xref: /openbsd/gnu/usr.bin/gcc/gcc/config/m68k/m68k.h (revision 34c26535)
1 /* Definitions of target machine for GNU compiler.
2    Sun 68000/68020 version.
3    Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4    2000, 2001, 2002 Free Software Foundation, Inc.
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 
24 /* Note that some other tm.h files include this one and then override
25    many of the definitions that relate to assembler syntax.  */
26 
27 
28 /* Classify the groups of pseudo-ops used to assemble QI, HI and SI
29    quantities.  */
30 #define INT_OP_STANDARD	0	/* .byte, .short, .long */
31 #define INT_OP_DOT_WORD	1	/* .byte, .word, .long */
32 #define INT_OP_NO_DOT   2	/* byte, short, long */
33 #define INT_OP_DC	3	/* dc.b, dc.w, dc.l */
34 
35 /* Set the default */
36 #define INT_OP_GROUP INT_OP_DOT_WORD
37 
38 /* Names to predefine in the preprocessor for this target machine.  */
39 
40 /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES.  */
41 
42 /* Print subsidiary information on the compiler version in use.  */
43 #ifdef MOTOROLA
44 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
45 #else
46 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
47 #endif
48 
49 /* Define SUPPORT_SUN_FPA to include support for generating code for
50    the Sun Floating Point Accelerator, an optional product for Sun 3
51    machines.  By default, it is not defined.  Avoid defining it unless
52    you need to output code for the Sun3+FPA architecture, as it has the
53    effect of slowing down the register set operations in hard-reg-set.h
54    (total number of registers will exceed number of bits in a long,
55    if defined, causing the set operations to expand to loops).
56    SUPPORT_SUN_FPA is typically defined in sun3.h.  */
57 
58 /* Run-time compilation parameters selecting different hardware subsets.  */
59 
60 extern int target_flags;
61 
62 /* Macros used in the machine description to test the flags.  */
63 
64 /* Compile for a 68020 (not a 68000 or 68010).  */
65 #define MASK_68020	1
66 #define TARGET_68020 (target_flags & MASK_68020)
67 
68 /* Compile 68881 insns for floating point (not library calls).  */
69 #define MASK_68881	2
70 #define TARGET_68881 (target_flags & MASK_68881)
71 
72 /* Compile using 68020 bit-field insns.  */
73 #define MASK_BITFIELD	4
74 #define TARGET_BITFIELD (target_flags & MASK_BITFIELD)
75 
76 /* Compile using rtd insn calling sequence.
77    This will not work unless you use prototypes at least
78    for all functions that can take varying numbers of args.  */
79 #define MASK_RTD	8
80 #define TARGET_RTD (target_flags & MASK_RTD)
81 
82 /* Compile passing first two args in regs 0 and 1.
83    This exists only to test compiler features that will
84    be needed for RISC chips.  It is not usable
85    and is not intended to be usable on this cpu.  */
86 #define MASK_REGPARM	16
87 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
88 
89 /* Compile with 16-bit `int'.  */
90 #define MASK_SHORT	32
91 #define TARGET_SHORT (target_flags & MASK_SHORT)
92 
93 /* Compile with special insns for Sun FPA.  */
94 #define MASK_FPA	64
95 #define TARGET_FPA (target_flags & MASK_FPA)
96 
97 /* Compile (actually, link) for Sun SKY board.  */
98 #define MASK_SKY	128
99 #define TARGET_SKY (target_flags & MASK_SKY)
100 
101 /* Optimize for 68040, but still allow execution on 68020
102    (-m68020-40 or -m68040).
103    The 68040 will execute all 68030 and 68881/2 instructions, but some
104    of them must be emulated in software by the OS.  When TARGET_68040 is
105    turned on, these instructions won't be used.  This code will still
106    run on a 68030 and 68881/2.  */
107 #define MASK_68040	256
108 #define TARGET_68040 (target_flags & MASK_68040)
109 
110 /* Use the 68040-only fp instructions (-m68040 or -m68060).  */
111 #define MASK_68040_ONLY	512
112 #define TARGET_68040_ONLY (target_flags & MASK_68040_ONLY)
113 
114 /* Optimize for 68060, but still allow execution on 68020
115    (-m68020-60 or -m68060).
116    The 68060 will execute all 68030 and 68881/2 instructions, but some
117    of them must be emulated in software by the OS.  When TARGET_68060 is
118    turned on, these instructions won't be used.  This code will still
119    run on a 68030 and 68881/2.  */
120 #define MASK_68060	1024
121 #define TARGET_68060 (target_flags & MASK_68060)
122 
123 /* Compile for mcf5200 */
124 #define MASK_5200	2048
125 #define TARGET_5200 (target_flags & MASK_5200)
126 
127 /* Align ints to a word boundary.  This breaks compatibility with the
128    published ABI's for structures containing ints, but produces faster
129    code on cpus with 32 bit busses (020, 030, 040, 060, CPU32+, coldfire).
130    It's required for coldfire cpus without a misalignment module.  */
131 #define MASK_ALIGN_INT	4096
132 #define TARGET_ALIGN_INT (target_flags & MASK_ALIGN_INT)
133 
134 /* Compile for a CPU32 */
135 	/* A 68020 without bitfields is a good heuristic for a CPU32 */
136 #define TARGET_CPU32	(TARGET_68020 && !TARGET_BITFIELD)
137 
138 /* Use PC-relative addressing modes (without using a global offset table).
139    The m68000 supports 16-bit PC-relative addressing.
140    The m68020 supports 32-bit PC-relative addressing
141    (using outer displacements).
142 
143    Under this model, all SYMBOL_REFs (and CONSTs) and LABEL_REFs are
144    treated as all containing an implicit PC-relative component, and hence
145    cannot be used directly as addresses for memory writes.  See the comments
146    in m68k.c for more information.  */
147 #define MASK_PCREL	8192
148 #define TARGET_PCREL	(target_flags & MASK_PCREL)
149 
150 /* Relax strict alignment.  */
151 #define MASK_NO_STRICT_ALIGNMENT 16384
152 #define TARGET_STRICT_ALIGNMENT  (~target_flags & MASK_NO_STRICT_ALIGNMENT)
153 
154 /* Macro to define tables used to set the flags.
155    This is a list in braces of pairs in braces,
156    each pair being { "NAME", VALUE }
157    where VALUE is the bits to set or minus the bits to clear.
158    An empty string NAME is used to identify the default VALUE.  */
159 
160 #define TARGET_SWITCHES							\
161   { { "68020", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY),	\
162       N_("Generate code for a 68020") },				\
163     { "c68020", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY),	\
164       N_("Generate code for a 68020") },				\
165     { "68020", (MASK_68020|MASK_BITFIELD), "" },			\
166     { "c68020", (MASK_68020|MASK_BITFIELD), "" },			\
167     { "68000", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY	\
168 		|MASK_68020|MASK_BITFIELD|MASK_68881),			\
169       N_("Generate code for a 68000") },				\
170     { "c68000", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY	\
171 		|MASK_68020|MASK_BITFIELD|MASK_68881),			\
172       N_("Generate code for a 68000") },				\
173     { "bitfield", MASK_BITFIELD,					\
174       N_("Use the bit-field instructions") },				\
175     { "nobitfield", - MASK_BITFIELD,					\
176       N_("Do not use the bit-field instructions") },			\
177     { "rtd", MASK_RTD,							\
178       N_("Use different calling convention using 'rtd'") },		\
179     { "nortd", - MASK_RTD,						\
180       N_("Use normal calling convention") },				\
181     { "short", MASK_SHORT,						\
182       N_("Consider type `int' to be 16 bits wide") },			\
183     { "noshort", - MASK_SHORT,						\
184       N_("Consider type `int' to be 32 bits wide") },			\
185     { "fpa", -(MASK_SKY|MASK_68040_ONLY|MASK_68881),			\
186       N_("Generate code for a Sun FPA") },				\
187     { "fpa", MASK_FPA, "" },						\
188     { "nofpa", - MASK_FPA,						\
189       N_("Do not generate code for a Sun FPA") },			\
190     { "sky", -(MASK_FPA|MASK_68040_ONLY|MASK_68881),			\
191       N_("Generate code for a Sun Sky board") },			\
192     { "sky", MASK_SKY,							\
193       N_("Generate code for a Sun Sky board") },			\
194     { "nosky", - MASK_SKY,						\
195       N_("Do not use Sky linkage convention") },			\
196     { "68881", - (MASK_FPA|MASK_SKY),					\
197       N_("Generate code for a 68881") },				\
198     { "68881", MASK_68881, "" },					\
199     { "soft-float", - (MASK_FPA|MASK_SKY|MASK_68040_ONLY|MASK_68881),	\
200       N_("Generate code with library calls for floating point") },	\
201     { "68020-40", -(MASK_5200|MASK_68060|MASK_68040_ONLY),		\
202       N_("Generate code for a 68040, without any new instructions") },	\
203     { "68020-40", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040), ""},\
204     { "68020-60", -(MASK_5200|MASK_68040_ONLY),				\
205       N_("Generate code for a 68060, without any new instructions") },	\
206     { "68020-60", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040	\
207 		   |MASK_68060), "" },					\
208     { "68030", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY),	\
209       N_("Generate code for a 68030") },				\
210     { "68030", (MASK_68020|MASK_BITFIELD), "" },			\
211     { "68040", - (MASK_5200|MASK_68060),				\
212       N_("Generate code for a 68040") },				\
213     { "68040", (MASK_68020|MASK_68881|MASK_BITFIELD			\
214 		|MASK_68040_ONLY|MASK_68040), "" },			\
215     { "68060", - (MASK_5200|MASK_68040),				\
216       N_("Generate code for a 68060") },				\
217     { "68060", (MASK_68020|MASK_68881|MASK_BITFIELD			\
218 		|MASK_68040_ONLY|MASK_68060), "" },			\
219     { "5200", - (MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020	\
220 		|MASK_BITFIELD|MASK_68881),				\
221       N_("Generate code for a 520X") },					\
222     { "5200", (MASK_5200), "" },					\
223     { "68851", 0,							\
224       N_("Generate code for a 68851") },				\
225     { "no-68851", 0,							\
226       N_("Do no generate code for a 68851") },				\
227     { "68302", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY	\
228 		  |MASK_68020|MASK_BITFIELD|MASK_68881),		\
229       N_("Generate code for a 68302") },				\
230     { "68332", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY	\
231 		  |MASK_BITFIELD|MASK_68881),				\
232       N_("Generate code for a 68332") },				\
233     { "68332", MASK_68020, "" },					\
234     { "cpu32", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY	\
235 		  |MASK_BITFIELD|MASK_68881),				\
236       N_("Generate code for a cpu32") },				\
237     { "cpu32", MASK_68020, "" },					\
238     { "align-int", MASK_ALIGN_INT, 					\
239       N_("Align variables on a 32-bit boundary") },			\
240     { "no-align-int", -MASK_ALIGN_INT, 					\
241       N_("Align variables on a 16-bit boundary") },			\
242     { "pcrel", MASK_PCREL,						\
243       N_("Generate pc-relative code") },				\
244     { "strict-align", -MASK_NO_STRICT_ALIGNMENT,			\
245       N_("Do not use unaligned memory references") },			\
246     { "no-strict-align", MASK_NO_STRICT_ALIGNMENT,			\
247       N_("Use unaligned memory references") },				\
248     SUBTARGET_SWITCHES							\
249     { "", TARGET_DEFAULT, "" }}
250 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc.  */
251 
252 /* This macro is similar to `TARGET_SWITCHES' but defines names of
253    command options that have values.  Its definition is an
254    initializer with a subgrouping for each command option.
