI16:
4211 case R_MIPS_LO16:
4212 case R_MIPS_GPREL16:
4213 case R_MIPS_GPREL32:
4214 case R_MIPS_LITERAL:
4215 case R_MIPS16_HI16:
4216 case R_MIPS16_LO16:
4217 case R_MIPS16_GPREL:
4218 gp0 = _bfd_get_gp_value (input_bfd);
4219 gp = _bfd_get_gp_value (abfd);
4220 if (dynobj)
4221 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4222 input_bfd);
4223 break;
4224
4225 default:
4226 break;
4227 }
4228
4229 if (gnu_local_gp_p)
4230 symbol = gp;
4231
4232 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4233 symbols are resolved by the loader. Add them to .rela.dyn. */
4234 if (h != NULL && is_gott_symbol (info, &h->root))
4235 {
4236 Elf_Internal_Rela outrel;
4237 bfd_byte *loc;
4238 asection *s;
4239
4240 s = mips_elf_rel_dyn_section (info, FALSE);
4241 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4242
4243 outrel.r_offset = (input_section->output_section->vma
4244 + input_section->output_offset
4245 + relocation->r_offset);
4246 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4247 outrel.r_addend = addend;
4248 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4249 *valuep = 0;
4250 return bfd_reloc_ok;
4251 }
4252
4253 /* Figure out what kind of relocation is being performed. */
4254 switch (r_type)
4255 {
4256 case R_MIPS_NONE:
4257 return bfd_reloc_continue;
4258
4259 case R_MIPS_16:
4260 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4261 overflowed_p = mips_elf_overflow_p (value, 16);
4262 break;
4263
4264 case R_MIPS_32:
4265 case R_MIPS_REL32:
4266 case R_MIPS_64:
4267 if ((info->shared
4268 || (!htab->is_vxworks
4269 && htab->root.dynamic_sections_created
4270 && h != NULL
4271 && h->root.def_dynamic
4272 && !h->root.def_regular))
4273 && r_symndx != 0
4274 && (input_section->flags & SEC_ALLOC) != 0)
4275 {
4276 /* If we're creating a shared library, or this relocation is
4277 against a symbol in a shared library, then we can't know
4278 where the symbol will end up. So, we create a relocation
4279 record in the output, and leave the job up to the dynamic
4280 linker.
4281
4282 In VxWorks executables, references to external symbols
4283 are handled using copy relocs or PLT stubs, so there's
4284 no need to add a dynamic relocation here. */
4285 value = addend;
4286 if (!mips_elf_create_dynamic_relocation (abfd,
4287 info,
4288 relocation,
4289 h,
4290 sec,
4291 symbol,
4292 &value,
4293 input_section))
4294 return bfd_reloc_undefined;
4295 }
4296 else
4297 {
4298 if (r_type != R_MIPS_REL32)
4299 value = symbol + addend;
4300 else
4301 value = addend;
4302 }
4303 value &= howto->dst_mask;
4304 break;
4305
4306 case R_MIPS_PC32:
4307 value = symbol + addend - p;
4308 value &= howto->dst_mask;
4309 break;
4310
4311 case R_MIPS16_26:
4312 /* The calculation for R_MIPS16_26 is just the same as for an
4313 R_MIPS_26. It's only the storage of the relocated field into
4314 the output file that's different. That's handled in
4315 mips_elf_perform_relocation. So, we just fall through to the
4316 R_MIPS_26 case here. */
4317 case R_MIPS_26:
4318 if (local_p)
4319 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4320 else
4321 {
4322 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4323 if (h->root.root.type != bfd_link_hash_undefweak)
4324 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4325 }
4326 value &= howto->dst_mask;
4327 break;
4328
4329 case R_MIPS_TLS_DTPREL_HI16:
4330 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4331 & howto->dst_mask);
4332 break;
4333
4334 case R_MIPS_TLS_DTPREL_LO16:
4335 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4336 break;
4337
4338 case R_MIPS_TLS_TPREL_HI16:
4339 value = (mips_elf_high (addend + symbol - tprel_base (info))
4340 & howto->dst_mask);
4341 break;
4342
4343 case R_MIPS_TLS_TPREL_LO16:
4344 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4345 break;
4346
4347 case R_MIPS_HI16:
4348 case R_MIPS16_HI16:
4349 if (!gp_disp_p)
4350 {
4351 value = mips_elf_high (addend + symbol);
4352 value &= howto->dst_mask;
4353 }
4354 else
4355 {
4356 /* For MIPS16 ABI code we generate this sequence
4357 0: li $v0,%hi(_gp_disp)
4358 4: addiupc $v1,%lo(_gp_disp)
4359 8: sll $v0,16
4360 12: addu $v0,$v1
4361 14: move $gp,$v0
4362 So the offsets of hi and lo relocs are the same, but the
4363 $pc is four higher than $t9 would be, so reduce
4364 both reloc addends by 4. */
4365 if (r_type == R_MIPS16_HI16)
4366 value = mips_elf_high (addend + gp - p - 4);
4367 else
4368 value = mips_elf_high (addend + gp - p);
4369 overflowed_p = mips_elf_overflow_p (value, 16);
4370 }
4371 break;
4372
4373 case R_MIPS_LO16:
4374 case R_MIPS16_LO16:
4375 if (!gp_disp_p)
4376 value = (symbol + addend) & howto->dst_mask;
4377 else
4378 {
4379 /* See the comment for R_MIPS16_HI16 above for the reason
4380 for this conditional. */
4381 if (r_type == R_MIPS16_LO16)
4382 value = addend + gp - p;
4383 else
4384 value = addend + gp - p + 4;
4385 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4386 for overflow. But, on, say, IRIX5, relocations against
4387 _gp_disp are normally generated from the .cpload
4388 pseudo-op. It generates code that normally looks like
4389 this:
4390
4391 lui $gp,%hi(_gp_disp)
4392 addiu $gp,$gp,%lo(_gp_disp)
4393 addu $gp,$gp,$t9
4394
4395 Here $t9 holds the address of the function being called,
4396 as required by the MIPS ELF ABI. The R_MIPS_LO16
4397 relocation can easily overflow in this situation, but the
4398 R_MIPS_HI16 relocation will handle the overflow.
4399 Therefore, we consider this a bug in the MIPS ABI, and do
4400 not check for overflow here. */
4401 }
4402 break;
4403
4404 case R_MIPS_LITERAL:
4405 /* Because we don't merge literal sections, we can handle this
4406 just like R_MIPS_GPREL16. In the long run, we should merge
4407 shared literals, and then we will need to additional work
4408 here. */
4409
4410 /* Fall through. */
4411
4412 case R_MIPS16_GPREL:
4413 /* The R_MIPS16_GPREL performs the same calculation as
4414 R_MIPS_GPREL16, but stores the relocated bits in a different
4415 order. We don't need to do anything special here; the
4416 differences are handled in mips_elf_perform_relocation. */
4417 case R_MIPS_GPREL16:
4418 /* Only sign-extend the addend if it was extracted from the
4419 instruction. If the addend was separate, leave it alone,
4420 otherwise we may lose significant bits. */
4421 if (howto->partial_inplace)
4422 addend = _bfd_mips_elf_sign_extend (addend, 16);
4423 value = symbol + addend - gp;
4424 /* If the symbol was local, any earlier relocatable links will
4425 have adjusted its addend with the gp offset, so compensate
4426 for that now. Don't do it for symbols forced local in this
4427 link, though, since they won't have had the gp offset applied
4428 to them before. */
4429 if (was_local_p)
4430 value += gp0;
4431 overflowed_p = mips_elf_overflow_p (value, 16);
4432 break;
4433
4434 case R_MIPS_GOT16:
4435 case R_MIPS_CALL16:
4436 /* VxWorks does not have separate local and global semantics for
4437 R_MIPS_GOT16; every relocation evaluates to "G". */
4438 if (!htab->is_vxworks && local_p)
4439 {
4440 bfd_boolean forced;
4441
4442 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4443 local_sections, FALSE);
4444 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4445 symbol + addend, forced);
4446 if (value == MINUS_ONE)
4447 return bfd_reloc_outofrange;
4448 value
4449 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4450 overflowed_p = mips_elf_overflow_p (value, 16);
4451 break;
4452 }
4453
4454 /* Fall through. */
4455
4456 case R_MIPS_TLS_GD:
4457 case R_MIPS_TLS_GOTTPREL:
4458 case R_MIPS_TLS_LDM:
4459 case R_MIPS_GOT_DISP:
4460 got_disp:
4461 value = g;
4462 overflowed_p = mips_elf_overflow_p (value, 16);
4463 break;
4464
4465 case R_MIPS_GPREL32:
4466 value = (addend + symbol + gp0 - gp);
4467 if (!save_addend)
4468 value &= howto->dst_mask;
4469 break;
4470
4471 case R_MIPS_PC16:
4472 case R_MIPS_GNU_REL16_S2:
4473 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4474 overflowed_p = mips_elf_overflow_p (value, 18);
4475 value = (value >> 2) & howto->dst_mask;
4476 break;
4477
4478 case R_MIPS_GOT_HI16:
4479 case R_MIPS_CALL_HI16:
4480 /* We're allowed to handle these two relocations identically.
4481 The dynamic linker is allowed to handle the CALL relocations
4482 differently by creating a lazy evaluation stub. */
4483 value = g;
4484 value = mips_elf_high (value);
4485 value &= howto->dst_mask;
4486 break;
4487
4488 case R_MIPS_GOT_LO16:
4489 case R_MIPS_CALL_LO16:
4490 value = g & howto->dst_mask;
4491 break;
4492
4493 case R_MIPS_GOT_PAGE:
4494 /* GOT_PAGE relocations that reference non-local symbols decay
4495 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4496 0. */
4497 if (! local_p)
4498 goto got_disp;
4499 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4500 symbol + addend, NULL);
4501 if (value == MINUS_ONE)
4502 return bfd_reloc_outofrange;
4503 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4504 overflowed_p = mips_elf_overflow_p (value, 16);
4505 break;
4506
4507 case R_MIPS_GOT_OFST:
4508 if (local_p)
4509 mips_elf_got_page (abfd, input_bfd, info, sec,
4510 symbol + addend, &value);
4511 else
4512 value = addend;
4513 overflowed_p = mips_elf_overflow_p (value, 16);
4514 break;
4515
4516 case R_MIPS_SUB:
4517 value = symbol - addend;
4518 value &= howto->dst_mask;
4519 break;
4520
4521 case R_MIPS_HIGHER:
4522 value = mips_elf_higher (addend + symbol);
4523 value &= howto->dst_mask;
4524 break;
4525
4526 case R_MIPS_HIGHEST:
4527 value = mips_elf_highest (addend + symbol);
4528 value &= howto->dst_mask;
4529 break;
4530
4531 case R_MIPS_SCN_DISP:
4532 value = symbol + addend - sec->output_offset;
4533 value &= howto->dst_mask;
4534 break;
4535
4536 case R_MIPS_JALR:
4537 /* This relocation is only a hint. In some cases, we optimize
4538 it into a bal instruction. But we don't try to optimize
4539 branches to the PLT; that will wind up wasting time. */
4540 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4541 return bfd_reloc_continue;
4542 value = symbol + addend;
4543 break;
4544
4545 case R_MIPS_PJUMP:
4546 case R_MIPS_GNU_VTINHERIT:
4547 case R_MIPS_GNU_VTENTRY:
4548 /* We don't do anything with these at present. */
4549 return bfd_reloc_continue;
4550
4551 default:
4552 /* An unrecognized relocation type. */
4553 return bfd_reloc_notsupported;
4554 }
4555
4556 /* Store the VALUE for our caller. */
4557 *valuep = value;
4558 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4559 }
4560
4561 /* Obtain the field relocated by RELOCATION. */
4562
4563 static bfd_vma
mips_elf_obtain_contents(reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd * input_bfd,bfd_byte * contents)4564 mips_elf_obtain_contents (reloc_howto_type *howto,
4565 const Elf_Internal_Rela *relocation,
4566 bfd *input_bfd, bfd_byte *contents)
4567 {
4568 bfd_vma x;
4569 bfd_byte *location = contents + relocation->r_offset;
4570
4571 /* Obtain the bytes. */
4572 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4573
4574 return x;
4575 }
4576
4577 /* It has been determined that the result of the RELOCATION is the
4578 VALUE. Use HOWTO to place VALUE into the output file at the
4579 appropriate position. The SECTION is the section to which the
4580 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4581 for the relocation must be either JAL or JALX, and it is
4582 unconditionally converted to JALX.
4583
4584 Returns FALSE if anything goes wrong. */
4585
4586 static bfd_boolean
mips_elf_perform_relocation(struct bfd_link_info * info,reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd_vma value,bfd * input_bfd,asection * input_section,bfd_byte * contents,bfd_boolean require_jalx)4587 mips_elf_perform_relocation (struct bfd_link_info *info,
4588 reloc_howto_type *howto,
4589 const Elf_Internal_Rela *relocation,
4590 bfd_vma value, bfd *input_bfd,
4591 asection *input_section, bfd_byte *contents,
4592 bfd_boolean require_jalx)
4593 {
4594 bfd_vma x;
4595 bfd_byte *location;
4596 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4597
4598 /* Figure out where the relocation is occurring. */
4599 location = contents + relocation->r_offset;
4600
4601 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4602
4603 /* Obtain the current value. */
4604 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4605
4606 /* Clear the field we are setting. */
4607 x &= ~howto->dst_mask;
4608
4609 /* Set the field. */
4610 x |= (value & howto->dst_mask);
4611
4612 /* If required, turn JAL into JALX. */
4613 if (require_jalx)
4614 {
4615 bfd_boolean ok;
4616 bfd_vma opcode = x >> 26;
4617 bfd_vma jalx_opcode;
4618
4619 /* Check to see if the opcode is already JAL or JALX. */
4620 if (r_type == R_MIPS16_26)
4621 {
4622 ok = ((opcode == 0x6) || (opcode == 0x7));
4623 jalx_opcode = 0x7;
4624 }
4625 else
4626 {
4627 ok = ((opcode == 0x3) || (opcode == 0x1d));
4628 jalx_opcode = 0x1d;
4629 }
4630
4631 /* If the opcode is not JAL or JALX, there's a problem. */
4632 if (!ok)
4633 {
4634 (*_bfd_error_handler)
4635 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4636 input_bfd,
4637 input_section,
4638 (unsigned long) relocation->r_offset);
4639 bfd_set_error (bfd_error_bad_value);
4640 return FALSE;
4641 }
4642
4643 /* Make this the JALX opcode. */
4644 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4645 }
4646
4647 /* On the RM9000, bal is faster than jal, because bal uses branch
4648 prediction hardware. If we are linking for the RM9000, and we
4649 see jal, and bal fits, use it instead. Note that this
4650 transformation should be safe for all architectures. */
4651 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4652 && !info->relocatable
4653 && !require_jalx
4654 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4655 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4656 {
4657 bfd_vma addr;
4658 bfd_vma dest;
4659 bfd_signed_vma off;
4660
4661 addr = (input_section->output_section->vma
4662 + input_section->output_offset
4663 + relocation->r_offset
4664 + 4);
4665 if (r_type == R_MIPS_26)
4666 dest = (value << 2) | ((addr >> 28) << 28);
4667 else
4668 dest = value;
4669 off = dest - addr;
4670 if (off <= 0x1ffff && off >= -0x20000)
4671 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4672 }
4673
4674 /* Put the value into the output. */
4675 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4676
4677 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4678 location);
4679
4680 return TRUE;
4681 }
4682
4683 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4684
4685 static bfd_boolean
mips_elf_stub_section_p(bfd * abfd ATTRIBUTE_UNUSED,asection * section)4686 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4687 {
4688 const char *name = bfd_get_section_name (abfd, section);
4689
4690 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4691 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4692 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4693 }
4694
4695 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4696
4697 static void
mips_elf_allocate_dynamic_relocations(bfd * abfd,struct bfd_link_info * info,unsigned int n)4698 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4699 unsigned int n)
4700 {
4701 asection *s;
4702 struct mips_elf_link_hash_table *htab;
4703
4704 htab = mips_elf_hash_table (info);
4705 s = mips_elf_rel_dyn_section (info, FALSE);
4706 BFD_ASSERT (s != NULL);
4707
4708 if (htab->is_vxworks)
4709 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4710 else
4711 {
4712 if (s->size == 0)
4713 {
4714 /* Make room for a null element. */
4715 s->size += MIPS_ELF_REL_SIZE (abfd);
4716 ++s->reloc_count;
4717 }
4718 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4719 }
4720 }
4721
4722 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4723 is the original relocation, which is now being transformed into a
4724 dynamic relocation. The ADDENDP is adjusted if necessary; the
4725 caller should store the result in place of the original addend. */
4726
4727 static bfd_boolean
mips_elf_create_dynamic_relocation(bfd * output_bfd,struct bfd_link_info * info,const Elf_Internal_Rela * rel,struct mips_elf_link_hash_entry * h,asection * sec,bfd_vma symbol,bfd_vma * addendp,asection * input_section)4728 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4729 struct bfd_link_info *info,
4730 const Elf_Internal_Rela *rel,
4731 struct mips_elf_link_hash_entry *h,
4732 asection *sec, bfd_vma symbol,
4733 bfd_vma *addendp, asection *input_section)
4734 {
4735 Elf_Internal_Rela outrel[3];
4736 asection *sreloc;
4737 bfd *dynobj;
4738 int r_type;
4739 long indx;
4740 bfd_boolean defined_p;
4741 struct mips_elf_link_hash_table *htab;
4742
4743 htab = mips_elf_hash_table (info);
4744 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4745 dynobj = elf_hash_table (info)->dynobj;
4746 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4747 BFD_ASSERT (sreloc != NULL);
4748 BFD_ASSERT (sreloc->contents != NULL);
4749 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4750 < sreloc->size);
4751
4752 outrel[0].r_offset =
4753 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4754 outrel[1].r_offset =
4755 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4756 outrel[2].r_offset =
4757 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4758
4759 if (outrel[0].r_offset == MINUS_ONE)
4760 /* The relocation field has been deleted. */
4761 return TRUE;
4762
4763 if (outrel[0].r_offset == MINUS_TWO)
4764 {
4765 /* The relocation field has been converted into a relative value of
4766 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4767 the field to be fully relocated, so add in the symbol's value. */
4768 *addendp += symbol;
4769 return TRUE;
4770 }
4771
4772 /* We must now calculate the dynamic symbol table index to use
4773 in the relocation. */
4774 if (h != NULL
4775 && (sec == NULL || !h->root.def_regular
4776 || (info->shared && !info->symbolic && !h->root.forced_local)))
4777 {
4778 indx = h->root.dynindx;
4779 if (SGI_COMPAT (output_bfd))
4780 defined_p = h->root.def_regular;
4781 else
4782 /* ??? glibc's ld.so just adds the final GOT entry to the
4783 relocation field. It therefore treats relocs against
4784 defined symbols in the same way as relocs against
4785 undefined symbols. */
4786 defined_p = FALSE;
4787 }
4788 else
4789 {
4790 if (sec != NULL && bfd_is_abs_section (sec))
4791 indx = 0;
4792 else if (sec == NULL || sec->owner == NULL)
4793 {
4794 bfd_set_error (bfd_error_bad_value);
4795 return FALSE;
4796 }
4797 else
4798 {
4799 indx = elf_section_data (sec->output_section)->dynindx;
4800 if (indx == 0)
4801 abort ();
4802 }
4803
4804 /* Instead of generating a relocation using the section
4805 symbol, we may as well make it a fully relative
4806 relocation. We want to avoid generating relocations to
4807 local symbols because we used to generate them
4808 incorrectly, without adding the original symbol value,
4809 which is mandated by the ABI for section symbols. In
4810 order to give dynamic loaders and applications time to
4811 phase out the incorrect use, we refrain from emitting
4812 section-relative relocations. It's not like they're
4813 useful, after all. This should be a bit more efficient
4814 as well. */
4815 /* ??? Although this behavior is compatible with glibc's ld.so,
4816 the ABI says that relocations against STN_UNDEF should have
4817 a symbol value of 0. Irix rld honors this, so relocations
4818 against STN_UNDEF have no effect. */
4819 if (!SGI_COMPAT (output_bfd))
4820 indx = 0;
4821 defined_p = TRUE;
4822 }
4823
4824 /* If the relocation was previously an absolute relocation and
4825 this symbol will not be referred to by the relocation, we must
4826 adjust it by the value we give it in the dynamic symbol table.
4827 Otherwise leave the job up to the dynamic linker. */
4828 if (defined_p && r_type != R_MIPS_REL32)
4829 *addendp += symbol;
4830
4831 if (htab->is_vxworks)
4832 /* VxWorks uses non-relative relocations for this. */
4833 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4834 else
4835 /* The relocation is always an REL32 relocation because we don't
4836 know where the shared library will wind up at load-time. */
4837 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4838 R_MIPS_REL32);
4839
4840 /* For strict adherence to the ABI specification, we should
4841 generate a R_MIPS_64 relocation record by itself before the
4842 _REL32/_64 record as well, such that the addend is read in as
4843 a 64-bit value (REL32 is a 32-bit relocation, after all).
4844 However, since none of the existing ELF64 MIPS dynamic
4845 loaders seems to care, we don't waste space with these
4846 artificial relocations. If this turns out to not be true,
4847 mips_elf_allocate_dynamic_relocation() should be tweaked so
4848 as to make room for a pair of dynamic relocations per
4849 invocation if ABI_64_P, and here we should generate an
4850 additional relocation record with R_MIPS_64 by itself for a
4851 NULL symbol before this relocation record. */
4852 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4853 ABI_64_P (output_bfd)
4854 ? R_MIPS_64
4855 : R_MIPS_NONE);
4856 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4857
4858 /* Adjust the output offset of the relocation to reference the
4859 correct location in the output file. */
4860 outrel[0].r_offset += (input_section->output_section->vma
4861 + input_section->output_offset);
4862 outrel[1].r_offset += (input_section->output_section->vma
4863 + input_section->output_offset);
4864 outrel[2].r_offset += (input_section->output_section->vma
4865 + input_section->output_offset);
4866
4867 /* Put the relocation back out. We have to use the special
4868 relocation outputter in the 64-bit case since the 64-bit
4869 relocation format is non-standard. */
4870 if (ABI_64_P (output_bfd))
4871 {
4872 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4873 (output_bfd, &outrel[0],
4874 (sreloc->contents
4875 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4876 }
4877 else if (htab->is_vxworks)
4878 {
4879 /* VxWorks uses RELA rather than REL dynamic relocations. */
4880 outrel[0].r_addend = *addendp;
4881 bfd_elf32_swap_reloca_out
4882 (output_bfd, &outrel[0],
4883 (sreloc->contents
4884 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4885 }
4886 else
4887 bfd_elf32_swap_reloc_out
4888 (output_bfd, &outrel[0],
4889 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4890
4891 /* We've now added another relocation. */
4892 ++sreloc->reloc_count;
4893
4894 /* Make sure the output section is writable. The dynamic linker
4895 will be writing to it. */
4896 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4897 |= SHF_WRITE;
4898
4899 /* On IRIX5, make an entry of compact relocation info. */
4900 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4901 {
4902 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4903 bfd_byte *cr;
4904
4905 if (scpt)
4906 {
4907 Elf32_crinfo cptrel;
4908
4909 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4910 cptrel.vaddr = (rel->r_offset
4911 + input_section->output_section->vma
4912 + input_section->output_offset);
4913 if (r_type == R_MIPS_REL32)
4914 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4915 else
4916 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4917 mips_elf_set_cr_dist2to (cptrel, 0);
4918 cptrel.konst = *addendp;
4919
4920 cr = (scpt->contents
4921 + sizeof (Elf32_External_compact_rel));
4922 mips_elf_set_cr_relvaddr (cptrel, 0);
4923 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4924 ((Elf32_External_crinfo *) cr
4925 + scpt->reloc_count));
4926 ++scpt->reloc_count;
4927 }
4928 }
4929
4930 /* If we've written this relocation for a readonly section,
4931 we need to set DF_TEXTREL again, so that we do not delete the
4932 DT_TEXTREL tag. */
4933 if (MIPS_ELF_READONLY_SECTION (input_section))
4934 info->flags |= DF_TEXTREL;
4935
4936 return TRUE;
4937 }
4938
4939 /* Return the MACH for a MIPS e_flags value. */
4940
4941 unsigned long
_bfd_elf_mips_mach(flagword flags)4942 _bfd_elf_mips_mach (flagword flags)
4943 {
4944 switch (flags & EF_MIPS_MACH)
4945 {
4946 case E_MIPS_MACH_3900:
4947 return bfd_mach_mips3900;
4948
4949 case E_MIPS_MACH_4010:
4950 return bfd_mach_mips4010;
4951
4952 case E_MIPS_MACH_4100:
4953 return bfd_mach_mips4100;
4954
4955 case E_MIPS_MACH_4111:
4956 return bfd_mach_mips4111;
4957
4958 case E_MIPS_MACH_4120:
4959 return bfd_mach_mips4120;
4960
4961 case E_MIPS_MACH_4650:
4962 return bfd_mach_mips4650;
4963
4964 case E_MIPS_MACH_5400:
4965 return bfd_mach_mips5400;
4966
4967 case E_MIPS_MACH_5500:
4968 return bfd_mach_mips5500;
4969
4970 case E_MIPS_MACH_9000:
4971 return bfd_mach_mips9000;
4972
4973 case E_MIPS_MACH_SB1:
4974 return bfd_mach_mips_sb1;
4975
4976 case E_MIPS_MACH_OCTEON:
4977 return bfd_mach_mips_octeon;
4978
4979 default:
4980 switch (flags & EF_MIPS_ARCH)
4981 {
4982 default:
4983 case E_MIPS_ARCH_1:
4984 return bfd_mach_mips3000;
4985 break;
4986
4987 case E_MIPS_ARCH_2:
4988 return bfd_mach_mips6000;
4989 break;
4990
4991 case E_MIPS_ARCH_3:
4992 return bfd_mach_mips4000;
4993 break;
4994
4995 case E_MIPS_ARCH_4:
4996 return bfd_mach_mips8000;
4997 break;
4998
4999 case E_MIPS_ARCH_5:
5000 return bfd_mach_mips5;
5001 break;
5002
5003 case E_MIPS_ARCH_32:
5004 return bfd_mach_mipsisa32;
5005 break;
5006
5007 case E_MIPS_ARCH_64:
5008 return bfd_mach_mipsisa64;
5009 break;
5010
5011 case E_MIPS_ARCH_32R2:
5012 return bfd_mach_mipsisa32r2;
5013 break;
5014
5015 case E_MIPS_ARCH_64R2:
5016 return bfd_mach_mipsisa64r2;
5017 break;
5018 }
5019 }
5020
5021 return 0;
5022 }
5023
5024 /* Return printable name for ABI. */
5025
5026 static INLINE char *
elf_mips_abi_name(bfd * abfd)5027 elf_mips_abi_name (bfd *abfd)
5028 {
5029 flagword flags;
5030
5031 flags = elf_elfheader (abfd)->e_flags;
5032 switch (flags & EF_MIPS_ABI)
5033 {
5034 case 0:
5035 if (ABI_N32_P (abfd))
5036 return "N32";
5037 else if (ABI_64_P (abfd))
5038 return "64";
5039 else
5040 return "none";
5041 case E_MIPS_ABI_O32:
5042 return "O32";
5043 case E_MIPS_ABI_O64:
5044 return "O64";
5045 case E_MIPS_ABI_EABI32:
5046 return "EABI32";
5047 case E_MIPS_ABI_EABI64:
5048 return "EABI64";
5049 default:
5050 return "unknown abi";
5051 }
5052 }
5053
5054 /* MIPS ELF uses two common sections. One is the usual one, and the
5055 other is for small objects. All the small objects are kept
5056 together, and then referenced via the gp pointer, which yields
5057 faster assembler code. This is what we use for the small common
5058 section. This approach is copied from ecoff.c. */
5059 static asection mips_elf_scom_section;
5060 static asymbol mips_elf_scom_symbol;
5061 static asymbol *mips_elf_scom_symbol_ptr;
5062
5063 /* MIPS ELF also uses an acommon section, which represents an
5064 allocated common symbol which may be overridden by a
5065 definition in a shared library. */
5066 static asection mips_elf_acom_section;
5067 static asymbol mips_elf_acom_symbol;
5068 static asymbol *mips_elf_acom_symbol_ptr;
5069
5070 /* Handle the special MIPS section numbers that a symbol may use.
