1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "gc/gc_10_1_0_offset.h"
34 #include "gc/gc_10_1_0_sh_mask.h"
35 #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h"
36 #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h"
37
38 #include "soc15_common.h"
39 #include "soc15.h"
40 #include "navi10_sdma_pkt_open.h"
41 #include "nbio_v2_3.h"
42 #include "sdma_common.h"
43 #include "sdma_v5_0.h"
44
45 MODULE_FIRMWARE("amdgpu/navi10_sdma.bin");
46 MODULE_FIRMWARE("amdgpu/navi10_sdma1.bin");
47
48 MODULE_FIRMWARE("amdgpu/navi14_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/navi14_sdma1.bin");
50
51 MODULE_FIRMWARE("amdgpu/navi12_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/navi12_sdma1.bin");
53
54 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma.bin");
55 MODULE_FIRMWARE("amdgpu/cyan_skillfish2_sdma1.bin");
56
57 #define SDMA1_REG_OFFSET 0x600
58 #define SDMA0_HYP_DEC_REG_START 0x5880
59 #define SDMA0_HYP_DEC_REG_END 0x5893
60 #define SDMA1_HYP_DEC_REG_OFFSET 0x20
61
62 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev);
66
67 static const struct soc15_reg_golden golden_settings_sdma_5[] = {
68 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
69 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
70 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
71 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
73 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
74 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
75 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
76 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
77 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
78 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
79 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x00ffffff, 0x000c5c00),
80 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
81 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
82 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
83 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
84 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
85 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
86 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
87 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
88 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
89 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
90 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
91 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x00ffffff, 0x000c5c00)
92 };
93
94 static const struct soc15_reg_golden golden_settings_sdma_5_sriov[] = {
95 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
96 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
97 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
98 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
99 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
100 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
101 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
102 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
103 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
104 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
105 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
106 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
107 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
108 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
109 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
110 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
111 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
112 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
113 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
114 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
115 };
116
117 static const struct soc15_reg_golden golden_settings_sdma_nv10[] = {
118 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
119 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
120 };
121
122 static const struct soc15_reg_golden golden_settings_sdma_nv14[] = {
123 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
124 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
125 };
126
127 static const struct soc15_reg_golden golden_settings_sdma_nv12[] = {
128 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
129 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
130 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
131 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
132 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
133 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
134 };
135
136 static const struct soc15_reg_golden golden_settings_sdma_cyan_skillfish[] = {
137 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
138 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
139 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
140 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
141 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
149 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA0_UTCL1_PAGE, 0x007fffff, 0x004c5c00),
151 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_CHICKEN_BITS, 0xffbf1f0f, 0x03ab0107),
152 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG, 0x001877ff, 0x00000044),
153 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x001877ff, 0x00000044),
154 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
155 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
157 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
158 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
159 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
160 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
162 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
164 SOC15_REG_GOLDEN_VALUE(GC, 0, mmSDMA1_UTCL1_PAGE, 0x007fffff, 0x004c5c00)
165 };
166
sdma_v5_0_get_reg_offset(struct amdgpu_device * adev,u32 instance,u32 internal_offset)167 static u32 sdma_v5_0_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset)
168 {
169 u32 base;
170
171 if (internal_offset >= SDMA0_HYP_DEC_REG_START &&
172 internal_offset <= SDMA0_HYP_DEC_REG_END) {
173 base = adev->reg_offset[GC_HWIP][0][1];
174 if (instance == 1)
175 internal_offset += SDMA1_HYP_DEC_REG_OFFSET;
176 } else {
177 base = adev->reg_offset[GC_HWIP][0][0];
178 if (instance == 1)
179 internal_offset += SDMA1_REG_OFFSET;
180 }
181
182 return base + internal_offset;
183 }
184
sdma_v5_0_init_golden_registers(struct amdgpu_device * adev)185 static void sdma_v5_0_init_golden_registers(struct amdgpu_device *adev)
186 {
187 switch (adev->ip_versions[SDMA0_HWIP][0]) {
188 case IP_VERSION(5, 0, 0):
189 soc15_program_register_sequence(adev,
190 golden_settings_sdma_5,
191 (const u32)ARRAY_SIZE(golden_settings_sdma_5));
192 soc15_program_register_sequence(adev,
193 golden_settings_sdma_nv10,
194 (const u32)ARRAY_SIZE(golden_settings_sdma_nv10));
195 break;
196 case IP_VERSION(5, 0, 2):
197 soc15_program_register_sequence(adev,
198 golden_settings_sdma_5,
199 (const u32)ARRAY_SIZE(golden_settings_sdma_5));
200 soc15_program_register_sequence(adev,
201 golden_settings_sdma_nv14,
202 (const u32)ARRAY_SIZE(golden_settings_sdma_nv14));
203 break;
204 case IP_VERSION(5, 0, 5):
205 if (amdgpu_sriov_vf(adev))
206 soc15_program_register_sequence(adev,
207 golden_settings_sdma_5_sriov,
208 (const u32)ARRAY_SIZE(golden_settings_sdma_5_sriov));
209 else
210 soc15_program_register_sequence(adev,
211 golden_settings_sdma_5,
212 (const u32)ARRAY_SIZE(golden_settings_sdma_5));
213 soc15_program_register_sequence(adev,
214 golden_settings_sdma_nv12,
215 (const u32)ARRAY_SIZE(golden_settings_sdma_nv12));
216 break;
217 case IP_VERSION(5, 0, 1):
218 soc15_program_register_sequence(adev,
219 golden_settings_sdma_cyan_skillfish,
220 (const u32)ARRAY_SIZE(golden_settings_sdma_cyan_skillfish));
221 break;
222 default:
223 break;
224 }
225 }
226
227 /**
228 * sdma_v5_0_init_microcode - load ucode images from disk
229 *
230 * @adev: amdgpu_device pointer
231 *
232 * Use the firmware interface to load the ucode images into
233 * the driver (not loaded into hw).
234 * Returns 0 on success, error on failure.
235 */
236
237 // emulation only, won't work on real chip
238 // navi10 real chip need to use PSP to load firmware
sdma_v5_0_init_microcode(struct amdgpu_device * adev)239 static int sdma_v5_0_init_microcode(struct amdgpu_device *adev)
240 {
241 int ret, i;
242
243 for (i = 0; i < adev->sdma.num_instances; i++) {
244 ret = amdgpu_sdma_init_microcode(adev, i, false);
245 if (ret)
246 return ret;
247 }
248
249 return ret;
250 }
251
sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring * ring)252 static unsigned sdma_v5_0_ring_init_cond_exec(struct amdgpu_ring *ring)
253 {
254 unsigned ret;
255
256 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
257 amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
258 amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
259 amdgpu_ring_write(ring, 1);
260 ret = ring->wptr & ring->buf_mask;/* this is the offset we need patch later */
261 amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
262
263 return ret;
264 }
265
sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring * ring,unsigned offset)266 static void sdma_v5_0_ring_patch_cond_exec(struct amdgpu_ring *ring,
267 unsigned offset)
268 {
269 unsigned cur;
270
271 BUG_ON(offset > ring->buf_mask);
272 BUG_ON(ring->ring[offset] != 0x55aa55aa);
273
274 cur = (ring->wptr - 1) & ring->buf_mask;
275 if (cur > offset)
276 ring->ring[offset] = cur - offset;
277 else
278 ring->ring[offset] = (ring->buf_mask + 1) - offset + cur;
279 }
280
281 /**
282 * sdma_v5_0_ring_get_rptr - get the current read pointer
283 *
284 * @ring: amdgpu ring pointer
285 *
286 * Get the current rptr from the hardware (NAVI10+).