255 
256    Each subgrouping contains a string constant, that defines the
257    fixed part of the option name, and the address of a variable.  The
258    variable, type `char *', is set to the variable part of the given
259    option if the fixed part matches.  The actual option name is made
260    by appending `-m' to the specified name.  */
261 #define TARGET_OPTIONS							\
262 { { "align-loops=",	&m68k_align_loops_string,			\
263     N_("Loop code aligned to this power of 2") },			\
264   { "align-jumps=",	&m68k_align_jumps_string,			\
265     N_("Jump targets are aligned to this power of 2") },		\
266   { "align-functions=",	&m68k_align_funcs_string,			\
267     N_("Function starts are aligned to this power of 2") },		\
268   SUBTARGET_OPTIONS							\
269 }
270 
271 /* Sometimes certain combinations of command options do not make
272    sense on a particular target machine.  You can define a macro
273    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
274    defined, is executed once just after all the command options have
275    been parsed.
276 
277    Don't use this macro to turn on various extra optimizations for
278    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
279 
280 #define OVERRIDE_OPTIONS   override_options()
281 
282 /* These are meant to be redefined in the host dependent files */
283 #define SUBTARGET_SWITCHES
284 #define SUBTARGET_OPTIONS
285 #define SUBTARGET_OVERRIDE_OPTIONS
286 
287 /* target machine storage layout */
288 
289 /* Define for XFmode extended real floating point support.  */
290 #define LONG_DOUBLE_TYPE_SIZE 96
291 
292 /* Set the value of FLT_EVAL_METHOD in float.h.  When using 68040 fp
293    instructions, we get proper intermediate rounding, otherwise we
294    get extended precision results.  */
295 #define TARGET_FLT_EVAL_METHOD (TARGET_68040_ONLY ? 0 : 2)
296 
297 /* Define this if most significant bit is lowest numbered
298    in instructions that operate on numbered bit-fields.
299    This is true for 68020 insns such as bfins and bfexts.
300    We make it true always by avoiding using the single-bit insns
301    except in special cases with constant bit numbers.  */
302 #define BITS_BIG_ENDIAN 1
303 
304 /* Define this if most significant byte of a word is the lowest numbered.  */
305 /* That is true on the 68000.  */
306 #define BYTES_BIG_ENDIAN 1
307 
308 /* Define this if most significant word of a multiword number is the lowest
309    numbered.  */
310 /* For 68000 we can decide arbitrarily
311    since there are no machine instructions for them.
312    So let's be consistent.  */
313 #define WORDS_BIG_ENDIAN 1
314 
315 /* Width of a word, in units (bytes).  */
316 #define UNITS_PER_WORD 4
317 
318 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
319 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
320 
321 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
322 #define STACK_BOUNDARY 16
323 
324 /* Allocation boundary (in *bits*) for the code of a function.  */
325 #define FUNCTION_BOUNDARY (1 << (m68k_align_funcs + 3))
326 
327 /* Alignment of field after `int : 0' in a structure.  */
328 #define EMPTY_FIELD_BOUNDARY 16
329 
330 /* No data type wants to be aligned rounder than this.
331    Most published ABIs say that ints should be aligned on 16 bit
332    boundaries, but cpus with 32 bit busses get better performance
333    aligned on 32 bit boundaries.  Coldfires without a misalignment
334    module require 32 bit alignment.  */
335 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
336 
337 /* Set this nonzero if move instructions will actually fail to work
338    when given unaligned data.  */
339 #define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)
340 
341 /* Maximum power of 2 that code can be aligned to.  */
342 #define MAX_CODE_ALIGN	2			/* 4 byte alignment */
343 
344 /* Align loop starts for optimal branching.  */
345 #define LOOP_ALIGN(LABEL) (m68k_align_loops)
346 
347 /* This is how to align an instruction for optimal branching.  */
348 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (m68k_align_jumps)
349 
350 /* Define number of bits in most basic integer type.
351    (If undefined, default is BITS_PER_WORD).  */
352 
353 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
354 
355 /* Define these to avoid dependence on meaning of `int'.  */
356 
357 #define WCHAR_TYPE "long int"
358 #define WCHAR_TYPE_SIZE 32
359 
360 /* Standard register usage.  */
361 
362 /* Number of actual hardware registers.
363    The hardware registers are assigned numbers for the compiler
364    from 0 to just below FIRST_PSEUDO_REGISTER.
365    All registers that the compiler knows about must be given numbers,
366    even those that are not normally considered general registers.
367    For the 68000, we give the data registers numbers 0-7,
368    the address registers numbers 010-017,
369    and the 68881 floating point registers numbers 020-027.  */
370 #ifndef SUPPORT_SUN_FPA
371 #define FIRST_PSEUDO_REGISTER 24
372 #else
373 #define FIRST_PSEUDO_REGISTER 56
374 #endif
375 
376 /* This defines the register which is used to hold the offset table for PIC.  */
377 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 13 : INVALID_REGNUM)
378 
379 #ifndef SUPPORT_SUN_FPA
380 
381 /* 1 for registers that have pervasive standard uses
382    and are not available for the register allocator.
383    On the 68000, only the stack pointer is such.  */
384 
385 #define FIXED_REGISTERS        \
386  {/* Data registers.  */       \
387   0, 0, 0, 0, 0, 0, 0, 0,      \
388                                \
389   /* Address registers.  */    \
390   0, 0, 0, 0, 0, 0, 0, 1,      \
391                                \
392   /* Floating point registers  \
393      (if available).  */       \
394   0, 0, 0, 0, 0, 0, 0, 0 }
395 
396 /* 1 for registers not available across function calls.
397    These must include the FIXED_REGISTERS and also any
398    registers that can be used without being saved.
399    The latter must include the registers where values are returned
400    and the register where structure-value addresses are passed.
401    Aside from that, you can include as many other registers as you like.  */
402 #define CALL_USED_REGISTERS \
403  {1, 1, 0, 0, 0, 0, 0, 0,   \
404   1, 1, 0, 0, 0, 0, 0, 1,   \
405   1, 1, 0, 0, 0, 0, 0, 0 }
406 
407 #else /* SUPPORT_SUN_FPA */
408 
409 /* 1 for registers that have pervasive standard uses
410    and are not available for the register allocator.
411    On the 68000, only the stack pointer is such.  */
412 
413 /* fpa0 is also reserved so that it can be used to move data back and
414    forth between high fpa regs and everything else.  */
415 
416 #define FIXED_REGISTERS        \
417  {/* Data registers.  */       \
418   0, 0, 0, 0, 0, 0, 0, 0,      \
419                                \
420   /* Address registers.  */    \
421   0, 0, 0, 0, 0, 0, 0, 1,      \
422                                \
423   /* Floating point registers  \
424      (if available).  */       \
425   0, 0, 0, 0, 0, 0, 0, 0,      \
426                                \
427   /* Sun3 FPA registers.  */   \
428   1, 0, 0, 0, 0, 0, 0, 0,      \
429   0, 0, 0, 0, 0, 0, 0, 0,      \
430   0, 0, 0, 0, 0, 0, 0, 0,      \
431   0, 0, 0, 0, 0, 0, 0, 0 }
432 
433 /* 1 for registers not available across function calls.
434    These must include the FIXED_REGISTERS and also any
435    registers that can be used without being saved.
436    The latter must include the registers where values are returned
437    and the register where structure-value addresses are passed.
438    Aside from that, you can include as many other registers as you like.  */
439 #define CALL_USED_REGISTERS \
440  {1, 1, 0, 0, 0, 0, 0, 0, \
441   1, 1, 0, 0, 0, 0, 0, 1, \
442   1, 1, 0, 0, 0, 0, 0, 0, \
443   /* FPA registers.  */   \
444   1, 1, 1, 1, 0, 0, 0, 0, \
445   0, 0, 0, 0, 0, 0, 0, 0, \
446   0, 0, 0, 0, 0, 0, 0, 0, \
447   0, 0, 0, 0, 0, 0, 0, 0  }
448 
449 #endif /* defined SUPPORT_SUN_FPA */
450 
451 
452 /* Make sure everything's fine if we *don't* have a given processor.