5071 This is used for both the 32-bit and the 64-bit ABI. */
5072
5073 void
_bfd_mips_elf_symbol_processing(bfd * abfd,asymbol * asym)5074 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5075 {
5076 elf_symbol_type *elfsym;
5077
5078 elfsym = (elf_symbol_type *) asym;
5079 switch (elfsym->internal_elf_sym.st_shndx)
5080 {
5081 case SHN_MIPS_ACOMMON:
5082 /* This section is used in a dynamically linked executable file.
5083 It is an allocated common section. The dynamic linker can
5084 either resolve these symbols to something in a shared
5085 library, or it can just leave them here. For our purposes,
5086 we can consider these symbols to be in a new section. */
5087 if (mips_elf_acom_section.name == NULL)
5088 {
5089 /* Initialize the acommon section. */
5090 mips_elf_acom_section.name = ".acommon";
5091 mips_elf_acom_section.flags = SEC_ALLOC;
5092 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5093 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5094 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5095 mips_elf_acom_symbol.name = ".acommon";
5096 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5097 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5098 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5099 }
5100 asym->section = &mips_elf_acom_section;
5101 break;
5102
5103 case SHN_COMMON:
5104 /* Common symbols less than the GP size are automatically
5105 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5106 if (asym->value > elf_gp_size (abfd)
5107 || IRIX_COMPAT (abfd) == ict_irix6)
5108 break;
5109 /* Fall through. */
5110 case SHN_MIPS_SCOMMON:
5111 if (mips_elf_scom_section.name == NULL)
5112 {
5113 /* Initialize the small common section. */
5114 mips_elf_scom_section.name = ".scommon";
5115 mips_elf_scom_section.flags = SEC_IS_COMMON;
5116 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5117 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5118 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5119 mips_elf_scom_symbol.name = ".scommon";
5120 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5121 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5122 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5123 }
5124 asym->section = &mips_elf_scom_section;
5125 asym->value = elfsym->internal_elf_sym.st_size;
5126 break;
5127
5128 case SHN_MIPS_SUNDEFINED:
5129 asym->section = bfd_und_section_ptr;
5130 break;
5131
5132 case SHN_MIPS_TEXT:
5133 {
5134 asection *section = bfd_get_section_by_name (abfd, ".text");
5135
5136 BFD_ASSERT (SGI_COMPAT (abfd));
5137 if (section != NULL)
5138 {
5139 asym->section = section;
5140 /* MIPS_TEXT is a bit special, the address is not an offset
5141 to the base of the .text section. So substract the section
5142 base address to make it an offset. */
5143 asym->value -= section->vma;
5144 }
5145 }
5146 break;
5147
5148 case SHN_MIPS_DATA:
5149 {
5150 asection *section = bfd_get_section_by_name (abfd, ".data");
5151
5152 BFD_ASSERT (SGI_COMPAT (abfd));
5153 if (section != NULL)
5154 {
5155 asym->section = section;
5156 /* MIPS_DATA is a bit special, the address is not an offset
5157 to the base of the .data section. So substract the section
5158 base address to make it an offset. */
5159 asym->value -= section->vma;
5160 }
5161 }
5162 break;
5163 }
5164 }
5165
5166 /* Implement elf_backend_eh_frame_address_size. This differs from
5167 the default in the way it handles EABI64.
5168
5169 EABI64 was originally specified as an LP64 ABI, and that is what
5170 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5171 historically accepted the combination of -mabi=eabi and -mlong32,
5172 and this ILP32 variation has become semi-official over time.
5173 Both forms use elf32 and have pointer-sized FDE addresses.
5174
5175 If an EABI object was generated by GCC 4.0 or above, it will have
5176 an empty .gcc_compiled_longXX section, where XX is the size of longs
5177 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5178 have no special marking to distinguish them from LP64 objects.
5179
5180 We don't want users of the official LP64 ABI to be punished for the
5181 existence of the ILP32 variant, but at the same time, we don't want
5182 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5183 We therefore take the following approach:
5184
5185 - If ABFD contains a .gcc_compiled_longXX section, use it to
5186 determine the pointer size.
5187
5188 - Otherwise check the type of the first relocation. Assume that
5189 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5190
5191 - Otherwise punt.
5192
5193 The second check is enough to detect LP64 objects generated by pre-4.0
5194 compilers because, in the kind of output generated by those compilers,
5195 the first relocation will be associated with either a CIE personality
5196 routine or an FDE start address. Furthermore, the compilers never
5197 used a special (non-pointer) encoding for this ABI.
5198
5199 Checking the relocation type should also be safe because there is no
5200 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5201 did so. */
5202
5203 unsigned int
_bfd_mips_elf_eh_frame_address_size(bfd * abfd,asection * sec)5204 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5205 {
5206 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5207 return 8;
5208 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5209 {
5210 bfd_boolean long32_p, long64_p;
5211
5212 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5213 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5214 if (long32_p && long64_p)
5215 return 0;
5216 if (long32_p)
5217 return 4;
5218 if (long64_p)
5219 return 8;
5220
5221 if (sec->reloc_count > 0
5222 && elf_section_data (sec)->relocs != NULL
5223 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5224 == R_MIPS_64))
5225 return 8;
5226
5227 return 0;
5228 }
5229 return 4;
5230 }
5231
5232 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5233 relocations against two unnamed section symbols to resolve to the
5234 same address. For example, if we have code like:
5235
5236 lw $4,%got_disp(.data)($gp)
5237 lw $25,%got_disp(.text)($gp)
5238 jalr $25
5239
5240 then the linker will resolve both relocations to .data and the program
5241 will jump there rather than to .text.
5242
5243 We can work around this problem by giving names to local section symbols.
5244 This is also what the MIPSpro tools do. */
5245
5246 bfd_boolean
_bfd_mips_elf_name_local_section_symbols(bfd * abfd)5247 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5248 {
5249 return SGI_COMPAT (abfd);
5250 }
5251
5252 /* Work over a section just before writing it out. This routine is
5253 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5254 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5255 a better way. */
5256
5257 bfd_boolean
_bfd_mips_elf_section_processing(bfd * abfd,Elf_Internal_Shdr * hdr)5258 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5259 {
5260 if (hdr->sh_type == SHT_MIPS_REGINFO
5261 && hdr->sh_size > 0)
5262 {
5263 bfd_byte buf[4];
5264
5265 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5266 BFD_ASSERT (hdr->contents == NULL);
5267
5268 if (bfd_seek (abfd,
5269 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5270 SEEK_SET) != 0)
5271 return FALSE;
5272 H_PUT_32 (abfd, elf_gp (abfd), buf);
5273 if (bfd_bwrite (buf, 4, abfd) != 4)
5274 return FALSE;
5275 }
5276
5277 if (hdr->sh_type == SHT_MIPS_OPTIONS
5278 && hdr->bfd_section != NULL
5279 && mips_elf_section_data (hdr->bfd_section) != NULL
5280 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5281 {
5282 bfd_byte *contents, *l, *lend;
5283
5284 /* We stored the section contents in the tdata field in the
5285 set_section_contents routine. We save the section contents
5286 so that we don't have to read them again.
5287 At this point we know that elf_gp is set, so we can look
5288 through the section contents to see if there is an
5289 ODK_REGINFO structure. */
5290
5291 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5292 l = contents;
5293 lend = contents + hdr->sh_size;
5294 while (l + sizeof (Elf_External_Options) <= lend)
5295 {
5296 Elf_Internal_Options intopt;
5297
5298 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5299 &intopt);
5300 if (intopt.size < sizeof (Elf_External_Options))
5301 {
5302 (*_bfd_error_handler)
5303 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5304 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5305 break;
5306 }
5307 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5308 {
5309 bfd_byte buf[8];
5310
5311 if (bfd_seek (abfd,
5312 (hdr->sh_offset
5313 + (l - contents)
5314 + sizeof (Elf_External_Options)
5315 + (sizeof (Elf64_External_RegInfo) - 8)),
5316 SEEK_SET) != 0)
5317 return FALSE;
5318 H_PUT_64 (abfd, elf_gp (abfd), buf);
5319 if (bfd_bwrite (buf, 8, abfd) != 8)
5320 return FALSE;
5321 }
5322 else if (intopt.kind == ODK_REGINFO)
5323 {
5324 bfd_byte buf[4];
5325
5326 if (bfd_seek (abfd,
5327 (hdr->sh_offset
5328 + (l - contents)
5329 + sizeof (Elf_External_Options)
5330 + (sizeof (Elf32_External_RegInfo) - 4)),
5331 SEEK_SET) != 0)
5332 return FALSE;
5333 H_PUT_32 (abfd, elf_gp (abfd), buf);
5334 if (bfd_bwrite (buf, 4, abfd) != 4)
5335 return FALSE;
5336 }
5337 l += intopt.size;
5338 }
5339 }
5340
5341 if (hdr->bfd_section != NULL)
5342 {
5343 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5344
5345 if (strcmp (name, ".sdata") == 0
5346 || strcmp (name, ".lit8") == 0
5347 || strcmp (name, ".lit4") == 0)
5348 {
5349 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5350 hdr->sh_type = SHT_PROGBITS;
5351 }
5352 else if (strcmp (name, ".sbss") == 0)
5353 {
5354 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5355 hdr->sh_type = SHT_NOBITS;
5356 }
5357 else if (strcmp (name, ".srdata") == 0)
5358 {
5359 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5360 hdr->sh_type = SHT_PROGBITS;
5361 }
5362 else if (strcmp (name, ".compact_rel") == 0)
5363 {
5364 hdr->sh_flags = 0;
5365 hdr->sh_type = SHT_PROGBITS;
5366 }
5367 else if (strcmp (name, ".rtproc") == 0)
5368 {
5369 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5370 {
5371 unsigned int adjust;
5372
5373 adjust = hdr->sh_size % hdr->sh_addralign;
5374 if (adjust != 0)
5375 hdr->sh_size += hdr->sh_addralign - adjust;
5376 }
5377 }
5378 }
5379
5380 return TRUE;
5381 }
5382
5383 /* Handle a MIPS specific section when reading an object file. This
5384 is called when elfcode.h finds a section with an unknown type.
5385 This routine supports both the 32-bit and 64-bit ELF ABI.
5386
5387 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5388 how to. */
5389
5390 bfd_boolean
_bfd_mips_elf_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)5391 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5392 Elf_Internal_Shdr *hdr,
5393 const char *name,
5394 int shindex)
5395 {
5396 flagword flags = 0;
5397
5398 /* There ought to be a place to keep ELF backend specific flags, but
5399 at the moment there isn't one. We just keep track of the
5400 sections by their name, instead. Fortunately, the ABI gives
5401 suggested names for all the MIPS specific sections, so we will
5402 probably get away with this. */
5403 switch (hdr->sh_type)
5404 {
5405 case SHT_MIPS_LIBLIST:
5406 if (strcmp (name, ".liblist") != 0)
5407 return FALSE;
5408 break;
5409 case SHT_MIPS_MSYM:
5410 if (strcmp (name, ".msym") != 0)
5411 return FALSE;
5412 break;
5413 case SHT_MIPS_CONFLICT:
5414 if (strcmp (name, ".conflict") != 0)
5415 return FALSE;
5416 break;
5417 case SHT_MIPS_GPTAB:
5418 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5419 return FALSE;
5420 break;
5421 case SHT_MIPS_UCODE:
5422 if (strcmp (name, ".ucode") != 0)
5423 return FALSE;
5424 break;
5425 case SHT_MIPS_DEBUG:
5426 if (strcmp (name, ".mdebug") != 0)
5427 return FALSE;
5428 flags = SEC_DEBUGGING;
5429 break;
5430 case SHT_MIPS_REGINFO:
5431 if (strcmp (name, ".reginfo") != 0
5432 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5433 return FALSE;
5434 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5435 break;
5436 case SHT_MIPS_IFACE:
5437 if (strcmp (name, ".MIPS.interfaces") != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_CONTENT:
5441 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_OPTIONS:
5445 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5446 return FALSE;
5447 break;
5448 case SHT_MIPS_DWARF:
5449 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5450 return FALSE;
5451 break;
5452 case SHT_MIPS_SYMBOL_LIB:
5453 if (strcmp (name, ".MIPS.symlib") != 0)
5454 return FALSE;
5455 break;
5456 case SHT_MIPS_EVENTS:
5457 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5458 && strncmp (name, ".MIPS.post_rel",
5459 sizeof ".MIPS.post_rel" - 1) != 0)
5460 return FALSE;
5461 break;
5462 default:
5463 break;
5464 }
5465
5466 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5467 return FALSE;
5468
5469 if (flags)
5470 {
5471 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5472 (bfd_get_section_flags (abfd,
5473 hdr->bfd_section)
5474 | flags)))
5475 return FALSE;
5476 }
5477
5478 /* FIXME: We should record sh_info for a .gptab section. */
5479
5480 /* For a .reginfo section, set the gp value in the tdata information
5481 from the contents of this section. We need the gp value while
5482 processing relocs, so we just get it now. The .reginfo section
5483 is not used in the 64-bit MIPS ELF ABI. */
5484 if (hdr->sh_type == SHT_MIPS_REGINFO)
5485 {
5486 Elf32_External_RegInfo ext;
5487 Elf32_RegInfo s;
5488
5489 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5490 &ext, 0, sizeof ext))
5491 return FALSE;
5492 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5493 elf_gp (abfd) = s.ri_gp_value;
5494 }
5495
5496 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5497 set the gp value based on what we find. We may see both
5498 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5499 they should agree. */
5500 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5501 {
5502 bfd_byte *contents, *l, *lend;
5503
5504 contents = bfd_malloc (hdr->sh_size);
5505 if (contents == NULL)
5506 return FALSE;
5507 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5508 0, hdr->sh_size))
5509 {
5510 free (contents);
5511 return FALSE;
5512 }
5513 l = contents;
5514 lend = contents + hdr->sh_size;
5515 while (l + sizeof (Elf_External_Options) <= lend)
5516 {
5517 Elf_Internal_Options intopt;
5518
5519 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5520 &intopt);
5521 if (intopt.size < sizeof (Elf_External_Options))
5522 {
5523 (*_bfd_error_handler)
5524 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5525 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5526 break;
5527 }
5528 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5529 {
5530 Elf64_Internal_RegInfo intreg;
5531
5532 bfd_mips_elf64_swap_reginfo_in
5533 (abfd,
5534 ((Elf64_External_RegInfo *)
5535 (l + sizeof (Elf_External_Options))),
5536 &intreg);
5537 elf_gp (abfd) = intreg.ri_gp_value;
5538 }
5539 else if (intopt.kind == ODK_REGINFO)
5540 {
5541 Elf32_RegInfo intreg;
5542
5543 bfd_mips_elf32_swap_reginfo_in
5544 (abfd,
5545 ((Elf32_External_RegInfo *)
5546 (l + sizeof (Elf_External_Options))),
5547 &intreg);
5548 elf_gp (abfd) = intreg.ri_gp_value;
5549 }
5550 l += intopt.size;
5551 }
5552 free (contents);
5553 }
5554
5555 return TRUE;
5556 }
5557
5558 /* Set the correct type for a MIPS ELF section. We do this by the
5559 section name, which is a hack, but ought to work. This routine is
5560 used by both the 32-bit and the 64-bit ABI. */
5561
5562 bfd_boolean
_bfd_mips_elf_fake_sections(bfd * abfd,Elf_Internal_Shdr * hdr,asection * sec)5563 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5564 {
5565 register const char *name;
5566 unsigned int sh_type;
5567
5568 name = bfd_get_section_name (abfd, sec);
5569 sh_type = hdr->sh_type;
5570
5571 if (strcmp (name, ".liblist") == 0)
5572 {
5573 hdr->sh_type = SHT_MIPS_LIBLIST;
5574 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5575 /* The sh_link field is set in final_write_processing. */
5576 }
5577 else if (strcmp (name, ".conflict") == 0)
5578 hdr->sh_type = SHT_MIPS_CONFLICT;
5579 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5580 {
5581 hdr->sh_type = SHT_MIPS_GPTAB;
5582 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5583 /* The sh_info field is set in final_write_processing. */
5584 }
5585 else if (strcmp (name, ".ucode") == 0)
5586 hdr->sh_type = SHT_MIPS_UCODE;
5587 else if (strcmp (name, ".mdebug") == 0)
5588 {
5589 hdr->sh_type = SHT_MIPS_DEBUG;
5590 /* In a shared object on IRIX 5.3, the .mdebug section has an
5591 entsize of 0. FIXME: Does this matter? */
5592 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5593 hdr->sh_entsize = 0;
5594 else
5595 hdr->sh_entsize = 1;
5596 }
5597 else if (strcmp (name, ".reginfo") == 0)
5598 {
5599 hdr->sh_type = SHT_MIPS_REGINFO;
5600 /* In a shared object on IRIX 5.3, the .reginfo section has an
5601 entsize of 0x18. FIXME: Does this matter? */
5602 if (SGI_COMPAT (abfd))
5603 {
5604 if ((abfd->flags & DYNAMIC) != 0)
5605 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5606 else
5607 hdr->sh_entsize = 1;
5608 }
5609 else
5610 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5611 }
5612 else if (SGI_COMPAT (abfd)
5613 && (strcmp (name, ".hash") == 0
5614 || strcmp (name, ".dynamic") == 0
5615 || strcmp (name, ".dynstr") == 0))
5616 {
5617 if (SGI_COMPAT (abfd))
5618 hdr->sh_entsize = 0;
5619 #if 0
5620 /* This isn't how the IRIX6 linker behaves. */
5621 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5622 #endif
5623 }
5624 else if (strcmp (name, ".got") == 0
5625 || strcmp (name, ".srdata") == 0
5626 || strcmp (name, ".sdata") == 0
5627 || strcmp (name, ".sbss") == 0
5628 || strcmp (name, ".lit4") == 0
5629 || strcmp (name, ".lit8") == 0)
5630 hdr->sh_flags |= SHF_MIPS_GPREL;
5631 else if (strcmp (name, ".MIPS.interfaces") == 0)
5632 {
5633 hdr->sh_type = SHT_MIPS_IFACE;
5634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5635 }
5636 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5637 {
5638 hdr->sh_type = SHT_MIPS_CONTENT;
5639 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5640 /* The sh_info field is set in final_write_processing. */
5641 }
5642 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5643 {
5644 hdr->sh_type = SHT_MIPS_OPTIONS;
5645 hdr->sh_entsize = 1;
5646 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5647 }
5648 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5649 hdr->sh_type = SHT_MIPS_DWARF;
5650 else if (strcmp (name, ".MIPS.symlib") == 0)
5651 {
5652 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5653 /* The sh_link and sh_info fields are set in
5654 final_write_processing. */
5655 }
5656 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5657 || strncmp (name, ".MIPS.post_rel",
5658 sizeof ".MIPS.post_rel" - 1) == 0)
5659 {
5660 hdr->sh_type = SHT_MIPS_EVENTS;
5661 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5662 /* The sh_link field is set in final_write_processing. */
5663 }
5664 else if (strcmp (name, ".msym") == 0)
5665 {
5666 hdr->sh_type = SHT_MIPS_MSYM;
5667 hdr->sh_flags |= SHF_ALLOC;
5668 hdr->sh_entsize = 8;
5669 }
5670
5671 /* In the unlikely event a special section is empty it has to lose its
5672 special meaning. This may happen e.g. when using `strip' with the
5673 "--only-keep-debug" option. */
5674 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5675 hdr->sh_type = sh_type;
5676
5677 /* The generic elf_fake_sections will set up REL_HDR using the default
5678 kind of relocations. We used to set up a second header for the
5679 non-default kind of relocations here, but only NewABI would use
5680 these, and the IRIX ld doesn't like resulting empty RELA sections.
5681 Thus we create those header only on demand now. */
5682
5683 return TRUE;
5684 }
5685
5686 /* Given a BFD section, try to locate the corresponding ELF section
5687 index. This is used by both the 32-bit and the 64-bit ABI.