287 */
sdma_v5_0_ring_get_rptr(struct amdgpu_ring * ring)288 static uint64_t sdma_v5_0_ring_get_rptr(struct amdgpu_ring *ring)
289 {
290 u64 *rptr;
291
292 /* XXX check if swapping is necessary on BE */
293 rptr = (u64 *)ring->rptr_cpu_addr;
294
295 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
296 return ((*rptr) >> 2);
297 }
298
299 /**
300 * sdma_v5_0_ring_get_wptr - get the current write pointer
301 *
302 * @ring: amdgpu ring pointer
303 *
304 * Get the current wptr from the hardware (NAVI10+).
305 */
sdma_v5_0_ring_get_wptr(struct amdgpu_ring * ring)306 static uint64_t sdma_v5_0_ring_get_wptr(struct amdgpu_ring *ring)
307 {
308 struct amdgpu_device *adev = ring->adev;
309 u64 wptr;
310
311 if (ring->use_doorbell) {
312 /* XXX check if swapping is necessary on BE */
313 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
314 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
315 } else {
316 wptr = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI));
317 wptr = wptr << 32;
318 wptr |= RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR));
319 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr);
320 }
321
322 return wptr >> 2;
323 }
324
325 /**
326 * sdma_v5_0_ring_set_wptr - commit the write pointer
327 *
328 * @ring: amdgpu ring pointer
329 *
330 * Write the wptr back to the hardware (NAVI10+).
331 */
sdma_v5_0_ring_set_wptr(struct amdgpu_ring * ring)332 static void sdma_v5_0_ring_set_wptr(struct amdgpu_ring *ring)
333 {
334 struct amdgpu_device *adev = ring->adev;
335 uint32_t *wptr_saved;
336 uint32_t *is_queue_unmap;
337 uint64_t aggregated_db_index;
338 uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_DMA].mqd_size;
339
340 DRM_DEBUG("Setting write pointer\n");
341 if (ring->is_mes_queue) {
342 wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size);
343 is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size +
344 sizeof(uint32_t));
345 aggregated_db_index =
346 amdgpu_mes_get_aggregated_doorbell_index(adev,
347 AMDGPU_MES_PRIORITY_LEVEL_NORMAL);
348
349 atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
350 ring->wptr << 2);
351 *wptr_saved = ring->wptr << 2;
352 if (*is_queue_unmap) {
353 WDOORBELL64(aggregated_db_index, ring->wptr << 2);
354 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
355 ring->doorbell_index, ring->wptr << 2);
356 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
357 } else {
358 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
359 ring->doorbell_index, ring->wptr << 2);
360 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
361
362 if (*is_queue_unmap)
363 WDOORBELL64(aggregated_db_index,
364 ring->wptr << 2);
365 }
366 } else {
367 if (ring->use_doorbell) {
368 DRM_DEBUG("Using doorbell -- "
369 "wptr_offs == 0x%08x "
370 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
371 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
372 ring->wptr_offs,
373 lower_32_bits(ring->wptr << 2),
374 upper_32_bits(ring->wptr << 2));
375 /* XXX check if swapping is necessary on BE */
376 atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
377 ring->wptr << 2);
378 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
379 ring->doorbell_index, ring->wptr << 2);
380 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
381 } else {
382 DRM_DEBUG("Not using doorbell -- "
383 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
384 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
385 ring->me,
386 lower_32_bits(ring->wptr << 2),
387 ring->me,
388 upper_32_bits(ring->wptr << 2));
389 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
390 ring->me, mmSDMA0_GFX_RB_WPTR),
391 lower_32_bits(ring->wptr << 2));
392 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev,
393 ring->me, mmSDMA0_GFX_RB_WPTR_HI),
394 upper_32_bits(ring->wptr << 2));
395 }
396 }
397 }
398
sdma_v5_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)399 static void sdma_v5_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
400 {
401 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
402 int i;
403
404 for (i = 0; i < count; i++)
405 if (sdma && sdma->burst_nop && (i == 0))
406 amdgpu_ring_write(ring, ring->funcs->nop |
407 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
408 else
409 amdgpu_ring_write(ring, ring->funcs->nop);
410 }
411
412 /**
413 * sdma_v5_0_ring_emit_ib - Schedule an IB on the DMA engine
414 *
415 * @ring: amdgpu ring pointer
416 * @job: job to retrieve vmid from
417 * @ib: IB object to schedule
418 * @flags: unused
419 *
420 * Schedule an IB in the DMA ring (NAVI10).
421 */
sdma_v5_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)422 static void sdma_v5_0_ring_emit_ib(struct amdgpu_ring *ring,
423 struct amdgpu_job *job,
424 struct amdgpu_ib *ib,
425 uint32_t flags)
426 {
427 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
428 uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid);
429
430 /* An IB packet must end on a 8 DW boundary--the next dword
431 * must be on a 8-dword boundary. Our IB packet below is 6
432 * dwords long, thus add x number of NOPs, such that, in
433 * modular arithmetic,
434 * wptr + 6 + x = 8k, k >= 0, which in C is,
435 * (wptr + 6 + x) % 8 = 0.
436 * The expression below, is a solution of x.
437 */
438 sdma_v5_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
439
440 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
441 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
442 /* base must be 32 byte aligned */
443 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
444 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
445 amdgpu_ring_write(ring, ib->length_dw);
446 amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
447 amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
448 }
449
450 /**
451 * sdma_v5_0_ring_emit_mem_sync - flush the IB by graphics cache rinse
452 *
453 * @ring: amdgpu ring pointer
454 *
455 * flush the IB by graphics cache rinse.
456 */
sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring * ring)457 static void sdma_v5_0_ring_emit_mem_sync(struct amdgpu_ring *ring)
458 {
459 uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV |
460 SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV |
461 SDMA_GCR_GLI_INV(1);
462
463 /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */
464 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ));
465 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0));
466 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) |
467 SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0));
468 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) |
469 SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16));
470 amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) |
471 SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0));
472 }
473
474 /**
475 * sdma_v5_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
476 *
477 * @ring: amdgpu ring pointer
478 *
479 * Emit an hdp flush packet on the requested DMA ring.
480 */
sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)481 static void sdma_v5_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
482 {
483 struct amdgpu_device *adev = ring->adev;
484 u32 ref_and_mask = 0;
485 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
486
487 if (ring->me == 0)
488 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
489 else
490 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
491
492 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
493 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
494 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
495 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2);
496 amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2);
497 amdgpu_ring_write(ring, ref_and_mask); /* reference */
498 amdgpu_ring_write(ring, ref_and_mask); /* mask */
499 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
500 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
501 }
502
503 /**
504 * sdma_v5_0_ring_emit_fence - emit a fence on the DMA ring
505 *
506 * @ring: amdgpu ring pointer
507 * @addr: address
508 * @seq: sequence number
509 * @flags: fence related flags
510 *
511 * Add a DMA fence packet to the ring to write
512 * the fence seq number and DMA trap packet to generate
513 * an interrupt if needed (NAVI10).