453    This assumes that putting a register in fixed_regs will keep the
454    compiler's mitts completely off it.  We don't bother to zero it out
455    of register classes.  */
456 
457 #ifdef SUPPORT_SUN_FPA
458 
459 #define CONDITIONAL_REGISTER_USAGE				\
460 { 								\
461   int i; 							\
462   HARD_REG_SET x; 						\
463   if (! TARGET_FPA)						\
464     { 								\
465       COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]);	\
466       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )		\
467        if (TEST_HARD_REG_BIT (x, i)) 				\
468 	fixed_regs[i] = call_used_regs[i] = 1; 			\
469     } 								\
470   if (! TARGET_68881)						\
471     { 								\
472       COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);	\
473       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )		\
474        if (TEST_HARD_REG_BIT (x, i)) 				\
475 	fixed_regs[i] = call_used_regs[i] = 1; 			\
476     } 								\
477   if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
478     fixed_regs[PIC_OFFSET_TABLE_REGNUM]				\
479       = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
480 }
481 #else
482 #define CONDITIONAL_REGISTER_USAGE				\
483 { 								\
484   int i; 							\
485   HARD_REG_SET x; 						\
486   if (! TARGET_68881)						\
487     { 								\
488       COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);	\
489       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )		\
490        if (TEST_HARD_REG_BIT (x, i)) 				\
491 	fixed_regs[i] = call_used_regs[i] = 1; 			\
492     } 								\
493   if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
494     fixed_regs[PIC_OFFSET_TABLE_REGNUM]				\
495       = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
496 }
497 
498 #endif /* defined SUPPORT_SUN_FPA */
499 
500 /* Return number of consecutive hard regs needed starting at reg REGNO
501    to hold something of mode MODE.
502    This is ordinarily the length in words of a value of mode MODE
503    but can be less for certain modes in special long registers.
504 
505    On the 68000, ordinary registers hold 32 bits worth;
506    for the 68881 registers, a single register is always enough for
507    anything that can be stored in them at all.  */
508 #define HARD_REGNO_NREGS(REGNO, MODE)   \
509   ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE)	\
510    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
511 
512 #ifndef SUPPORT_SUN_FPA
513 
514 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
515    On the 68000, the cpu registers can hold any mode but the 68881 registers
516    can hold only SFmode or DFmode.  */
517 
518 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
519   (((REGNO) < 16					\
520     && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE (MODE) / 4 > 8))	\
521    || ((REGNO) >= 16 && (REGNO) < 24				        \
522        && (GET_MODE_CLASS (MODE) == MODE_FLOAT		\
523 	   || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)		\
524        && GET_MODE_UNIT_SIZE (MODE) <= 12))
525 
526 #else /* defined SUPPORT_SUN_FPA */
527 
528 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
529    On the 68000, the cpu registers can hold any mode but the 68881 registers
530    can hold only SFmode or DFmode.  However, the Sun FPA register can
531    (apparently) hold whatever you feel like putting in them.
532    If using the fpa, don't put a double in d7/a0.  */
533 
534 /* ??? This is confused.  The check to prohibit d7/a0 overlaps should always
535    be enabled regardless of whether TARGET_FPA is specified.  It isn't clear
536    what the other d/a register checks are for.  Every check using REGNO
537    actually needs to use a range, e.g. 24>=X<56 not <56.  There is probably
538    no one using this code anymore.
539    This code used to be used to suppress register usage for the 68881 by
540    saying that the 68881 registers couldn't hold values of any mode if there
541    was no 68881.  This was wrong, because reload (etc.) will still try
542    to save and restore call-saved registers during, for instance, non-local
543    goto.  */
544 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
545 (((REGNO) < 16								\
546   && !(TARGET_FPA							\
547        && GET_MODE_CLASS ((MODE)) != MODE_INT				\
548        && GET_MODE_UNIT_SIZE ((MODE)) > 4				\
549        && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8	\
550        && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0))		\
551  || ((REGNO) >= 16 && (REGNO) < 24					\
552      ? ((GET_MODE_CLASS (MODE) == MODE_FLOAT				\
553 	 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)		\
554 	&& GET_MODE_UNIT_SIZE (MODE) <= 12)				\
555      : ((REGNO) < 56 ? TARGET_FPA && GET_MODE_UNIT_SIZE (MODE) <= 8 : 0)))
556 
557 #endif /* defined SUPPORT_SUN_FPA */
558 
559 /* Value is 1 if it is a good idea to tie two pseudo registers
560    when one has mode MODE1 and one has mode MODE2.
561    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
562    for any hard reg, then this must be 0 for correct output.  */
563 #define MODES_TIEABLE_P(MODE1, MODE2)			\
564   (! TARGET_68881					\
565    || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
566 	|| GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)	\
567        == (GET_MODE_CLASS (MODE2) == MODE_FLOAT		\
568 	   || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
569 
570 /* Specify the registers used for certain standard purposes.
571    The values of these macros are register numbers.  */
572 
573 /* m68000 pc isn't overloaded on a register.  */
574 /* #define PC_REGNUM  */
575 
576 /* Register to use for pushing function arguments.  */
577 #define STACK_POINTER_REGNUM 15
578 
579 /* Base register for access to local variables of the function.  */
580 #define FRAME_POINTER_REGNUM 14
581 
582 /* Value should be nonzero if functions must have frame pointers.
583    Zero means the frame pointer need not be set up (and parms
584    may be accessed via the stack pointer) in functions that seem suitable.
585    This is computed in `reload', in reload1.c.  */
586 #define FRAME_POINTER_REQUIRED 0
587 
588 /* Base register for access to arguments of the function.  */
589 #define ARG_POINTER_REGNUM 14
590 
591 /* Register in which static-chain is passed to a function.  */
592 #define STATIC_CHAIN_REGNUM 8
593 
594 /* Register in which address to store a structure value
595    is passed to a function.  */
596 #define STRUCT_VALUE_REGNUM 9
597 
598 /* Define the classes of registers for register constraints in the
599    machine description.  Also define ranges of constants.
600 
601    One of the classes must always be named ALL_REGS and include all hard regs.
602    If there is more than one class, another class must be named NO_REGS
603    and contain no registers.
604 
605    The name GENERAL_REGS must be the name of a class (or an alias for
606    another name such as ALL_REGS).  This is the class of registers
607    that is allowed by "g" or "r" in a register constraint.
608    Also, registers outside this class are allocated only when
609    instructions express preferences for them.
610 
611    The classes must be numbered in nondecreasing order; that is,
612    a larger-numbered class must never be contained completely
613    in a smaller-numbered class.
614 
615    For any two classes, it is very desirable that there be another
616    class that represents their union.  */
617 
618 /* The 68000 has three kinds of registers, so eight classes would be
619    a complete set.  One of them is not needed.  */
620 
621 #ifndef SUPPORT_SUN_FPA
622 
623 enum reg_class {
624   NO_REGS, DATA_REGS,
625   ADDR_REGS, FP_REGS,
626   GENERAL_REGS, DATA_OR_FP_REGS,
627   ADDR_OR_FP_REGS, ALL_REGS,
628   LIM_REG_CLASSES };
629 
630 #define N_REG_CLASSES (int) LIM_REG_CLASSES
631 
632 /* Give names of register classes as strings for dump file.  */
633 
634 #define REG_CLASS_NAMES \
635  { "NO_REGS", "DATA_REGS",              \
636    "ADDR_REGS", "FP_REGS",              \
637    "GENERAL_REGS", "DATA_OR_FP_REGS",   \
638    "ADDR_OR_FP_REGS", "ALL_REGS" }
639 
640 /* Define which registers fit in which classes.
641    This is an initializer for a vector of HARD_REG_SET
642    of length N_REG_CLASSES.  */
643 
644 #define REG_CLASS_CONTENTS \
645 {					\
646   {0x00000000},  /* NO_REGS */		\
647   {0x000000ff},  /* DATA_REGS */	\
648   {0x0000ff00},  /* ADDR_REGS */	\
649   {0x00ff0000},  /* FP_REGS */		\
650   {0x0000ffff},  /* GENERAL_REGS */	\
651   {0x00ff00ff},  /* DATA_OR_FP_REGS */	\
652   {0x00ffff00},  /* ADDR_OR_FP_REGS */	\
653   {0x00ffffff},  /* ALL_REGS */		\
654 }
655 
656 /* The same information, inverted:
657    Return the class number of the smallest class containing
658    reg number REGNO.  This could be a conditional expression
659    or could index an array.  */
660 
661 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
662 
663 #else /* defined SUPPORT_SUN_FPA */
664 
665 /*
666  * Notes on final choices:
667  *
668  *   1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
669  * else.
670  *   2) Removed all unions that involve address registers with
671  * floating point registers (left in unions of address and data with
672  * floating point).
673  *   3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
674  *   4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
675  *   4) Left in everything else.
676  */
677 enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
678   FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
679   DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
680   GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
681   LIM_REG_CLASSES };
682 
683 #define N_REG_CLASSES (int) LIM_REG_CLASSES
684 
685 /* Give names of register classes as strings for dump file.  */
686 
687 #define REG_CLASS_NAMES \
688  { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS",  \
689    "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS",  \
690    "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS",  \
691    "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
692 
693 /* Define which registers fit in which classes.
694    This is an initializer for a vector of HARD_REG_SET
695    of length N_REG_CLASSES.  */
696 
697 #define REG_CLASS_CONTENTS \
698 {							\
699  {0, 0},			/* NO_REGS */		\
700  {0xff000000, 0x000000ff},	/* LO_FPA_REGS */	\
701  {0xff000000, 0x00ffffff},	/* FPA_REGS */		\
702  {0x00ff0000, 0x00000000},	/* FP_REGS */		\
703  {0xffff0000, 0x00ffffff},	/* FP_OR_FPA_REGS */	\
704  {0x000000ff, 0x00000000},	/* DATA_REGS */		\
705  {0xff0000ff, 0x00ffffff},	/* DATA_OR_FPA_REGS */	\
706  {0x00ff00ff, 0x00000000},	/* DATA_OR_FP_REGS */	\
707  {0xffff00ff, 0x00ffffff},	/* DATA_OR_FP_OR_FPA_REGS */\
708  {0x0000ff00, 0x00000000},	/* ADDR_REGS */		\
709  {0x0000ffff, 0x00000000},	/* GENERAL_REGS */	\
710  {0xff00ffff, 0x00ffffff},	/* GENERAL_OR_FPA_REGS */\
711  {0x00ffffff, 0x00000000},	/* GENERAL_OR_FP_REGS */\
712  {0xffffffff, 0x00ffffff},	/* ALL_REGS */		\
713 }
714 
715 /* The same information, inverted:
716    Return the class number of the smallest class containing
717    reg number REGNO.  This could be a conditional expression
718    or could index an array.  */
719 
720 extern const enum reg_class regno_reg_class[];
721 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
722 
723 #endif /* SUPPORT_SUN_FPA */
724 
725 /* The class value for index registers, and the one for base regs.  */
726 
727 #define INDEX_REG_CLASS GENERAL_REGS
728 #define BASE_REG_CLASS ADDR_REGS
729 
730 /* Get reg_class from a letter such as appears in the machine description.