5688 Actually, it's not clear to me that the 64-bit ABI supports these,
5689 but for non-PIC objects we will certainly want support for at least
5690 the .scommon section. */
5691
5692 bfd_boolean
_bfd_mips_elf_section_from_bfd_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,int * retval)5693 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5694 asection *sec, int *retval)
5695 {
5696 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5697 {
5698 *retval = SHN_MIPS_SCOMMON;
5699 return TRUE;
5700 }
5701 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5702 {
5703 *retval = SHN_MIPS_ACOMMON;
5704 return TRUE;
5705 }
5706 return FALSE;
5707 }
5708
5709 /* Hook called by the linker routine which adds symbols from an object
5710 file. We must handle the special MIPS section numbers here. */
5711
5712 bfd_boolean
_bfd_mips_elf_add_symbol_hook(bfd * abfd,struct bfd_link_info * info,Elf_Internal_Sym * sym,const char ** namep,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)5713 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5714 Elf_Internal_Sym *sym, const char **namep,
5715 flagword *flagsp ATTRIBUTE_UNUSED,
5716 asection **secp, bfd_vma *valp)
5717 {
5718 if (SGI_COMPAT (abfd)
5719 && (abfd->flags & DYNAMIC) != 0
5720 && strcmp (*namep, "_rld_new_interface") == 0)
5721 {
5722 /* Skip IRIX5 rld entry name. */
5723 *namep = NULL;
5724 return TRUE;
5725 }
5726
5727 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5728 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5729 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5730 a magic symbol resolved by the linker, we ignore this bogus definition
5731 of _gp_disp. New ABI objects do not suffer from this problem so this
5732 is not done for them. */
5733 if (!NEWABI_P(abfd)
5734 && (sym->st_shndx == SHN_ABS)
5735 && (strcmp (*namep, "_gp_disp") == 0))
5736 {
5737 *namep = NULL;
5738 return TRUE;
5739 }
5740
5741 switch (sym->st_shndx)
5742 {
5743 case SHN_COMMON:
5744 /* Common symbols less than the GP size are automatically
5745 treated as SHN_MIPS_SCOMMON symbols. */
5746 if (sym->st_size > elf_gp_size (abfd)
5747 || IRIX_COMPAT (abfd) == ict_irix6)
5748 break;
5749 /* Fall through. */
5750 case SHN_MIPS_SCOMMON:
5751 *secp = bfd_make_section_old_way (abfd, ".scommon");
5752 (*secp)->flags |= SEC_IS_COMMON;
5753 *valp = sym->st_size;
5754 break;
5755
5756 case SHN_MIPS_TEXT:
5757 /* This section is used in a shared object. */
5758 if (elf_tdata (abfd)->elf_text_section == NULL)
5759 {
5760 asymbol *elf_text_symbol;
5761 asection *elf_text_section;
5762 bfd_size_type amt = sizeof (asection);
5763
5764 elf_text_section = bfd_zalloc (abfd, amt);
5765 if (elf_text_section == NULL)
5766 return FALSE;
5767
5768 amt = sizeof (asymbol);
5769 elf_text_symbol = bfd_zalloc (abfd, amt);
5770 if (elf_text_symbol == NULL)
5771 return FALSE;
5772
5773 /* Initialize the section. */
5774
5775 elf_tdata (abfd)->elf_text_section = elf_text_section;
5776 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5777
5778 elf_text_section->symbol = elf_text_symbol;
5779 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5780
5781 elf_text_section->name = ".text";
5782 elf_text_section->flags = SEC_NO_FLAGS;
5783 elf_text_section->output_section = NULL;
5784 elf_text_section->owner = abfd;
5785 elf_text_symbol->name = ".text";
5786 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5787 elf_text_symbol->section = elf_text_section;
5788 }
5789 /* This code used to do *secp = bfd_und_section_ptr if
5790 info->shared. I don't know why, and that doesn't make sense,
5791 so I took it out. */
5792 *secp = elf_tdata (abfd)->elf_text_section;
5793 break;
5794
5795 case SHN_MIPS_ACOMMON:
5796 /* Fall through. XXX Can we treat this as allocated data? */
5797 case SHN_MIPS_DATA:
5798 /* This section is used in a shared object. */
5799 if (elf_tdata (abfd)->elf_data_section == NULL)
5800 {
5801 asymbol *elf_data_symbol;
5802 asection *elf_data_section;
5803 bfd_size_type amt = sizeof (asection);
5804
5805 elf_data_section = bfd_zalloc (abfd, amt);
5806 if (elf_data_section == NULL)
5807 return FALSE;
5808
5809 amt = sizeof (asymbol);
5810 elf_data_symbol = bfd_zalloc (abfd, amt);
5811 if (elf_data_symbol == NULL)
5812 return FALSE;
5813
5814 /* Initialize the section. */
5815
5816 elf_tdata (abfd)->elf_data_section = elf_data_section;
5817 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5818
5819 elf_data_section->symbol = elf_data_symbol;
5820 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5821
5822 elf_data_section->name = ".data";
5823 elf_data_section->flags = SEC_NO_FLAGS;
5824 elf_data_section->output_section = NULL;
5825 elf_data_section->owner = abfd;
5826 elf_data_symbol->name = ".data";
5827 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5828 elf_data_symbol->section = elf_data_section;
5829 }
5830 /* This code used to do *secp = bfd_und_section_ptr if
5831 info->shared. I don't know why, and that doesn't make sense,
5832 so I took it out. */
5833 *secp = elf_tdata (abfd)->elf_data_section;
5834 break;
5835
5836 case SHN_MIPS_SUNDEFINED:
5837 *secp = bfd_und_section_ptr;
5838 break;
5839 }
5840
5841 if (SGI_COMPAT (abfd)
5842 && ! info->shared
5843 && info->hash->creator == abfd->xvec
5844 && strcmp (*namep, "__rld_obj_head") == 0)
5845 {
5846 struct elf_link_hash_entry *h;
5847 struct bfd_link_hash_entry *bh;
5848
5849 /* Mark __rld_obj_head as dynamic. */
5850 bh = NULL;
5851 if (! (_bfd_generic_link_add_one_symbol
5852 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5853 get_elf_backend_data (abfd)->collect, &bh)))
5854 return FALSE;
5855
5856 h = (struct elf_link_hash_entry *) bh;
5857 h->non_elf = 0;
5858 h->def_regular = 1;
5859 h->type = STT_OBJECT;
5860
5861 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5862 return FALSE;
5863
5864 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5865 }
5866
5867 /* If this is a mips16 text symbol, add 1 to the value to make it
5868 odd. This will cause something like .word SYM to come up with
5869 the right value when it is loaded into the PC. */
5870 if (sym->st_other == STO_MIPS16)
5871 ++*valp;
5872
5873 return TRUE;
5874 }
5875
5876 /* This hook function is called before the linker writes out a global
5877 symbol. We mark symbols as small common if appropriate. This is
5878 also where we undo the increment of the value for a mips16 symbol. */
5879
5880 bfd_boolean
_bfd_mips_elf_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,asection * input_sec,struct elf_link_hash_entry * h ATTRIBUTE_UNUSED)5881 _bfd_mips_elf_link_output_symbol_hook
5882 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5883 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5884 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5885 {
5886 /* If we see a common symbol, which implies a relocatable link, then
5887 if a symbol was small common in an input file, mark it as small
5888 common in the output file. */
5889 if (sym->st_shndx == SHN_COMMON
5890 && strcmp (input_sec->name, ".scommon") == 0)
5891 sym->st_shndx = SHN_MIPS_SCOMMON;
5892
5893 if (sym->st_other == STO_MIPS16)
5894 sym->st_value &= ~1;
5895
5896 return TRUE;
5897 }
5898
5899 /* Functions for the dynamic linker. */
5900
5901 /* Create dynamic sections when linking against a dynamic object. */
5902
5903 bfd_boolean
_bfd_mips_elf_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)5904 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5905 {
5906 struct elf_link_hash_entry *h;
5907 struct bfd_link_hash_entry *bh;
5908 flagword flags;
5909 register asection *s;
5910 const char * const *namep;
5911 struct mips_elf_link_hash_table *htab;
5912
5913 htab = mips_elf_hash_table (info);
5914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5915 | SEC_LINKER_CREATED | SEC_READONLY);
5916
5917 /* The psABI requires a read-only .dynamic section, but the VxWorks
5918 EABI doesn't. */
5919 if (!htab->is_vxworks)
5920 {
5921 s = bfd_get_section_by_name (abfd, ".dynamic");
5922 if (s != NULL)
5923 {
5924 if (! bfd_set_section_flags (abfd, s, flags))
5925 return FALSE;
5926 }
5927 }
5928
5929 /* We need to create .got section. */
5930 if (! mips_elf_create_got_section (abfd, info, FALSE))
5931 return FALSE;
5932
5933 if (! mips_elf_rel_dyn_section (info, TRUE))
5934 return FALSE;
5935
5936 /* Create .stub section. */
5937 if (bfd_get_section_by_name (abfd,
5938 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5939 {
5940 s = bfd_make_section_with_flags (abfd,
5941 MIPS_ELF_STUB_SECTION_NAME (abfd),
5942 flags | SEC_CODE);
5943 if (s == NULL
5944 || ! bfd_set_section_alignment (abfd, s,
5945 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5946 return FALSE;
5947 }
5948
5949 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5950 && info->executable
5951 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5952 {
5953 s = bfd_make_section_with_flags (abfd, ".rld_map",
5954 flags &~ (flagword) SEC_READONLY);
5955 if (s == NULL
5956 || ! bfd_set_section_alignment (abfd, s,
5957 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5958 return FALSE;
5959 }
5960
5961 /* On IRIX5, we adjust add some additional symbols and change the
5962 alignments of several sections. There is no ABI documentation
5963 indicating that this is necessary on IRIX6, nor any evidence that
5964 the linker takes such action. */
5965 if (IRIX_COMPAT (abfd) == ict_irix5)
5966 {
5967 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5968 {
5969 bh = NULL;
5970 if (! (_bfd_generic_link_add_one_symbol
5971 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5972 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5973 return FALSE;
5974
5975 h = (struct elf_link_hash_entry *) bh;
5976 h->non_elf = 0;
5977 h->def_regular = 1;
5978 h->type = STT_SECTION;
5979
5980 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5981 return FALSE;
5982 }
5983
5984 /* We need to create a .compact_rel section. */
5985 if (SGI_COMPAT (abfd))
5986 {
5987 if (!mips_elf_create_compact_rel_section (abfd, info))
5988 return FALSE;
5989 }
5990
5991 /* Change alignments of some sections. */
5992 s = bfd_get_section_by_name (abfd, ".hash");
5993 if (s != NULL)
5994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5995 s = bfd_get_section_by_name (abfd, ".dynsym");
5996 if (s != NULL)
5997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5998 s = bfd_get_section_by_name (abfd, ".dynstr");
5999 if (s != NULL)
6000 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6001 s = bfd_get_section_by_name (abfd, ".reginfo");
6002 if (s != NULL)
6003 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6004 s = bfd_get_section_by_name (abfd, ".dynamic");
6005 if (s != NULL)
6006 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6007 }
6008
6009 if (!info->shared)
6010 {
6011 const char *name;
6012
6013 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6014 bh = NULL;
6015 if (!(_bfd_generic_link_add_one_symbol
6016 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6017 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6018 return FALSE;
6019
6020 h = (struct elf_link_hash_entry *) bh;
6021 h->non_elf = 0;
6022 h->def_regular = 1;
6023 h->type = STT_SECTION;
6024
6025 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6026 return FALSE;
6027 }
6028
6029 if (info->executable)
6030 {
6031 const char *name;
6032
6033 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6034 {
6035 /* __rld_map is a four byte word located in the .data section
6036 and is filled in by the rtld to contain a pointer to
6037 the _r_debug structure. Its symbol value will be set in
6038 _bfd_mips_elf_finish_dynamic_symbol. */
6039 s = bfd_get_section_by_name (abfd, ".rld_map");
6040 BFD_ASSERT (s != NULL);
6041
6042 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6043 bh = NULL;
6044 if (!(_bfd_generic_link_add_one_symbol
6045 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6046 get_elf_backend_data (abfd)->collect, &bh)))
6047 return FALSE;
6048
6049 h = (struct elf_link_hash_entry *) bh;
6050 h->non_elf = 0;
6051 h->def_regular = 1;
6052 h->type = STT_OBJECT;
6053
6054 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6055 return FALSE;
6056 }
6057 }
6058
6059 if (htab->is_vxworks)
6060 {
6061 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6062 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6063 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6064 return FALSE;
6065
6066 /* Cache the sections created above. */
6067 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6068 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6069 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6070 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6071 if (!htab->sdynbss
6072 || (!htab->srelbss && !info->shared)
6073 || !htab->srelplt
6074 || !htab->splt)
6075 abort ();
6076
6077 /* Do the usual VxWorks handling. */
6078 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6079 return FALSE;
6080
6081 /* Work out the PLT sizes. */
6082 if (info->shared)
6083 {
6084 htab->plt_header_size
6085 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6086 htab->plt_entry_size
6087 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6088 }
6089 else
6090 {
6091 htab->plt_header_size
6092 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6093 htab->plt_entry_size
6094 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6095 }
6096 }
6097
6098 return TRUE;
6099 }
6100
6101 /* Look through the relocs for a section during the first phase, and
6102 allocate space in the global offset table. */
6103
6104 bfd_boolean
_bfd_mips_elf_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)6105 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6106 asection *sec, const Elf_Internal_Rela *relocs)
6107 {
6108 const char *name;
6109 bfd *dynobj;
6110 Elf_Internal_Shdr *symtab_hdr;
6111 struct elf_link_hash_entry **sym_hashes;
6112 struct mips_got_info *g;
6113 size_t extsymoff;
6114 const Elf_Internal_Rela *rel;
6115 const Elf_Internal_Rela *rel_end;
6116 asection *sgot;
6117 asection *sreloc;
6118 const struct elf_backend_data *bed;
6119 struct mips_elf_link_hash_table *htab;
6120
6121 if (info->relocatable)
6122 return TRUE;
6123
6124 htab = mips_elf_hash_table (info);
6125 dynobj = elf_hash_table (info)->dynobj;
6126 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6127 sym_hashes = elf_sym_hashes (abfd);
6128 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6129
6130 /* Check for the mips16 stub sections. */
6131
6132 name = bfd_get_section_name (abfd, sec);
6133 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6134 {
6135 unsigned long r_symndx;
6136
6137 /* Look at the relocation information to figure out which symbol
6138 this is for. */
6139
6140 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6141
6142 if (r_symndx < extsymoff
6143 || sym_hashes[r_symndx - extsymoff] == NULL)
6144 {
6145 asection *o;
6146
6147 /* This stub is for a local symbol. This stub will only be
6148 needed if there is some relocation in this BFD, other
6149 than a 16 bit function call, which refers to this symbol. */
6150 for (o = abfd->sections; o != NULL; o = o->next)
6151 {
6152 Elf_Internal_Rela *sec_relocs;
6153 const Elf_Internal_Rela *r, *rend;
6154
6155 /* We can ignore stub sections when looking for relocs. */
6156 if ((o->flags & SEC_RELOC) == 0
6157 || o->reloc_count == 0
6158 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6159 sizeof FN_STUB - 1) == 0
6160 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6161 sizeof CALL_STUB - 1) == 0
6162 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6163 sizeof CALL_FP_STUB - 1) == 0)
6164 continue;
6165
6166 sec_relocs
6167 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6168 info->keep_memory);
6169 if (sec_relocs == NULL)
6170 return FALSE;
6171
6172 rend = sec_relocs + o->reloc_count;
6173 for (r = sec_relocs; r < rend; r++)
6174 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6175 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6176 break;
6177
6178 if (elf_section_data (o)->relocs != sec_relocs)
6179 free (sec_relocs);
6180
6181 if (r < rend)
6182 break;
6183 }
6184
6185 if (o == NULL)
6186 {
6187 /* There is no non-call reloc for this stub, so we do
6188 not need it. Since this function is called before
6189 the linker maps input sections to output sections, we
6190 can easily discard it by setting the SEC_EXCLUDE
6191 flag. */
6192 sec->flags |= SEC_EXCLUDE;
6193 return TRUE;
6194 }
6195
6196 /* Record this stub in an array of local symbol stubs for
6197 this BFD. */
6198 if (elf_tdata (abfd)->local_stubs == NULL)
6199 {
6200 unsigned long symcount;
6201 asection **n;
6202 bfd_size_type amt;
6203
6204 if (elf_bad_symtab (abfd))
6205 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6206 else
6207 symcount = symtab_hdr->sh_info;
6208 amt = symcount * sizeof (asection *);
6209 n = bfd_zalloc (abfd, amt);
6210 if (n == NULL)
6211 return FALSE;
6212 elf_tdata (abfd)->local_stubs = n;
6213 }
6214
6215 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6216
6217 /* We don't need to set mips16_stubs_seen in this case.
6218 That flag is used to see whether we need to look through
6219 the global symbol table for stubs. We don't need to set
6220 it here, because we just have a local stub. */
6221 }
6222 else
6223 {
6224 struct mips_elf_link_hash_entry *h;
6225
6226 h = ((struct mips_elf_link_hash_entry *)
6227 sym_hashes[r_symndx - extsymoff]);
6228
6229 while (h->root.root.type == bfd_link_hash_indirect
6230 || h->root.root.type == bfd_link_hash_warning)
6231 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6232
6233 /* H is the symbol this stub is for. */
6234
6235 h->fn_stub = sec;
6236 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6237 }
6238 }
6239 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6240 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6241 {
6242 unsigned long r_symndx;
6243 struct mips_elf_link_hash_entry *h;
6244 asection **loc;
6245
6246 /* Look at the relocation information to figure out which symbol
6247 this is for. */
6248
6249 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6250
6251 if (r_symndx < extsymoff
6252 || sym_hashes[r_symndx - extsymoff] == NULL)
6253 {
6254 /* This stub was actually built for a static symbol defined
6255 in the same file. We assume that all static symbols in
6256 mips16 code are themselves mips16, so we can simply
6257 discard this stub. Since this function is called before
6258 the linker maps input sections to output sections, we can
6259 easily discard it by setting the SEC_EXCLUDE flag. */
6260 sec->flags |= SEC_EXCLUDE;
6261 return TRUE;
6262 }
6263
6264 h = ((struct mips_elf_link_hash_entry *)
6265 sym_hashes[r_symndx - extsymoff]);
6266
6267 /* H is the symbol this stub is for. */
6268
6269 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6270 loc = &h->call_fp_stub;
6271 else
6272 loc = &h->call_stub;
6273
6274 /* If we already have an appropriate stub for this function, we
6275 don't need another one, so we can discard this one. Since
6276 this function is called before the linker maps input sections
6277 to output sections, we can easily discard it by setting the
6278 SEC_EXCLUDE flag. We can also discard this section if we
6279 happen to already know that this is a mips16 function; it is
6280 not necessary to check this here, as it is checked later, but
6281 it is slightly faster to check now. */
6282 if (*loc != NULL || h->root.other == STO_MIPS16)
6283 {
6284 sec->flags |= SEC_EXCLUDE;
6285 return TRUE;
6286 }
6287
6288 *loc = sec;
6289 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6290 }
6291
6292 if (dynobj == NULL)
6293 {
6294 sgot = NULL;
6295 g = NULL;
6296 }
6297 else
6298 {
6299 sgot = mips_elf_got_section (dynobj, FALSE);
6300 if (sgot == NULL)
6301 g = NULL;
6302 else
6303 {
6304 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6305 g = mips_elf_section_data (sgot)->u.got_info;
6306 BFD_ASSERT (g != NULL);
6307 }
6308 }
6309
6310 sreloc = NULL;
6311 bed = get_elf_backend_data (abfd);
6312 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6313 for (rel = relocs; rel < rel_end; ++rel)
6314 {
6315 unsigned long r_symndx;
6316 unsigned int r_type;
6317 struct elf_link_hash_entry *h;
6318
6319 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6320 r_type = ELF_R_TYPE (abfd, rel->r_info);
6321
6322 if (r_symndx < extsymoff)
6323 h = NULL;
6324 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6325 {
6326 (*_bfd_error_handler)
6327 (_("%B: Malformed reloc detected for section %s"),
6328 abfd, name);
6329 bfd_set_error (bfd_error_bad_value);
6330 return FALSE;
6331 }
6332 else
6333 {
6334 h = sym_hashes[r_symndx - extsymoff];
6335
6336 /* This may be an indirect symbol created because of a version. */
6337 if (h != NULL)
6338 {
6339 while (h->root.type == bfd_link_hash_indirect)
6340 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6341 }
6342 }
6343
6344 /* Some relocs require a global offset table. */
6345 if (dynobj == NULL || sgot == NULL)
6346 {
6347 switch (r_type)
6348 {
6349 case R_MIPS_GOT16:
6350 case R_MIPS_CALL16:
6351 case R_MIPS_CALL_HI16:
6352 case R_MIPS_CALL_LO16:
6353 case R_MIPS_GOT_HI16:
6354 case R_MIPS_GOT_LO16:
6355 case R_MIPS_GOT_PAGE:
6356 case R_MIPS_GOT_OFST:
6357 case R_MIPS_GOT_DISP:
6358 case R_MIPS_TLS_GOTTPREL:
6359 case R_MIPS_TLS_GD:
6360 case R_MIPS_TLS_LDM:
6361 if (dynobj == NULL)
6362 elf_hash_table (info)->dynobj = dynobj = abfd;
6363 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6364 return FALSE;
6365 g = mips_elf_got_info (dynobj, &sgot);
6366 if (htab->is_vxworks && !info->shared)
6367 {
6368 (*_bfd_error_handler)
6369 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6370 abfd, (unsigned long) rel->r_offset);
6371 bfd_set_error (bfd_error_bad_value);
6372 return FALSE;
6373 }
6374 break;
6375
6376 case R_MIPS_32:
6377 case R_MIPS_REL32:
6378 case R_MIPS_64:
6379 /* In VxWorks executables, references to external symbols
6380 are handled using copy relocs or PLT stubs, so there's
6381 no need to add a dynamic relocation here. */
6382 if (dynobj == NULL
6383 && (info->shared || (h != NULL && !htab->is_vxworks))
6384 && (sec->flags & SEC_ALLOC) != 0)
6385 elf_hash_table (info)->dynobj = dynobj = abfd;
6386 break;
6387
6388 default:
6389 break;
6390 }
6391 }
6392
6393 if (h)
6394 {
6395 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6396
6397 /* Relocations against the special VxWorks __GOTT_BASE__ and
6398 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6399 room for them in .rela.dyn. */
6400 if (is_gott_symbol (info, h))
6401 {
6402 if (sreloc == NULL)
6403 {
6404 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6405 if (sreloc == NULL)
6406 return FALSE;
6407 }
6408 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6409 }
6410 }
6411 else if (r_type == R_MIPS_CALL_LO16
6412 || r_type == R_MIPS_GOT_LO16
6413 || r_type == R_MIPS_GOT_DISP
6414 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6415 {
6416 /* We may need a local GOT entry for this relocation. We
6417 don't count R_MIPS_GOT_PAGE because we can estimate the
6418 maximum number of pages needed by looking at the size of
6419 the segment. Similar comments apply to R_MIPS_GOT16 and
6420 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6421 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6422 R_MIPS_CALL_HI16 because these are always followed by an
6423 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6424 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6425 rel->r_addend, g, 0))
6426 return FALSE;
6427 }
6428
6429 switch (r_type)
6430 {
6431 case R_MIPS_CALL16:
6432 if (h == NULL)
6433 {
6434 (*_bfd_error_handler)
6435 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6436 abfd, (unsigned long) rel->r_offset);
6437 bfd_set_error (bfd_error_bad_value);
6438 return FALSE;
6439 }
6440 /* Fall through. */
6441
6442 case R_MIPS_CALL_HI16:
6443 case R_MIPS_CALL_LO16:
6444 if (h != NULL)
6445 {
6446 /* VxWorks call relocations point the function's .got.plt
6447 entry, which will be allocated by adjust_dynamic_symbol.
6448 Otherwise, this symbol requires a global GOT entry. */
6449 if (!htab->is_vxworks
6450 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6451 return FALSE;
6452
6453 /* We need a stub, not a plt entry for the undefined
6454 function. But we record it as if it needs plt. See
6455 _bfd_elf_adjust_dynamic_symbol. */
6456 h->needs_plt = 1;
6457 h->type = STT_FUNC;
6458 }
6459 break;
6460
6461 case R_MIPS_GOT_PAGE:
6462 /* If this is a global, overridable symbol, GOT_PAGE will
6463 decay to GOT_DISP, so we'll need a GOT entry for it. */
6464 if (h == NULL)
6465 break;
6466 else
6467 {
6468 struct mips_elf_link_hash_entry *hmips =
6469 (struct mips_elf_link_hash_entry *) h;
6470
6471 while (hmips->root.root.type == bfd_link_hash_indirect
6472 || hmips->root.root.type == bfd_link_hash_warning)
6473 hmips = (struct mips_elf_link_hash_entry *)
6474 hmips->root.root.u.i.link;
6475
6476 if (hmips->root.def_regular
6477 && ! (info->shared && ! info->symbolic
6478 && ! hmips->root.forced_local))
6479 break;
6480 }
6481 /* Fall through. */
6482
6483 case R_MIPS_GOT16:
6484 case R_MIPS_GOT_HI16:
6485 case R_MIPS_GOT_LO16:
6486 case R_MIPS_GOT_DISP:
6487 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6488 return FALSE;
6489 break;
6490
6491 case R_MIPS_TLS_GOTTPREL:
6492 if (info->shared)
6493 info->flags |= DF_STATIC_TLS;
6494 /* Fall through */
6495
6496 case R_MIPS_TLS_LDM:
6497 if (r_type == R_MIPS_TLS_LDM)
6498 {
6499 r_symndx = 0;
6500 h = NULL;
6501 }
6502 /* Fall through */
6503
6504 case R_MIPS_TLS_GD:
6505 /* This symbol requires a global offset table entry, or two
6506 for TLS GD relocations. */
6507 {
6508 unsigned char flag = (r_type == R_MIPS_TLS_GD
6509 ? GOT_TLS_GD
6510 : r_type == R_MIPS_TLS_LDM
6511 ? GOT_TLS_LDM
6512 : GOT_TLS_IE);
6513 if (h != NULL)
6514 {
6515 struct mips_elf_link_hash_entry *hmips =
6516 (struct mips_elf_link_hash_entry *) h;
6517 hmips->tls_type |= flag;
6518
6519 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6520 return FALSE;
6521 }
6522 else
6523 {
6524 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6525
6526 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6527 rel->r_addend, g, flag))
6528 return FALSE;
6529 }
6530 }
6531 break;
6532
6533 case R_MIPS_32:
6534 case R_MIPS_REL32:
6535 case R_MIPS_64:
6536 /* In VxWorks executables, references to external symbols
6537 are handled using copy relocs or PLT stubs, so there's
6538 no need to add a .rela.dyn entry for this relocation. */
6539 if ((info->shared || (h != NULL && !htab->is_vxworks))
6540 && (sec->flags & SEC_ALLOC) != 0)
6541 {
6542 if (sreloc == NULL)
6543 {
6544 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6545 if (sreloc == NULL)
6546 return FALSE;
6547 }
6548 if (info->shared)
6549 {
6550 /* When creating a shared object, we must copy these
6551 reloc types into the output file as R_MIPS_REL32
6552 relocs. Make room for this reloc in .rel(a).dyn. */
6553 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6554 if (MIPS_ELF_READONLY_SECTION (sec))
6555 /* We tell the dynamic linker that there are
6556 relocations against the text segment. */
6557 info->flags |= DF_TEXTREL;
6558 }
6559 else
6560 {
6561 struct mips_elf_link_hash_entry *hmips;
6562
6563 /* We only need to copy this reloc if the symbol is
6564 defined in a dynamic object. */
6565 hmips = (struct mips_elf_link_hash_entry *) h;
6566 ++hmips->possibly_dynamic_relocs;
6567 if (MIPS_ELF_READONLY_SECTION (sec))
6568 /* We need it to tell the dynamic linker if there
6569 are relocations against the text segment. */
6570 hmips->readonly_reloc = TRUE;
6571 }
6572
6573 /* Even though we don't directly need a GOT entry for
6574 this symbol, a symbol must have a dynamic symbol
6575 table index greater that DT_MIPS_GOTSYM if there are
6576 dynamic relocations against it. This does not apply
6577 to VxWorks, which does not have the usual coupling
6578 between global GOT entries and .dynsym entries. */
6579 if (h != NULL && !htab->is_vxworks)
6580 {
6581 if (dynobj == NULL)
6582 elf_hash_table (info)->dynobj = dynobj = abfd;
6583 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6584 return FALSE;
6585 g = mips_elf_got_info (dynobj, &sgot);
6586 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6587 return FALSE;
6588 }
6589 }
6590
6591 if (SGI_COMPAT (abfd))
6592 mips_elf_hash_table (info)->compact_rel_size +=
6593 sizeof (Elf32_External_crinfo);
6594 break;
6595
6596 case R_MIPS_PC16:
6597 if (h)
6598 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6599 break;
6600
6601 case R_MIPS_26:
6602 if (h)
6603 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6604 /* Fall through. */
6605
6606 case R_MIPS_GPREL16:
6607 case R_MIPS_LITERAL:
6608 case R_MIPS_GPREL32:
6609 if (SGI_COMPAT (abfd))
6610 mips_elf_hash_table (info)->compact_rel_size +=
6611 sizeof (Elf32_External_crinfo);
6612 break;
6613
6614 /* This relocation describes the C++ object vtable hierarchy.
6615 Reconstruct it for later use during GC. */
6616 case R_MIPS_GNU_VTINHERIT:
6617 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6618 return FALSE;
6619 break;
6620
6621 /* This relocation describes which C++ vtable entries are actually
6622 used. Record for later use during GC. */
6623 case R_MIPS_GNU_VTENTRY:
6624 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6625 return FALSE;
6626 break;
6627
6628 default:
6629 break;
6630 }
6631
6632 /* We must not create a stub for a symbol that has relocations
6633 related to taking the function's address. This doesn't apply to
6634 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6635 a normal .got entry. */
6636 if (!htab->is_vxworks && h != NULL)
6637 switch (r_type)
6638 {
6639 default:
6640 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6641 break;
6642 case R_MIPS_CALL16:
6643 case R_MIPS_CALL_HI16:
6644 case R_MIPS_CALL_LO16:
6645 case R_MIPS_JALR:
6646 break;
6647 }
6648
6649 /* If this reloc is not a 16 bit call, and it has a global
6650 symbol, then we will need the fn_stub if there is one.
6651 References from a stub section do not count. */
6652 if (h != NULL
6653 && r_type != R_MIPS16_26
6654 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6655 sizeof FN_STUB - 1) != 0
6656 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6657 sizeof CALL_STUB - 1) != 0
6658 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6659 sizeof CALL_FP_STUB - 1) != 0)
6660 {
6661 struct mips_elf_link_hash_entry *mh;
6662
6663 mh = (struct mips_elf_link_hash_entry *) h;
6664 mh->need_fn_stub = TRUE;
6665 }
6666 }
6667
6668 return TRUE;
6669 }
6670
6671 bfd_boolean
_bfd_mips_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)6672 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6673 struct bfd_link_info *link_info,
6674 bfd_boolean *again)
6675 {
6676 Elf_Internal_Rela *internal_relocs;
6677 Elf_Internal_Rela *irel, *irelend;
6678 Elf_Internal_Shdr *symtab_hdr;
6679 bfd_byte *contents = NULL;
6680 size_t extsymoff;
6681 bfd_boolean changed_contents = FALSE;
6682 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6683 Elf_Internal_Sym *isymbuf = NULL;
6684
6685 /* We are not currently changing any sizes, so only one pass. */
6686 *again = FALSE;
6687
6688 if (link_info->relocatable)
6689 return TRUE;
6690
6691 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6692 link_info->keep_memory);
6693 if (internal_relocs == NULL)
6694 return TRUE;
6695
6696 irelend = internal_relocs + sec->reloc_count
6697 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6698 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6699 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6700
6701 for (irel = internal_relocs; irel < irelend; irel++)
6702 {
6703 bfd_vma symval;
6704 bfd_signed_vma sym_offset;
6705 unsigned int r_type;
6706 unsigned long r_symndx;
6707 asection *sym_sec;
6708 unsigned long instruction;
6709
6710 /* Turn jalr into bgezal, and jr into beq, if they're marked
6711 with a JALR relocation, that indicate where they jump to.