514 */
sdma_v5_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)515 static void sdma_v5_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
516 unsigned flags)
517 {
518 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
519 /* write the fence */
520 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
521 SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */
522 /* zero in first two bits */
523 BUG_ON(addr & 0x3);
524 amdgpu_ring_write(ring, lower_32_bits(addr));
525 amdgpu_ring_write(ring, upper_32_bits(addr));
526 amdgpu_ring_write(ring, lower_32_bits(seq));
527
528 /* optionally write high bits as well */
529 if (write64bit) {
530 addr += 4;
531 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) |
532 SDMA_PKT_FENCE_HEADER_MTYPE(0x3));
533 /* zero in first two bits */
534 BUG_ON(addr & 0x3);
535 amdgpu_ring_write(ring, lower_32_bits(addr));
536 amdgpu_ring_write(ring, upper_32_bits(addr));
537 amdgpu_ring_write(ring, upper_32_bits(seq));
538 }
539
540 if (flags & AMDGPU_FENCE_FLAG_INT) {
541 uint32_t ctx = ring->is_mes_queue ?
542 (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0;
543 /* generate an interrupt */
544 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
545 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx));
546 }
547 }
548
549
550 /**
551 * sdma_v5_0_gfx_stop - stop the gfx async dma engines
552 *
553 * @adev: amdgpu_device pointer
554 *
555 * Stop the gfx async dma ring buffers (NAVI10).
556 */
sdma_v5_0_gfx_stop(struct amdgpu_device * adev)557 static void sdma_v5_0_gfx_stop(struct amdgpu_device *adev)
558 {
559 u32 rb_cntl, ib_cntl;
560 int i;
561
562 amdgpu_sdma_unset_buffer_funcs_helper(adev);
563
564 for (i = 0; i < adev->sdma.num_instances; i++) {
565 rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
566 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
567 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
568 ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
569 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
570 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
571 }
572 }
573
574 /**
575 * sdma_v5_0_rlc_stop - stop the compute async dma engines
576 *
577 * @adev: amdgpu_device pointer
578 *
579 * Stop the compute async dma queues (NAVI10).
580 */
sdma_v5_0_rlc_stop(struct amdgpu_device * adev)581 static void sdma_v5_0_rlc_stop(struct amdgpu_device *adev)
582 {
583 /* XXX todo */
584 }
585
586 /**
587 * sdma_v5_0_ctx_switch_enable - stop the async dma engines context switch
588 *
589 * @adev: amdgpu_device pointer
590 * @enable: enable/disable the DMA MEs context switch.
591 *
592 * Halt or unhalt the async dma engines context switch (NAVI10).
593 */
sdma_v5_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)594 static void sdma_v5_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
595 {
596 u32 f32_cntl = 0, phase_quantum = 0;
597 int i;
598
599 if (amdgpu_sdma_phase_quantum) {
600 unsigned value = amdgpu_sdma_phase_quantum;
601 unsigned unit = 0;
602
603 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
604 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
605 value = (value + 1) >> 1;
606 unit++;
607 }
608 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
609 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
610 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
611 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
612 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
613 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
614 WARN_ONCE(1,
615 "clamping sdma_phase_quantum to %uK clock cycles\n",
616 value << unit);
617 }
618 phase_quantum =
619 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
620 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
621 }
622
623 for (i = 0; i < adev->sdma.num_instances; i++) {
624 if (!amdgpu_sriov_vf(adev)) {
625 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
626 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
627 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
628 }
629
630 if (enable && amdgpu_sdma_phase_quantum) {
631 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
632 phase_quantum);
633 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
634 phase_quantum);
635 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
636 phase_quantum);
637 }
638 if (!amdgpu_sriov_vf(adev))
639 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
640 }
641
642 }
643
644 /**
645 * sdma_v5_0_enable - stop the async dma engines
646 *
647 * @adev: amdgpu_device pointer
648 * @enable: enable/disable the DMA MEs.
649 *
650 * Halt or unhalt the async dma engines (NAVI10).
651 */
sdma_v5_0_enable(struct amdgpu_device * adev,bool enable)652 static void sdma_v5_0_enable(struct amdgpu_device *adev, bool enable)
653 {
654 u32 f32_cntl;
655 int i;
656
657 if (!enable) {
658 sdma_v5_0_gfx_stop(adev);
659 sdma_v5_0_rlc_stop(adev);
660 }
661
662 if (amdgpu_sriov_vf(adev))
663 return;
664
665 for (i = 0; i < adev->sdma.num_instances; i++) {
666 f32_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
667 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
668 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
669 }
670 }
671
672 /**
673 * sdma_v5_0_gfx_resume - setup and start the async dma engines
674 *
675 * @adev: amdgpu_device pointer
676 *
677 * Set up the gfx DMA ring buffers and enable them (NAVI10).
678 * Returns 0 for success, error for failure.
679 */
sdma_v5_0_gfx_resume(struct amdgpu_device * adev)680 static int sdma_v5_0_gfx_resume(struct amdgpu_device *adev)
681 {
682 struct amdgpu_ring *ring;
683 u32 rb_cntl, ib_cntl;
684 u32 rb_bufsz;
685 u32 doorbell;
686 u32 doorbell_offset;
687 u32 temp;
688 u32 wptr_poll_cntl;
689 u64 wptr_gpu_addr;
690 int i, r;
691
692 for (i = 0; i < adev->sdma.num_instances; i++) {
693 ring = &adev->sdma.instance[i].ring;
694
695 if (!amdgpu_sriov_vf(adev))
696 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
697
698 /* Set ring buffer size in dwords */
699 rb_bufsz = order_base_2(ring->ring_size / 4);
700 rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
701 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
702 #ifdef __BIG_ENDIAN
703 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
704 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
705 RPTR_WRITEBACK_SWAP_ENABLE, 1);
706 #endif
707 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
708
709 /* Initialize the ring buffer's read and write pointers */
710 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
711 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
712 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
713 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
714
715 /* setup the wptr shadow polling */
716 wptr_gpu_addr = ring->wptr_gpu_addr;
717 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
718 lower_32_bits(wptr_gpu_addr));
719 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
720 upper_32_bits(wptr_gpu_addr));
721 wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
722 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
723 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
724 SDMA0_GFX_RB_WPTR_POLL_CNTL,
725 F32_POLL_ENABLE, 1);
726 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL),
727 wptr_poll_cntl);
728
729 /* set the wb address whether it's enabled or not */
730 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
731 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
732 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
733 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
734
735 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
736
737 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE),
738 ring->gpu_addr >> 8);
739 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI),
740 ring->gpu_addr >> 40);
741
742 ring->wptr = 0;
743
744 /* before programing wptr to a less value, need set minor_ptr_update first */
745 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
746
747 if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
748 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR),
749 lower_32_bits(ring->wptr << 2));
750 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI),
751 upper_32_bits(ring->wptr << 2));
752 }
753
754 doorbell = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
755 doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i,
756 mmSDMA0_GFX_DOORBELL_OFFSET));
757
758 if (ring->use_doorbell) {
759 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
760 doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
761 OFFSET, ring->doorbell_index);
762 } else {
763 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
764 }
765 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
766 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET),
767 doorbell_offset);
768
769 adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
770 ring->doorbell_index, 20);
771
772 if (amdgpu_sriov_vf(adev))
773 sdma_v5_0_ring_set_wptr(ring);
774
775 /* set minor_ptr_update to 0 after wptr programed */
776 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
777
778 if (!amdgpu_sriov_vf(adev)) {
779 /* set utc l1 enable flag always to 1 */
780 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
781 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
782
783 /* enable MCBP */
784 temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1);
785 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
786
787 /* Set up RESP_MODE to non-copy addresses */
788 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL));
789 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3);
790 temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9);
791 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp);
792
793 /* program default cache read and write policy */
794 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE));
795 /* clean read policy and write policy bits */
796 temp &= 0xFF0FFF;
797 temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14));
798 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp);
799 }
800
801 if (!amdgpu_sriov_vf(adev)) {
802 /* unhalt engine */
803 temp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
804 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
805 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
806 }
807
808 /* enable DMA RB */
809 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
810 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
811
812 ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
813 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
814 #ifdef __BIG_ENDIAN
815 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
816 #endif
817 /* enable DMA IBs */
818 WREG32_SOC15_IP(GC, sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
819
820 if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
821 sdma_v5_0_ctx_switch_enable(adev, true);
822 sdma_v5_0_enable(adev, true);
823 }
824
825 r = amdgpu_ring_test_helper(ring);
826 if (r)
827 return r;
828
829 if (adev->mman.buffer_funcs_ring == ring)
830 amdgpu_ttm_set_buffer_funcs_status(adev, true);
831 }
832
833 return 0;
834 }
835
836 /**
837 * sdma_v5_0_rlc_resume - setup and start the async dma engines
838 *
839 * @adev: amdgpu_device pointer
840 *
841 * Set up the compute DMA queues and enable them (NAVI10).