731    We do a trick here to modify the effective constraints on the
732    machine description; we zorch the constraint letters that aren't
733    appropriate for a specific target.  This allows us to guarantee
734    that a specific kind of register will not be used for a given target
735    without fiddling with the register classes above.  */
736 
737 #ifndef SUPPORT_SUN_FPA
738 
739 #define REG_CLASS_FROM_LETTER(C) \
740   ((C) == 'a' ? ADDR_REGS :			\
741    ((C) == 'd' ? DATA_REGS :			\
742     ((C) == 'f' ? (TARGET_68881 ? FP_REGS :	\
743 		   NO_REGS) :			\
744      NO_REGS)))
745 
746 #else /* defined SUPPORT_SUN_FPA */
747 
748 #define REG_CLASS_FROM_LETTER(C) \
749   ((C) == 'a' ? ADDR_REGS :			\
750    ((C) == 'd' ? DATA_REGS :			\
751     ((C) == 'f' ? (TARGET_68881 ? FP_REGS :	\
752 		   NO_REGS) :			\
753      ((C) == 'x' ? (TARGET_FPA ? FPA_REGS :	\
754 		    NO_REGS) :			\
755       ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS :	\
756 		     NO_REGS) :			\
757        NO_REGS)))))
758 
759 #endif /* defined SUPPORT_SUN_FPA */
760 
761 /* The letters I, J, K, L and M in a register constraint string
762    can be used to stand for particular ranges of immediate operands.
763    This macro defines what the ranges are.
764    C is the letter, and VALUE is a constant value.
765    Return 1 if VALUE is in the range specified by C.
766 
767    For the 68000, `I' is used for the range 1 to 8
768    allowed as immediate shift counts and in addq.
769    `J' is used for the range of signed numbers that fit in 16 bits.
770    `K' is for numbers that moveq can't handle.
771    `L' is for range -8 to -1, range of values that can be added with subq.
772    `M' is for numbers that moveq+notb can't handle.
773    'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
774    'O' is for 16 (for rotate using swap).
775    'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate.  */
776 
777 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
778   ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
779    (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
780    (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
781    (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
782    (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
783    (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
784    (C) == 'O' ? (VALUE) == 16 : \
785    (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
786 
787 /*
788  * A small bit of explanation:
789  * "G" defines all of the floating constants that are *NOT* 68881
790  * constants.  this is so 68881 constants get reloaded and the
791  * fpmovecr is used.  "H" defines *only* the class of constants that
792  * the fpa can use, because these can be gotten at in any fpa
793  * instruction and there is no need to force reloads.
794  */
795 #ifndef SUPPORT_SUN_FPA
796 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
797   ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
798 #else /* defined SUPPORT_SUN_FPA */
799 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
800   ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
801    (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
802 #endif /* defined SUPPORT_SUN_FPA */
803 
804 /* A C expression that defines the optional machine-dependent constraint
805    letters that can be used to segregate specific types of operands,
806    usually memory references, for the target machine.  It should return 1 if
807    VALUE corresponds to the operand type represented by the constraint letter
808    C.  If C is not defined as an extra constraint, the value returned should
809    be 0 regardless of VALUE.  */
810 
811 /* Letters in the range `Q' through `U' may be defined in a
812    machine-dependent fashion to stand for arbitrary operand types.
813    The machine description macro `EXTRA_CONSTRAINT' is passed the
814    operand as its first argument and the constraint letter as its
815    second operand.
816 
817    `Q' means address register indirect addressing mode.
818    `S' is for operands that satisfy 'm' when -mpcrel is in effect.
819    `T' is for operands that satisfy 's' when -mpcrel is not in effect.  */
820 
821 #define EXTRA_CONSTRAINT(OP,CODE)			\
822   (((CODE) == 'S')					\
823    ? (TARGET_PCREL					\
824       && GET_CODE (OP) == MEM				\
825       && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF		\
826 	  || GET_CODE (XEXP (OP, 0)) == LABEL_REF	\
827 	  || GET_CODE (XEXP (OP, 0)) == CONST))		\
828    : 							\
829   (((CODE) == 'T')					\
830    ? ( !TARGET_PCREL 					\
831       && (GET_CODE (OP) == SYMBOL_REF			\
832 	  || GET_CODE (OP) == LABEL_REF			\
833 	  || GET_CODE (OP) == CONST))			\
834    :							\
835   (((CODE) == 'Q')					\
836    ? (GET_CODE (OP) == MEM 				\
837       && GET_CODE (XEXP (OP, 0)) == REG)		\
838    :							\
839    0)))
840 
841 /* Given an rtx X being reloaded into a reg required to be
842    in class CLASS, return the class of reg to actually use.
843    In general this is just CLASS; but on some machines
844    in some cases it is preferable to use a more restrictive class.
845    On the 68000 series, use a data reg if possible when the
846    value is a constant in the range where moveq could be used
847    and we ensure that QImodes are reloaded into data regs.  */
848 
849 #define PREFERRED_RELOAD_CLASS(X,CLASS)  \
850   ((GET_CODE (X) == CONST_INT			\
851     && (unsigned) (INTVAL (X) + 0x80) < 0x100	\
852     && (CLASS) != ADDR_REGS)			\
853    ? DATA_REGS					\
854    : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
855    ? DATA_REGS					\
856    : (GET_CODE (X) == CONST_DOUBLE					\
857       && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
858    ? (TARGET_68881 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS)	\
859       ? FP_REGS : NO_REGS)						\
860    : (TARGET_PCREL				\
861       && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
862 	  || GET_CODE (X) == LABEL_REF))	\
863    ? ADDR_REGS					\
864    : (CLASS))
865 
866 /* Force QImode output reloads from subregs to be allocated to data regs,
867    since QImode stores from address regs are not supported.  We make the
868    assumption that if the class is not ADDR_REGS, then it must be a superset
869    of DATA_REGS.  */
870 
871 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
872   (((MODE) == QImode && (CLASS) != ADDR_REGS)	\
873    ? DATA_REGS					\
874    : (CLASS))
875 
876 /* Return the maximum number of consecutive registers
877    needed to represent mode MODE in a register of class CLASS.  */
878 /* On the 68000, this is the size of MODE in words,
879    except in the FP regs, where a single reg is always enough.  */
880 #ifndef SUPPORT_SUN_FPA
881 
882 #define CLASS_MAX_NREGS(CLASS, MODE)	\
883  ((CLASS) == FP_REGS ? 1 \
884   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
885 
886 /* Moves between fp regs and other regs are two insns.  */
887 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
888   (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)	        \
889     || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)	\
890     ? 4 : 2)
891 
892 #else /* defined SUPPORT_SUN_FPA */
893 
894 #define CLASS_MAX_NREGS(CLASS, MODE)	\
895  ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
896   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
897 
898 /* Moves between fp regs and other regs are two insns.  */
899 /* Likewise for high fpa regs and other regs.  */
900 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
901   ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)	\
902     || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)	\
903     || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS)	\
904     || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS))	\
905    ? 4 : 2)
906 
907 #endif /* define SUPPORT_SUN_FPA */
908 
909 /* Stack layout; function entry, exit and calling.  */
910 
911 /* Define this if pushing a word on the stack
912    makes the stack pointer a smaller address.  */
913 #define STACK_GROWS_DOWNWARD
914 
915 /* Nonzero if we need to generate stack-probe insns.
916    On most systems they are not needed.
917    When they are needed, define this as the stack offset to probe at.  */
918 #define NEED_PROBE 0
919 
920 /* Define this if the nominal address of the stack frame
921    is at the high-address end of the local variables;
922    that is, each additional local variable allocated
923    goes at a more negative offset in the frame.  */
924 #define FRAME_GROWS_DOWNWARD
925 
926 /* Offset within stack frame to start allocating local variables at.
927    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
928    first local allocated.  Otherwise, it is the offset to the BEGINNING
929    of the first local allocated.  */
930 #define STARTING_FRAME_OFFSET 0
931 
932 /* If we generate an insn to push BYTES bytes,
933    this says how many the stack pointer really advances by.
934    On the 68000, sp@- in a byte insn really pushes a word.
935    On the 5200 (coldfire), sp@- in a byte insn pushes just a byte.  */
936 #define PUSH_ROUNDING(BYTES) (TARGET_5200 ? BYTES : ((BYTES) + 1) & ~1)
937 
938 /* We want to avoid trying to push bytes.  */
939 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
940   (move_by_pieces_ninsns (SIZE, ALIGN) < MOVE_RATIO \
941     && (((SIZE) >=16 && (ALIGN) >= 16) || (TARGET_5200)))
942 
943 /* Offset of first parameter from the argument pointer register value.  */
944 #define FIRST_PARM_OFFSET(FNDECL) 8
945 
946 /* Value is the number of byte of arguments automatically
947    popped when returning from a subroutine call.
948    FUNDECL is the declaration node of the function (as a tree),
949    FUNTYPE is the data type of the function (as a tree),
950    or for a library call it is an identifier node for the subroutine name.