6712 This saves some pipeline bubbles. */
6713 r_type = ELF_R_TYPE (abfd, irel->r_info);
6714 if (r_type != R_MIPS_JALR)
6715 continue;
6716
6717 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6718 /* Compute the address of the jump target. */
6719 if (r_symndx >= extsymoff)
6720 {
6721 struct mips_elf_link_hash_entry *h
6722 = ((struct mips_elf_link_hash_entry *)
6723 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6724
6725 while (h->root.root.type == bfd_link_hash_indirect
6726 || h->root.root.type == bfd_link_hash_warning)
6727 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6728
6729 /* If a symbol is undefined, or if it may be overridden,
6730 skip it. */
6731 if (! ((h->root.root.type == bfd_link_hash_defined
6732 || h->root.root.type == bfd_link_hash_defweak)
6733 && h->root.root.u.def.section)
6734 || (link_info->shared && ! link_info->symbolic
6735 && !h->root.forced_local))
6736 continue;
6737
6738 sym_sec = h->root.root.u.def.section;
6739 if (sym_sec->output_section)
6740 symval = (h->root.root.u.def.value
6741 + sym_sec->output_section->vma
6742 + sym_sec->output_offset);
6743 else
6744 symval = h->root.root.u.def.value;
6745 }
6746 else
6747 {
6748 Elf_Internal_Sym *isym;
6749
6750 /* Read this BFD's symbols if we haven't done so already. */
6751 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6752 {
6753 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6754 if (isymbuf == NULL)
6755 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6756 symtab_hdr->sh_info, 0,
6757 NULL, NULL, NULL);
6758 if (isymbuf == NULL)
6759 goto relax_return;
6760 }
6761
6762 isym = isymbuf + r_symndx;
6763 if (isym->st_shndx == SHN_UNDEF)
6764 continue;
6765 else if (isym->st_shndx == SHN_ABS)
6766 sym_sec = bfd_abs_section_ptr;
6767 else if (isym->st_shndx == SHN_COMMON)
6768 sym_sec = bfd_com_section_ptr;
6769 else
6770 sym_sec
6771 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6772 symval = isym->st_value
6773 + sym_sec->output_section->vma
6774 + sym_sec->output_offset;
6775 }
6776
6777 /* Compute branch offset, from delay slot of the jump to the
6778 branch target. */
6779 sym_offset = (symval + irel->r_addend)
6780 - (sec_start + irel->r_offset + 4);
6781
6782 /* Branch offset must be properly aligned. */
6783 if ((sym_offset & 3) != 0)
6784 continue;
6785
6786 sym_offset >>= 2;
6787
6788 /* Check that it's in range. */
6789 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6790 continue;
6791
6792 /* Get the section contents if we haven't done so already. */
6793 if (contents == NULL)
6794 {
6795 /* Get cached copy if it exists. */
6796 if (elf_section_data (sec)->this_hdr.contents != NULL)
6797 contents = elf_section_data (sec)->this_hdr.contents;
6798 else
6799 {
6800 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6801 goto relax_return;
6802 }
6803 }
6804
6805 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6806
6807 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6808 if ((instruction & 0xfc1fffff) == 0x0000f809)
6809 instruction = 0x04110000;
6810 /* If it was jr <reg>, turn it into b <target>. */
6811 else if ((instruction & 0xfc1fffff) == 0x00000008)
6812 instruction = 0x10000000;
6813 else
6814 continue;
6815
6816 instruction |= (sym_offset & 0xffff);
6817 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6818 changed_contents = TRUE;
6819 }
6820
6821 if (contents != NULL
6822 && elf_section_data (sec)->this_hdr.contents != contents)
6823 {
6824 if (!changed_contents && !link_info->keep_memory)
6825 free (contents);
6826 else
6827 {
6828 /* Cache the section contents for elf_link_input_bfd. */
6829 elf_section_data (sec)->this_hdr.contents = contents;
6830 }
6831 }
6832 return TRUE;
6833
6834 relax_return:
6835 if (contents != NULL
6836 && elf_section_data (sec)->this_hdr.contents != contents)
6837 free (contents);
6838 return FALSE;
6839 }
6840
6841 /* Adjust a symbol defined by a dynamic object and referenced by a
6842 regular object. The current definition is in some section of the
6843 dynamic object, but we're not including those sections. We have to
6844 change the definition to something the rest of the link can
6845 understand. */
6846
6847 bfd_boolean
_bfd_mips_elf_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)6848 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6849 struct elf_link_hash_entry *h)
6850 {
6851 bfd *dynobj;
6852 struct mips_elf_link_hash_entry *hmips;
6853 asection *s;
6854 struct mips_elf_link_hash_table *htab;
6855
6856 htab = mips_elf_hash_table (info);
6857 dynobj = elf_hash_table (info)->dynobj;
6858
6859 /* Make sure we know what is going on here. */
6860 BFD_ASSERT (dynobj != NULL
6861 && (h->needs_plt
6862 || h->u.weakdef != NULL
6863 || (h->def_dynamic
6864 && h->ref_regular
6865 && !h->def_regular)));
6866
6867 /* If this symbol is defined in a dynamic object, we need to copy
6868 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6869 file. */
6870 hmips = (struct mips_elf_link_hash_entry *) h;
6871 if (! info->relocatable
6872 && hmips->possibly_dynamic_relocs != 0
6873 && (h->root.type == bfd_link_hash_defweak
6874 || !h->def_regular))
6875 {
6876 mips_elf_allocate_dynamic_relocations
6877 (dynobj, info, hmips->possibly_dynamic_relocs);
6878 if (hmips->readonly_reloc)
6879 /* We tell the dynamic linker that there are relocations
6880 against the text segment. */
6881 info->flags |= DF_TEXTREL;
6882 }
6883
6884 /* For a function, create a stub, if allowed. */
6885 if (! hmips->no_fn_stub
6886 && h->needs_plt)
6887 {
6888 if (! elf_hash_table (info)->dynamic_sections_created)
6889 return TRUE;
6890
6891 /* If this symbol is not defined in a regular file, then set
6892 the symbol to the stub location. This is required to make
6893 function pointers compare as equal between the normal
6894 executable and the shared library. */
6895 if (!h->def_regular)
6896 {
6897 /* We need .stub section. */
6898 s = bfd_get_section_by_name (dynobj,
6899 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6900 BFD_ASSERT (s != NULL);
6901
6902 h->root.u.def.section = s;
6903 h->root.u.def.value = s->size;
6904
6905 /* XXX Write this stub address somewhere. */
6906 h->plt.offset = s->size;
6907
6908 /* Make room for this stub code. */
6909 s->size += htab->function_stub_size;
6910
6911 /* The last half word of the stub will be filled with the index
6912 of this symbol in .dynsym section. */
6913 return TRUE;
6914 }
6915 }
6916 else if ((h->type == STT_FUNC)
6917 && !h->needs_plt)
6918 {
6919 /* This will set the entry for this symbol in the GOT to 0, and
6920 the dynamic linker will take care of this. */
6921 h->root.u.def.value = 0;
6922 return TRUE;
6923 }
6924
6925 /* If this is a weak symbol, and there is a real definition, the
6926 processor independent code will have arranged for us to see the
6927 real definition first, and we can just use the same value. */
6928 if (h->u.weakdef != NULL)
6929 {
6930 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6931 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6932 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6933 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6934 return TRUE;
6935 }
6936
6937 /* This is a reference to a symbol defined by a dynamic object which
6938 is not a function. */
6939
6940 return TRUE;
6941 }
6942
6943 /* Likewise, for VxWorks. */
6944
6945 bfd_boolean
_bfd_mips_vxworks_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)6946 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6947 struct elf_link_hash_entry *h)
6948 {
6949 bfd *dynobj;
6950 struct mips_elf_link_hash_entry *hmips;
6951 struct mips_elf_link_hash_table *htab;
6952 unsigned int power_of_two;
6953
6954 htab = mips_elf_hash_table (info);
6955 dynobj = elf_hash_table (info)->dynobj;
6956 hmips = (struct mips_elf_link_hash_entry *) h;
6957
6958 /* Make sure we know what is going on here. */
6959 BFD_ASSERT (dynobj != NULL
6960 && (h->needs_plt
6961 || h->needs_copy
6962 || h->u.weakdef != NULL
6963 || (h->def_dynamic
6964 && h->ref_regular
6965 && !h->def_regular)));
6966
6967 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6968 either (a) we want to branch to the symbol or (b) we're linking an
6969 executable that needs a canonical function address. In the latter
6970 case, the canonical address will be the address of the executable's
6971 load stub. */
6972 if ((hmips->is_branch_target
6973 || (!info->shared
6974 && h->type == STT_FUNC
6975 && hmips->is_relocation_target))
6976 && h->def_dynamic
6977 && h->ref_regular
6978 && !h->def_regular
6979 && !h->forced_local)
6980 h->needs_plt = 1;
6981
6982 /* Locally-binding symbols do not need a PLT stub; we can refer to
6983 the functions directly. */
6984 else if (h->needs_plt
6985 && (SYMBOL_CALLS_LOCAL (info, h)
6986 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6987 && h->root.type == bfd_link_hash_undefweak)))
6988 {
6989 h->needs_plt = 0;
6990 return TRUE;
6991 }
6992
6993 if (h->needs_plt)
6994 {
6995 /* If this is the first symbol to need a PLT entry, allocate room
6996 for the header, and for the header's .rela.plt.unloaded entries. */
6997 if (htab->splt->size == 0)
6998 {
6999 htab->splt->size += htab->plt_header_size;
7000 if (!info->shared)
7001 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7002 }
7003
7004 /* Assign the next .plt entry to this symbol. */
7005 h->plt.offset = htab->splt->size;
7006 htab->splt->size += htab->plt_entry_size;
7007
7008 /* If the output file has no definition of the symbol, set the
7009 symbol's value to the address of the stub. For executables,
7010 point at the PLT load stub rather than the lazy resolution stub;
7011 this stub will become the canonical function address. */
7012 if (!h->def_regular)
7013 {
7014 h->root.u.def.section = htab->splt;
7015 h->root.u.def.value = h->plt.offset;
7016 if (!info->shared)
7017 h->root.u.def.value += 8;
7018 }
7019
7020 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7021 htab->sgotplt->size += 4;
7022 htab->srelplt->size += sizeof (Elf32_External_Rela);
7023
7024 /* Make room for the .rela.plt.unloaded relocations. */
7025 if (!info->shared)
7026 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7027
7028 return TRUE;
7029 }
7030
7031 /* If a function symbol is defined by a dynamic object, and we do not
7032 need a PLT stub for it, the symbol's value should be zero. */
7033 if (h->type == STT_FUNC
7034 && h->def_dynamic
7035 && h->ref_regular
7036 && !h->def_regular)
7037 {
7038 h->root.u.def.value = 0;
7039 return TRUE;
7040 }
7041
7042 /* If this is a weak symbol, and there is a real definition, the
7043 processor independent code will have arranged for us to see the
7044 real definition first, and we can just use the same value. */
7045 if (h->u.weakdef != NULL)
7046 {
7047 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7048 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7049 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7050 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7051 return TRUE;
7052 }
7053
7054 /* This is a reference to a symbol defined by a dynamic object which
7055 is not a function. */
7056 if (info->shared)
7057 return TRUE;
7058
7059 /* We must allocate the symbol in our .dynbss section, which will
7060 become part of the .bss section of the executable. There will be
7061 an entry for this symbol in the .dynsym section. The dynamic
7062 object will contain position independent code, so all references
7063 from the dynamic object to this symbol will go through the global
7064 offset table. The dynamic linker will use the .dynsym entry to
7065 determine the address it must put in the global offset table, so
7066 both the dynamic object and the regular object will refer to the
7067 same memory location for the variable. */
7068
7069 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7070 {
7071 htab->srelbss->size += sizeof (Elf32_External_Rela);
7072 h->needs_copy = 1;
7073 }
7074
7075 /* We need to figure out the alignment required for this symbol. */
7076 power_of_two = bfd_log2 (h->size);
7077 if (power_of_two > 4)
7078 power_of_two = 4;
7079
7080 /* Apply the required alignment. */
7081 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7082 (bfd_size_type) 1 << power_of_two);
7083 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7084 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7085 return FALSE;
7086
7087 /* Define the symbol as being at this point in the section. */
7088 h->root.u.def.section = htab->sdynbss;
7089 h->root.u.def.value = htab->sdynbss->size;
7090
7091 /* Increment the section size to make room for the symbol. */
7092 htab->sdynbss->size += h->size;
7093
7094 return TRUE;
7095 }
7096
7097 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7098 The number might be exact or a worst-case estimate, depending on how
7099 much information is available to elf_backend_omit_section_dynsym at
7100 the current linking stage. */
7101
7102 static bfd_size_type
count_section_dynsyms(bfd * output_bfd,struct bfd_link_info * info)7103 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7104 {
7105 bfd_size_type count;
7106
7107 count = 0;
7108 if (info->shared)
7109 {
7110 asection *p;
7111 const struct elf_backend_data *bed;
7112
7113 bed = get_elf_backend_data (output_bfd);
7114 for (p = output_bfd->sections; p ; p = p->next)
7115 if ((p->flags & SEC_EXCLUDE) == 0
7116 && (p->flags & SEC_ALLOC) != 0
7117 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7118 ++count;
7119 }
7120 return count;
7121 }
7122
7123 /* This function is called after all the input files have been read,
7124 and the input sections have been assigned to output sections. We
7125 check for any mips16 stub sections that we can discard. */
7126
7127 bfd_boolean
_bfd_mips_elf_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)7128 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7129 struct bfd_link_info *info)
7130 {
7131 asection *ri;
7132
7133 bfd *dynobj;
7134 asection *s;
7135 struct mips_got_info *g;
7136 int i;
7137 bfd_size_type loadable_size = 0;
7138 bfd_size_type local_gotno;
7139 bfd_size_type dynsymcount;
7140 bfd *sub;
7141 struct mips_elf_count_tls_arg count_tls_arg;
7142 struct mips_elf_link_hash_table *htab;
7143
7144 htab = mips_elf_hash_table (info);
7145
7146 /* The .reginfo section has a fixed size. */
7147 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7148 if (ri != NULL)
7149 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7150
7151 if (! (info->relocatable
7152 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7153 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7154 mips_elf_check_mips16_stubs, NULL);
7155
7156 dynobj = elf_hash_table (info)->dynobj;
7157 if (dynobj == NULL)
7158 /* Relocatable links don't have it. */
7159 return TRUE;
7160
7161 g = mips_elf_got_info (dynobj, &s);
7162 if (s == NULL)
7163 return TRUE;
7164
7165 /* Calculate the total loadable size of the output. That
7166 will give us the maximum number of GOT_PAGE entries
7167 required. */
7168 for (sub = info->input_bfds; sub; sub = sub->link_next)
7169 {
7170 asection *subsection;
7171
7172 for (subsection = sub->sections;
7173 subsection;
7174 subsection = subsection->next)
7175 {
7176 if ((subsection->flags & SEC_ALLOC) == 0)
7177 continue;
7178 loadable_size += ((subsection->size + 0xf)
7179 &~ (bfd_size_type) 0xf);
7180 }
7181 }
7182
7183 /* There has to be a global GOT entry for every symbol with
7184 a dynamic symbol table index of DT_MIPS_GOTSYM or
7185 higher. Therefore, it make sense to put those symbols
7186 that need GOT entries at the end of the symbol table. We
7187 do that here. */
7188 if (! mips_elf_sort_hash_table (info, 1))
7189 return FALSE;
7190
7191 if (g->global_gotsym != NULL)
7192 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7193 else
7194 /* If there are no global symbols, or none requiring
7195 relocations, then GLOBAL_GOTSYM will be NULL. */
7196 i = 0;
7197
7198 /* Get a worst-case estimate of the number of dynamic symbols needed.
7199 At this point, dynsymcount does not account for section symbols
7200 and count_section_dynsyms may overestimate the number that will
7201 be needed. */
7202 dynsymcount = (elf_hash_table (info)->dynsymcount
7203 + count_section_dynsyms (output_bfd, info));
7204
7205 /* Determine the size of one stub entry. */
7206 htab->function_stub_size = (dynsymcount > 0x10000
7207 ? MIPS_FUNCTION_STUB_BIG_SIZE
7208 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7209
7210 /* In the worst case, we'll get one stub per dynamic symbol, plus
7211 one to account for the dummy entry at the end required by IRIX
7212 rld. */
7213 loadable_size += htab->function_stub_size * (i + 1);
7214
7215 if (htab->is_vxworks)
7216 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7217 relocations against local symbols evaluate to "G", and the EABI does
7218 not include R_MIPS_GOT_PAGE. */
7219 local_gotno = 0;
7220 else
7221 /* Assume there are four loadable segments consisting of contiguous
7222 sections. Is 7 enough? */
7223 local_gotno = (loadable_size >> 16) + 7;
7224
7225 g->local_gotno += local_gotno;
7226 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7227
7228 g->global_gotno = i;
7229 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7230
7231 /* We need to calculate tls_gotno for global symbols at this point
7232 instead of building it up earlier, to avoid doublecounting
7233 entries for one global symbol from multiple input files. */
7234 count_tls_arg.info = info;
7235 count_tls_arg.needed = 0;
7236 elf_link_hash_traverse (elf_hash_table (info),
7237 mips_elf_count_global_tls_entries,
7238 &count_tls_arg);
7239 g->tls_gotno += count_tls_arg.needed;
7240 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7241
7242 mips_elf_resolve_final_got_entries (g);
7243
7244 /* VxWorks does not support multiple GOTs. It initializes $gp to
7245 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7246 dynamic loader. */
7247 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7248 {
7249 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7250 return FALSE;
7251 }
7252 else
7253 {
7254 /* Set up TLS entries for the first GOT. */
7255 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7256 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7257 }
7258
7259 return TRUE;
7260 }
7261
7262 /* Set the sizes of the dynamic sections. */
7263
7264 bfd_boolean
_bfd_mips_elf_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)7265 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7266 struct bfd_link_info *info)
7267 {
7268 bfd *dynobj;
7269 asection *s, *sreldyn;
7270 bfd_boolean reltext;
7271 struct mips_elf_link_hash_table *htab;
7272
7273 htab = mips_elf_hash_table (info);
7274 dynobj = elf_hash_table (info)->dynobj;
7275 BFD_ASSERT (dynobj != NULL);
7276
7277 if (elf_hash_table (info)->dynamic_sections_created)
7278 {
7279 /* Set the contents of the .interp section to the interpreter. */
7280 if (info->executable && !info->static_link)
7281 {
7282 s = bfd_get_section_by_name (dynobj, ".interp");
7283 BFD_ASSERT (s != NULL);
7284 s->size
7285 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7286 s->contents
7287 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7288 }
7289 }
7290
7291 /* The check_relocs and adjust_dynamic_symbol entry points have
7292 determined the sizes of the various dynamic sections. Allocate
7293 memory for them. */
7294 reltext = FALSE;
7295 sreldyn = NULL;
7296 for (s = dynobj->sections; s != NULL; s = s->next)
7297 {
7298 const char *name;
7299
7300 /* It's OK to base decisions on the section name, because none
7301 of the dynobj section names depend upon the input files. */
7302 name = bfd_get_section_name (dynobj, s);
7303
7304 if ((s->flags & SEC_LINKER_CREATED) == 0)
7305 continue;
7306
7307 if (strncmp (name, ".rel", 4) == 0)
7308 {
7309 if (s->size != 0)
7310 {
7311 const char *outname;
7312 asection *target;
7313
7314 /* If this relocation section applies to a read only
7315 section, then we probably need a DT_TEXTREL entry.
7316 If the relocation section is .rel(a).dyn, we always
7317 assert a DT_TEXTREL entry rather than testing whether
7318 there exists a relocation to a read only section or
7319 not. */
7320 outname = bfd_get_section_name (output_bfd,
7321 s->output_section);
7322 target = bfd_get_section_by_name (output_bfd, outname + 4);
7323 if ((target != NULL
7324 && (target->flags & SEC_READONLY) != 0
7325 && (target->flags & SEC_ALLOC) != 0)
7326 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7327 reltext = TRUE;
7328
7329 /* We use the reloc_count field as a counter if we need
7330 to copy relocs into the output file. */
7331 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7332 s->reloc_count = 0;
7333
7334 /* If combreloc is enabled, elf_link_sort_relocs() will
7335 sort relocations, but in a different way than we do,
7336 and before we're done creating relocations. Also, it
7337 will move them around between input sections'
7338 relocation's contents, so our sorting would be
7339 broken, so don't let it run. */
7340 info->combreloc = 0;
7341 }
7342 }
7343 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7344 {
7345 /* Executables do not need a GOT. */
7346 if (info->shared)
7347 {
7348 /* Allocate relocations for all but the reserved entries. */
7349 struct mips_got_info *g;
7350 unsigned int count;
7351
7352 g = mips_elf_got_info (dynobj, NULL);
7353 count = (g->global_gotno
7354 + g->local_gotno
7355 - MIPS_RESERVED_GOTNO (info));
7356 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7357 }
7358 }
7359 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7360 {
7361 /* _bfd_mips_elf_always_size_sections() has already done
7362 most of the work, but some symbols may have been mapped
7363 to versions that we must now resolve in the got_entries
7364 hash tables. */
7365 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7366 struct mips_got_info *g = gg;
7367 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7368 unsigned int needed_relocs = 0;
7369
7370 if (gg->next)
7371 {
7372 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7373 set_got_offset_arg.info = info;
7374
7375 /* NOTE 2005-02-03: How can this call, or the next, ever
7376 find any indirect entries to resolve? They were all
7377 resolved in mips_elf_multi_got. */
7378 mips_elf_resolve_final_got_entries (gg);
7379 for (g = gg->next; g && g->next != gg; g = g->next)
7380 {
7381 unsigned int save_assign;
7382
7383 mips_elf_resolve_final_got_entries (g);
7384
7385 /* Assign offsets to global GOT entries. */
7386 save_assign = g->assigned_gotno;
7387 g->assigned_gotno = g->local_gotno;
7388 set_got_offset_arg.g = g;
7389 set_got_offset_arg.needed_relocs = 0;
7390 htab_traverse (g->got_entries,
7391 mips_elf_set_global_got_offset,
7392 &set_got_offset_arg);
7393 needed_relocs += set_got_offset_arg.needed_relocs;
7394 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7395 <= g->global_gotno);
7396
7397 g->assigned_gotno = save_assign;
7398 if (info->shared)
7399 {
7400 needed_relocs += g->local_gotno - g->assigned_gotno;
7401 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7402 + g->next->global_gotno
7403 + g->next->tls_gotno
7404 + MIPS_RESERVED_GOTNO (info));
7405 }
7406 }
7407 }
7408 else
7409 {
7410 struct mips_elf_count_tls_arg arg;
7411 arg.info = info;
7412 arg.needed = 0;
7413
7414 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7415 &arg);
7416 elf_link_hash_traverse (elf_hash_table (info),
7417 mips_elf_count_global_tls_relocs,
7418 &arg);
7419
7420 needed_relocs += arg.needed;
7421 }
7422
7423 if (needed_relocs)
7424 mips_elf_allocate_dynamic_relocations (dynobj, info,
7425 needed_relocs);
7426 }
7427 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7428 {
7429 /* IRIX rld assumes that the function stub isn't at the end
7430 of .text section. So put a dummy. XXX */
7431 s->size += htab->function_stub_size;
7432 }
7433 else if (info->executable
7434 && ! mips_elf_hash_table (info)->use_rld_obj_head
7435 && strncmp (name, ".rld_map", 8) == 0)
7436 {
7437 /* We add a room for __rld_map. It will be filled in by the
7438 rtld to contain a pointer to the _r_debug structure. */
7439 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
7440 }
7441 else if (SGI_COMPAT (output_bfd)
7442 && strncmp (name, ".compact_rel", 12) == 0)
7443 s->size += mips_elf_hash_table (info)->compact_rel_size;
7444 else if (strncmp (name, ".init", 5) != 0
7445 && s != htab->sgotplt
7446 && s != htab->splt)
7447 {
7448 /* It's not one of our sections, so don't allocate space. */
7449 continue;
7450 }
7451
7452 if (s->size == 0)
7453 {
7454 s->flags |= SEC_EXCLUDE;
7455 continue;
7456 }
7457
7458 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7459 continue;
7460
7461 /* Allocate memory for this section last, since we may increase its
7462 size above. */
7463 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7464 {
7465 sreldyn = s;
7466 continue;
7467 }
7468
7469 /* Allocate memory for the section contents. */
7470 s->contents = bfd_zalloc (dynobj, s->size);
7471 if (s->contents == NULL)
7472 {
7473 bfd_set_error (bfd_error_no_memory);
7474 return FALSE;
7475 }
7476 }
7477
7478 /* Allocate memory for the .rel(a).dyn section. */
7479 if (sreldyn != NULL)
7480 {
7481 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7482 if (sreldyn->contents == NULL)
7483 {
7484 bfd_set_error (bfd_error_no_memory);
7485 return FALSE;
7486 }
7487 }
7488
7489 if (elf_hash_table (info)->dynamic_sections_created)
7490 {
7491 /* Add some entries to the .dynamic section. We fill in the
7492 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7493 must add the entries now so that we get the correct size for
7494 the .dynamic section. The DT_DEBUG entry is filled in by the
7495 dynamic linker and used by the debugger. */
7496 if (! info->shared)
7497 {
7498 /* SGI object has the equivalence of DT_DEBUG in the
7499 DT_MIPS_RLD_MAP entry. */
7500 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7501 return FALSE;
7502 if (!SGI_COMPAT (output_bfd))
7503 {
7504 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7505 return FALSE;
7506 }
7507 }
7508 else if (info->pie)
7509 {
7510 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
7511 return FALSE;
7512 if (!SGI_COMPAT (output_bfd))
7513 {
7514 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7515 return FALSE;
7516 }
7517 }
7518 else
7519 {
7520 /* Shared libraries on traditional mips have DT_DEBUG. */
7521 if (!SGI_COMPAT (output_bfd))
7522 {
7523 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7524 return FALSE;
7525 }
7526 }
7527
7528 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7529 info->flags |= DF_TEXTREL;
7530
7531 if ((info->flags & DF_TEXTREL) != 0)
7532 {
7533 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7534 return FALSE;
7535
7536 /* Clear the DF_TEXTREL flag. It will be set again if we
7537 write out an actual text relocation; we may not, because
7538 at this point we do not know whether e.g. any .eh_frame
7539 absolute relocations have been converted to PC-relative. */
7540 info->flags &= ~DF_TEXTREL;
7541 }
7542
7543 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7544 return FALSE;
7545
7546 if (htab->is_vxworks)
7547 {
7548 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7549 use any of the DT_MIPS_* tags. */
7550 if (mips_elf_rel_dyn_section (info, FALSE))
7551 {
7552 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7553 return FALSE;
7554
7555 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7556 return FALSE;
7557
7558 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7559 return FALSE;
7560 }
7561 if (htab->splt->size > 0)
7562 {
7563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7564 return FALSE;
7565
7566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7567 return FALSE;
7568
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7570 return FALSE;
7571 }
7572 }
7573 else
7574 {
7575 if (mips_elf_rel_dyn_section (info, FALSE))
7576 {
7577 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7578 return FALSE;
7579
7580 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7581 return FALSE;
7582
7583 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7584 return FALSE;
7585 }
7586
7587 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7588 return FALSE;
7589
7590 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7591 return FALSE;
7592
7593 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7594 return FALSE;
7595
7596 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7597 return FALSE;
7598
7599 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7600 return FALSE;
7601
7602 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7603 return FALSE;
7604
7605 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7606 return FALSE;
7607
7608 if (IRIX_COMPAT (dynobj) == ict_irix5
7609 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7610 return FALSE;
7611
7612 if (IRIX_COMPAT (dynobj) == ict_irix6
7613 && (bfd_get_section_by_name
7614 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7615 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7616 return FALSE;
7617 }
7618 }
7619
7620 return TRUE;
7621 }
7622
7623 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7624 Adjust its R_ADDEND field so that it is correct for the output file.