842 * Returns 0 for success, error for failure.
843 */
sdma_v5_0_rlc_resume(struct amdgpu_device * adev)844 static int sdma_v5_0_rlc_resume(struct amdgpu_device *adev)
845 {
846 return 0;
847 }
848
849 /**
850 * sdma_v5_0_load_microcode - load the sDMA ME ucode
851 *
852 * @adev: amdgpu_device pointer
853 *
854 * Loads the sDMA0/1 ucode.
855 * Returns 0 for success, -EINVAL if the ucode is not available.
856 */
sdma_v5_0_load_microcode(struct amdgpu_device * adev)857 static int sdma_v5_0_load_microcode(struct amdgpu_device *adev)
858 {
859 const struct sdma_firmware_header_v1_0 *hdr;
860 const __le32 *fw_data;
861 u32 fw_size;
862 int i, j;
863
864 /* halt the MEs */
865 sdma_v5_0_enable(adev, false);
866
867 for (i = 0; i < adev->sdma.num_instances; i++) {
868 if (!adev->sdma.instance[i].fw)
869 return -EINVAL;
870
871 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
872 amdgpu_ucode_print_sdma_hdr(&hdr->header);
873 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
874
875 fw_data = (const __le32 *)
876 (adev->sdma.instance[i].fw->data +
877 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
878
879 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
880
881 for (j = 0; j < fw_size; j++) {
882 if (amdgpu_emu_mode == 1 && j % 500 == 0)
883 drm_msleep(1);
884 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
885 }
886
887 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
888 }
889
890 return 0;
891 }
892
893 /**
894 * sdma_v5_0_start - setup and start the async dma engines
895 *
896 * @adev: amdgpu_device pointer
897 *
898 * Set up the DMA engines and enable them (NAVI10).
899 * Returns 0 for success, error for failure.
900 */
sdma_v5_0_start(struct amdgpu_device * adev)901 static int sdma_v5_0_start(struct amdgpu_device *adev)
902 {
903 int r = 0;
904
905 if (amdgpu_sriov_vf(adev)) {
906 sdma_v5_0_ctx_switch_enable(adev, false);
907 sdma_v5_0_enable(adev, false);
908
909 /* set RB registers */
910 r = sdma_v5_0_gfx_resume(adev);
911 return r;
912 }
913
914 if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
915 r = sdma_v5_0_load_microcode(adev);
916 if (r)
917 return r;
918 }
919
920 /* unhalt the MEs */
921 sdma_v5_0_enable(adev, true);
922 /* enable sdma ring preemption */
923 sdma_v5_0_ctx_switch_enable(adev, true);
924
925 /* start the gfx rings and rlc compute queues */
926 r = sdma_v5_0_gfx_resume(adev);
927 if (r)
928 return r;
929 r = sdma_v5_0_rlc_resume(adev);
930
931 return r;
932 }
933
sdma_v5_0_mqd_init(struct amdgpu_device * adev,void * mqd,struct amdgpu_mqd_prop * prop)934 static int sdma_v5_0_mqd_init(struct amdgpu_device *adev, void *mqd,
935 struct amdgpu_mqd_prop *prop)
936 {
937 struct v10_sdma_mqd *m = mqd;
938 uint64_t wb_gpu_addr;
939
940 m->sdmax_rlcx_rb_cntl =
941 order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
942 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
943 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT |
944 1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT;
945
946 m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8);
947 m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8);
948
949 m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
950 mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
951
952 wb_gpu_addr = prop->wptr_gpu_addr;
953 m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr);
954 m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr);
955
956 wb_gpu_addr = prop->rptr_gpu_addr;
957 m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr);
958 m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr);
959
960 m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_0_get_reg_offset(adev, 0,
961 mmSDMA0_GFX_IB_CNTL));
962
963 m->sdmax_rlcx_doorbell_offset =
964 prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
965
966 m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1);
967
968 return 0;
969 }
970
sdma_v5_0_set_mqd_funcs(struct amdgpu_device * adev)971 static void sdma_v5_0_set_mqd_funcs(struct amdgpu_device *adev)
972 {
973 adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd);
974 adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_0_mqd_init;
975 }
976
977 /**
978 * sdma_v5_0_ring_test_ring - simple async dma engine test
979 *
980 * @ring: amdgpu_ring structure holding ring information
981 *
982 * Test the DMA engine by writing using it to write an
983 * value to memory. (NAVI10).
984 * Returns 0 for success, error for failure.
985 */
sdma_v5_0_ring_test_ring(struct amdgpu_ring * ring)986 static int sdma_v5_0_ring_test_ring(struct amdgpu_ring *ring)
987 {
988 struct amdgpu_device *adev = ring->adev;
989 unsigned i;
990 unsigned index;
991 int r;
992 u32 tmp;
993 u64 gpu_addr;
994 volatile uint32_t *cpu_ptr = NULL;
995
996 tmp = 0xCAFEDEAD;
997
998 if (ring->is_mes_queue) {
999 uint32_t offset = 0;
1000 offset = amdgpu_mes_ctx_get_offs(ring,
1001 AMDGPU_MES_CTX_PADDING_OFFS);
1002 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1003 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1004 *cpu_ptr = tmp;
1005 } else {
1006 r = amdgpu_device_wb_get(adev, &index);
1007 if (r) {
1008 dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
1009 return r;
1010 }
1011
1012 gpu_addr = adev->wb.gpu_addr + (index * 4);
1013 adev->wb.wb[index] = cpu_to_le32(tmp);
1014 }
1015
1016 r = amdgpu_ring_alloc(ring, 20);
1017 if (r) {
1018 DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
1019 amdgpu_device_wb_free(adev, index);
1020 return r;
1021 }
1022
1023 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1024 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1025 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1026 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1027 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1028 amdgpu_ring_write(ring, 0xDEADBEEF);
1029 amdgpu_ring_commit(ring);
1030
1031 for (i = 0; i < adev->usec_timeout; i++) {
1032 if (ring->is_mes_queue)
1033 tmp = le32_to_cpu(*cpu_ptr);
1034 else
1035 tmp = le32_to_cpu(adev->wb.wb[index]);
1036 if (tmp == 0xDEADBEEF)
1037 break;
1038 if (amdgpu_emu_mode == 1)
1039 drm_msleep(1);
1040 else
1041 udelay(1);
1042 }
1043
1044 if (i >= adev->usec_timeout)
1045 r = -ETIMEDOUT;
1046
1047 if (!ring->is_mes_queue)
1048 amdgpu_device_wb_free(adev, index);
1049
1050 return r;
1051 }
1052
1053 /**
1054 * sdma_v5_0_ring_test_ib - test an IB on the DMA engine
1055 *
1056 * @ring: amdgpu_ring structure holding ring information
1057 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1058 *
1059 * Test a simple IB in the DMA ring (NAVI10).