951    SIZE is the number of bytes of arguments passed on the stack.
952 
953    On the 68000, the RTS insn cannot pop anything.
954    On the 68010, the RTD insn may be used to pop them if the number
955      of args is fixed, but if the number is variable then the caller
956      must pop them all.  RTD can't be used for library calls now
957      because the library is compiled with the Unix compiler.
958    Use of RTD is a selectable option, since it is incompatible with
959    standard Unix calling sequences.  If the option is not selected,
960    the caller must always pop the args.  */
961 
962 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)   \
963   ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE)	\
964     && (TYPE_ARG_TYPES (FUNTYPE) == 0				\
965 	|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE)))	\
966 	    == void_type_node)))				\
967    ? (SIZE) : 0)
968 
969 /* Define how to find the value returned by a function.
970    VALTYPE is the data type of the value (as a tree).
971    If the precise function being called is known, FUNC is its FUNCTION_DECL;
972    otherwise, FUNC is 0.  */
973 
974 /* On the 68000 the return value is in D0 regardless.  */
975 
976 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
977   gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
978 
979 /* Define how to find the value returned by a library function
980    assuming the value has mode MODE.  */
981 
982 /* On the 68000 the return value is in D0 regardless.  */
983 
984 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, 0)
985 
986 /* 1 if N is a possible register number for a function value.
987    On the 68000, d0 is the only register thus used.  */
988 
989 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
990 
991 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
992    more than one register.  */
993 
994 #define NEEDS_UNTYPED_CALL 0
995 
996 /* Define this if PCC uses the nonreentrant convention for returning
997    structure and union values.  */
998 
999 #define PCC_STATIC_STRUCT_RETURN
1000 
1001 /* 1 if N is a possible register number for function argument passing.
1002    On the 68000, no registers are used in this way.  */
1003 
1004 #define FUNCTION_ARG_REGNO_P(N) 0
1005 
1006 /* Define a data type for recording info about an argument list
1007    during the scan of that argument list.  This data type should
1008    hold all necessary information about the function itself
1009    and about the args processed so far, enough to enable macros
1010    such as FUNCTION_ARG to determine where the next arg should go.
1011 
1012    On the m68k, this is a single integer, which is a number of bytes
1013    of arguments scanned so far.  */
1014 
1015 #define CUMULATIVE_ARGS int
1016 
1017 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1018    for a call to a function whose data type is FNTYPE.
1019    For a library call, FNTYPE is 0.
1020 
1021    On the m68k, the offset starts at 0.  */
1022 
1023 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
1024  ((CUM) = 0)
1025 
1026 /* Update the data in CUM to advance over an argument
1027    of mode MODE and data type TYPE.
1028    (TYPE is null for libcalls where that information may not be available.)  */
1029 
1030 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1031  ((CUM) += ((MODE) != BLKmode			\
1032 	    ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
1033 	    : (int_size_in_bytes (TYPE) + 3) & ~3))
1034 
1035 /* Define where to put the arguments to a function.
1036    Value is zero to push the argument on the stack,
1037    or a hard register in which to store the argument.
1038 
1039    MODE is the argument's machine mode.
1040    TYPE is the data type of the argument (as a tree).
1041     This is null for libcalls where that information may
1042     not be available.
1043    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1044     the preceding args and about the function being called.
1045    NAMED is nonzero if this argument is a named parameter
1046     (otherwise it is an extra parameter matching an ellipsis).  */
1047 
1048 /* On the 68000 all args are pushed, except if -mregparm is specified
1049    then the first two words of arguments are passed in d0, d1.
1050    *NOTE* -mregparm does not work.
1051    It exists only to test register calling conventions.  */
1052 
1053 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1054 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx_REG ((MODE), (CUM) / 4) : 0)
1055 
1056 /* For an arg passed partly in registers and partly in memory,
1057    this is the number of registers used.
1058    For args passed entirely in registers or entirely in memory, zero.  */
1059 
1060 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1061 ((TARGET_REGPARM && (CUM) < 8					\
1062   && 8 < ((CUM) + ((MODE) == BLKmode				\
1063 		      ? int_size_in_bytes (TYPE)		\
1064 		      : GET_MODE_SIZE (MODE))))  		\
1065  ? 2 - (CUM) / 4 : 0)
1066 
1067 /* Output assembler code to FILE to increment profiler label # LABELNO
1068    for profiling a function entry.  */
1069 
1070 #define FUNCTION_PROFILER(FILE, LABELNO)  \
1071   asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
1072 
1073 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1074    the stack pointer does not matter.  The value is tested only in
1075    functions that have frame pointers.
1076    No definition is equivalent to always zero.  */
1077 
1078 #define EXIT_IGNORE_STACK 1
1079 
1080 /* This is a hook for other tm files to change.  */
1081 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
1082 
1083 /* Determine if the epilogue should be output as RTL.
1084    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1085 #define USE_RETURN_INSN use_return_insn ()
1086 
1087 /* Store in the variable DEPTH the initial difference between the
1088    frame pointer reg contents and the stack pointer reg contents,
1089    as of the start of the function body.  This depends on the layout
1090    of the fixed parts of the stack frame and on how registers are saved.
1091 
1092    On the 68k, if we have a frame, we must add one word to its length
1093    to allow for the place that a6 is stored when we do have a frame pointer.
1094    Otherwise, we would need to compute the offset from the frame pointer
1095    of a local variable as a function of frame_pointer_needed, which
1096    is hard.  */
1097 
1098 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH)			\
1099 { int regno;							\
1100   int offset = -4;						\
1101   for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++)	\
1102     if (regs_ever_live[regno] && ! call_used_regs[regno])	\
1103       offset += 12;						\
1104   for (regno = 0; regno < 16; regno++)				\
1105     if (regs_ever_live[regno] && ! call_used_regs[regno])	\
1106       offset += 4;						\
1107   if (flag_pic && current_function_uses_pic_offset_table)	\
1108     offset += 4;						\
1109   (DEPTH) = (offset + ((get_frame_size () + 3) & -4)		\
1110 	     + (get_frame_size () == 0 ? 0 : 4));		\
1111 }
1112 
1113 /* Output assembler code for a block containing the constant parts
1114    of a trampoline, leaving space for the variable parts.  */
1115 
1116 /* On the 68k, the trampoline looks like this:
1117      movl #STATIC,a0
1118      jmp  FUNCTION
1119 
1120    WARNING: Targets that may run on 68040+ cpus must arrange for
1121    the instruction cache to be flushed.  Previous incarnations of
1122    the m68k trampoline code attempted to get around this by either
1123    using an out-of-line transfer function or pc-relative data, but
1124    the fact remains that the code to jump to the transfer function
1125    or the code to load the pc-relative data needs to be flushed
1126    just as much as the "variable" portion of the trampoline.
1127    Recognizing that a cache flush is going to be required anyway,
1128    dispense with such notions and build a smaller trampoline.  */
1129 
1130 /* Since more instructions are required to move a template into
1131    place than to create it on the spot, don't use a template.  */
1132 
1133 /* Length in units of the trampoline for entering a nested function.  */
1134 
1135 #define TRAMPOLINE_SIZE 12
1136 
1137 /* Alignment required for a trampoline in bits.  */
1138 
1139 #define TRAMPOLINE_ALIGNMENT 16
1140 
1141 /* Targets redefine this to invoke code to either flush the cache,
1142    or enable stack execution (or both).  */
1143 
1144 #ifndef FINALIZE_TRAMPOLINE
1145 #define FINALIZE_TRAMPOLINE(TRAMP)
1146 #endif
1147 
1148 /* Emit RTL insns to initialize the variable parts of a trampoline.
1149    FNADDR is an RTX for the address of the function's pure code.
1150    CXT is an RTX for the static chain value for the function.
1151 
1152    We generate a two-instructions program at address TRAMP :
1153 	movea.l &CXT,%a0
1154 	jmp FNADDR					*/
1155 
1156 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
1157 {									\
1158   emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C));	\
1159   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
1160   emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)),	\
1161 		  GEN_INT(0x4EF9));					\
1162   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
1163   FINALIZE_TRAMPOLINE(TRAMP);						\
1164 }
1165 
1166 /* This is the library routine that is used
1167    to transfer control from the trampoline
1168    to the actual nested function.
1169    It is defined for backward compatibility,
1170    for linking with object code that used the old
1171    trampoline definition.  */
1172 
1173 /* A colon is used with no explicit operands
1174    to cause the template string to be scanned for %-constructs.  */
1175 /* The function name __transfer_from_trampoline is not actually used.
1176    The function definition just permits use of "asm with operands"
1177    (though the operand list is empty).  */
1178 #define TRANSFER_FROM_TRAMPOLINE				\
1179 void								\
1180 __transfer_from_trampoline ()					\
1181 {								\
1182   register char *a0 asm ("%a0");				\
1183   asm (GLOBAL_ASM_OP "___trampoline");				\
1184   asm ("___trampoline:");					\
1185   asm volatile ("move%.l %0,%@" : : "m" (a0[22]));		\
1186   asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18]));	\
1187   asm ("rts":);							\
1188 }
1189 
1190 /* Addressing modes, and classification of registers for them.  */
1191 
1192 #define HAVE_POST_INCREMENT 1
1193 /* #define HAVE_POST_DECREMENT 0 */
1194 
1195 #define HAVE_PRE_DECREMENT 1
1196 /* #define HAVE_PRE_INCREMENT 0 */
1197 
1198 /* Macros to check register numbers against specific register classes.  */
1199 
1200 /* These assume that REGNO is a hard or pseudo reg number.
1201    They give nonzero only if REGNO is a hard reg of the suitable class
1202    or a pseudo reg currently allocated to a suitable hard reg.
1203    Since they use reg_renumber, they are safe only once reg_renumber
1204    has been allocated, which happens in local-alloc.c.  */
1205 
1206 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1207 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1208 #define REGNO_OK_FOR_BASE_P(REGNO) \
1209 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1210 #define REGNO_OK_FOR_DATA_P(REGNO) \
1211 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1212 #define REGNO_OK_FOR_FP_P(REGNO) \
1213 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1214 #ifdef SUPPORT_SUN_FPA
1215 #define REGNO_OK_FOR_FPA_P(REGNO) \
1216 (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1217 #endif
1218 
1219 /* Now macros that check whether X is a register and also,
1220    strictly, whether it is in a specified class.