7625 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7626 and sections respectively; both use symbol indexes. */
7627
7628 static void
mips_elf_adjust_addend(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,Elf_Internal_Sym * local_syms,asection ** local_sections,Elf_Internal_Rela * rel)7629 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7630 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7631 asection **local_sections, Elf_Internal_Rela *rel)
7632 {
7633 unsigned int r_type, r_symndx;
7634 Elf_Internal_Sym *sym;
7635 asection *sec;
7636
7637 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7638 {
7639 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7640 if (r_type == R_MIPS16_GPREL
7641 || r_type == R_MIPS_GPREL16
7642 || r_type == R_MIPS_GPREL32
7643 || r_type == R_MIPS_LITERAL)
7644 {
7645 rel->r_addend += _bfd_get_gp_value (input_bfd);
7646 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7647 }
7648
7649 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7650 sym = local_syms + r_symndx;
7651
7652 /* Adjust REL's addend to account for section merging. */
7653 if (!info->relocatable)
7654 {
7655 sec = local_sections[r_symndx];
7656 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7657 }
7658
7659 /* This would normally be done by the rela_normal code in elflink.c. */
7660 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7661 rel->r_addend += local_sections[r_symndx]->output_offset;
7662 }
7663 }
7664
7665 /* Relocate a MIPS ELF section. */
7666
7667 bfd_boolean
_bfd_mips_elf_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)7668 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7669 bfd *input_bfd, asection *input_section,
7670 bfd_byte *contents, Elf_Internal_Rela *relocs,
7671 Elf_Internal_Sym *local_syms,
7672 asection **local_sections)
7673 {
7674 Elf_Internal_Rela *rel;
7675 const Elf_Internal_Rela *relend;
7676 bfd_vma addend = 0;
7677 bfd_boolean use_saved_addend_p = FALSE;
7678 const struct elf_backend_data *bed;
7679
7680 bed = get_elf_backend_data (output_bfd);
7681 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7682 for (rel = relocs; rel < relend; ++rel)
7683 {
7684 const char *name;
7685 bfd_vma value = 0;
7686 reloc_howto_type *howto;
7687 bfd_boolean require_jalx;
7688 /* TRUE if the relocation is a RELA relocation, rather than a
7689 REL relocation. */
7690 bfd_boolean rela_relocation_p = TRUE;
7691 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7692 const char *msg;
7693
7694 /* Find the relocation howto for this relocation. */
7695 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7696 {
7697 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7698 64-bit code, but make sure all their addresses are in the
7699 lowermost or uppermost 32-bit section of the 64-bit address
7700 space. Thus, when they use an R_MIPS_64 they mean what is
7701 usually meant by R_MIPS_32, with the exception that the
7702 stored value is sign-extended to 64 bits. */
7703 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7704
7705 /* On big-endian systems, we need to lie about the position
7706 of the reloc. */
7707 if (bfd_big_endian (input_bfd))
7708 rel->r_offset += 4;
7709 }
7710 else
7711 /* NewABI defaults to RELA relocations. */
7712 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7713 NEWABI_P (input_bfd)
7714 && (MIPS_RELOC_RELA_P
7715 (input_bfd, input_section,
7716 rel - relocs)));
7717
7718 if (!use_saved_addend_p)
7719 {
7720 Elf_Internal_Shdr *rel_hdr;
7721
7722 /* If these relocations were originally of the REL variety,
7723 we must pull the addend out of the field that will be
7724 relocated. Otherwise, we simply use the contents of the
7725 RELA relocation. To determine which flavor or relocation
7726 this is, we depend on the fact that the INPUT_SECTION's
7727 REL_HDR is read before its REL_HDR2. */
7728 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7729 if ((size_t) (rel - relocs)
7730 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7731 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7732 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7733 {
7734 bfd_byte *location = contents + rel->r_offset;
7735
7736 /* Note that this is a REL relocation. */
7737 rela_relocation_p = FALSE;
7738
7739 /* Get the addend, which is stored in the input file. */
7740 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7741 location);
7742 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7743 contents);
7744 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7745 location);
7746
7747 addend &= howto->src_mask;
7748
7749 /* For some kinds of relocations, the ADDEND is a
7750 combination of the addend stored in two different
7751 relocations. */
7752 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7753 || (r_type == R_MIPS_GOT16
7754 && mips_elf_local_relocation_p (input_bfd, rel,
7755 local_sections, FALSE)))
7756 {
7757 bfd_vma l;
7758 const Elf_Internal_Rela *lo16_relocation;
7759 reloc_howto_type *lo16_howto;
7760 bfd_byte *lo16_location;
7761 int lo16_type;
7762
7763 if (r_type == R_MIPS16_HI16)
7764 lo16_type = R_MIPS16_LO16;
7765 else
7766 lo16_type = R_MIPS_LO16;
7767
7768 /* The combined value is the sum of the HI16 addend,
7769 left-shifted by sixteen bits, and the LO16
7770 addend, sign extended. (Usually, the code does
7771 a `lui' of the HI16 value, and then an `addiu' of
7772 the LO16 value.)
7773
7774 Scan ahead to find a matching LO16 relocation.
7775
7776 According to the MIPS ELF ABI, the R_MIPS_LO16
7777 relocation must be immediately following.
7778 However, for the IRIX6 ABI, the next relocation
7779 may be a composed relocation consisting of
7780 several relocations for the same address. In
7781 that case, the R_MIPS_LO16 relocation may occur
7782 as one of these. We permit a similar extension
7783 in general, as that is useful for GCC. */
7784 lo16_relocation = mips_elf_next_relocation (input_bfd,
7785 lo16_type,
7786 rel, relend);
7787 if (lo16_relocation == NULL)
7788 return FALSE;
7789
7790 lo16_location = contents + lo16_relocation->r_offset;
7791
7792 /* Obtain the addend kept there. */
7793 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7794 lo16_type, FALSE);
7795 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7796 lo16_location);
7797 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7798 input_bfd, contents);
7799 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7800 lo16_location);
7801 l &= lo16_howto->src_mask;
7802 l <<= lo16_howto->rightshift;
7803 l = _bfd_mips_elf_sign_extend (l, 16);
7804
7805 addend <<= 16;
7806
7807 /* Compute the combined addend. */
7808 addend += l;
7809 }
7810 else
7811 addend <<= howto->rightshift;
7812 }
7813 else
7814 addend = rel->r_addend;
7815 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7816 local_syms, local_sections, rel);
7817 }
7818
7819 if (info->relocatable)
7820 {
7821 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7822 && bfd_big_endian (input_bfd))
7823 rel->r_offset -= 4;
7824
7825 if (!rela_relocation_p && rel->r_addend)
7826 {
7827 addend += rel->r_addend;
7828 if (r_type == R_MIPS_HI16
7829 || r_type == R_MIPS_GOT16)
7830 addend = mips_elf_high (addend);
7831 else if (r_type == R_MIPS_HIGHER)
7832 addend = mips_elf_higher (addend);
7833 else if (r_type == R_MIPS_HIGHEST)
7834 addend = mips_elf_highest (addend);
7835 else
7836 addend >>= howto->rightshift;
7837
7838 /* We use the source mask, rather than the destination
7839 mask because the place to which we are writing will be
7840 source of the addend in the final link. */
7841 addend &= howto->src_mask;
7842
7843 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7844 /* See the comment above about using R_MIPS_64 in the 32-bit
7845 ABI. Here, we need to update the addend. It would be
7846 possible to get away with just using the R_MIPS_32 reloc
7847 but for endianness. */
7848 {
7849 bfd_vma sign_bits;
7850 bfd_vma low_bits;
7851 bfd_vma high_bits;
7852
7853 if (addend & ((bfd_vma) 1 << 31))
7854 #ifdef BFD64
7855 sign_bits = ((bfd_vma) 1 << 32) - 1;
7856 #else
7857 sign_bits = -1;
7858 #endif
7859 else
7860 sign_bits = 0;
7861
7862 /* If we don't know that we have a 64-bit type,
7863 do two separate stores. */
7864 if (bfd_big_endian (input_bfd))
7865 {
7866 /* Store the sign-bits (which are most significant)
7867 first. */
7868 low_bits = sign_bits;
7869 high_bits = addend;
7870 }
7871 else
7872 {
7873 low_bits = addend;
7874 high_bits = sign_bits;
7875 }
7876 bfd_put_32 (input_bfd, low_bits,
7877 contents + rel->r_offset);
7878 bfd_put_32 (input_bfd, high_bits,
7879 contents + rel->r_offset + 4);
7880 continue;
7881 }
7882
7883 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7884 input_bfd, input_section,
7885 contents, FALSE))
7886 return FALSE;
7887 }
7888
7889 /* Go on to the next relocation. */
7890 continue;
7891 }
7892
7893 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7894 relocations for the same offset. In that case we are
7895 supposed to treat the output of each relocation as the addend
7896 for the next. */
7897 if (rel + 1 < relend
7898 && rel->r_offset == rel[1].r_offset
7899 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7900 use_saved_addend_p = TRUE;
7901 else
7902 use_saved_addend_p = FALSE;
7903
7904 /* Figure out what value we are supposed to relocate. */
7905 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7906 input_section, info, rel,
7907 addend, howto, local_syms,
7908 local_sections, &value,
7909 &name, &require_jalx,
7910 use_saved_addend_p))
7911 {
7912 case bfd_reloc_continue:
7913 /* There's nothing to do. */
7914 continue;
7915
7916 case bfd_reloc_undefined:
7917 /* mips_elf_calculate_relocation already called the
7918 undefined_symbol callback. There's no real point in
7919 trying to perform the relocation at this point, so we
7920 just skip ahead to the next relocation. */
7921 continue;
7922
7923 case bfd_reloc_notsupported:
7924 msg = _("internal error: unsupported relocation error");
7925 info->callbacks->warning
7926 (info, msg, name, input_bfd, input_section, rel->r_offset);
7927 return FALSE;
7928
7929 case bfd_reloc_overflow:
7930 if (use_saved_addend_p)
7931 /* Ignore overflow until we reach the last relocation for
7932 a given location. */
7933 ;
7934 else
7935 {
7936 BFD_ASSERT (name != NULL);
7937 if (! ((*info->callbacks->reloc_overflow)
7938 (info, NULL, name, howto->name, (bfd_vma) 0,
7939 input_bfd, input_section, rel->r_offset)))
7940 return FALSE;
7941 }
7942 break;
7943
7944 case bfd_reloc_ok:
7945 break;
7946
7947 default:
7948 abort ();
7949 break;
7950 }
7951
7952 /* If we've got another relocation for the address, keep going
7953 until we reach the last one. */
7954 if (use_saved_addend_p)
7955 {
7956 addend = value;
7957 continue;
7958 }
7959
7960 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7961 /* See the comment above about using R_MIPS_64 in the 32-bit
7962 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7963 that calculated the right value. Now, however, we
7964 sign-extend the 32-bit result to 64-bits, and store it as a
7965 64-bit value. We are especially generous here in that we
7966 go to extreme lengths to support this usage on systems with
7967 only a 32-bit VMA. */
7968 {
7969 bfd_vma sign_bits;
7970 bfd_vma low_bits;
7971 bfd_vma high_bits;
7972
7973 if (value & ((bfd_vma) 1 << 31))
7974 #ifdef BFD64
7975 sign_bits = ((bfd_vma) 1 << 32) - 1;
7976 #else
7977 sign_bits = -1;
7978 #endif
7979 else
7980 sign_bits = 0;
7981
7982 /* If we don't know that we have a 64-bit type,
7983 do two separate stores. */
7984 if (bfd_big_endian (input_bfd))
7985 {
7986 /* Undo what we did above. */
7987 rel->r_offset -= 4;
7988 /* Store the sign-bits (which are most significant)
7989 first. */
7990 low_bits = sign_bits;
7991 high_bits = value;
7992 }
7993 else
7994 {
7995 low_bits = value;
7996 high_bits = sign_bits;
7997 }
7998 bfd_put_32 (input_bfd, low_bits,
7999 contents + rel->r_offset);
8000 bfd_put_32 (input_bfd, high_bits,
8001 contents + rel->r_offset + 4);
8002 continue;
8003 }
8004
8005 /* Actually perform the relocation. */
8006 if (! mips_elf_perform_relocation (info, howto, rel, value,
8007 input_bfd, input_section,
8008 contents, require_jalx))
8009 return FALSE;
8010 }
8011
8012 return TRUE;
8013 }
8014
8015 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8016 adjust it appropriately now. */
8017
8018 static void
mips_elf_irix6_finish_dynamic_symbol(bfd * abfd ATTRIBUTE_UNUSED,const char * name,Elf_Internal_Sym * sym)8019 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8020 const char *name, Elf_Internal_Sym *sym)
8021 {
8022 /* The linker script takes care of providing names and values for
8023 these, but we must place them into the right sections. */
8024 static const char* const text_section_symbols[] = {
8025 "_ftext",
8026 "_etext",
8027 "__dso_displacement",
8028 "__elf_header",
8029 "__program_header_table",
8030 NULL
8031 };
8032
8033 static const char* const data_section_symbols[] = {
8034 "_fdata",
8035 "_edata",
8036 "_end",
8037 "_fbss",
8038 NULL
8039 };
8040
8041 const char* const *p;
8042 int i;
8043
8044 for (i = 0; i < 2; ++i)
8045 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8046 *p;
8047 ++p)
8048 if (strcmp (*p, name) == 0)
8049 {
8050 /* All of these symbols are given type STT_SECTION by the
8051 IRIX6 linker. */
8052 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8053 sym->st_other = STO_PROTECTED;
8054
8055 /* The IRIX linker puts these symbols in special sections. */
8056 if (i == 0)
8057 sym->st_shndx = SHN_MIPS_TEXT;
8058 else
8059 sym->st_shndx = SHN_MIPS_DATA;
8060
8061 break;
8062 }
8063 }
8064
8065 /* Finish up dynamic symbol handling. We set the contents of various
8066 dynamic sections here. */
8067
8068 bfd_boolean
_bfd_mips_elf_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)8069 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8070 struct bfd_link_info *info,
8071 struct elf_link_hash_entry *h,
8072 Elf_Internal_Sym *sym)
8073 {
8074 bfd *dynobj;
8075 asection *sgot;
8076 struct mips_got_info *g, *gg;
8077 const char *name;
8078 int idx;
8079 struct mips_elf_link_hash_table *htab;
8080
8081 htab = mips_elf_hash_table (info);
8082 dynobj = elf_hash_table (info)->dynobj;
8083
8084 if (h->plt.offset != MINUS_ONE)
8085 {
8086 asection *s;
8087 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8088
8089 /* This symbol has a stub. Set it up. */
8090
8091 BFD_ASSERT (h->dynindx != -1);
8092
8093 s = bfd_get_section_by_name (dynobj,
8094 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8095 BFD_ASSERT (s != NULL);
8096
8097 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8098 || (h->dynindx <= 0xffff));
8099
8100 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8101 sign extension at runtime in the stub, resulting in a negative
8102 index value. */
8103 if (h->dynindx & ~0x7fffffff)
8104 return FALSE;
8105
8106 /* Fill the stub. */
8107 idx = 0;
8108 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8109 idx += 4;
8110 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8111 idx += 4;
8112 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8113 {
8114 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8115 stub + idx);
8116 idx += 4;
8117 }
8118 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8119 idx += 4;
8120
8121 /* If a large stub is not required and sign extension is not a
8122 problem, then use legacy code in the stub. */
8123 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8124 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8125 else if (h->dynindx & ~0x7fff)
8126 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8127 else
8128 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8129 stub + idx);
8130
8131 BFD_ASSERT (h->plt.offset <= s->size);
8132 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8133
8134 /* Mark the symbol as undefined. plt.offset != -1 occurs
8135 only for the referenced symbol. */
8136 sym->st_shndx = SHN_UNDEF;
8137
8138 /* The run-time linker uses the st_value field of the symbol
8139 to reset the global offset table entry for this external
8140 to its stub address when unlinking a shared object. */
8141 sym->st_value = (s->output_section->vma + s->output_offset
8142 + h->plt.offset);
8143 }
8144
8145 BFD_ASSERT (h->dynindx != -1
8146 || h->forced_local);
8147
8148 sgot = mips_elf_got_section (dynobj, FALSE);
8149 BFD_ASSERT (sgot != NULL);
8150 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8151 g = mips_elf_section_data (sgot)->u.got_info;
8152 BFD_ASSERT (g != NULL);
8153
8154 /* Run through the global symbol table, creating GOT entries for all
8155 the symbols that need them. */
8156 if (g->global_gotsym != NULL
8157 && h->dynindx >= g->global_gotsym->dynindx)
8158 {
8159 bfd_vma offset;
8160 bfd_vma value;
8161
8162 value = sym->st_value;
8163 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8164 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8165 }
8166
8167 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8168 {
8169 struct mips_got_entry e, *p;
8170 bfd_vma entry;
8171 bfd_vma offset;
8172
8173 gg = g;
8174
8175 e.abfd = output_bfd;
8176 e.symndx = -1;
8177 e.d.h = (struct mips_elf_link_hash_entry *)h;
8178 e.tls_type = 0;
8179
8180 for (g = g->next; g->next != gg; g = g->next)
8181 {
8182 if (g->got_entries
8183 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8184 &e)))
8185 {
8186 offset = p->gotidx;
8187 if (info->shared
8188 || (elf_hash_table (info)->dynamic_sections_created
8189 && p->d.h != NULL
8190 && p->d.h->root.def_dynamic
8191 && !p->d.h->root.def_regular))
8192 {
8193 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8194 the various compatibility problems, it's easier to mock
8195 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8196 mips_elf_create_dynamic_relocation to calculate the
8197 appropriate addend. */
8198 Elf_Internal_Rela rel[3];
8199
8200 memset (rel, 0, sizeof (rel));
8201 if (ABI_64_P (output_bfd))
8202 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8203 else
8204 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8205 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8206
8207 entry = 0;
8208 if (! (mips_elf_create_dynamic_relocation
8209 (output_bfd, info, rel,
8210 e.d.h, NULL, sym->st_value, &entry, sgot)))
8211 return FALSE;
8212 }
8213 else
8214 entry = sym->st_value;
8215 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8216 }
8217 }
8218 }
8219
8220 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8221 name = h->root.root.string;
8222 if (strcmp (name, "_DYNAMIC") == 0
8223 || h == elf_hash_table (info)->hgot)
8224 sym->st_shndx = SHN_ABS;
8225 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8226 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8227 {
8228 sym->st_shndx = SHN_ABS;
8229 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8230 sym->st_value = 1;
8231 }
8232 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8233 {
8234 sym->st_shndx = SHN_ABS;
8235 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8236 sym->st_value = elf_gp (output_bfd);
8237 }
8238 else if (SGI_COMPAT (output_bfd))
8239 {
8240 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8241 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8242 {
8243 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8244 sym->st_other = STO_PROTECTED;
8245 sym->st_value = 0;
8246 sym->st_shndx = SHN_MIPS_DATA;
8247 }
8248 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8249 {
8250 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8251 sym->st_other = STO_PROTECTED;
8252 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8253 sym->st_shndx = SHN_ABS;
8254 }
8255 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8256 {
8257 if (h->type == STT_FUNC)
8258 sym->st_shndx = SHN_MIPS_TEXT;
8259 else if (h->type == STT_OBJECT)
8260 sym->st_shndx = SHN_MIPS_DATA;
8261 }
8262 }
8263
8264 /* Handle the IRIX6-specific symbols. */
8265 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8266 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8267
8268 if (info->executable)
8269 {
8270 if (! mips_elf_hash_table (info)->use_rld_obj_head
8271 && (strcmp (name, "__rld_map") == 0
8272 || strcmp (name, "__RLD_MAP") == 0))
8273 {
8274 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8275 BFD_ASSERT (s != NULL);
8276 sym->st_value = s->output_section->vma + s->output_offset;
8277 bfd_put_32 (output_bfd, 0, s->contents);
8278 if (mips_elf_hash_table (info)->rld_value == 0)
8279 mips_elf_hash_table (info)->rld_value = sym->st_value;
8280 }
8281 else if (mips_elf_hash_table (info)->use_rld_obj_head
8282 && strcmp (name, "__rld_obj_head") == 0)
8283 {
8284 /* IRIX6 does not use a .rld_map section. */
8285 if (IRIX_COMPAT (output_bfd) == ict_irix5
8286 || IRIX_COMPAT (output_bfd) == ict_none)
8287 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8288 != NULL);
8289 mips_elf_hash_table (info)->rld_value = sym->st_value;
8290 }
8291 }
8292
8293 /* If this is a mips16 symbol, force the value to be even. */
8294 if (sym->st_other == STO_MIPS16)
8295 sym->st_value &= ~1;
8296
8297 return TRUE;
8298 }
8299
8300 /* Likewise, for VxWorks. */
8301
8302 bfd_boolean
_bfd_mips_vxworks_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)8303 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8304 struct bfd_link_info *info,
8305 struct elf_link_hash_entry *h,
8306 Elf_Internal_Sym *sym)
8307 {
8308 bfd *dynobj;
8309 asection *sgot;
8310 struct mips_got_info *g;
8311 struct mips_elf_link_hash_table *htab;
8312
8313 htab = mips_elf_hash_table (info);
8314 dynobj = elf_hash_table (info)->dynobj;
8315
8316 if (h->plt.offset != (bfd_vma) -1)
8317 {
8318 bfd_byte *loc;
8319 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8320 Elf_Internal_Rela rel;
8321 static const bfd_vma *plt_entry;
8322
8323 BFD_ASSERT (h->dynindx != -1);
8324 BFD_ASSERT (htab->splt != NULL);
8325 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8326
8327 /* Calculate the address of the .plt entry. */
8328 plt_address = (htab->splt->output_section->vma
8329 + htab->splt->output_offset
8330 + h->plt.offset);
8331
8332 /* Calculate the index of the entry. */
8333 plt_index = ((h->plt.offset - htab->plt_header_size)
8334 / htab->plt_entry_size);
8335
8336 /* Calculate the address of the .got.plt entry. */
8337 got_address = (htab->sgotplt->output_section->vma
8338 + htab->sgotplt->output_offset
8339 + plt_index * 4);
8340
8341 /* Calculate the offset of the .got.plt entry from
8342 _GLOBAL_OFFSET_TABLE_. */
8343 got_offset = mips_elf_gotplt_index (info, h);
8344
8345 /* Calculate the offset for the branch at the start of the PLT
8346 entry. The branch jumps to the beginning of .plt. */
8347 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8348
8349 /* Fill in the initial value of the .got.plt entry. */
8350 bfd_put_32 (output_bfd, plt_address,
8351 htab->sgotplt->contents + plt_index * 4);
8352
8353 /* Find out where the .plt entry should go. */
8354 loc = htab->splt->contents + h->plt.offset;
8355
8356 if (info->shared)
8357 {
8358 plt_entry = mips_vxworks_shared_plt_entry;
8359 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8360 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8361 }
8362 else
8363 {
8364 bfd_vma got_address_high, got_address_low;
8365
8366 plt_entry = mips_vxworks_exec_plt_entry;
8367 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8368 got_address_low = got_address & 0xffff;
8369
8370 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8371 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8372 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8373 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8374 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8375 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8376 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8377 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8378
8379 loc = (htab->srelplt2->contents
8380 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8381
8382 /* Emit a relocation for the .got.plt entry. */
8383 rel.r_offset = got_address;
8384 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8385 rel.r_addend = h->plt.offset;
8386 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8387
8388 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8389 loc += sizeof (Elf32_External_Rela);
8390 rel.r_offset = plt_address + 8;
8391 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8392 rel.r_addend = got_offset;
8393 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8394
8395 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8396 loc += sizeof (Elf32_External_Rela);
8397 rel.r_offset += 4;
8398 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8399 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8400 }
8401
8402 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8403 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8404 rel.r_offset = got_address;
8405 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8406 rel.r_addend = 0;
8407 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8408
8409 if (!h->def_regular)
8410 sym->st_shndx = SHN_UNDEF;
8411 }
8412
8413 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8414
8415 sgot = mips_elf_got_section (dynobj, FALSE);
8416 BFD_ASSERT (sgot != NULL);
8417 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8418 g = mips_elf_section_data (sgot)->u.got_info;
8419 BFD_ASSERT (g != NULL);
8420
8421 /* See if this symbol has an entry in the GOT. */
8422 if (g->global_gotsym != NULL
8423 && h->dynindx >= g->global_gotsym->dynindx)
8424 {
8425 bfd_vma offset;
8426 Elf_Internal_Rela outrel;
8427 bfd_byte *loc;
8428 asection *s;
8429
8430 /* Install the symbol value in the GOT. */
8431 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8432 R_MIPS_GOT16, info);
8433 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8434
8435 /* Add a dynamic relocation for it. */
8436 s = mips_elf_rel_dyn_section (info, FALSE);
8437 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8438 outrel.r_offset = (sgot->output_section->vma
8439 + sgot->output_offset
8440 + offset);
8441 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8442 outrel.r_addend = 0;
8443 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8444 }
8445
8446 /* Emit a copy reloc, if needed. */
8447 if (h->needs_copy)
8448 {
8449 Elf_Internal_Rela rel;
8450
8451 BFD_ASSERT (h->dynindx != -1);
8452
8453 rel.r_offset = (h->root.u.def.section->output_section->vma
8454 + h->root.u.def.section->output_offset
8455 + h->root.u.def.value);
8456 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8457 rel.r_addend = 0;