1060 * Returns 0 on success, error on failure.
1061 */
sdma_v5_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)1062 static int sdma_v5_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1063 {
1064 struct amdgpu_device *adev = ring->adev;
1065 struct amdgpu_ib ib;
1066 struct dma_fence *f = NULL;
1067 unsigned index;
1068 long r;
1069 u32 tmp = 0;
1070 u64 gpu_addr;
1071 volatile uint32_t *cpu_ptr = NULL;
1072
1073 tmp = 0xCAFEDEAD;
1074 memset(&ib, 0, sizeof(ib));
1075
1076 if (ring->is_mes_queue) {
1077 uint32_t offset = 0;
1078 offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
1079 ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1080 ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1081
1082 offset = amdgpu_mes_ctx_get_offs(ring,
1083 AMDGPU_MES_CTX_PADDING_OFFS);
1084 gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
1085 cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
1086 *cpu_ptr = tmp;
1087 } else {
1088 r = amdgpu_device_wb_get(adev, &index);
1089 if (r) {
1090 dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
1091 return r;
1092 }
1093
1094 gpu_addr = adev->wb.gpu_addr + (index * 4);
1095 adev->wb.wb[index] = cpu_to_le32(tmp);
1096
1097 r = amdgpu_ib_get(adev, NULL, 256,
1098 AMDGPU_IB_POOL_DIRECT, &ib);
1099 if (r) {
1100 DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
1101 goto err0;
1102 }
1103 }
1104
1105 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1106 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1107 ib.ptr[1] = lower_32_bits(gpu_addr);
1108 ib.ptr[2] = upper_32_bits(gpu_addr);
1109 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1110 ib.ptr[4] = 0xDEADBEEF;
1111 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1112 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1113 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1114 ib.length_dw = 8;
1115
1116 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1117 if (r)
1118 goto err1;
1119
1120 r = dma_fence_wait_timeout(f, false, timeout);
1121 if (r == 0) {
1122 DRM_ERROR("amdgpu: IB test timed out\n");
1123 r = -ETIMEDOUT;
1124 goto err1;
1125 } else if (r < 0) {
1126 DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
1127 goto err1;
1128 }
1129
1130 if (ring->is_mes_queue)
1131 tmp = le32_to_cpu(*cpu_ptr);
1132 else
1133 tmp = le32_to_cpu(adev->wb.wb[index]);
1134
1135 if (tmp == 0xDEADBEEF)
1136 r = 0;
1137 else
1138 r = -EINVAL;
1139
1140 err1:
1141 amdgpu_ib_free(adev, &ib, NULL);
1142 dma_fence_put(f);
1143 err0:
1144 if (!ring->is_mes_queue)
1145 amdgpu_device_wb_free(adev, index);
1146 return r;
1147 }
1148
1149
1150 /**
1151 * sdma_v5_0_vm_copy_pte - update PTEs by copying them from the GART
1152 *
1153 * @ib: indirect buffer to fill with commands
1154 * @pe: addr of the page entry
1155 * @src: src addr to copy from
1156 * @count: number of page entries to update
1157 *
1158 * Update PTEs by copying them from the GART using sDMA (NAVI10).
1159 */
sdma_v5_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)1160 static void sdma_v5_0_vm_copy_pte(struct amdgpu_ib *ib,
1161 uint64_t pe, uint64_t src,
1162 unsigned count)
1163 {
1164 unsigned bytes = count * 8;
1165
1166 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1167 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1168 ib->ptr[ib->length_dw++] = bytes - 1;
1169 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1170 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1171 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1172 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1173 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1174
1175 }
1176
1177 /**
1178 * sdma_v5_0_vm_write_pte - update PTEs by writing them manually
1179 *
1180 * @ib: indirect buffer to fill with commands
1181 * @pe: addr of the page entry
1182 * @value: dst addr to write into pe
1183 * @count: number of page entries to update
1184 * @incr: increase next addr by incr bytes
1185 *
1186 * Update PTEs by writing them manually using sDMA (NAVI10).
1187 */
sdma_v5_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)1188 static void sdma_v5_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1189 uint64_t value, unsigned count,
1190 uint32_t incr)
1191 {
1192 unsigned ndw = count * 2;
1193
1194 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1195 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1196 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1197 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1198 ib->ptr[ib->length_dw++] = ndw - 1;
1199 for (; ndw > 0; ndw -= 2) {
1200 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1201 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1202 value += incr;
1203 }
1204 }
1205
1206 /**
1207 * sdma_v5_0_vm_set_pte_pde - update the page tables using sDMA
1208 *
1209 * @ib: indirect buffer to fill with commands
1210 * @pe: addr of the page entry
1211 * @addr: dst addr to write into pe
1212 * @count: number of page entries to update
1213 * @incr: increase next addr by incr bytes
1214 * @flags: access flags
1215 *
1216 * Update the page tables using sDMA (NAVI10).
1217 */
sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1218 static void sdma_v5_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1219 uint64_t pe,
1220 uint64_t addr, unsigned count,
1221 uint32_t incr, uint64_t flags)
1222 {
1223 /* for physically contiguous pages (vram) */
1224 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1225 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1226 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1227 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1228 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1229 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1230 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1231 ib->ptr[ib->length_dw++] = incr; /* increment size */
1232 ib->ptr[ib->length_dw++] = 0;
1233 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1234 }
1235
1236 /**
1237 * sdma_v5_0_ring_pad_ib - pad the IB
1238 * @ring: amdgpu_ring structure holding ring information
1239 * @ib: indirect buffer to fill with padding
1240 *
1241 * Pad the IB with NOPs to a boundary multiple of 8.
1242 */
sdma_v5_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1243 static void sdma_v5_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1244 {
1245 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1246 u32 pad_count;
1247 int i;
1248
1249 pad_count = (-ib->length_dw) & 0x7;
1250 for (i = 0; i < pad_count; i++)
1251 if (sdma && sdma->burst_nop && (i == 0))
1252 ib->ptr[ib->length_dw++] =
1253 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1254 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1255 else
1256 ib->ptr[ib->length_dw++] =
1257 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1258 }
1259
1260
1261 /**
1262 * sdma_v5_0_ring_emit_pipeline_sync - sync the pipeline
1263 *
1264 * @ring: amdgpu_ring pointer
1265 *
1266 * Make sure all previous operations are completed (CIK).
1267 */
sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1268 static void sdma_v5_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1269 {
1270 uint32_t seq = ring->fence_drv.sync_seq;
1271 uint64_t addr = ring->fence_drv.gpu_addr;
1272
1273 /* wait for idle */
1274 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1275 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1276 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1277 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1278 amdgpu_ring_write(ring, addr & 0xfffffffc);
1279 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1280 amdgpu_ring_write(ring, seq); /* reference */
1281 amdgpu_ring_write(ring, 0xffffffff); /* mask */
1282 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1283 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1284 }
1285
1286
1287 /**
1288 * sdma_v5_0_ring_emit_vm_flush - vm flush using sDMA
1289 *
1290 * @ring: amdgpu_ring pointer
1291 * @vmid: vmid number to use
1292 * @pd_addr: address
1293 *
1294 * Update the page table base and flush the VM TLB
1295 * using sDMA (NAVI10).