1221 
1222    These macros are specific to the 68000, and may be used only
1223    in code for printing assembler insns and in conditions for
1224    define_optimization.  */
1225 
1226 /* 1 if X is a data register.  */
1227 
1228 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1229 
1230 /* 1 if X is an fp register.  */
1231 
1232 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1233 
1234 /* 1 if X is an address register  */
1235 
1236 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1237 
1238 #ifdef SUPPORT_SUN_FPA
1239 /* 1 if X is a register in the Sun FPA.  */
1240 #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1241 #else
1242 /* Answer must be no if we don't have an FPA.  */
1243 #define FPA_REG_P(X) 0
1244 #endif
1245 
1246 /* Maximum number of registers that can appear in a valid memory address.  */
1247 
1248 #define MAX_REGS_PER_ADDRESS 2
1249 
1250 /* Recognize any constant value that is a valid address.  */
1251 
1252 #define CONSTANT_ADDRESS_P(X)   \
1253   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1254    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1255    || GET_CODE (X) == HIGH)
1256 
1257 /* Nonzero if the constant value X is a legitimate general operand.
1258    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1259 
1260 #define LEGITIMATE_CONSTANT_P(X) (GET_MODE (X) != XFmode)
1261 
1262 /* Nonzero if the constant value X is a legitimate general operand
1263    when generating PIC code.  It is given that flag_pic is on and
1264    that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1265 
1266    PCREL_GENERAL_OPERAND_OK makes reload accept addresses that are
1267    accepted by insn predicates, but which would otherwise fail the
1268    `general_operand' test.  */
1269 
1270 #ifndef REG_OK_STRICT
1271 #define PCREL_GENERAL_OPERAND_OK 0
1272 #else
1273 #define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
1274 #endif
1275 
1276 #define LEGITIMATE_PIC_OPERAND_P(X)	\
1277   (! symbolic_operand (X, VOIDmode)				\
1278    || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X))	\
1279    || PCREL_GENERAL_OPERAND_OK)
1280 
1281 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1282    and check its validity for a certain class.
1283    We have two alternate definitions for each of them.
1284    The usual definition accepts all pseudo regs; the other rejects
1285    them unless they have been allocated suitable hard regs.
1286    The symbol REG_OK_STRICT causes the latter definition to be used.
1287 
1288    Most source files want to accept pseudo regs in the hope that
1289    they will get allocated to the class that the insn wants them to be in.
1290    Source files for reload pass need to be strict.
1291    After reload, it makes no difference, since pseudo regs have
1292    been eliminated by then.  */
1293 
1294 #ifndef REG_OK_STRICT
1295 
1296 /* Nonzero if X is a hard reg that can be used as an index
1297    or if it is a pseudo reg.  */
1298 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1299 /* Nonzero if X is a hard reg that can be used as a base reg
1300    or if it is a pseudo reg.  */
1301 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1302 
1303 #else
1304 
1305 /* Nonzero if X is a hard reg that can be used as an index.  */
1306 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1307 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1308 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1309 
1310 #endif
1311 
1312 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1313    that is a valid memory address for an instruction.
1314    The MODE argument is the machine mode for the MEM expression
1315    that wants to use this address.
1316 
1317    When generating PIC, an address involving a SYMBOL_REF is legitimate
1318    if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1319    We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1320    and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1321 
1322    Likewise for a LABEL_REF when generating PIC.
1323 
1324    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
1325 
1326 /* Allow SUBREG everywhere we allow REG.  This results in better code.  It
1327    also makes function inlining work when inline functions are called with
1328    arguments that are SUBREGs.  */
1329 
1330 #define LEGITIMATE_BASE_REG_P(X)   \
1331   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))	\
1332    || (GET_CODE (X) == SUBREG				\
1333        && GET_CODE (SUBREG_REG (X)) == REG		\
1334        && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1335 
1336 #define INDIRECTABLE_1_ADDRESS_P(X)  \
1337   ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1338    || LEGITIMATE_BASE_REG_P (X)						\
1339    || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)		\
1340        && LEGITIMATE_BASE_REG_P (XEXP (X, 0)))				\
1341    || (GET_CODE (X) == PLUS						\
1342        && LEGITIMATE_BASE_REG_P (XEXP (X, 0))				\
1343        && GET_CODE (XEXP (X, 1)) == CONST_INT				\
1344        && (TARGET_68020							\
1345 	   || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))	\
1346    || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
1347        && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)		\
1348    || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
1349        && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))
1350 
1351 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR)  \
1352 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1353 
1354 /* Only labels on dispatch tables are valid for indexing from.  */
1355 #define GO_IF_INDEXABLE_BASE(X, ADDR)				\
1356 { rtx temp;							\
1357   if (GET_CODE (X) == LABEL_REF					\
1358       && (temp = next_nonnote_insn (XEXP (X, 0))) != 0		\
1359       && GET_CODE (temp) == JUMP_INSN				\
1360       && (GET_CODE (PATTERN (temp)) == ADDR_VEC			\
1361 	  || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC))	\
1362     goto ADDR;							\
1363   if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1364 
1365 #define GO_IF_INDEXING(X, ADDR)	\
1366 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))		\
1367     { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }			\
1368   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))		\
1369     { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1370 
1371 #define GO_IF_INDEXED_ADDRESS(X, ADDR)	 \
1372 { GO_IF_INDEXING (X, ADDR);						\
1373   if (GET_CODE (X) == PLUS)						\
1374     { if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
1375 	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100))		\
1376 	{ rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); }	\
1377       if (GET_CODE (XEXP (X, 0)) == CONST_INT				\
1378 	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))		\
1379 	{ rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1380 
1381 /* coldfire/5200 does not allow HImode index registers.  */
1382 #define LEGITIMATE_INDEX_REG_P(X)   \
1383   ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))	\
1384    || (! TARGET_5200					\
1385        && GET_CODE (X) == SIGN_EXTEND			\
1386        && GET_CODE (XEXP (X, 0)) == REG			\
1387        && GET_MODE (XEXP (X, 0)) == HImode		\
1388        && REG_OK_FOR_INDEX_P (XEXP (X, 0)))		\
1389    || (GET_CODE (X) == SUBREG				\
1390        && GET_CODE (SUBREG_REG (X)) == REG		\
1391        && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1392 
1393 #define LEGITIMATE_INDEX_P(X)   \
1394    (LEGITIMATE_INDEX_REG_P (X)				\
1395     || ((TARGET_68020 || TARGET_5200) && GET_CODE (X) == MULT \
1396 	&& LEGITIMATE_INDEX_REG_P (XEXP (X, 0))		\
1397 	&& GET_CODE (XEXP (X, 1)) == CONST_INT		\
1398 	&& (INTVAL (XEXP (X, 1)) == 2			\
1399 	    || INTVAL (XEXP (X, 1)) == 4		\
1400 	    || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_5200))))
1401 
1402 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes.  */
1403 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1404 { GO_IF_NONINDEXED_ADDRESS (X, ADDR);					\
1405   GO_IF_INDEXED_ADDRESS (X, ADDR);					\
1406   if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS	\
1407       && LEGITIMATE_INDEX_P (XEXP (X, 0))				\
1408       && GET_CODE (XEXP (X, 1)) == LABEL_REF)				\
1409     goto ADDR; }
1410 
1411 /* Don't call memory_address_noforce for the address to fetch
1412    the switch offset.  This address is ok as it stands (see above),
1413    but memory_address_noforce would alter it.  */
1414 #define PIC_CASE_VECTOR_ADDRESS(index) index
1415 
1416 /* Try machine-dependent ways of modifying an illegitimate address
1417    to be legitimate.  If we find one, return the new, valid address.
1418    This macro is used in only one place: `memory_address' in explow.c.
1419 
1420    OLDX is the address as it was before break_out_memory_refs was called.
1421    In some cases it is useful to look at this to decide what needs to be done.
1422 
1423    MODE and WIN are passed so that this macro can use
1424    GO_IF_LEGITIMATE_ADDRESS.
1425 
1426    It is always safe for this macro to do nothing.  It exists to recognize
1427    opportunities to optimize the output.
1428 
1429    For the 68000, we handle X+REG by loading X into a register R and
1430    using R+REG.  R will go in an address reg and indexing will be used.
1431    However, if REG is a broken-out memory address or multiplication,
1432    nothing needs to be done because REG can certainly go in an address reg.  */
1433 
1434 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1435 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
1436 { register int ch = (X) != (OLDX);					\
1437   if (GET_CODE (X) == PLUS)						\
1438     { int copied = 0;							\
1439       if (GET_CODE (XEXP (X, 0)) == MULT)				\
1440 	{ COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);}	\
1441       if (GET_CODE (XEXP (X, 1)) == MULT)				\
1442 	{ COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);}	\
1443       if (ch && GET_CODE (XEXP (X, 1)) == REG				\
1444 	  && GET_CODE (XEXP (X, 0)) == REG)				\
1445 	goto WIN;							\
1446       if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }		\
1447       if (GET_CODE (XEXP (X, 0)) == REG					\
1448 	       || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND		\
1449 		   && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG		\
1450 		   && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode))	\
1451 	{ register rtx temp = gen_reg_rtx (Pmode);			\
1452 	  register rtx val = force_operand (XEXP (X, 1), 0);		\
1453 	  emit_move_insn (temp, val);					\
1454 	  COPY_ONCE (X);						\
1455 	  XEXP (X, 1) = temp;						\
1456 	  goto WIN; }							\
1457       else if (GET_CODE (XEXP (X, 1)) == REG				\
1458 	       || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND		\
1459 		   && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG		\
1460 		   && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode))	\
1461 	{ register rtx temp = gen_reg_rtx (Pmode);			\
1462 	  register rtx val = force_operand (XEXP (X, 0), 0);		\
1463 	  emit_move_insn (temp, val);					\
1464 	  COPY_ONCE (X);						\
1465 	  XEXP (X, 0) = temp;						\
1466 	  goto WIN; }}}
1467 
1468 /* Go to LABEL if ADDR (a legitimate address expression)
1469    has an effect that depends on the machine mode it is used for.