8458 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8459 htab->srelbss->contents
8460 + (htab->srelbss->reloc_count
8461 * sizeof (Elf32_External_Rela)));
8462 ++htab->srelbss->reloc_count;
8463 }
8464
8465 /* If this is a mips16 symbol, force the value to be even. */
8466 if (sym->st_other == STO_MIPS16)
8467 sym->st_value &= ~1;
8468
8469 return TRUE;
8470 }
8471
8472 /* Install the PLT header for a VxWorks executable and finalize the
8473 contents of .rela.plt.unloaded. */
8474
8475 static void
mips_vxworks_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)8476 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8477 {
8478 Elf_Internal_Rela rela;
8479 bfd_byte *loc;
8480 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8481 static const bfd_vma *plt_entry;
8482 struct mips_elf_link_hash_table *htab;
8483
8484 htab = mips_elf_hash_table (info);
8485 plt_entry = mips_vxworks_exec_plt0_entry;
8486
8487 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8488 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8489 + htab->root.hgot->root.u.def.section->output_offset
8490 + htab->root.hgot->root.u.def.value);
8491
8492 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8493 got_value_low = got_value & 0xffff;
8494
8495 /* Calculate the address of the PLT header. */
8496 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8497
8498 /* Install the PLT header. */
8499 loc = htab->splt->contents;
8500 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8501 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8502 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8503 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8504 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8505 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8506
8507 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8508 loc = htab->srelplt2->contents;
8509 rela.r_offset = plt_address;
8510 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8511 rela.r_addend = 0;
8512 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8513 loc += sizeof (Elf32_External_Rela);
8514
8515 /* Output the relocation for the following addiu of
8516 %lo(_GLOBAL_OFFSET_TABLE_). */
8517 rela.r_offset += 4;
8518 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8519 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8520 loc += sizeof (Elf32_External_Rela);
8521
8522 /* Fix up the remaining relocations. They may have the wrong
8523 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8524 in which symbols were output. */
8525 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8526 {
8527 Elf_Internal_Rela rel;
8528
8529 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8530 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8531 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8532 loc += sizeof (Elf32_External_Rela);
8533
8534 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8535 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8536 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8537 loc += sizeof (Elf32_External_Rela);
8538
8539 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8540 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8541 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8542 loc += sizeof (Elf32_External_Rela);
8543 }
8544 }
8545
8546 /* Install the PLT header for a VxWorks shared library. */
8547
8548 static void
mips_vxworks_finish_shared_plt(bfd * output_bfd,struct bfd_link_info * info)8549 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8550 {
8551 unsigned int i;
8552 struct mips_elf_link_hash_table *htab;
8553
8554 htab = mips_elf_hash_table (info);
8555
8556 /* We just need to copy the entry byte-by-byte. */
8557 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8558 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8559 htab->splt->contents + i * 4);
8560 }
8561
8562 /* Finish up the dynamic sections. */
8563
8564 bfd_boolean
_bfd_mips_elf_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)8565 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8566 struct bfd_link_info *info)
8567 {
8568 bfd *dynobj;
8569 asection *sdyn;
8570 asection *sgot;
8571 struct mips_got_info *gg, *g;
8572 struct mips_elf_link_hash_table *htab;
8573
8574 htab = mips_elf_hash_table (info);
8575 dynobj = elf_hash_table (info)->dynobj;
8576
8577 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8578
8579 sgot = mips_elf_got_section (dynobj, FALSE);
8580 if (sgot == NULL)
8581 gg = g = NULL;
8582 else
8583 {
8584 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8585 gg = mips_elf_section_data (sgot)->u.got_info;
8586 BFD_ASSERT (gg != NULL);
8587 g = mips_elf_got_for_ibfd (gg, output_bfd);
8588 BFD_ASSERT (g != NULL);
8589 }
8590
8591 if (elf_hash_table (info)->dynamic_sections_created)
8592 {
8593 bfd_byte *b;
8594 int dyn_to_skip = 0, dyn_skipped = 0;
8595
8596 BFD_ASSERT (sdyn != NULL);
8597 BFD_ASSERT (g != NULL);
8598
8599 for (b = sdyn->contents;
8600 b < sdyn->contents + sdyn->size;
8601 b += MIPS_ELF_DYN_SIZE (dynobj))
8602 {
8603 Elf_Internal_Dyn dyn;
8604 const char *name;
8605 size_t elemsize;
8606 asection *s;
8607 bfd_boolean swap_out_p;
8608
8609 /* Read in the current dynamic entry. */
8610 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8611
8612 /* Assume that we're going to modify it and write it out. */
8613 swap_out_p = TRUE;
8614
8615 switch (dyn.d_tag)
8616 {
8617 case DT_RELENT:
8618 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8619 break;
8620
8621 case DT_RELAENT:
8622 BFD_ASSERT (htab->is_vxworks);
8623 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8624 break;
8625
8626 case DT_STRSZ:
8627 /* Rewrite DT_STRSZ. */
8628 dyn.d_un.d_val =
8629 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8630 break;
8631
8632 case DT_PLTGOT:
8633 name = ".got";
8634 if (htab->is_vxworks)
8635 {
8636 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8637 of the ".got" section in DYNOBJ. */
8638 s = bfd_get_section_by_name (dynobj, name);
8639 BFD_ASSERT (s != NULL);
8640 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8641 }
8642 else
8643 {
8644 s = bfd_get_section_by_name (output_bfd, name);
8645 BFD_ASSERT (s != NULL);
8646 dyn.d_un.d_ptr = s->vma;
8647 }
8648 break;
8649
8650 case DT_MIPS_RLD_VERSION:
8651 dyn.d_un.d_val = 1; /* XXX */
8652 break;
8653
8654 case DT_MIPS_FLAGS:
8655 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8656 break;
8657
8658 case DT_MIPS_TIME_STAMP:
8659 {
8660 time_t t;
8661 time (&t);
8662 dyn.d_un.d_val = t;
8663 }
8664 break;
8665
8666 case DT_MIPS_ICHECKSUM:
8667 /* XXX FIXME: */
8668 swap_out_p = FALSE;
8669 break;
8670
8671 case DT_MIPS_IVERSION:
8672 /* XXX FIXME: */
8673 swap_out_p = FALSE;
8674 break;
8675
8676 case DT_MIPS_BASE_ADDRESS:
8677 s = output_bfd->sections;
8678 BFD_ASSERT (s != NULL);
8679 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8680 break;
8681
8682 case DT_MIPS_LOCAL_GOTNO:
8683 dyn.d_un.d_val = g->local_gotno;
8684 break;
8685
8686 case DT_MIPS_UNREFEXTNO:
8687 /* The index into the dynamic symbol table which is the
8688 entry of the first external symbol that is not
8689 referenced within the same object. */
8690 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8691 break;
8692
8693 case DT_MIPS_GOTSYM:
8694 if (gg->global_gotsym)
8695 {
8696 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8697 break;
8698 }
8699 /* In case if we don't have global got symbols we default
8700 to setting DT_MIPS_GOTSYM to the same value as
8701 DT_MIPS_SYMTABNO, so we just fall through. */
8702
8703 case DT_MIPS_SYMTABNO:
8704 name = ".dynsym";
8705 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8706 s = bfd_get_section_by_name (output_bfd, name);
8707 BFD_ASSERT (s != NULL);
8708
8709 dyn.d_un.d_val = s->size / elemsize;
8710 break;
8711
8712 case DT_MIPS_HIPAGENO:
8713 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8714 break;
8715
8716 case DT_MIPS_RLD_MAP:
8717 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8718 break;
8719
8720 case DT_MIPS_RLD_MAP_REL:
8721 {
8722 bfd_vma dt_addr;
8723
8724 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
8725 + (b - sdyn->contents));
8726 dyn.d_un.d_val = mips_elf_hash_table (info)->rld_value - dt_addr;
8727 }
8728 break;
8729
8730 case DT_MIPS_OPTIONS:
8731 s = (bfd_get_section_by_name
8732 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8733 dyn.d_un.d_ptr = s->vma;
8734 break;
8735
8736 case DT_RELASZ:
8737 BFD_ASSERT (htab->is_vxworks);
8738 /* The count does not include the JUMP_SLOT relocations. */
8739 if (htab->srelplt)
8740 dyn.d_un.d_val -= htab->srelplt->size;
8741 break;
8742
8743 case DT_PLTREL:
8744 BFD_ASSERT (htab->is_vxworks);
8745 dyn.d_un.d_val = DT_RELA;
8746 break;
8747
8748 case DT_PLTRELSZ:
8749 BFD_ASSERT (htab->is_vxworks);
8750 dyn.d_un.d_val = htab->srelplt->size;
8751 break;
8752
8753 case DT_JMPREL:
8754 BFD_ASSERT (htab->is_vxworks);
8755 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8756 + htab->srelplt->output_offset);
8757 break;
8758
8759 case DT_TEXTREL:
8760 /* If we didn't need any text relocations after all, delete
8761 the dynamic tag. */
8762 if (!(info->flags & DF_TEXTREL))
8763 {
8764 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8765 swap_out_p = FALSE;
8766 }
8767 break;
8768
8769 case DT_FLAGS:
8770 /* If we didn't need any text relocations after all, clear
8771 DF_TEXTREL from DT_FLAGS. */
8772 if (!(info->flags & DF_TEXTREL))
8773 dyn.d_un.d_val &= ~DF_TEXTREL;
8774 else
8775 swap_out_p = FALSE;
8776 break;
8777
8778 default:
8779 swap_out_p = FALSE;
8780 break;
8781 }
8782
8783 if (swap_out_p || dyn_skipped)
8784 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8785 (dynobj, &dyn, b - dyn_skipped);
8786
8787 if (dyn_to_skip)
8788 {
8789 dyn_skipped += dyn_to_skip;
8790 dyn_to_skip = 0;
8791 }
8792 }
8793
8794 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8795 if (dyn_skipped > 0)
8796 memset (b - dyn_skipped, 0, dyn_skipped);
8797 }
8798
8799 if (sgot != NULL && sgot->size > 0)
8800 {
8801 if (htab->is_vxworks)
8802 {
8803 /* The first entry of the global offset table points to the
8804 ".dynamic" section. The second is initialized by the
8805 loader and contains the shared library identifier.
8806 The third is also initialized by the loader and points
8807 to the lazy resolution stub. */
8808 MIPS_ELF_PUT_WORD (output_bfd,
8809 sdyn->output_offset + sdyn->output_section->vma,
8810 sgot->contents);
8811 MIPS_ELF_PUT_WORD (output_bfd, 0,
8812 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8813 MIPS_ELF_PUT_WORD (output_bfd, 0,
8814 sgot->contents
8815 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8816 }
8817 else
8818 {
8819 /* The first entry of the global offset table will be filled at
8820 runtime. The second entry will be used by some runtime loaders.
8821 This isn't the case of IRIX rld. */
8822 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8823 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8824 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8825 }
8826 }
8827
8828 if (sgot != NULL)
8829 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8830 = MIPS_ELF_GOT_SIZE (output_bfd);
8831
8832 /* Generate dynamic relocations for the non-primary gots. */
8833 if (gg != NULL && gg->next)
8834 {
8835 Elf_Internal_Rela rel[3];
8836 bfd_vma addend = 0;
8837
8838 memset (rel, 0, sizeof (rel));
8839 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8840
8841 for (g = gg->next; g->next != gg; g = g->next)
8842 {
8843 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8844 + g->next->tls_gotno;
8845
8846 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8847 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8848 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8849 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8850
8851 if (! info->shared)
8852 continue;
8853
8854 while (index < g->assigned_gotno)
8855 {
8856 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8857 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8858 if (!(mips_elf_create_dynamic_relocation
8859 (output_bfd, info, rel, NULL,
8860 bfd_abs_section_ptr,
8861 0, &addend, sgot)))
8862 return FALSE;
8863 BFD_ASSERT (addend == 0);
8864 }
8865 }
8866 }
8867
8868 /* The generation of dynamic relocations for the non-primary gots
8869 adds more dynamic relocations. We cannot count them until
8870 here. */
8871
8872 if (elf_hash_table (info)->dynamic_sections_created)
8873 {
8874 bfd_byte *b;
8875 bfd_boolean swap_out_p;
8876
8877 BFD_ASSERT (sdyn != NULL);
8878
8879 for (b = sdyn->contents;
8880 b < sdyn->contents + sdyn->size;
8881 b += MIPS_ELF_DYN_SIZE (dynobj))
8882 {
8883 Elf_Internal_Dyn dyn;
8884 asection *s;
8885
8886 /* Read in the current dynamic entry. */
8887 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8888
8889 /* Assume that we're going to modify it and write it out. */
8890 swap_out_p = TRUE;
8891
8892 switch (dyn.d_tag)
8893 {
8894 case DT_RELSZ:
8895 /* Reduce DT_RELSZ to account for any relocations we
8896 decided not to make. This is for the n64 irix rld,
8897 which doesn't seem to apply any relocations if there
8898 are trailing null entries. */
8899 if (SGI_COMPAT (output_bfd))
8900 {
8901 s = mips_elf_rel_dyn_section (info, FALSE);
8902 dyn.d_un.d_val = (s->reloc_count
8903 * (ABI_64_P (output_bfd)
8904 ? sizeof (Elf64_Mips_External_Rel)
8905 : sizeof (Elf32_External_Rel)));
8906 }
8907 else
8908 swap_out_p = FALSE;
8909 break;
8910
8911 default:
8912 swap_out_p = FALSE;
8913 break;
8914 }
8915
8916 if (swap_out_p)
8917 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8918 (dynobj, &dyn, b);
8919 }
8920 }
8921
8922 {
8923 asection *s;
8924 Elf32_compact_rel cpt;
8925
8926 if (SGI_COMPAT (output_bfd))
8927 {
8928 /* Write .compact_rel section out. */
8929 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8930 if (s != NULL)
8931 {
8932 cpt.id1 = 1;
8933 cpt.num = s->reloc_count;
8934 cpt.id2 = 2;
8935 cpt.offset = (s->output_section->filepos
8936 + sizeof (Elf32_External_compact_rel));
8937 cpt.reserved0 = 0;
8938 cpt.reserved1 = 0;
8939 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8940 ((Elf32_External_compact_rel *)
8941 s->contents));
8942
8943 /* Clean up a dummy stub function entry in .text. */
8944 s = bfd_get_section_by_name (dynobj,
8945 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8946 if (s != NULL)
8947 {
8948 file_ptr dummy_offset;
8949
8950 BFD_ASSERT (s->size >= htab->function_stub_size);
8951 dummy_offset = s->size - htab->function_stub_size;
8952 memset (s->contents + dummy_offset, 0,
8953 htab->function_stub_size);
8954 }
8955 }
8956 }
8957
8958 /* The psABI says that the dynamic relocations must be sorted in
8959 increasing order of r_symndx. The VxWorks EABI doesn't require
8960 this, and because the code below handles REL rather than RELA
8961 relocations, using it for VxWorks would be outright harmful. */
8962 if (!htab->is_vxworks)
8963 {
8964 s = mips_elf_rel_dyn_section (info, FALSE);
8965 if (s != NULL
8966 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8967 {
8968 reldyn_sorting_bfd = output_bfd;
8969
8970 if (ABI_64_P (output_bfd))
8971 qsort ((Elf64_External_Rel *) s->contents + 1,
8972 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8973 sort_dynamic_relocs_64);
8974 else
8975 qsort ((Elf32_External_Rel *) s->contents + 1,
8976 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8977 sort_dynamic_relocs);
8978 }
8979 }
8980 }
8981
8982 if (htab->is_vxworks && htab->splt->size > 0)
8983 {
8984 if (info->shared)
8985 mips_vxworks_finish_shared_plt (output_bfd, info);
8986 else
8987 mips_vxworks_finish_exec_plt (output_bfd, info);
8988 }
8989 return TRUE;
8990 }
8991
8992
8993 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8994
8995 static void
mips_set_isa_flags(bfd * abfd)8996 mips_set_isa_flags (bfd *abfd)
8997 {
8998 flagword val;
8999
9000 switch (bfd_get_mach (abfd))
9001 {
9002 default:
9003 case bfd_mach_mips3000:
9004 val = E_MIPS_ARCH_1;
9005 break;
9006
9007 case bfd_mach_mips3900:
9008 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9009 break;
9010
9011 case bfd_mach_mips6000:
9012 val = E_MIPS_ARCH_2;
9013 break;
9014
9015 case bfd_mach_mips4000:
9016 case bfd_mach_mips4300:
9017 case bfd_mach_mips4400:
9018 case bfd_mach_mips4600:
9019 val = E_MIPS_ARCH_3;
9020 break;
9021
9022 case bfd_mach_mips4010:
9023 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9024 break;
9025
9026 case bfd_mach_mips4100:
9027 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9028 break;
9029
9030 case bfd_mach_mips4111:
9031 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9032 break;
9033
9034 case bfd_mach_mips4120:
9035 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9036 break;
9037
9038 case bfd_mach_mips4650:
9039 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9040 break;
9041
9042 case bfd_mach_mips5400:
9043 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9044 break;
9045
9046 case bfd_mach_mips5500:
9047 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9048 break;
9049
9050 case bfd_mach_mips9000:
9051 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9052 break;
9053
9054 case bfd_mach_mips5000:
9055 case bfd_mach_mips7000:
9056 case bfd_mach_mips8000:
9057 case bfd_mach_mips10000:
9058 case bfd_mach_mips12000:
9059 val = E_MIPS_ARCH_4;
9060 break;
9061
9062 case bfd_mach_mips5:
9063 val = E_MIPS_ARCH_5;
9064 break;
9065
9066 case bfd_mach_mips_sb1:
9067 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9068 break;
9069
9070 case bfd_mach_mips_octeon:
9071 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9072 break;
9073
9074 case bfd_mach_mipsisa32:
9075 val = E_MIPS_ARCH_32;
9076 break;
9077
9078 case bfd_mach_mipsisa64:
9079 val = E_MIPS_ARCH_64;
9080 break;
9081
9082 case bfd_mach_mipsisa32r2:
9083 val = E_MIPS_ARCH_32R2;
9084 break;
9085
9086 case bfd_mach_mipsisa64r2:
9087 val = E_MIPS_ARCH_64R2;
9088 break;
9089 }
9090 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9091 elf_elfheader (abfd)->e_flags |= val;
9092
9093 }
9094
9095
9096 /* The final processing done just before writing out a MIPS ELF object
9097 file. This gets the MIPS architecture right based on the machine
9098 number. This is used by both the 32-bit and the 64-bit ABI. */
9099
9100 void
_bfd_mips_elf_final_write_processing(bfd * abfd,bfd_boolean linker ATTRIBUTE_UNUSED)9101 _bfd_mips_elf_final_write_processing (bfd *abfd,
9102 bfd_boolean linker ATTRIBUTE_UNUSED)
9103 {
9104 unsigned int i;
9105 Elf_Internal_Shdr **hdrpp;
9106 const char *name;
9107 asection *sec;
9108
9109 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9110 is nonzero. This is for compatibility with old objects, which used
9111 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9112 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9113 mips_set_isa_flags (abfd);
9114
9115 /* Set the sh_info field for .gptab sections and other appropriate
9116 info for each special section. */
9117 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9118 i < elf_numsections (abfd);
9119 i++, hdrpp++)
9120 {
9121 switch ((*hdrpp)->sh_type)
9122 {
9123 case SHT_MIPS_MSYM:
9124 case SHT_MIPS_LIBLIST:
9125 sec = bfd_get_section_by_name (abfd, ".dynstr");
9126 if (sec != NULL)
9127 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9128 break;
9129
9130 case SHT_MIPS_GPTAB:
9131 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9132 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9133 BFD_ASSERT (name != NULL
9134 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9135 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9136 BFD_ASSERT (sec != NULL);
9137 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9138 break;
9139
9140 case SHT_MIPS_CONTENT:
9141 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9142 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9143 BFD_ASSERT (name != NULL
9144 && strncmp (name, ".MIPS.content",
9145 sizeof ".MIPS.content" - 1) == 0);
9146 sec = bfd_get_section_by_name (abfd,
9147 name + sizeof ".MIPS.content" - 1);
9148 BFD_ASSERT (sec != NULL);
9149 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9150 break;
9151
9152 case SHT_MIPS_SYMBOL_LIB:
9153 sec = bfd_get_section_by_name (abfd, ".dynsym");
9154 if (sec != NULL)
9155 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9156 sec = bfd_get_section_by_name (abfd, ".liblist");
9157 if (sec != NULL)
9158 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9159 break;
9160
9161 case SHT_MIPS_EVENTS:
9162 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9163 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9164 BFD_ASSERT (name != NULL);
9165 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9166 sec = bfd_get_section_by_name (abfd,
9167 name + sizeof ".MIPS.events" - 1);
9168 else
9169 {
9170 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9171 sizeof ".MIPS.post_rel" - 1) == 0);
9172 sec = bfd_get_section_by_name (abfd,
9173 (name
9174 + sizeof ".MIPS.post_rel" - 1));
9175 }
9176 BFD_ASSERT (sec != NULL);
9177 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9178 break;
9179
9180 }
9181 }
9182 }
9183
9184 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9185 segments. */
9186
9187 int
_bfd_mips_elf_additional_program_headers(bfd * abfd)9188 _bfd_mips_elf_additional_program_headers (bfd *abfd)
9189 {
9190 asection *s;
9191 int ret = 0;
9192
9193 /* See if we need a PT_MIPS_REGINFO segment. */
9194 s = bfd_get_section_by_name (abfd, ".reginfo");
9195 if (s && (s->flags & SEC_LOAD))
9196 ++ret;
9197
9198 /* See if we need a PT_MIPS_OPTIONS segment. */
9199 if (IRIX_COMPAT (abfd) == ict_irix6
9200 && bfd_get_section_by_name (abfd,
9201 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9202 ++ret;
9203
9204 /* See if we need a PT_MIPS_RTPROC segment. */
9205 if (IRIX_COMPAT (abfd) == ict_irix5
9206 && bfd_get_section_by_name (abfd, ".dynamic")
9207 && bfd_get_section_by_name (abfd, ".mdebug"))
9208 ++ret;
9209
9210 return ret;
9211 }
9212
9213 /* Modify the segment map for an IRIX5 executable. */
9214
9215 bfd_boolean
_bfd_mips_elf_modify_segment_map(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)9216 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9217 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9218 {
9219 asection *s;
9220 struct elf_segment_map *m, **pm;
9221 bfd_size_type amt;
9222
9223 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9224 segment. */
9225 s = bfd_get_section_by_name (abfd, ".reginfo");
9226 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9227 {
9228 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9229 if (m->p_type == PT_MIPS_REGINFO)
9230 break;
9231 if (m == NULL)
9232 {
9233 amt = sizeof *m;
9234 m = bfd_zalloc (abfd, amt);
9235 if (m == NULL)
9236 return FALSE;
9237
9238 m->p_type = PT_MIPS_REGINFO;
9239 m->count = 1;
9240 m->sections[0] = s;
9241
9242 /* We want to put it after the PHDR and INTERP segments. */
9243 pm = &elf_tdata (abfd)->segment_map;
9244 while (*pm != NULL
9245 && ((*pm)->p_type == PT_PHDR
9246 || (*pm)->p_type == PT_INTERP))
9247 pm = &(*pm)->next;
9248
9249 m->next = *pm;
9250 *pm = m;
9251 }
9252 }
9253
9254 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9255 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9256 PT_MIPS_OPTIONS segment immediately following the program header
9257 table. */
9258 if (NEWABI_P (abfd)
9259 /* On non-IRIX6 new abi, we'll have already created a segment
9260 for this section, so don't create another. I'm not sure this
9261 is not also the case for IRIX 6, but I can't test it right
9262 now. */
9263 && IRIX_COMPAT (abfd) == ict_irix6)
9264 {
9265 for (s = abfd->sections; s; s = s->next)
9266 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9267 break;
9268
9269 if (s)
9270 {
9271 struct elf_segment_map *options_segment;
9272
9273 pm = &elf_tdata (abfd)->segment_map;
9274 while (*pm != NULL
9275 && ((*pm)->p_type == PT_PHDR
9276 || (*pm)->p_type == PT_INTERP))
9277 pm = &(*pm)->next;
9278
9279 amt = sizeof (struct elf_segment_map);
9280 options_segment = bfd_zalloc (abfd, amt);
9281 options_segment->next = *pm;
9282 options_segment->p_type = PT_MIPS_OPTIONS;
9283 options_segment->p_flags = PF_R;
9284 options_segment->p_flags_valid = TRUE;
9285 options_segment->count = 1;
9286 options_segment->sections[0] = s;
9287 *pm = options_segment;
9288 }
9289 }
9290 else
9291 {
9292 if (IRIX_COMPAT (abfd) == ict_irix5)
9293 {
9294 /* If there are .dynamic and .mdebug sections, we make a room
9295 for the RTPROC header. FIXME: Rewrite without section names. */
9296 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9297 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9298 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9299 {
9300 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9301 if (m->p_type == PT_MIPS_RTPROC)
9302 break;
9303 if (m == NULL)
9304 {
9305 amt = sizeof *m;
9306 m = bfd_zalloc (abfd, amt);
9307 if (m == NULL)
9308 return FALSE;
9309
9310 m->p_type = PT_MIPS_RTPROC;
9311
9312 s = bfd_get_section_by_name (abfd, ".rtproc");
9313 if (s == NULL)
9314 {
9315 m->count = 0;
9316 m->p_flags = 0;
9317 m->p_flags_valid = 1;
9318 }
9319 else
9320 {
9321 m->count = 1;
9322 m->sections[0] = s;
9323 }
9324
9325 /* We want to put it after the DYNAMIC segment. */
9326 pm = &elf_tdata (abfd)->segment_map;
9327 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9328 pm = &(*pm)->next;
9329 if (*pm != NULL)
9330 pm = &(*pm)->next;
9331
9332 m->next = *pm;
9333 *pm = m;
9334 }
9335 }
9336 }
9337 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9338 .dynstr, .dynsym, and .hash sections, and everything in
9339 between. */
9340 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9341 pm = &(*pm)->next)
9342 if ((*pm)->p_type == PT_DYNAMIC)
9343 break;
9344 m = *pm;
9345 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9346 {
9347 /* For a normal mips executable the permissions for the PT_DYNAMIC
9348 segment are read, write and execute. We do that here since
9349 the code in elf.c sets only the read permission. This matters
9350 sometimes for the dynamic linker. */
9351 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9352 {
9353 m->p_flags = PF_R | PF_W | PF_X;
9354 m->p_flags_valid = 1;
9355 }
9356 }
9357 if (SGI_COMPAT (abfd)
9358 && m != NULL
9359 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9360 {
9361 static const char *sec_names[] =
9362 {
9363 ".dynamic", ".dynstr", ".dynsym", ".hash"
9364 };
9365 bfd_vma low, high;
9366 unsigned int i, c;
9367 struct elf_segment_map *n;
9368
9369 low = ~(bfd_vma) 0;
9370 high = 0;
9371 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9372 {
9373 s = bfd_get_section_by_name (abfd, sec_names[i]);