1296 */
sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1297 static void sdma_v5_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1298 unsigned vmid, uint64_t pd_addr)
1299 {
1300 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1301 }
1302
sdma_v5_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1303 static void sdma_v5_0_ring_emit_wreg(struct amdgpu_ring *ring,
1304 uint32_t reg, uint32_t val)
1305 {
1306 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1307 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1308 amdgpu_ring_write(ring, reg);
1309 amdgpu_ring_write(ring, val);
1310 }
1311
sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring * ring,uint32_t reg,uint32_t val,uint32_t mask)1312 static void sdma_v5_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1313 uint32_t val, uint32_t mask)
1314 {
1315 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1316 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1317 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
1318 amdgpu_ring_write(ring, reg << 2);
1319 amdgpu_ring_write(ring, 0);
1320 amdgpu_ring_write(ring, val); /* reference */
1321 amdgpu_ring_write(ring, mask); /* mask */
1322 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1323 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1324 }
1325
sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring * ring,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask)1326 static void sdma_v5_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
1327 uint32_t reg0, uint32_t reg1,
1328 uint32_t ref, uint32_t mask)
1329 {
1330 amdgpu_ring_emit_wreg(ring, reg0, ref);
1331 /* wait for a cycle to reset vm_inv_eng*_ack */
1332 amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0);
1333 amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask);
1334 }
1335
sdma_v5_0_early_init(void * handle)1336 static int sdma_v5_0_early_init(void *handle)
1337 {
1338 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1339
1340 sdma_v5_0_set_ring_funcs(adev);
1341 sdma_v5_0_set_buffer_funcs(adev);
1342 sdma_v5_0_set_vm_pte_funcs(adev);
1343 sdma_v5_0_set_irq_funcs(adev);
1344 sdma_v5_0_set_mqd_funcs(adev);
1345
1346 return 0;
1347 }
1348
1349
sdma_v5_0_sw_init(void * handle)1350 static int sdma_v5_0_sw_init(void *handle)
1351 {
1352 struct amdgpu_ring *ring;
1353 int r, i;
1354 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1355
1356 /* SDMA trap event */
1357 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0,
1358 SDMA0_5_0__SRCID__SDMA_TRAP,
1359 &adev->sdma.trap_irq);
1360 if (r)
1361 return r;
1362
1363 /* SDMA trap event */
1364 r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1,
1365 SDMA1_5_0__SRCID__SDMA_TRAP,
1366 &adev->sdma.trap_irq);
1367 if (r)
1368 return r;
1369
1370 r = sdma_v5_0_init_microcode(adev);
1371 if (r) {
1372 DRM_ERROR("Failed to load sdma firmware!\n");
1373 return r;
1374 }
1375
1376 for (i = 0; i < adev->sdma.num_instances; i++) {
1377 ring = &adev->sdma.instance[i].ring;
1378 ring->ring_obj = NULL;
1379 ring->use_doorbell = true;
1380
1381 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1382 ring->use_doorbell?"true":"false");
1383
1384 ring->doorbell_index = (i == 0) ?
1385 (adev->doorbell_index.sdma_engine[0] << 1) //get DWORD offset
1386 : (adev->doorbell_index.sdma_engine[1] << 1); // get DWORD offset
1387
1388 ring->vm_hub = AMDGPU_GFXHUB(0);
1389 snprintf(ring->name, sizeof(ring->name), "sdma%d", i);
1390 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1391 (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1392 AMDGPU_SDMA_IRQ_INSTANCE1,
1393 AMDGPU_RING_PRIO_DEFAULT, NULL);
1394 if (r)
1395 return r;
1396 }
1397
1398 return r;
1399 }
1400
sdma_v5_0_sw_fini(void * handle)1401 static int sdma_v5_0_sw_fini(void *handle)
1402 {
1403 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1404 int i;
1405
1406 for (i = 0; i < adev->sdma.num_instances; i++)
1407 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1408
1409 amdgpu_sdma_destroy_inst_ctx(adev, false);
1410
1411 return 0;
1412 }
1413
sdma_v5_0_hw_init(void * handle)1414 static int sdma_v5_0_hw_init(void *handle)
1415 {
1416 int r;
1417 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1418
1419 sdma_v5_0_init_golden_registers(adev);
1420
1421 r = sdma_v5_0_start(adev);
1422
1423 return r;
1424 }
1425
sdma_v5_0_hw_fini(void * handle)1426 static int sdma_v5_0_hw_fini(void *handle)
1427 {
1428 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1429
1430 if (amdgpu_sriov_vf(adev)) {
1431 /* disable the scheduler for SDMA */
1432 amdgpu_sdma_unset_buffer_funcs_helper(adev);
1433 return 0;
1434 }
1435
1436 sdma_v5_0_ctx_switch_enable(adev, false);
1437 sdma_v5_0_enable(adev, false);
1438
1439 return 0;
1440 }
1441
sdma_v5_0_suspend(void * handle)1442 static int sdma_v5_0_suspend(void *handle)
1443 {
1444 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1445
1446 return sdma_v5_0_hw_fini(adev);
1447 }
1448
sdma_v5_0_resume(void * handle)1449 static int sdma_v5_0_resume(void *handle)
1450 {
1451 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1452
1453 return sdma_v5_0_hw_init(adev);
1454 }
1455
sdma_v5_0_is_idle(void * handle)1456 static bool sdma_v5_0_is_idle(void *handle)
1457 {
1458 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1459 u32 i;
1460
1461 for (i = 0; i < adev->sdma.num_instances; i++) {
1462 u32 tmp = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1463
1464 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1465 return false;
1466 }
1467
1468 return true;
1469 }
1470
sdma_v5_0_wait_for_idle(void * handle)1471 static int sdma_v5_0_wait_for_idle(void *handle)
1472 {
1473 unsigned i;
1474 u32 sdma0, sdma1;
1475 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1476
1477 for (i = 0; i < adev->usec_timeout; i++) {
1478 sdma0 = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
1479 sdma1 = RREG32(sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1480
1481 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1482 return 0;
1483 udelay(1);
1484 }
1485 return -ETIMEDOUT;
1486 }
1487
sdma_v5_0_soft_reset(void * handle)1488 static int sdma_v5_0_soft_reset(void *handle)
1489 {
1490 /* todo */
1491
1492 return 0;
1493 }
1494
sdma_v5_0_ring_preempt_ib(struct amdgpu_ring * ring)1495 static int sdma_v5_0_ring_preempt_ib(struct amdgpu_ring *ring)
1496 {
1497 int i, r = 0;
1498 struct amdgpu_device *adev = ring->adev;
1499 u32 index = 0;
1500 u64 sdma_gfx_preempt;
1501
1502 amdgpu_sdma_get_index_from_ring(ring, &index);
1503 if (index == 0)
1504 sdma_gfx_preempt = mmSDMA0_GFX_PREEMPT;
1505 else
1506 sdma_gfx_preempt = mmSDMA1_GFX_PREEMPT;
1507
1508 /* assert preemption condition */
1509 amdgpu_ring_set_preempt_cond_exec(ring, false);
1510
1511 /* emit the trailing fence */
1512 ring->trail_seq += 1;
1513 amdgpu_ring_alloc(ring, 10);
1514 sdma_v5_0_ring_emit_fence(ring, ring->trail_fence_gpu_addr,
1515 ring->trail_seq, 0);
1516 amdgpu_ring_commit(ring);
1517
1518 /* assert IB preemption */
1519 WREG32(sdma_gfx_preempt, 1);
1520
1521 /* poll the trailing fence */
1522 for (i = 0; i < adev->usec_timeout; i++) {
1523 if (ring->trail_seq ==
1524 le32_to_cpu(*(ring->trail_fence_cpu_addr)))
1525 break;
1526 udelay(1);
1527 }
1528
1529 if (i >= adev->usec_timeout) {
1530 r = -EINVAL;
1531 DRM_ERROR("ring %d failed to be preempted\n", ring->idx);
1532 }
1533
1534 /* deassert IB preemption */
1535 WREG32(sdma_gfx_preempt, 0);
1536
1537 /* deassert the preemption condition */
1538 amdgpu_ring_set_preempt_cond_exec(ring, true);
1539 return r;
1540 }
1541
sdma_v5_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1542 static int sdma_v5_0_set_trap_irq_state(struct amdgpu_device *adev,
1543 struct amdgpu_irq_src *source,
1544 unsigned type,
1545 enum amdgpu_interrupt_state state)
1546 {
1547 u32 sdma_cntl;
1548
1549 if (!amdgpu_sriov_vf(adev)) {
1550 u32 reg_offset = (type == AMDGPU_SDMA_IRQ_INSTANCE0) ?