1470    On the 68000, only predecrement and postincrement address depend thus
1471    (the amount of decrement or increment being the length of the operand).  */
1472 
1473 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1474  if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1475 
1476 /* Specify the machine mode that this machine uses
1477    for the index in the tablejump instruction.  */
1478 #define CASE_VECTOR_MODE HImode
1479 
1480 /* Define as C expression which evaluates to nonzero if the tablejump
1481    instruction expects the table to contain offsets from the address of the
1482    table.
1483    Do not define this if the table should contain absolute addresses.  */
1484 #define CASE_VECTOR_PC_RELATIVE 1
1485 
1486 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1487 #define DEFAULT_SIGNED_CHAR 1
1488 
1489 /* Don't cse the address of the function being compiled.  */
1490 #define NO_RECURSIVE_FUNCTION_CSE
1491 
1492 /* Max number of bytes we can move from memory to memory
1493    in one reasonably fast instruction.  */
1494 #define MOVE_MAX 4
1495 
1496 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1497 #define SLOW_BYTE_ACCESS 0
1498 
1499 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1500    is done just by pretending it is already truncated.  */
1501 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1502 
1503 /* We assume that the store-condition-codes instructions store 0 for false
1504    and some other value for true.  This is the value stored for true.  */
1505 
1506 #define STORE_FLAG_VALUE (-1)
1507 
1508 /* When a prototype says `char' or `short', really pass an `int'.  */
1509 #define PROMOTE_PROTOTYPES 1
1510 
1511 /* Specify the machine mode that pointers have.
1512    After generation of rtl, the compiler makes no further distinction
1513    between pointers and any other objects of this machine mode.  */
1514 #define Pmode SImode
1515 
1516 /* A function address in a call instruction
1517    is a byte address (for indexing purposes)
1518    so give the MEM rtx a byte's mode.  */
1519 #define FUNCTION_MODE QImode
1520 
1521 /* Compute the cost of computing a constant rtl expression RTX
1522    whose rtx-code is CODE.  The body of this macro is a portion
1523    of a switch statement.  If the code is computed here,
1524    return it with a return statement.  Otherwise, break from the switch.  */
1525 
1526 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1527   case CONST_INT:						\
1528     /* Constant zero is super cheap due to clr instruction.  */	\
1529     if (RTX == const0_rtx) return 0;				\
1530     /* if ((OUTER_CODE) == SET) */				\
1531       return const_int_cost(RTX);				\
1532   case CONST:							\
1533   case LABEL_REF:						\
1534   case SYMBOL_REF:						\
1535     return 3;							\
1536   case CONST_DOUBLE:						\
1537     /* Make 0.0 cheaper than other floating constants to	\
1538        encourage creating tstsf and tstdf insns.  */		\
1539     if ((OUTER_CODE) == COMPARE					\
1540         && ((RTX) == CONST0_RTX (SFmode)			\
1541 	    || (RTX) == CONST0_RTX (DFmode)))			\
1542       return 4;							\
1543     return 5;
1544 
1545 /* Compute the cost of various arithmetic operations.
1546    These are vaguely right for a 68020.  */
1547 /* The costs for long multiply have been adjusted to
1548    work properly in synth_mult on the 68020,
1549    relative to an average of the time for add and the time for shift,
1550    taking away a little more because sometimes move insns are needed.  */
1551 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms.  */
1552 #define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : 13)
1553 #define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1554 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1555 
1556 #define RTX_COSTS(X,CODE,OUTER_CODE)				\
1557   case PLUS:							\
1558     /* An lea costs about three times as much as a simple add.  */  \
1559     if (GET_MODE (X) == SImode					\
1560 	&& GET_CODE (XEXP (X, 1)) == REG			\
1561 	&& GET_CODE (XEXP (X, 0)) == MULT			\
1562 	&& GET_CODE (XEXP (XEXP (X, 0), 0)) == REG		\
1563 	&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT	\
1564 	&& (INTVAL (XEXP (XEXP (X, 0), 1)) == 2			\
1565 	    || INTVAL (XEXP (XEXP (X, 0), 1)) == 4		\
1566 	    || INTVAL (XEXP (XEXP (X, 0), 1)) == 8))		\
1567       return COSTS_N_INSNS (3);	 /* lea an@(dx:l:i),am */	\
1568     break;							\
1569   case ASHIFT:							\
1570   case ASHIFTRT:						\
1571   case LSHIFTRT:						\
1572     if (TARGET_68060)						\
1573       return COSTS_N_INSNS(1);					\
1574     if (! TARGET_68020)							\
1575       {									\
1576 	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
1577 	  {								\
1578 	    if (INTVAL (XEXP (X, 1)) < 16)				\
1579 	      return COSTS_N_INSNS (2) + INTVAL (XEXP (X, 1)) / 2;	\
1580 	    else							\
1581 	      /* We're using clrw + swap for these cases.  */		\
1582 	      return COSTS_N_INSNS (4) + (INTVAL (XEXP (X, 1)) - 16) / 2; \
1583 	  }								\
1584 	return COSTS_N_INSNS (10); /* worst case */			\
1585       }									\
1586     /* A shift by a big integer takes an extra instruction.  */ \
1587     if (GET_CODE (XEXP (X, 1)) == CONST_INT			\
1588 	&& (INTVAL (XEXP (X, 1)) == 16))			\
1589       return COSTS_N_INSNS (2);	 /* clrw;swap */		\
1590     if (GET_CODE (XEXP (X, 1)) == CONST_INT			\
1591 	&& !(INTVAL (XEXP (X, 1)) > 0				\
1592 	     && INTVAL (XEXP (X, 1)) <= 8))			\
1593       return COSTS_N_INSNS (3);	 /* lsr #i,dn */		\
1594     break;							\
1595   case MULT:							\
1596     if ((GET_CODE (XEXP (X, 0)) == ZERO_EXTEND			\
1597 	 || GET_CODE (XEXP (X, 0)) == SIGN_EXTEND)		\
1598 	&& GET_MODE (X) == SImode)				\
1599       return COSTS_N_INSNS (MULW_COST);				\
1600     if (GET_MODE (X) == QImode || GET_MODE (X) == HImode)	\
1601       return COSTS_N_INSNS (MULW_COST);				\
1602     else							\
1603       return COSTS_N_INSNS (MULL_COST);				\
1604   case DIV:							\
1605   case UDIV:							\
1606   case MOD:							\
1607   case UMOD:							\
1608     if (GET_MODE (X) == QImode || GET_MODE (X) == HImode)	\
1609       return COSTS_N_INSNS (DIVW_COST); /* div.w */		\
1610     return COSTS_N_INSNS (43);	 /* div.l */
1611 
1612 /* Tell final.c how to eliminate redundant test instructions.  */
1613 
1614 /* Here we define machine-dependent flags and fields in cc_status
1615    (see `conditions.h').  */
1616 
1617 /* Set if the cc value is actually in the 68881, so a floating point
1618    conditional branch must be output.  */
1619 #define CC_IN_68881 04000
1620 
1621 /* Store in cc_status the expressions that the condition codes will
1622    describe after execution of an instruction whose pattern is EXP.
1623    Do not alter them if the instruction would not alter the cc's.  */
1624 
1625 /* On the 68000, all the insns to store in an address register fail to
1626    set the cc's.  However, in some cases these instructions can make it
1627    possibly invalid to use the saved cc's.  In those cases we clear out
1628    some or all of the saved cc's so they won't be used.  */
1629 
1630 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1631 
1632 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
1633 { if (cc_prev_status.flags & CC_IN_68881)			\
1634     return FLOAT;						\
1635   if (cc_prev_status.flags & CC_NO_OVERFLOW)			\
1636     return NO_OV;						\
1637   return NORMAL; }
1638 
1639 /* Control the assembler format that we output.  */
1640 
1641 /* Output at beginning of assembler file.  */
1642 
1643 #define ASM_FILE_START(FILE)	\
1644   fprintf (FILE, "#NO_APP\n");
1645 
1646 /* Output to assembler file text saying following lines
1647    may contain character constants, extra white space, comments, etc.  */
1648 
1649 #define ASM_APP_ON "#APP\n"
1650 
1651 /* Output to assembler file text saying following lines
1652    no longer contain unusual constructs.  */
1653 
1654 #define ASM_APP_OFF "#NO_APP\n"
1655 
1656 /* Output before read-only data.  */
1657 
1658 #define TEXT_SECTION_ASM_OP "\t.text"
1659 
1660 /* Output before writable data.  */
1661 
1662 #define DATA_SECTION_ASM_OP "\t.data"
1663 
1664 #define GLOBAL_ASM_OP "\t.globl\t"
1665 
1666 /* Here are four prefixes that are used by asm_fprintf to
1667    facilitate customization for alternate assembler syntaxes.
1668    Machines with no likelihood of an alternate syntax need not
1669    define these and need not use asm_fprintf.  */
1670 
1671 /* The prefix for register names.  Note that REGISTER_NAMES
1672    is supposed to include this prefix.  */
1673 
1674 #define REGISTER_PREFIX ""
1675 
1676 /* The prefix for local labels.  You should be able to define this as
1677    an empty string, or any arbitrary string (such as ".", ".L%", etc)
1678    without having to make any other changes to account for the specific
1679    definition.  Note it is a string literal, not interpreted by printf
1680    and friends.  */
1681 
1682 #define LOCAL_LABEL_PREFIX ""
1683 
1684 /* The prefix to add to user-visible assembler symbols.  */
1685 
1686 #define USER_LABEL_PREFIX "_"
1687 
1688 /* The prefix for immediate operands.  */
1689 
1690 #define IMMEDIATE_PREFIX "#"
1691 
1692 /* How to refer to registers in assembler output.