9374 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9375 {
9376 bfd_size_type sz;
9377
9378 if (low > s->vma)
9379 low = s->vma;
9380 sz = s->size;
9381 if (high < s->vma + sz)
9382 high = s->vma + sz;
9383 }
9384 }
9385
9386 c = 0;
9387 for (s = abfd->sections; s != NULL; s = s->next)
9388 if ((s->flags & SEC_LOAD) != 0
9389 && s->vma >= low
9390 && s->vma + s->size <= high)
9391 ++c;
9392
9393 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9394 n = bfd_zalloc (abfd, amt);
9395 if (n == NULL)
9396 return FALSE;
9397 *n = *m;
9398 n->count = c;
9399
9400 i = 0;
9401 for (s = abfd->sections; s != NULL; s = s->next)
9402 {
9403 if ((s->flags & SEC_LOAD) != 0
9404 && s->vma >= low
9405 && s->vma + s->size <= high)
9406 {
9407 n->sections[i] = s;
9408 ++i;
9409 }
9410 }
9411
9412 *pm = n;
9413 }
9414 }
9415
9416 return TRUE;
9417 }
9418
9419 /* Return the section that should be marked against GC for a given
9420 relocation. */
9421
9422 asection *
_bfd_mips_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)9423 _bfd_mips_elf_gc_mark_hook (asection *sec,
9424 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9425 Elf_Internal_Rela *rel,
9426 struct elf_link_hash_entry *h,
9427 Elf_Internal_Sym *sym)
9428 {
9429 /* ??? Do mips16 stub sections need to be handled special? */
9430
9431 if (h != NULL)
9432 {
9433 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9434 {
9435 case R_MIPS_GNU_VTINHERIT:
9436 case R_MIPS_GNU_VTENTRY:
9437 break;
9438
9439 default:
9440 switch (h->root.type)
9441 {
9442 case bfd_link_hash_defined:
9443 case bfd_link_hash_defweak:
9444 return h->root.u.def.section;
9445
9446 case bfd_link_hash_common:
9447 return h->root.u.c.p->section;
9448
9449 default:
9450 break;
9451 }
9452 }
9453 }
9454 else
9455 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9456
9457 return NULL;
9458 }
9459
9460 /* Update the got entry reference counts for the section being removed. */
9461
9462 bfd_boolean
_bfd_mips_elf_gc_sweep_hook(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)9463 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9464 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9465 asection *sec ATTRIBUTE_UNUSED,
9466 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9467 {
9468 #if 0
9469 Elf_Internal_Shdr *symtab_hdr;
9470 struct elf_link_hash_entry **sym_hashes;
9471 bfd_signed_vma *local_got_refcounts;
9472 const Elf_Internal_Rela *rel, *relend;
9473 unsigned long r_symndx;
9474 struct elf_link_hash_entry *h;
9475
9476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9477 sym_hashes = elf_sym_hashes (abfd);
9478 local_got_refcounts = elf_local_got_refcounts (abfd);
9479
9480 relend = relocs + sec->reloc_count;
9481 for (rel = relocs; rel < relend; rel++)
9482 switch (ELF_R_TYPE (abfd, rel->r_info))
9483 {
9484 case R_MIPS_GOT16:
9485 case R_MIPS_CALL16:
9486 case R_MIPS_CALL_HI16:
9487 case R_MIPS_CALL_LO16:
9488 case R_MIPS_GOT_HI16:
9489 case R_MIPS_GOT_LO16:
9490 case R_MIPS_GOT_DISP:
9491 case R_MIPS_GOT_PAGE:
9492 case R_MIPS_GOT_OFST:
9493 /* ??? It would seem that the existing MIPS code does no sort
9494 of reference counting or whatnot on its GOT and PLT entries,
9495 so it is not possible to garbage collect them at this time. */
9496 break;
9497
9498 default:
9499 break;
9500 }
9501 #endif
9502
9503 return TRUE;
9504 }
9505
9506 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9507 hiding the old indirect symbol. Process additional relocation
9508 information. Also called for weakdefs, in which case we just let
9509 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9510
9511 void
_bfd_mips_elf_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)9512 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9513 struct elf_link_hash_entry *dir,
9514 struct elf_link_hash_entry *ind)
9515 {
9516 struct mips_elf_link_hash_entry *dirmips, *indmips;
9517
9518 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9519
9520 if (ind->root.type != bfd_link_hash_indirect)
9521 return;
9522
9523 dirmips = (struct mips_elf_link_hash_entry *) dir;
9524 indmips = (struct mips_elf_link_hash_entry *) ind;
9525 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9526 if (indmips->readonly_reloc)
9527 dirmips->readonly_reloc = TRUE;
9528 if (indmips->no_fn_stub)
9529 dirmips->no_fn_stub = TRUE;
9530
9531 if (dirmips->tls_type == 0)
9532 dirmips->tls_type = indmips->tls_type;
9533 }
9534
9535 void
_bfd_mips_elf_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * entry,bfd_boolean force_local)9536 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9537 struct elf_link_hash_entry *entry,
9538 bfd_boolean force_local)
9539 {
9540 bfd *dynobj;
9541 asection *got;
9542 struct mips_got_info *g;
9543 struct mips_elf_link_hash_entry *h;
9544
9545 h = (struct mips_elf_link_hash_entry *) entry;
9546 if (h->forced_local)
9547 return;
9548 h->forced_local = force_local;
9549
9550 dynobj = elf_hash_table (info)->dynobj;
9551 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9552 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
9553 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9554 {
9555 if (g->next)
9556 {
9557 struct mips_got_entry e;
9558 struct mips_got_info *gg = g;
9559
9560 /* Since we're turning what used to be a global symbol into a
9561 local one, bump up the number of local entries of each GOT
9562 that had an entry for it. This will automatically decrease
9563 the number of global entries, since global_gotno is actually
9564 the upper limit of global entries. */
9565 e.abfd = dynobj;
9566 e.symndx = -1;
9567 e.d.h = h;
9568 e.tls_type = 0;
9569
9570 for (g = g->next; g != gg; g = g->next)
9571 if (htab_find (g->got_entries, &e))
9572 {
9573 BFD_ASSERT (g->global_gotno > 0);
9574 g->local_gotno++;
9575 g->global_gotno--;
9576 }
9577
9578 /* If this was a global symbol forced into the primary GOT, we
9579 no longer need an entry for it. We can't release the entry
9580 at this point, but we must at least stop counting it as one
9581 of the symbols that required a forced got entry. */
9582 if (h->root.got.offset == 2)
9583 {
9584 BFD_ASSERT (gg->assigned_gotno > 0);
9585 gg->assigned_gotno--;
9586 }
9587 }
9588 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9589 /* If we haven't got through GOT allocation yet, just bump up the
9590 number of local entries, as this symbol won't be counted as
9591 global. */
9592 g->local_gotno++;
9593 else if (h->root.got.offset == 1)
9594 {
9595 /* If we're past non-multi-GOT allocation and this symbol had
9596 been marked for a global got entry, give it a local entry
9597 instead. */
9598 BFD_ASSERT (g->global_gotno > 0);
9599 g->local_gotno++;
9600 g->global_gotno--;
9601 }
9602 }
9603
9604 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9605 }
9606
9607 #define PDR_SIZE 32
9608
9609 bfd_boolean
_bfd_mips_elf_discard_info(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info)9610 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9611 struct bfd_link_info *info)
9612 {
9613 asection *o;
9614 bfd_boolean ret = FALSE;
9615 unsigned char *tdata;
9616 size_t i, skip;
9617
9618 o = bfd_get_section_by_name (abfd, ".pdr");
9619 if (! o)
9620 return FALSE;
9621 if (o->size == 0)
9622 return FALSE;
9623 if (o->size % PDR_SIZE != 0)
9624 return FALSE;
9625 if (o->output_section != NULL
9626 && bfd_is_abs_section (o->output_section))
9627 return FALSE;
9628
9629 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9630 if (! tdata)
9631 return FALSE;
9632
9633 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9634 info->keep_memory);
9635 if (!cookie->rels)
9636 {
9637 free (tdata);
9638 return FALSE;
9639 }
9640
9641 cookie->rel = cookie->rels;
9642 cookie->relend = cookie->rels + o->reloc_count;
9643
9644 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9645 {
9646 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9647 {
9648 tdata[i] = 1;
9649 skip ++;
9650 }
9651 }
9652
9653 if (skip != 0)
9654 {
9655 mips_elf_section_data (o)->u.tdata = tdata;
9656 o->size -= skip * PDR_SIZE;
9657 ret = TRUE;
9658 }
9659 else
9660 free (tdata);
9661
9662 if (! info->keep_memory)
9663 free (cookie->rels);
9664
9665 return ret;
9666 }
9667
9668 bfd_boolean
_bfd_mips_elf_ignore_discarded_relocs(asection * sec)9669 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9670 {
9671 if (strcmp (sec->name, ".pdr") == 0)
9672 return TRUE;
9673 return FALSE;
9674 }
9675
9676 bfd_boolean
_bfd_mips_elf_write_section(bfd * output_bfd,asection * sec,bfd_byte * contents)9677 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9678 bfd_byte *contents)
9679 {
9680 bfd_byte *to, *from, *end;
9681 int i;
9682
9683 if (strcmp (sec->name, ".pdr") != 0)
9684 return FALSE;
9685
9686 if (mips_elf_section_data (sec)->u.tdata == NULL)
9687 return FALSE;
9688
9689 to = contents;
9690 end = contents + sec->size;
9691 for (from = contents, i = 0;
9692 from < end;
9693 from += PDR_SIZE, i++)
9694 {
9695 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9696 continue;
9697 if (to != from)
9698 memcpy (to, from, PDR_SIZE);
9699 to += PDR_SIZE;
9700 }
9701 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9702 sec->output_offset, sec->size);
9703 return TRUE;
9704 }
9705
9706 /* MIPS ELF uses a special find_nearest_line routine in order the
9707 handle the ECOFF debugging information. */
9708
9709 struct mips_elf_find_line
9710 {
9711 struct ecoff_debug_info d;
9712 struct ecoff_find_line i;
9713 };
9714
9715 bfd_boolean
_bfd_mips_elf_find_nearest_line(bfd * abfd,asection * section,asymbol ** symbols,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr)9716 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9717 asymbol **symbols, bfd_vma offset,
9718 const char **filename_ptr,
9719 const char **functionname_ptr,
9720 unsigned int *line_ptr)
9721 {
9722 asection *msec;
9723
9724 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9725 filename_ptr, functionname_ptr,
9726 line_ptr))
9727 return TRUE;
9728
9729 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9730 filename_ptr, functionname_ptr,
9731 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9732 &elf_tdata (abfd)->dwarf2_find_line_info))
9733 return TRUE;
9734
9735 msec = bfd_get_section_by_name (abfd, ".mdebug");
9736 if (msec != NULL)
9737 {
9738 flagword origflags;
9739 struct mips_elf_find_line *fi;
9740 const struct ecoff_debug_swap * const swap =
9741 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9742
9743 /* If we are called during a link, mips_elf_final_link may have
9744 cleared the SEC_HAS_CONTENTS field. We force it back on here
9745 if appropriate (which it normally will be). */
9746 origflags = msec->flags;
9747 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9748 msec->flags |= SEC_HAS_CONTENTS;
9749
9750 fi = elf_tdata (abfd)->find_line_info;
9751 if (fi == NULL)
9752 {
9753 bfd_size_type external_fdr_size;
9754 char *fraw_src;
9755 char *fraw_end;
9756 struct fdr *fdr_ptr;
9757 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9758
9759 fi = bfd_zalloc (abfd, amt);
9760 if (fi == NULL)
9761 {
9762 msec->flags = origflags;
9763 return FALSE;
9764 }
9765
9766 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9767 {
9768 msec->flags = origflags;
9769 return FALSE;
9770 }
9771
9772 /* Swap in the FDR information. */
9773 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9774 fi->d.fdr = bfd_alloc (abfd, amt);
9775 if (fi->d.fdr == NULL)
9776 {
9777 msec->flags = origflags;
9778 return FALSE;
9779 }
9780 external_fdr_size = swap->external_fdr_size;
9781 fdr_ptr = fi->d.fdr;
9782 fraw_src = (char *) fi->d.external_fdr;
9783 fraw_end = (fraw_src
9784 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9785 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9786 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9787
9788 elf_tdata (abfd)->find_line_info = fi;
9789
9790 /* Note that we don't bother to ever free this information.
9791 find_nearest_line is either called all the time, as in
9792 objdump -l, so the information should be saved, or it is
9793 rarely called, as in ld error messages, so the memory
9794 wasted is unimportant. Still, it would probably be a
9795 good idea for free_cached_info to throw it away. */
9796 }
9797
9798 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9799 &fi->i, filename_ptr, functionname_ptr,
9800 line_ptr))
9801 {
9802 msec->flags = origflags;
9803 return TRUE;
9804 }
9805
9806 msec->flags = origflags;
9807 }
9808
9809 /* Fall back on the generic ELF find_nearest_line routine. */
9810
9811 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9812 filename_ptr, functionname_ptr,
9813 line_ptr);
9814 }
9815
9816 bfd_boolean
_bfd_mips_elf_find_inliner_info(bfd * abfd,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr)9817 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9818 const char **filename_ptr,
9819 const char **functionname_ptr,
9820 unsigned int *line_ptr)
9821 {
9822 bfd_boolean found;
9823 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9824 functionname_ptr, line_ptr,
9825 & elf_tdata (abfd)->dwarf2_find_line_info);
9826 return found;
9827 }
9828
9829
9830 /* When are writing out the .options or .MIPS.options section,
9831 remember the bytes we are writing out, so that we can install the
9832 GP value in the section_processing routine. */
9833
9834 bfd_boolean
_bfd_mips_elf_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)9835 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9836 const void *location,
9837 file_ptr offset, bfd_size_type count)
9838 {
9839 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9840 {
9841 bfd_byte *c;
9842
9843 if (elf_section_data (section) == NULL)
9844 {
9845 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9846 section->used_by_bfd = bfd_zalloc (abfd, amt);
9847 if (elf_section_data (section) == NULL)
9848 return FALSE;
9849 }
9850 c = mips_elf_section_data (section)->u.tdata;
9851 if (c == NULL)
9852 {
9853 c = bfd_zalloc (abfd, section->size);
9854 if (c == NULL)
9855 return FALSE;
9856 mips_elf_section_data (section)->u.tdata = c;
9857 }
9858
9859 memcpy (c + offset, location, count);
9860 }
9861
9862 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9863 count);
9864 }
9865
9866 /* This is almost identical to bfd_generic_get_... except that some
9867 MIPS relocations need to be handled specially. Sigh. */
9868
9869 bfd_byte *
_bfd_elf_mips_get_relocated_section_contents(bfd * abfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bfd_boolean relocatable,asymbol ** symbols)9870 _bfd_elf_mips_get_relocated_section_contents
9871 (bfd *abfd,
9872 struct bfd_link_info *link_info,
9873 struct bfd_link_order *link_order,
9874 bfd_byte *data,
9875 bfd_boolean relocatable,
9876 asymbol **symbols)
9877 {
9878 /* Get enough memory to hold the stuff */
9879 bfd *input_bfd = link_order->u.indirect.section->owner;
9880 asection *input_section = link_order->u.indirect.section;
9881 bfd_size_type sz;
9882
9883 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9884 arelent **reloc_vector = NULL;
9885 long reloc_count;
9886
9887 if (reloc_size < 0)
9888 goto error_return;
9889
9890 reloc_vector = bfd_malloc (reloc_size);
9891 if (reloc_vector == NULL && reloc_size != 0)
9892 goto error_return;
9893
9894 /* read in the section */
9895 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9896 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9897 goto error_return;
9898
9899 reloc_count = bfd_canonicalize_reloc (input_bfd,
9900 input_section,
9901 reloc_vector,
9902 symbols);
9903 if (reloc_count < 0)
9904 goto error_return;
9905
9906 if (reloc_count > 0)
9907 {
9908 arelent **parent;
9909 /* for mips */
9910 int gp_found;
9911 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9912
9913 {
9914 struct bfd_hash_entry *h;
9915 struct bfd_link_hash_entry *lh;
9916 /* Skip all this stuff if we aren't mixing formats. */
9917 if (abfd && input_bfd
9918 && abfd->xvec == input_bfd->xvec)
9919 lh = 0;
9920 else
9921 {
9922 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9923 lh = (struct bfd_link_hash_entry *) h;
9924 }
9925 lookup:
9926 if (lh)
9927 {
9928 switch (lh->type)
9929 {
9930 case bfd_link_hash_undefined:
9931 case bfd_link_hash_undefweak:
9932 case bfd_link_hash_common:
9933 gp_found = 0;
9934 break;
9935 case bfd_link_hash_defined:
9936 case bfd_link_hash_defweak:
9937 gp_found = 1;
9938 gp = lh->u.def.value;
9939 break;
9940 case bfd_link_hash_indirect:
9941 case bfd_link_hash_warning:
9942 lh = lh->u.i.link;
9943 /* @@FIXME ignoring warning for now */
9944 goto lookup;
9945 case bfd_link_hash_new:
9946 default:
9947 abort ();
9948 }
9949 }
9950 else
9951 gp_found = 0;
9952 }
9953 /* end mips */
9954 for (parent = reloc_vector; *parent != NULL; parent++)
9955 {
9956 char *error_message = NULL;
9957 bfd_reloc_status_type r;
9958
9959 /* Specific to MIPS: Deal with relocation types that require
9960 knowing the gp of the output bfd. */
9961 asymbol *sym = *(*parent)->sym_ptr_ptr;
9962
9963 /* If we've managed to find the gp and have a special
9964 function for the relocation then go ahead, else default
9965 to the generic handling. */
9966 if (gp_found
9967 && (*parent)->howto->special_function
9968 == _bfd_mips_elf32_gprel16_reloc)
9969 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9970 input_section, relocatable,
9971 data, gp);
9972 else
9973 r = bfd_perform_relocation (input_bfd, *parent, data,
9974 input_section,
9975 relocatable ? abfd : NULL,
9976 &error_message);
9977
9978 if (relocatable)
9979 {
9980 asection *os = input_section->output_section;
9981
9982 /* A partial link, so keep the relocs */
9983 os->orelocation[os->reloc_count] = *parent;
9984 os->reloc_count++;
9985 }
9986
9987 if (r != bfd_reloc_ok)
9988 {
9989 switch (r)
9990 {
9991 case bfd_reloc_undefined:
9992 if (!((*link_info->callbacks->undefined_symbol)
9993 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9994 input_bfd, input_section, (*parent)->address, TRUE)))
9995 goto error_return;
9996 break;
9997 case bfd_reloc_dangerous:
9998 BFD_ASSERT (error_message != NULL);
9999 if (!((*link_info->callbacks->reloc_dangerous)
10000 (link_info, error_message, input_bfd, input_section,
10001 (*parent)->address)))
10002 goto error_return;
10003 break;
10004 case bfd_reloc_overflow:
10005 if (!((*link_info->callbacks->reloc_overflow)
10006 (link_info, NULL,
10007 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10008 (*parent)->howto->name, (*parent)->addend,
10009 input_bfd, input_section, (*parent)->address)))
10010 goto error_return;
10011 break;
10012 case bfd_reloc_outofrange:
10013 default:
10014 abort ();
10015 break;
10016 }
10017
10018 }
10019 }
10020 }
10021 if (reloc_vector != NULL)
10022 free (reloc_vector);
10023 return data;
10024
10025 error_return:
10026 if (reloc_vector != NULL)
10027 free (reloc_vector);
10028 return NULL;
10029 }
10030
10031 /* Create a MIPS ELF linker hash table. */
10032
10033 struct bfd_link_hash_table *
_bfd_mips_elf_link_hash_table_create(bfd * abfd)10034 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10035 {
10036 struct mips_elf_link_hash_table *ret;
10037 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10038
10039 ret = bfd_malloc (amt);
10040 if (ret == NULL)
10041 return NULL;
10042
10043 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10044 mips_elf_link_hash_newfunc,
10045 sizeof (struct mips_elf_link_hash_entry)))
10046 {
10047 free (ret);
10048 return NULL;
10049 }
10050
10051 #if 0
10052 /* We no longer use this. */
10053 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10054 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10055 #endif
10056 ret->procedure_count = 0;
10057 ret->compact_rel_size = 0;
10058 ret->use_rld_obj_head = FALSE;
10059 ret->rld_value = 0;
10060 ret->mips16_stubs_seen = FALSE;
10061 ret->is_vxworks = FALSE;
10062 ret->srelbss = NULL;
10063 ret->sdynbss = NULL;
10064 ret->srelplt = NULL;
10065 ret->srelplt2 = NULL;
10066 ret->sgotplt = NULL;
10067 ret->splt = NULL;
10068 ret->plt_header_size = 0;
10069 ret->plt_entry_size = 0;
10070 ret->function_stub_size = 0;
10071
10072 return &ret->root.root;
10073 }
10074
10075 /* Likewise, but indicate that the target is VxWorks. */
10076
10077 struct bfd_link_hash_table *
_bfd_mips_vxworks_link_hash_table_create(bfd * abfd)10078 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10079 {
10080 struct bfd_link_hash_table *ret;
10081
10082 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10083 if (ret)
10084 {
10085 struct mips_elf_link_hash_table *htab;
10086
10087 htab = (struct mips_elf_link_hash_table *) ret;
10088 htab->is_vxworks = 1;
10089 }
10090 return ret;
10091 }
10092
10093 /* We need to use a special link routine to handle the .reginfo and
10094 the .mdebug sections. We need to merge all instances of these
10095 sections together, not write them all out sequentially. */
10096
10097 bfd_boolean
_bfd_mips_elf_final_link(bfd * abfd,struct bfd_link_info * info)10098 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10099 {
10100 asection *o;
10101 struct bfd_link_order *p;
10102 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10103 asection *rtproc_sec;
10104 Elf32_RegInfo reginfo;
10105 struct ecoff_debug_info debug;
10106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10107 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10108 HDRR *symhdr = &debug.symbolic_header;
10109 void *mdebug_handle = NULL;
10110 asection *s;
10111 EXTR esym;
10112 unsigned int i;
10113 bfd_size_type amt;
10114 struct mips_elf_link_hash_table *htab;
10115
10116 static const char * const secname[] =
10117 {
10118 ".text", ".init", ".fini", ".data",
10119 ".rodata", ".sdata", ".sbss", ".bss"
10120 };
10121 static const int sc[] =
10122 {
10123 scText, scInit, scFini, scData,
10124 scRData, scSData, scSBss, scBss
10125 };
10126
10127 /* We'd carefully arranged the dynamic symbol indices, and then the
10128 generic size_dynamic_sections renumbered them out from under us.
10129 Rather than trying somehow to prevent the renumbering, just do
10130 the sort again. */
10131 htab = mips_elf_hash_table (info);
10132 if (elf_hash_table (info)->dynamic_sections_created)
10133 {
10134 bfd *dynobj;
10135 asection *got;
10136 struct mips_got_info *g;
10137 bfd_size_type dynsecsymcount;
10138
10139 /* When we resort, we must tell mips_elf_sort_hash_table what
10140 the lowest index it may use is. That's the number of section
10141 symbols we're going to add. The generic ELF linker only
10142 adds these symbols when building a shared object. Note that
10143 we count the sections after (possibly) removing the .options
10144 section above. */
10145
10146 dynsecsymcount = count_section_dynsyms (abfd, info);
10147 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10148 return FALSE;
10149
10150 /* Make sure we didn't grow the global .got region. */
10151 dynobj = elf_hash_table (info)->dynobj;
10152 got = mips_elf_got_section (dynobj, FALSE);
10153 g = mips_elf_section_data (got)->u.got_info;
10154
10155 if (g->global_gotsym != NULL)
10156 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10157 - g->global_gotsym->dynindx)
10158 <= g->global_gotno);
10159 }
10160
10161 /* Get a value for the GP register. */
10162 if (elf_gp (abfd) == 0)
10163 {
10164 struct bfd_link_hash_entry *h;
10165
10166 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10167 if (h != NULL && h->type == bfd_link_hash_defined)
10168 elf_gp (abfd) = (h->u.def.value
10169 + h->u.def.section->output_section->vma
10170 + h->u.def.section->output_offset);
10171 else if (htab->is_vxworks
10172 && (h = bfd_link_hash_lookup (info->hash,
10173 "_GLOBAL_OFFSET_TABLE_",
10174 FALSE, FALSE, TRUE))
10175 && h->type == bfd_link_hash_defined)
10176 elf_gp (abfd) = (h->u.def.section->output_section->vma
10177 + h->u.def.section->output_offset
10178 + h->u.def.value);
10179 else if (info->relocatable)
10180 {
10181 bfd_vma lo = MINUS_ONE;
10182
10183 /* Find the GP-relative section with the lowest offset. */
10184 for (o = abfd->sections; o != NULL; o = o->next)
10185 if (o->vma < lo
10186 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10187 lo = o->vma;
10188
10189 /* And calculate GP relative to that. */
10190 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10191 }
10192 else
10193 {
10194 /* If the relocate_section function needs to do a reloc
10195 involving the GP value, it should make a reloc_dangerous
10196 callback to warn that GP is not defined. */
10197 }
10198 }
10199
10200 /* Go through the sections and collect the .reginfo and .mdebug
10201 information. */
10202 reginfo_sec = NULL;
10203 mdebug_sec = NULL;
10204 gptab_data_sec = NULL;
10205 gptab_bss_sec = NULL;
10206 for (o = abfd->sections; o != NULL; o = o->next)
10207 {
10208 if (strcmp (o->name, ".reginfo") == 0)
10209 {
10210 memset (®info, 0, sizeof reginfo);
10211
10212 /* We have found the .reginfo section in the output file.
10213 Look through all the link_orders comprising it and merge
10214 the information together. */
10215 for (p = o->map_head.link_order; p != NULL; p = p->next)
10216 {
10217 asection *input_section;
10218 bfd *input_bfd;
10219 Elf32_External_RegInfo ext;
10220 Elf32_RegInfo sub;
10221
10222 if (p->type != bfd_indirect_link_order)
10223 {
10224 if (p->type == bfd_data_link_order)
10225 continue;
10226 abort ();
10227 }
10228
10229 input_section = p->u.indirect.section;
10230 input_bfd = input_section->owner;
10231
10232 if (! bfd_get_section_contents (input_bfd, input_section,
10233 &ext, 0, sizeof ext))
10234 return FALSE;
10235
10236 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10237
10238 reginfo.ri_gprmask |= sub.ri_gprmask;
10239 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10240 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10241 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10242 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10243
10244 /* ri_gp_value is set by the function
10245 mips_elf32_section_processing when the section is
10246 finally written out. */
10247
10248 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10249 elf_link_input_bfd ignores this section. */
10250 input_section->flags &= ~SEC_HAS_CONTENTS;
10251 }
10252
10253 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10254 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10255
10256 /* Skip this section later on (I don't think this currently
10257 matters, but someday it might). */
10258 o->map_head.link_order = NULL;
10259
10260 reginfo_sec = o;
10261 }
10262
10263 if (strcmp (o->name, ".mdebug") == 0)
10264 {
10265 struct extsym_info einfo;
10266 bfd_vma last;
10267
10268 /* We have found the .mdebug section in the output file.