1551 sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
1552 sdma_v5_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1553
1554 sdma_cntl = RREG32(reg_offset);
1555 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1556 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1557 WREG32(reg_offset, sdma_cntl);
1558 }
1559
1560 return 0;
1561 }
1562
sdma_v5_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1563 static int sdma_v5_0_process_trap_irq(struct amdgpu_device *adev,
1564 struct amdgpu_irq_src *source,
1565 struct amdgpu_iv_entry *entry)
1566 {
1567 uint32_t mes_queue_id = entry->src_data[0];
1568
1569 DRM_DEBUG("IH: SDMA trap\n");
1570
1571 if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
1572 struct amdgpu_mes_queue *queue;
1573
1574 mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
1575
1576 spin_lock(&adev->mes.queue_id_lock);
1577 queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
1578 if (queue) {
1579 DRM_DEBUG("process smda queue id = %d\n", mes_queue_id);
1580 amdgpu_fence_process(queue->ring);
1581 }
1582 spin_unlock(&adev->mes.queue_id_lock);
1583 return 0;
1584 }
1585
1586 switch (entry->client_id) {
1587 case SOC15_IH_CLIENTID_SDMA0:
1588 switch (entry->ring_id) {
1589 case 0:
1590 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1591 break;
1592 case 1:
1593 /* XXX compute */
1594 break;
1595 case 2:
1596 /* XXX compute */
1597 break;
1598 case 3:
1599 /* XXX page queue*/
1600 break;
1601 }
1602 break;
1603 case SOC15_IH_CLIENTID_SDMA1:
1604 switch (entry->ring_id) {
1605 case 0:
1606 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1607 break;
1608 case 1:
1609 /* XXX compute */
1610 break;
1611 case 2:
1612 /* XXX compute */
1613 break;
1614 case 3:
1615 /* XXX page queue*/
1616 break;
1617 }
1618 break;
1619 }
1620 return 0;
1621 }
1622
sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1623 static int sdma_v5_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1624 struct amdgpu_irq_src *source,
1625 struct amdgpu_iv_entry *entry)
1626 {
1627 return 0;
1628 }
1629
sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)1630 static void sdma_v5_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
1631 bool enable)
1632 {
1633 uint32_t data, def;
1634 int i;
1635
1636 for (i = 0; i < adev->sdma.num_instances; i++) {
1637 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1638 /* Enable sdma clock gating */
1639 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1640 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1641 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1642 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1643 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1644 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1645 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1646 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1647 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1648 if (def != data)
1649 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1650 } else {
1651 /* Disable sdma clock gating */
1652 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL));
1653 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1654 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1655 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1656 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1657 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1658 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1659 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1660 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1661 if (def != data)
1662 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data);
1663 }
1664 }
1665 }
1666
sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)1667 static void sdma_v5_0_update_medium_grain_light_sleep(struct amdgpu_device *adev,
1668 bool enable)
1669 {
1670 uint32_t data, def;
1671 int i;
1672
1673 for (i = 0; i < adev->sdma.num_instances; i++) {
1674 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1675 /* Enable sdma mem light sleep */
1676 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1677 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1678 if (def != data)
1679 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1680
1681 } else {
1682 /* Disable sdma mem light sleep */
1683 def = data = RREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL));
1684 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1685 if (def != data)
1686 WREG32(sdma_v5_0_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data);
1687
1688 }
1689 }
1690 }
1691
sdma_v5_0_set_clockgating_state(void * handle,enum amd_clockgating_state state)1692 static int sdma_v5_0_set_clockgating_state(void *handle,
1693 enum amd_clockgating_state state)
1694 {
1695 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1696
1697 if (amdgpu_sriov_vf(adev))
1698 return 0;
1699
1700 switch (adev->ip_versions[SDMA0_HWIP][0]) {
1701 case IP_VERSION(5, 0, 0):
1702 case IP_VERSION(5, 0, 2):
1703 case IP_VERSION(5, 0, 5):
1704 sdma_v5_0_update_medium_grain_clock_gating(adev,
1705 state == AMD_CG_STATE_GATE);
1706 sdma_v5_0_update_medium_grain_light_sleep(adev,
1707 state == AMD_CG_STATE_GATE);
1708 break;
1709 default:
1710 break;
1711 }
1712
1713 return 0;
1714 }
1715
sdma_v5_0_set_powergating_state(void * handle,enum amd_powergating_state state)1716 static int sdma_v5_0_set_powergating_state(void *handle,
1717 enum amd_powergating_state state)
1718 {
1719 return 0;
1720 }
1721
sdma_v5_0_get_clockgating_state(void * handle,u64 * flags)1722 static void sdma_v5_0_get_clockgating_state(void *handle, u64 *flags)
1723 {
1724 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1725 int data;
1726
1727 if (amdgpu_sriov_vf(adev))
1728 *flags = 0;
1729
1730 /* AMD_CG_SUPPORT_SDMA_MGCG */
1731 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL));
1732 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1733 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1734
1735 /* AMD_CG_SUPPORT_SDMA_LS */
1736 data = RREG32(sdma_v5_0_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL));
1737 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1738 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1739 }
1740
1741 const struct amd_ip_funcs sdma_v5_0_ip_funcs = {
1742 .name = "sdma_v5_0",
1743 .early_init = sdma_v5_0_early_init,
1744 .late_init = NULL,
1745 .sw_init = sdma_v5_0_sw_init,
1746 .sw_fini = sdma_v5_0_sw_fini,
1747 .hw_init = sdma_v5_0_hw_init,
1748 .hw_fini = sdma_v5_0_hw_fini,
1749 .suspend = sdma_v5_0_suspend,
1750 .resume = sdma_v5_0_resume,