1693    This sequence is indexed by compiler's hard-register-number (see above).  */
1694 
1695 #ifndef SUPPORT_SUN_FPA
1696 
1697 #define REGISTER_NAMES \
1698 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",	\
1699  "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp",	\
1700  "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1701 
1702 #else /* SUPPORTED_SUN_FPA */
1703 
1704 #define REGISTER_NAMES \
1705 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",	\
1706  "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp",	\
1707  "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1708  "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1709  "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1710  "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1711  "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1712 
1713 #endif /* defined SUPPORT_SUN_FPA */
1714 
1715 /* How to renumber registers for dbx and gdb.
1716    On the Sun-3, the floating point registers have numbers
1717    18 to 25, not 16 to 23 as they do in the compiler.  */
1718 
1719 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1720 
1721 /* Before the prologue, RA is at 0(%sp).  */
1722 #define INCOMING_RETURN_ADDR_RTX \
1723   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1724 
1725 /* We must not use the DBX register numbers for the DWARF 2 CFA column
1726    numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
1727    Instead use the identity mapping.  */
1728 #define DWARF_FRAME_REGNUM(REG) REG
1729 
1730 /* Before the prologue, the top of the frame is at 4(%sp).  */
1731 #define INCOMING_FRAME_SP_OFFSET 4
1732 
1733 /* Describe how we implement __builtin_eh_return.  */
1734 #define EH_RETURN_DATA_REGNO(N) \
1735   ((N) < 2 ? (N) : INVALID_REGNUM)
1736 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 8)
1737 #define EH_RETURN_HANDLER_RTX					    \
1738   gen_rtx_MEM (Pmode,						    \
1739 	       gen_rtx_PLUS (Pmode, arg_pointer_rtx,		    \
1740 			     plus_constant (EH_RETURN_STACKADJ_RTX, \
1741 					    UNITS_PER_WORD)))
1742 
1743 /* Select a format to encode pointers in exception handling data.  CODE
1744    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1745    true if the symbol may be affected by dynamic relocations.  */
1746 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		   \
1747   (flag_pic								   \
1748    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1749    : DW_EH_PE_absptr)
1750 
1751 /* This is how to output a reference to a user-level label named NAME.
1752    `assemble_name' uses this.  */
1753 
1754 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1755   asm_fprintf (FILE, "%0U%s", NAME)
1756 
1757 /* This is how to output an internal numbered label where
1758    PREFIX is the class of label and NUM is the number within the class.  */
1759 
1760 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1761   asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
1762 
1763 /* This is how to store into the string LABEL
1764    the symbol_ref name of an internal numbered label where
1765    PREFIX is the class of label and NUM is the number within the class.
1766    This is suitable for output with `assemble_name'.  */
1767 
1768 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1769   sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long)(NUM))
1770 
1771 /* This is how to output an insn to push a register on the stack.
1772    It need not be very fast code.  */
1773 
1774 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1775   asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1776 
1777 /* This is how to output an insn to pop a register from the stack.
1778    It need not be very fast code.  */
1779 
1780 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1781   asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1782 
1783 /* This is how to output an element of a case-vector that is absolute.
1784    (The 68000 does not use such vectors,
1785    but we must define this macro anyway.)  */
1786 
1787 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1788   asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1789 
1790 /* This is how to output an element of a case-vector that is relative.  */
1791 
1792 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1793   asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1794 
1795 /* This is how to output an assembler line
1796    that says to advance the location counter
1797    to a multiple of 2**LOG bytes.  */
1798 
1799 /* We don't have a way to align to more than a two-byte boundary, so do the
1800    best we can and don't complain.  */
1801 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1802   if ((LOG) >= 1)			\
1803     fprintf (FILE, "\t.even\n");
1804 
1805 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1806   fprintf (FILE, "\t.skip %u\n", (SIZE))
1807 
1808 /* This says how to output an assembler line
1809    to define a global common symbol.  */
1810 
1811 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1812 ( fputs (".comm ", (FILE)),			\
1813   assemble_name ((FILE), (NAME)),		\
1814   fprintf ((FILE), ",%u\n", (ROUNDED)))
1815 
1816 /* This says how to output an assembler line
1817    to define a local common symbol.  */
1818 
1819 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1820 ( fputs (".lcomm ", (FILE)),			\
1821   assemble_name ((FILE), (NAME)),		\
1822   fprintf ((FILE), ",%u\n", (ROUNDED)))
1823 
1824 /* Store in OUTPUT a string (made with alloca) containing
1825    an assembler-name for a local static variable named NAME.
1826    LABELNO is an integer which is different for each call.  */
1827 
1828 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1829 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1830   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1831 
1832 /* Output a float value (represented as a C double) as an immediate operand.
1833    This macro is a 68k-specific macro.  */
1834 
1835 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE)		\
1836  do {								\
1837       if (CODE == 'f')						\
1838         {							\
1839           char dstr[30];					\
1840       	  real_to_decimal (dstr, &(VALUE), sizeof (dstr), 9, 0); \
1841           asm_fprintf ((FILE), "%I0r%s", dstr);			\
1842         }							\
1843       else							\
1844         {							\
1845           long l;						\
1846           REAL_VALUE_TO_TARGET_SINGLE (VALUE, l);		\
1847           asm_fprintf ((FILE), "%I0x%lx", l);			\
1848         }							\
1849      } while (0)
1850 
1851 /* Output a double value (represented as a C double) as an immediate operand.
1852    This macro is a 68k-specific macro.  */
1853 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)				\
1854  do { char dstr[30];							\
1855       real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
1856       asm_fprintf (FILE, "%I0r%s", dstr);				\
1857     } while (0)
1858 
1859 /* Note, long double immediate operands are not actually
1860    generated by m68k.md.  */
1861 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE)			\
1862  do { char dstr[30];							\
1863       real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
1864       asm_fprintf (FILE, "%I0r%s", dstr);				\
1865     } while (0)
1866 
1867 /* Print operand X (an rtx) in assembler syntax to file FILE.
1868    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1869    For `%' followed by punctuation, CODE is the punctuation and X is null.
1870 
1871    On the 68000, we use several CODE characters:
1872    '.' for dot needed in Motorola-style opcode names.
1873    '-' for an operand pushing on the stack:
1874        sp@-, -(sp) or -(%sp) depending on the style of syntax.
1875    '+' for an operand pushing on the stack:
1876        sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1877    '@' for a reference to the top word on the stack:
1878        sp@, (sp) or (%sp) depending on the style of syntax.
1879    '#' for an immediate operand prefix (# in MIT and Motorola syntax
1880        but & in SGS syntax).
1881    '!' for the fpcr register (used in some float-to-fixed conversions).
1882    '$' for the letter `s' in an op code, but only on the 68040.
1883    '&' for the letter `d' in an op code, but only on the 68040.
1884    '/' for register prefix needed by longlong.h.
1885 
1886    'b' for byte insn (no effect, on the Sun; this is for the ISI).
1887    'd' to force memory addressing to be absolute, not relative.
1888    'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1889    'o' for operands to go directly to output_operand_address (bypassing
1890        print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
1891    'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
1892        than directly).  Second part of 'y' below.
1893    'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1894        or print pair of registers as rx:ry.
1895    'y' for a FPA insn (print pair of registers as rx:ry).  This also outputs
1896        CONST_DOUBLE's as SunFPA constant RAM registers if
1897        possible, so it should not be used except for the SunFPA.  */
1898 
1899 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
1900   ((CODE) == '.' || (CODE) == '#' || (CODE) == '-'			\
1901    || (CODE) == '+' || (CODE) == '@' || (CODE) == '!'			\
1902    || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1903 
1904 /* A C compound statement to output to stdio stream STREAM the
1905    assembler syntax for an instruction operand X.  X is an RTL
1906    expression.
1907 
1908    CODE is a value that can be used to specify one of several ways
1909    of printing the operand.  It is used when identical operands
1910    must be printed differently depending on the context.  CODE
1911    comes from the `%' specification that was used to request
1912    printing of the operand.  If the specification was just `%DIGIT'
1913    then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1914    is the ASCII code for LTR.
1915 
1916    If X is a register, this macro should print the register's name.
1917    The names can be found in an array `reg_names' whose type is
1918    `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
1919 
1920    When the machine description has a specification `%PUNCT' (a `%'
1921    followed by a punctuation character), this macro is called with
1922    a null pointer for X and the punctuation character for CODE.
1923 
1924    See m68k.c for the m68k specific codes.  */
1925 
1926 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1927 
1928 /* A C compound statement to output to stdio stream STREAM the
1929    assembler syntax for an instruction operand that is a memory
1930    reference whose address is ADDR.  ADDR is an RTL expression.  */
1931 
1932 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1933 
1934 /* Variables in m68k.c */
1935 extern const char *m68k_align_loops_string;
1936 extern const char *m68k_align_jumps_string;
1937 extern const char *m68k_align_funcs_string;
1938 extern int m68k_align_loops;
1939 extern int m68k_align_jumps;
1940 extern int m68k_align_funcs;
1941 extern int m68k_last_compare_had_fp_operands;
1942 
1943 
1944 /* Define the codes that are matched by predicates in m68k.c.  */
1945 
1946 #define PREDICATE_CODES							\
1947   {"general_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
1948 			   LABEL_REF, SUBREG, REG, MEM}},		\
1949   {"nonimmediate_src_operand", {SUBREG, REG, MEM}},			\
1950   {"memory_src_operand", {SUBREG, MEM}},				\
1951   {"not_sp_operand", {SUBREG, REG, MEM}},				\
1952   {"pcrel_address", {SYMBOL_REF, LABEL_REF, CONST}},			\
1953   {"const_uint32_operand", {CONST_INT, CONST_DOUBLE}},			\
1954   {"const_sint32_operand", {CONST_INT}},				\
1955   {"valid_dbcc_comparison_p", {EQ, NE, GTU, LTU, GEU, LEU,		\
1956 			       GT, LT, GE, LE}},			\
1957   {"extend_operator", {SIGN_EXTEND, ZERO_EXTEND}},
1958 
1959 /*
1960 Local variables:
1961 version-control: t
1962 End:
1963 */
1964