10269 Look through all the link_orders comprising it and merge
10270 the information together. */
10271 symhdr->magic = swap->sym_magic;
10272 /* FIXME: What should the version stamp be? */
10273 symhdr->vstamp = 0;
10274 symhdr->ilineMax = 0;
10275 symhdr->cbLine = 0;
10276 symhdr->idnMax = 0;
10277 symhdr->ipdMax = 0;
10278 symhdr->isymMax = 0;
10279 symhdr->ioptMax = 0;
10280 symhdr->iauxMax = 0;
10281 symhdr->issMax = 0;
10282 symhdr->issExtMax = 0;
10283 symhdr->ifdMax = 0;
10284 symhdr->crfd = 0;
10285 symhdr->iextMax = 0;
10286
10287 /* We accumulate the debugging information itself in the
10288 debug_info structure. */
10289 debug.line = NULL;
10290 debug.external_dnr = NULL;
10291 debug.external_pdr = NULL;
10292 debug.external_sym = NULL;
10293 debug.external_opt = NULL;
10294 debug.external_aux = NULL;
10295 debug.ss = NULL;
10296 debug.ssext = debug.ssext_end = NULL;
10297 debug.external_fdr = NULL;
10298 debug.external_rfd = NULL;
10299 debug.external_ext = debug.external_ext_end = NULL;
10300
10301 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10302 if (mdebug_handle == NULL)
10303 return FALSE;
10304
10305 esym.jmptbl = 0;
10306 esym.cobol_main = 0;
10307 esym.weakext = 0;
10308 esym.reserved = 0;
10309 esym.ifd = ifdNil;
10310 esym.asym.iss = issNil;
10311 esym.asym.st = stLocal;
10312 esym.asym.reserved = 0;
10313 esym.asym.index = indexNil;
10314 last = 0;
10315 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10316 {
10317 esym.asym.sc = sc[i];
10318 s = bfd_get_section_by_name (abfd, secname[i]);
10319 if (s != NULL)
10320 {
10321 esym.asym.value = s->vma;
10322 last = s->vma + s->size;
10323 }
10324 else
10325 esym.asym.value = last;
10326 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10327 secname[i], &esym))
10328 return FALSE;
10329 }
10330
10331 for (p = o->map_head.link_order; p != NULL; p = p->next)
10332 {
10333 asection *input_section;
10334 bfd *input_bfd;
10335 const struct ecoff_debug_swap *input_swap;
10336 struct ecoff_debug_info input_debug;
10337 char *eraw_src;
10338 char *eraw_end;
10339
10340 if (p->type != bfd_indirect_link_order)
10341 {
10342 if (p->type == bfd_data_link_order)
10343 continue;
10344 abort ();
10345 }
10346
10347 input_section = p->u.indirect.section;
10348 input_bfd = input_section->owner;
10349
10350 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10351 || (get_elf_backend_data (input_bfd)
10352 ->elf_backend_ecoff_debug_swap) == NULL)
10353 {
10354 /* I don't know what a non MIPS ELF bfd would be
10355 doing with a .mdebug section, but I don't really
10356 want to deal with it. */
10357 continue;
10358 }
10359
10360 input_swap = (get_elf_backend_data (input_bfd)
10361 ->elf_backend_ecoff_debug_swap);
10362
10363 BFD_ASSERT (p->size == input_section->size);
10364
10365 /* The ECOFF linking code expects that we have already
10366 read in the debugging information and set up an
10367 ecoff_debug_info structure, so we do that now. */
10368 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10369 &input_debug))
10370 return FALSE;
10371
10372 if (! (bfd_ecoff_debug_accumulate
10373 (mdebug_handle, abfd, &debug, swap, input_bfd,
10374 &input_debug, input_swap, info)))
10375 return FALSE;
10376
10377 /* Loop through the external symbols. For each one with
10378 interesting information, try to find the symbol in
10379 the linker global hash table and save the information
10380 for the output external symbols. */
10381 eraw_src = input_debug.external_ext;
10382 eraw_end = (eraw_src
10383 + (input_debug.symbolic_header.iextMax
10384 * input_swap->external_ext_size));
10385 for (;
10386 eraw_src < eraw_end;
10387 eraw_src += input_swap->external_ext_size)
10388 {
10389 EXTR ext;
10390 const char *name;
10391 struct mips_elf_link_hash_entry *h;
10392
10393 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10394 if (ext.asym.sc == scNil
10395 || ext.asym.sc == scUndefined
10396 || ext.asym.sc == scSUndefined)
10397 continue;
10398
10399 name = input_debug.ssext + ext.asym.iss;
10400 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10401 name, FALSE, FALSE, TRUE);
10402 if (h == NULL || h->esym.ifd != -2)
10403 continue;
10404
10405 if (ext.ifd != -1)
10406 {
10407 BFD_ASSERT (ext.ifd
10408 < input_debug.symbolic_header.ifdMax);
10409 ext.ifd = input_debug.ifdmap[ext.ifd];
10410 }
10411
10412 h->esym = ext;
10413 }
10414
10415 /* Free up the information we just read. */
10416 free (input_debug.line);
10417 free (input_debug.external_dnr);
10418 free (input_debug.external_pdr);
10419 free (input_debug.external_sym);
10420 free (input_debug.external_opt);
10421 free (input_debug.external_aux);
10422 free (input_debug.ss);
10423 free (input_debug.ssext);
10424 free (input_debug.external_fdr);
10425 free (input_debug.external_rfd);
10426 free (input_debug.external_ext);
10427
10428 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10429 elf_link_input_bfd ignores this section. */
10430 input_section->flags &= ~SEC_HAS_CONTENTS;
10431 }
10432
10433 if (SGI_COMPAT (abfd) && info->shared)
10434 {
10435 /* Create .rtproc section. */
10436 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10437 if (rtproc_sec == NULL)
10438 {
10439 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10440 | SEC_LINKER_CREATED | SEC_READONLY);
10441
10442 rtproc_sec = bfd_make_section_with_flags (abfd,
10443 ".rtproc",
10444 flags);
10445 if (rtproc_sec == NULL
10446 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10447 return FALSE;
10448 }
10449
10450 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10451 info, rtproc_sec,
10452 &debug))
10453 return FALSE;
10454 }
10455
10456 /* Build the external symbol information. */
10457 einfo.abfd = abfd;
10458 einfo.info = info;
10459 einfo.debug = &debug;
10460 einfo.swap = swap;
10461 einfo.failed = FALSE;
10462 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10463 mips_elf_output_extsym, &einfo);
10464 if (einfo.failed)
10465 return FALSE;
10466
10467 /* Set the size of the .mdebug section. */
10468 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10469
10470 /* Skip this section later on (I don't think this currently
10471 matters, but someday it might). */
10472 o->map_head.link_order = NULL;
10473
10474 mdebug_sec = o;
10475 }
10476
10477 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10478 {
10479 const char *subname;
10480 unsigned int c;
10481 Elf32_gptab *tab;
10482 Elf32_External_gptab *ext_tab;
10483 unsigned int j;
10484
10485 /* The .gptab.sdata and .gptab.sbss sections hold
10486 information describing how the small data area would
10487 change depending upon the -G switch. These sections
10488 not used in executables files. */
10489 if (! info->relocatable)
10490 {
10491 for (p = o->map_head.link_order; p != NULL; p = p->next)
10492 {
10493 asection *input_section;
10494
10495 if (p->type != bfd_indirect_link_order)
10496 {
10497 if (p->type == bfd_data_link_order)
10498 continue;
10499 abort ();
10500 }
10501
10502 input_section = p->u.indirect.section;
10503
10504 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10505 elf_link_input_bfd ignores this section. */
10506 input_section->flags &= ~SEC_HAS_CONTENTS;
10507 }
10508
10509 /* Skip this section later on (I don't think this
10510 currently matters, but someday it might). */
10511 o->map_head.link_order = NULL;
10512
10513 /* Really remove the section. */
10514 bfd_section_list_remove (abfd, o);
10515 --abfd->section_count;
10516
10517 continue;
10518 }
10519
10520 /* There is one gptab for initialized data, and one for
10521 uninitialized data. */
10522 if (strcmp (o->name, ".gptab.sdata") == 0)
10523 gptab_data_sec = o;
10524 else if (strcmp (o->name, ".gptab.sbss") == 0)
10525 gptab_bss_sec = o;
10526 else
10527 {
10528 (*_bfd_error_handler)
10529 (_("%s: illegal section name `%s'"),
10530 bfd_get_filename (abfd), o->name);
10531 bfd_set_error (bfd_error_nonrepresentable_section);
10532 return FALSE;
10533 }
10534
10535 /* The linker script always combines .gptab.data and
10536 .gptab.sdata into .gptab.sdata, and likewise for
10537 .gptab.bss and .gptab.sbss. It is possible that there is
10538 no .sdata or .sbss section in the output file, in which
10539 case we must change the name of the output section. */
10540 subname = o->name + sizeof ".gptab" - 1;
10541 if (bfd_get_section_by_name (abfd, subname) == NULL)
10542 {
10543 if (o == gptab_data_sec)
10544 o->name = ".gptab.data";
10545 else
10546 o->name = ".gptab.bss";
10547 subname = o->name + sizeof ".gptab" - 1;
10548 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10549 }
10550
10551 /* Set up the first entry. */
10552 c = 1;
10553 amt = c * sizeof (Elf32_gptab);
10554 tab = bfd_malloc (amt);
10555 if (tab == NULL)
10556 return FALSE;
10557 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10558 tab[0].gt_header.gt_unused = 0;
10559
10560 /* Combine the input sections. */
10561 for (p = o->map_head.link_order; p != NULL; p = p->next)
10562 {
10563 asection *input_section;
10564 bfd *input_bfd;
10565 bfd_size_type size;
10566 unsigned long last;
10567 bfd_size_type gpentry;
10568
10569 if (p->type != bfd_indirect_link_order)
10570 {
10571 if (p->type == bfd_data_link_order)
10572 continue;
10573 abort ();
10574 }
10575
10576 input_section = p->u.indirect.section;
10577 input_bfd = input_section->owner;
10578
10579 /* Combine the gptab entries for this input section one
10580 by one. We know that the input gptab entries are
10581 sorted by ascending -G value. */
10582 size = input_section->size;
10583 last = 0;
10584 for (gpentry = sizeof (Elf32_External_gptab);
10585 gpentry < size;
10586 gpentry += sizeof (Elf32_External_gptab))
10587 {
10588 Elf32_External_gptab ext_gptab;
10589 Elf32_gptab int_gptab;
10590 unsigned long val;
10591 unsigned long add;
10592 bfd_boolean exact;
10593 unsigned int look;
10594
10595 if (! (bfd_get_section_contents
10596 (input_bfd, input_section, &ext_gptab, gpentry,
10597 sizeof (Elf32_External_gptab))))
10598 {
10599 free (tab);
10600 return FALSE;
10601 }
10602
10603 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10604 &int_gptab);
10605 val = int_gptab.gt_entry.gt_g_value;
10606 add = int_gptab.gt_entry.gt_bytes - last;
10607
10608 exact = FALSE;
10609 for (look = 1; look < c; look++)
10610 {
10611 if (tab[look].gt_entry.gt_g_value >= val)
10612 tab[look].gt_entry.gt_bytes += add;
10613
10614 if (tab[look].gt_entry.gt_g_value == val)
10615 exact = TRUE;
10616 }
10617
10618 if (! exact)
10619 {
10620 Elf32_gptab *new_tab;
10621 unsigned int max;
10622
10623 /* We need a new table entry. */
10624 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10625 new_tab = bfd_realloc (tab, amt);
10626 if (new_tab == NULL)
10627 {
10628 free (tab);
10629 return FALSE;
10630 }
10631 tab = new_tab;
10632 tab[c].gt_entry.gt_g_value = val;
10633 tab[c].gt_entry.gt_bytes = add;
10634
10635 /* Merge in the size for the next smallest -G
10636 value, since that will be implied by this new
10637 value. */
10638 max = 0;
10639 for (look = 1; look < c; look++)
10640 {
10641 if (tab[look].gt_entry.gt_g_value < val
10642 && (max == 0
10643 || (tab[look].gt_entry.gt_g_value
10644 > tab[max].gt_entry.gt_g_value)))
10645 max = look;
10646 }
10647 if (max != 0)
10648 tab[c].gt_entry.gt_bytes +=
10649 tab[max].gt_entry.gt_bytes;
10650
10651 ++c;
10652 }
10653
10654 last = int_gptab.gt_entry.gt_bytes;
10655 }
10656
10657 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10658 elf_link_input_bfd ignores this section. */
10659 input_section->flags &= ~SEC_HAS_CONTENTS;
10660 }
10661
10662 /* The table must be sorted by -G value. */
10663 if (c > 2)
10664 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10665
10666 /* Swap out the table. */
10667 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10668 ext_tab = bfd_alloc (abfd, amt);
10669 if (ext_tab == NULL)
10670 {
10671 free (tab);
10672 return FALSE;
10673 }
10674
10675 for (j = 0; j < c; j++)
10676 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10677 free (tab);
10678
10679 o->size = c * sizeof (Elf32_External_gptab);
10680 o->contents = (bfd_byte *) ext_tab;
10681
10682 /* Skip this section later on (I don't think this currently
10683 matters, but someday it might). */
10684 o->map_head.link_order = NULL;
10685 }
10686 }
10687
10688 /* Invoke the regular ELF backend linker to do all the work. */
10689 if (!bfd_elf_final_link (abfd, info))
10690 return FALSE;
10691
10692 /* Now write out the computed sections. */
10693
10694 if (reginfo_sec != NULL)
10695 {
10696 Elf32_External_RegInfo ext;
10697
10698 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
10699 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10700 return FALSE;
10701 }
10702
10703 if (mdebug_sec != NULL)
10704 {
10705 BFD_ASSERT (abfd->output_has_begun);
10706 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10707 swap, info,
10708 mdebug_sec->filepos))
10709 return FALSE;
10710
10711 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10712 }
10713
10714 if (gptab_data_sec != NULL)
10715 {
10716 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10717 gptab_data_sec->contents,
10718 0, gptab_data_sec->size))
10719 return FALSE;
10720 }
10721
10722 if (gptab_bss_sec != NULL)
10723 {
10724 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10725 gptab_bss_sec->contents,
10726 0, gptab_bss_sec->size))
10727 return FALSE;
10728 }
10729
10730 if (SGI_COMPAT (abfd))
10731 {
10732 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10733 if (rtproc_sec != NULL)
10734 {
10735 if (! bfd_set_section_contents (abfd, rtproc_sec,
10736 rtproc_sec->contents,
10737 0, rtproc_sec->size))
10738 return FALSE;
10739 }
10740 }
10741
10742 return TRUE;
10743 }
10744
10745 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10746
10747 struct mips_mach_extension {
10748 unsigned long extension, base;
10749 };
10750
10751
10752 /* An array describing how BFD machines relate to one another. The entries
10753 are ordered topologically with MIPS I extensions listed last. */
10754
10755 static const struct mips_mach_extension mips_mach_extensions[] = {
10756 /* MIPS64r2 extensions. */
10757 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
10758
10759 /* MIPS64 extensions. */
10760 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10761 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10762
10763 /* MIPS V extensions. */
10764 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10765
10766 /* R10000 extensions. */
10767 { bfd_mach_mips12000, bfd_mach_mips10000 },
10768
10769 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10770 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10771 better to allow vr5400 and vr5500 code to be merged anyway, since
10772 many libraries will just use the core ISA. Perhaps we could add
10773 some sort of ASE flag if this ever proves a problem. */
10774 { bfd_mach_mips5500, bfd_mach_mips5400 },
10775 { bfd_mach_mips5400, bfd_mach_mips5000 },
10776
10777 /* MIPS IV extensions. */
10778 { bfd_mach_mips5, bfd_mach_mips8000 },
10779 { bfd_mach_mips10000, bfd_mach_mips8000 },
10780 { bfd_mach_mips5000, bfd_mach_mips8000 },
10781 { bfd_mach_mips7000, bfd_mach_mips8000 },
10782 { bfd_mach_mips9000, bfd_mach_mips8000 },
10783
10784 /* VR4100 extensions. */
10785 { bfd_mach_mips4120, bfd_mach_mips4100 },
10786 { bfd_mach_mips4111, bfd_mach_mips4100 },
10787
10788 /* MIPS III extensions. */
10789 { bfd_mach_mips8000, bfd_mach_mips4000 },
10790 { bfd_mach_mips4650, bfd_mach_mips4000 },
10791 { bfd_mach_mips4600, bfd_mach_mips4000 },
10792 { bfd_mach_mips4400, bfd_mach_mips4000 },
10793 { bfd_mach_mips4300, bfd_mach_mips4000 },
10794 { bfd_mach_mips4100, bfd_mach_mips4000 },
10795 { bfd_mach_mips4010, bfd_mach_mips4000 },
10796
10797 /* MIPS32 extensions. */
10798 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10799
10800 /* MIPS II extensions. */
10801 { bfd_mach_mips4000, bfd_mach_mips6000 },
10802 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10803
10804 /* MIPS I extensions. */
10805 { bfd_mach_mips6000, bfd_mach_mips3000 },
10806 { bfd_mach_mips3900, bfd_mach_mips3000 }
10807 };
10808
10809
10810 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10811
10812 static bfd_boolean
mips_mach_extends_p(unsigned long base,unsigned long extension)10813 mips_mach_extends_p (unsigned long base, unsigned long extension)
10814 {
10815 size_t i;
10816
10817 if (extension == base)
10818 return TRUE;
10819
10820 if (base == bfd_mach_mipsisa32
10821 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10822 return TRUE;
10823
10824 if (base == bfd_mach_mipsisa32r2
10825 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10826 return TRUE;
10827
10828 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10829 if (extension == mips_mach_extensions[i].extension)
10830 {
10831 extension = mips_mach_extensions[i].base;
10832 if (extension == base)
10833 return TRUE;
10834 }
10835
10836 return FALSE;
10837 }
10838
10839
10840 /* Return true if the given ELF header flags describe a 32-bit binary. */
10841
10842 static bfd_boolean
mips_32bit_flags_p(flagword flags)10843 mips_32bit_flags_p (flagword flags)
10844 {
10845 return ((flags & EF_MIPS_32BITMODE) != 0
10846 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10847 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10848 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10849 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10850 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10851 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10852 }
10853
10854
10855 /* Merge backend specific data from an object file to the output
10856 object file when linking. */
10857
10858 bfd_boolean
_bfd_mips_elf_merge_private_bfd_data(bfd * ibfd,bfd * obfd)10859 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10860 {
10861 flagword old_flags;
10862 flagword new_flags;
10863 bfd_boolean ok;
10864 bfd_boolean null_input_bfd = TRUE;
10865 asection *sec;
10866
10867 /* Check if we have the same endianess */
10868 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10869 {
10870 (*_bfd_error_handler)
10871 (_("%B: endianness incompatible with that of the selected emulation"),
10872 ibfd);
10873 return FALSE;
10874 }
10875
10876 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10877 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10878 return TRUE;
10879
10880 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10881 {
10882 (*_bfd_error_handler)
10883 (_("%B: ABI is incompatible with that of the selected emulation"),
10884 ibfd);
10885 return FALSE;
10886 }
10887
10888 new_flags = elf_elfheader (ibfd)->e_flags;
10889 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10890 old_flags = elf_elfheader (obfd)->e_flags;
10891
10892 if (! elf_flags_init (obfd))
10893 {
10894 elf_flags_init (obfd) = TRUE;
10895 elf_elfheader (obfd)->e_flags = new_flags;
10896 elf_elfheader (obfd)->e_ident[EI_CLASS]
10897 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10898
10899 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10900 && bfd_get_arch_info (obfd)->the_default)
10901 {
10902 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10903 bfd_get_mach (ibfd)))
10904 return FALSE;
10905 }
10906
10907 return TRUE;
10908 }
10909
10910 /* Check flag compatibility. */
10911
10912 new_flags &= ~EF_MIPS_NOREORDER;
10913 old_flags &= ~EF_MIPS_NOREORDER;
10914
10915 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10916 doesn't seem to matter. */
10917 new_flags &= ~EF_MIPS_XGOT;
10918 old_flags &= ~EF_MIPS_XGOT;
10919
10920 /* MIPSpro generates ucode info in n64 objects. Again, we should
10921 just be able to ignore this. */
10922 new_flags &= ~EF_MIPS_UCODE;
10923 old_flags &= ~EF_MIPS_UCODE;
10924
10925 /* Don't care about the PIC flags from dynamic objects; they are
10926 PIC by design. */
10927 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10928 && (ibfd->flags & DYNAMIC) != 0)
10929 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10930
10931 if (new_flags == old_flags)
10932 return TRUE;
10933
10934 /* Check to see if the input BFD actually contains any sections.
10935 If not, its flags may not have been initialised either, but it cannot
10936 actually cause any incompatibility. */
10937 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10938 {
10939 /* Ignore synthetic sections and empty .text, .data and .bss sections
10940 which are automatically generated by gas. */
10941 if (strcmp (sec->name, ".reginfo")
10942 && strcmp (sec->name, ".mdebug")
10943 && (sec->size != 0
10944 || (strcmp (sec->name, ".text")
10945 && strcmp (sec->name, ".data")
10946 && strcmp (sec->name, ".bss"))))
10947 {
10948 null_input_bfd = FALSE;
10949 break;
10950 }
10951 }
10952 if (null_input_bfd)
10953 return TRUE;
10954
10955 ok = TRUE;
10956
10957 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10958 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10959 {
10960 (*_bfd_error_handler)
10961 (_("%B: warning: linking PIC files with non-PIC files"),
10962 ibfd);
10963 ok = TRUE;
10964 }
10965
10966 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10967 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10968 if (! (new_flags & EF_MIPS_PIC))
10969 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10970
10971 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10972 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10973
10974 /* Compare the ISAs. */
10975 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10976 {
10977 (*_bfd_error_handler)
10978 (_("%B: linking 32-bit code with 64-bit code"),
10979 ibfd);
10980 ok = FALSE;
10981 }
10982 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10983 {
10984 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10985 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10986 {
10987 /* Copy the architecture info from IBFD to OBFD. Also copy
10988 the 32-bit flag (if set) so that we continue to recognise
10989 OBFD as a 32-bit binary. */
10990 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10991 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10992 elf_elfheader (obfd)->e_flags
10993 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10994
10995 /* Copy across the ABI flags if OBFD doesn't use them
10996 and if that was what caused us to treat IBFD as 32-bit. */
10997 if ((old_flags & EF_MIPS_ABI) == 0
10998 && mips_32bit_flags_p (new_flags)
10999 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11000 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11001 }
11002 else
11003 {
11004 /* The ISAs aren't compatible. */
11005 (*_bfd_error_handler)
11006 (_("%B: linking %s module with previous %s modules"),
11007 ibfd,
11008 bfd_printable_name (ibfd),
11009 bfd_printable_name (obfd));
11010 ok = FALSE;
11011 }
11012 }
11013
11014 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11015 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11016
11017 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11018 does set EI_CLASS differently from any 32-bit ABI. */
11019 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11020 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11021 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11022 {
11023 /* Only error if both are set (to different values). */
11024 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11025 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11026 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11027 {
11028 (*_bfd_error_handler)
11029 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11030 ibfd,
11031 elf_mips_abi_name (ibfd),
11032 elf_mips_abi_name (obfd));
11033 ok = FALSE;
11034 }
11035 new_flags &= ~EF_MIPS_ABI;
11036 old_flags &= ~EF_MIPS_ABI;
11037 }
11038
11039 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11040 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11041 {
11042 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11043
11044 new_flags &= ~ EF_MIPS_ARCH_ASE;
11045 old_flags &= ~ EF_MIPS_ARCH_ASE;
11046 }
11047
11048 /* Warn about any other mismatches */
11049 if (new_flags != old_flags)
11050 {
11051 (*_bfd_error_handler)
11052 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11053 ibfd, (unsigned long) new_flags,
11054 (unsigned long) old_flags);
11055 ok = FALSE;
11056 }
11057
11058 if (! ok)
11059 {
11060 bfd_set_error (bfd_error_bad_value);
11061 return FALSE;
11062 }
11063
11064 return TRUE;
11065 }
11066
11067 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11068
11069 bfd_boolean
_bfd_mips_elf_set_private_flags(bfd * abfd,flagword flags)11070 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11071 {
11072 BFD_ASSERT (!elf_flags_init (abfd)
11073 || elf_elfheader (abfd)->e_flags == flags);
11074
11075 elf_elfheader (abfd)->e_flags = flags;
11076 elf_flags_init (abfd) = TRUE;
11077 return TRUE;
11078 }
11079
11080 bfd_boolean
_bfd_mips_elf_print_private_bfd_data(bfd * abfd,void * ptr)11081 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11082 {
11083 FILE *file = ptr;
11084
11085 BFD_ASSERT (abfd != NULL && ptr != NULL);
11086
11087 /* Print normal ELF private data. */
11088 _bfd_elf_print_private_bfd_data (abfd, ptr);
11089
11090 /* xgettext:c-format */
11091 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11092
11093 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11094 fprintf (file, _(" [abi=O32]"));
11095 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11096 fprintf (file, _(" [abi=O64]"));
11097 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11098 fprintf (file, _(" [abi=EABI32]"));
11099 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11100 fprintf (file, _(" [abi=EABI64]"));
11101 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11102 fprintf (file, _(" [abi unknown]"));
11103 else if (ABI_N32_P (abfd))
11104 fprintf (file, _(" [abi=N32]"));
11105 else if (ABI_64_P (abfd))
11106 fprintf (file, _(" [abi=64]"));
11107 else
11108 fprintf (file, _(" [no abi set]"));
11109
11110 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11111 fprintf (file, _(" [mips1]"));
11112 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11113 fprintf (file, _(" [mips2]"));
11114 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11115 fprintf (file, _(" [mips3]"));
11116 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11117 fprintf (file, _(" [mips4]"));
11118 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11119 fprintf (file, _(" [mips5]"));
11120 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11121 fprintf (file, _(" [mips32]"));
11122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11123 fprintf (file, _(" [mips64]"));
11124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11125 fprintf (file, _(" [mips32r2]"));
11126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11127 fprintf (file, _(" [mips64r2]"));
11128 else
11129 fprintf (file, _(" [unknown ISA]"));
11130
11131 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11132 fprintf (file, _(" [mdmx]"));
11133
11134 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11135 fprintf (file, _(" [mips16]"));
11136
11137 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11138 fprintf (file, _(" [32bitmode]"));
11139 else
11140 fprintf (file, _(" [not 32bitmode]"));
11141
11142 fputc ('\n', file);
11143
11144 return TRUE;
11145 }
11146
11147 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11148 {
11149 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11150 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11151 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
11152 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11153 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11154 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
11155 { NULL, 0, 0, 0, 0 }
11156 };
11157
11158 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
11159 even if this is not a defintion of the symbol. */
11160 void
_bfd_mips_elf_merge_symbol_attribute(struct elf_link_hash_entry * h,const Elf_Internal_Sym * isym,bfd_boolean definition,bfd_boolean dynamic ATTRIBUTE_UNUSED)11161 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11162 const Elf_Internal_Sym *isym,
11163 bfd_boolean definition,
11164 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11165 {
11166 if (! definition
11167 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11168 h->other |= STO_OPTIONAL;
11169 }
11170
11171 /* Decide whether an undefined symbol is special and can be ignored.
11172 This is the case for OPTIONAL symbols on IRIX. */
11173 bfd_boolean
_bfd_mips_elf_ignore_undef_symbol(struct elf_link_hash_entry * h)11174 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11175 {
11176 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11177 }
11178
11179 bfd_boolean
_bfd_mips_elf_common_definition(Elf_Internal_Sym * sym)11180 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11181 {
11182 return (sym->st_shndx == SHN_COMMON
11183 || sym->st_shndx == SHN_MIPS_ACOMMON
11184 || sym->st_shndx == SHN_MIPS_SCOMMON);
11185 }
11186