1751 .is_idle = sdma_v5_0_is_idle,
1752 .wait_for_idle = sdma_v5_0_wait_for_idle,
1753 .soft_reset = sdma_v5_0_soft_reset,
1754 .set_clockgating_state = sdma_v5_0_set_clockgating_state,
1755 .set_powergating_state = sdma_v5_0_set_powergating_state,
1756 .get_clockgating_state = sdma_v5_0_get_clockgating_state,
1757 };
1758
1759 static const struct amdgpu_ring_funcs sdma_v5_0_ring_funcs = {
1760 .type = AMDGPU_RING_TYPE_SDMA,
1761 .align_mask = 0xf,
1762 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1763 .support_64bit_ptrs = true,
1764 .secure_submission_supported = true,
1765 .get_rptr = sdma_v5_0_ring_get_rptr,
1766 .get_wptr = sdma_v5_0_ring_get_wptr,
1767 .set_wptr = sdma_v5_0_ring_set_wptr,
1768 .emit_frame_size =
1769 5 + /* sdma_v5_0_ring_init_cond_exec */
1770 6 + /* sdma_v5_0_ring_emit_hdp_flush */
1771 3 + /* hdp_invalidate */
1772 6 + /* sdma_v5_0_ring_emit_pipeline_sync */
1773 /* sdma_v5_0_ring_emit_vm_flush */
1774 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1775 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 * 2 +
1776 10 + 10 + 10, /* sdma_v5_0_ring_emit_fence x3 for user fence, vm fence */
1777 .emit_ib_size = 5 + 7 + 6, /* sdma_v5_0_ring_emit_ib */
1778 .emit_ib = sdma_v5_0_ring_emit_ib,
1779 .emit_mem_sync = sdma_v5_0_ring_emit_mem_sync,
1780 .emit_fence = sdma_v5_0_ring_emit_fence,
1781 .emit_pipeline_sync = sdma_v5_0_ring_emit_pipeline_sync,
1782 .emit_vm_flush = sdma_v5_0_ring_emit_vm_flush,
1783 .emit_hdp_flush = sdma_v5_0_ring_emit_hdp_flush,
1784 .test_ring = sdma_v5_0_ring_test_ring,
1785 .test_ib = sdma_v5_0_ring_test_ib,
1786 .insert_nop = sdma_v5_0_ring_insert_nop,
1787 .pad_ib = sdma_v5_0_ring_pad_ib,
1788 .emit_wreg = sdma_v5_0_ring_emit_wreg,
1789 .emit_reg_wait = sdma_v5_0_ring_emit_reg_wait,
1790 .emit_reg_write_reg_wait = sdma_v5_0_ring_emit_reg_write_reg_wait,
1791 .init_cond_exec = sdma_v5_0_ring_init_cond_exec,
1792 .patch_cond_exec = sdma_v5_0_ring_patch_cond_exec,
1793 .preempt_ib = sdma_v5_0_ring_preempt_ib,
1794 };
1795
sdma_v5_0_set_ring_funcs(struct amdgpu_device * adev)1796 static void sdma_v5_0_set_ring_funcs(struct amdgpu_device *adev)
1797 {
1798 int i;
1799
1800 for (i = 0; i < adev->sdma.num_instances; i++) {
1801 adev->sdma.instance[i].ring.funcs = &sdma_v5_0_ring_funcs;
1802 adev->sdma.instance[i].ring.me = i;
1803 }
1804 }
1805
1806 static const struct amdgpu_irq_src_funcs sdma_v5_0_trap_irq_funcs = {
1807 .set = sdma_v5_0_set_trap_irq_state,
1808 .process = sdma_v5_0_process_trap_irq,
1809 };
1810
1811 static const struct amdgpu_irq_src_funcs sdma_v5_0_illegal_inst_irq_funcs = {
1812 .process = sdma_v5_0_process_illegal_inst_irq,
1813 };
1814
sdma_v5_0_set_irq_funcs(struct amdgpu_device * adev)1815 static void sdma_v5_0_set_irq_funcs(struct amdgpu_device *adev)
1816 {
1817 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 +
1818 adev->sdma.num_instances;
1819 adev->sdma.trap_irq.funcs = &sdma_v5_0_trap_irq_funcs;
1820 adev->sdma.illegal_inst_irq.funcs = &sdma_v5_0_illegal_inst_irq_funcs;
1821 }
1822
1823 /**
1824 * sdma_v5_0_emit_copy_buffer - copy buffer using the sDMA engine
1825 *
1826 * @ib: indirect buffer to copy to
1827 * @src_offset: src GPU address
1828 * @dst_offset: dst GPU address
1829 * @byte_count: number of bytes to xfer
1830 * @tmz: if a secure copy should be used
1831 *
1832 * Copy GPU buffers using the DMA engine (NAVI10).
1833 * Used by the amdgpu ttm implementation to move pages if
1834 * registered as the asic copy callback.
1835 */
sdma_v5_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,bool tmz)1836 static void sdma_v5_0_emit_copy_buffer(struct amdgpu_ib *ib,
1837 uint64_t src_offset,
1838 uint64_t dst_offset,
1839 uint32_t byte_count,
1840 bool tmz)
1841 {
1842 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1843 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1844 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1845 ib->ptr[ib->length_dw++] = byte_count - 1;
1846 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1847 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1848 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1849 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1850 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1851 }
1852
1853 /**
1854 * sdma_v5_0_emit_fill_buffer - fill buffer using the sDMA engine
1855 *
1856 * @ib: indirect buffer to fill
1857 * @src_data: value to write to buffer
1858 * @dst_offset: dst GPU address
1859 * @byte_count: number of bytes to xfer
1860 *
1861 * Fill GPU buffers using the DMA engine (NAVI10).
1862 */
sdma_v5_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)1863 static void sdma_v5_0_emit_fill_buffer(struct amdgpu_ib *ib,
1864 uint32_t src_data,
1865 uint64_t dst_offset,
1866 uint32_t byte_count)
1867 {
1868 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1869 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1870 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1871 ib->ptr[ib->length_dw++] = src_data;
1872 ib->ptr[ib->length_dw++] = byte_count - 1;
1873 }
1874
1875 static const struct amdgpu_buffer_funcs sdma_v5_0_buffer_funcs = {
1876 .copy_max_bytes = 0x400000,
1877 .copy_num_dw = 7,
1878 .emit_copy_buffer = sdma_v5_0_emit_copy_buffer,
1879
1880 .fill_max_bytes = 0x400000,
1881 .fill_num_dw = 5,
1882 .emit_fill_buffer = sdma_v5_0_emit_fill_buffer,
1883 };
1884
sdma_v5_0_set_buffer_funcs(struct amdgpu_device * adev)1885 static void sdma_v5_0_set_buffer_funcs(struct amdgpu_device *adev)
1886 {
1887 if (adev->mman.buffer_funcs == NULL) {
1888 adev->mman.buffer_funcs = &sdma_v5_0_buffer_funcs;
1889 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1890 }
1891 }
1892
1893 static const struct amdgpu_vm_pte_funcs sdma_v5_0_vm_pte_funcs = {
1894 .copy_pte_num_dw = 7,
1895 .copy_pte = sdma_v5_0_vm_copy_pte,
1896 .write_pte = sdma_v5_0_vm_write_pte,
1897 .set_pte_pde = sdma_v5_0_vm_set_pte_pde,
1898 };
1899
sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device * adev)1900 static void sdma_v5_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1901 {
1902 unsigned i;
1903
1904 if (adev->vm_manager.vm_pte_funcs == NULL) {
1905 adev->vm_manager.vm_pte_funcs = &sdma_v5_0_vm_pte_funcs;
1906 for (i = 0; i < adev->sdma.num_instances; i++) {
1907 adev->vm_manager.vm_pte_scheds[i] =
1908 &adev->sdma.instance[i].ring.sched;
1909 }
1910 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1911 }
1912 }
1913
1914 const struct amdgpu_ip_block_version sdma_v5_0_ip_block = {
1915 .type = AMD_IP_BLOCK_TYPE_SDMA,
1916 .major = 5,
1917 .minor = 0,
1918 .rev = 0,
1919 .funcs = &sdma_v5_0_ip_funcs,
1920 };
1921