1 /*
2 * CPU thread main loop - common bits for user and system mode emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/lockable.h"
26 #include "trace/trace-root.h"
27
28 QemuMutex qemu_cpu_list_lock;
29 static QemuCond exclusive_cond;
30 static QemuCond exclusive_resume;
31 static QemuCond qemu_work_cond;
32
33 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
34 * under qemu_cpu_list_lock, read with atomic operations.
35 */
36 static int pending_cpus;
37
qemu_init_cpu_list(void)38 void qemu_init_cpu_list(void)
39 {
40 /* This is needed because qemu_init_cpu_list is also called by the
41 * child process in a fork. */
42 pending_cpus = 0;
43
44 qemu_mutex_init(&qemu_cpu_list_lock);
45 qemu_cond_init(&exclusive_cond);
46 qemu_cond_init(&exclusive_resume);
47 qemu_cond_init(&qemu_work_cond);
48 }
49
cpu_list_lock(void)50 void cpu_list_lock(void)
51 {
52 qemu_mutex_lock(&qemu_cpu_list_lock);
53 }
54
cpu_list_unlock(void)55 void cpu_list_unlock(void)
56 {
57 qemu_mutex_unlock(&qemu_cpu_list_lock);
58 }
59
60
cpu_get_free_index(void)61 int cpu_get_free_index(void)
62 {
63 CPUState *some_cpu;
64 int max_cpu_index = 0;
65
66 CPU_FOREACH(some_cpu) {
67 if (some_cpu->cpu_index >= max_cpu_index) {
68 max_cpu_index = some_cpu->cpu_index + 1;
69 }
70 }
71 return max_cpu_index;
72 }
73
74 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
75 static unsigned int cpu_list_generation_id;
76
cpu_list_generation_id_get(void)77 unsigned int cpu_list_generation_id_get(void)
78 {
79 return cpu_list_generation_id;
80 }
81
cpu_list_add(CPUState * cpu)82 void cpu_list_add(CPUState *cpu)
83 {
84 static bool cpu_index_auto_assigned;
85
86 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
87 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
88 cpu_index_auto_assigned = true;
89 cpu->cpu_index = cpu_get_free_index();
90 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
91 } else {
92 assert(!cpu_index_auto_assigned);
93 }
94 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
95 cpu_list_generation_id++;
96 }
97
cpu_list_remove(CPUState * cpu)98 void cpu_list_remove(CPUState *cpu)
99 {
100 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
101 if (!QTAILQ_IN_USE(cpu, node)) {
102 /* there is nothing to undo since cpu_exec_init() hasn't been called */
103 return;
104 }
105
106 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
107 cpu->cpu_index = UNASSIGNED_CPU_INDEX;
108 cpu_list_generation_id++;
109 }
110
qemu_get_cpu(int index)111 CPUState *qemu_get_cpu(int index)
112 {
113 CPUState *cpu;
114
115 CPU_FOREACH(cpu) {
116 if (cpu->cpu_index == index) {
117 return cpu;
118 }
119 }
120
121 return NULL;
122 }
123
124 /* current CPU in the current thread. It is only valid inside cpu_exec() */
125 __thread CPUState *current_cpu;
126
127 struct qemu_work_item {
128 QSIMPLEQ_ENTRY(qemu_work_item) node;
129 run_on_cpu_func func;
130 run_on_cpu_data data;
131 bool free, exclusive, done;
132 };
133
queue_work_on_cpu(CPUState * cpu,struct qemu_work_item * wi)134 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
135 {
136 qemu_mutex_lock(&cpu->work_mutex);
137 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
138 wi->done = false;
139 qemu_mutex_unlock(&cpu->work_mutex);
140
141 qemu_cpu_kick(cpu);
142 }
143
do_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data,QemuMutex * mutex)144 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
145 QemuMutex *mutex)
146 {
147 struct qemu_work_item wi;
148
149 if (qemu_cpu_is_self(cpu)) {
150 func(cpu, data);
151 return;
152 }
153
154 wi.func = func;
155 wi.data = data;
156 wi.done = false;
157 wi.free = false;
158 wi.exclusive = false;
159
160 queue_work_on_cpu(cpu, &wi);
161 while (!qatomic_load_acquire(&wi.done)) {
162 CPUState *self_cpu = current_cpu;
163
164 qemu_cond_wait(&qemu_work_cond, mutex);
165 current_cpu = self_cpu;
166 }
167 }
168
async_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)169 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
170 {
171 struct qemu_work_item *wi;
172
173 wi = g_new0(struct qemu_work_item, 1);
174 wi->func = func;
175 wi->data = data;
176 wi->free = true;
177
178 queue_work_on_cpu(cpu, wi);
179 }
180
181 /* Wait for pending exclusive operations to complete. The CPU list lock
182 must be held. */
exclusive_idle(void)183 static inline void exclusive_idle(void)
184 {
185 while (pending_cpus) {
186 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
187 }
188 }
189
190 /* Start an exclusive operation.
191 Must only be called from outside cpu_exec. */
start_exclusive(void)192 void start_exclusive(void)
193 {
194 CPUState *other_cpu;
195 int running_cpus;
196
197 if (current_cpu->exclusive_context_count) {
198 current_cpu->exclusive_context_count++;
199 return;
200 }
201
202 qemu_mutex_lock(&qemu_cpu_list_lock);
203 exclusive_idle();
204
205 /* Make all other cpus stop executing. */
206 qatomic_set(&pending_cpus, 1);
207
208 /* Write pending_cpus before reading other_cpu->running. */
209 smp_mb();
210 running_cpus = 0;
211 CPU_FOREACH(other_cpu) {
212 if (qatomic_read(&other_cpu->running)) {
213 other_cpu->has_waiter = true;
214 running_cpus++;
215 qemu_cpu_kick(other_cpu);
216 }
217 }
218
219 qatomic_set(&pending_cpus, running_cpus + 1);
220 while (pending_cpus > 1) {
221 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
222 }
223
224 /* Can release mutex, no one will enter another exclusive
225 * section until end_exclusive resets pending_cpus to 0.
226 */
227 qemu_mutex_unlock(&qemu_cpu_list_lock);
228
229 current_cpu->exclusive_context_count = 1;
230 }
231
232 /* Finish an exclusive operation. */
end_exclusive(void)233 void end_exclusive(void)
234 {
235 current_cpu->exclusive_context_count--;
236 if (current_cpu->exclusive_context_count) {
237 return;
238 }
239
240 qemu_mutex_lock(&qemu_cpu_list_lock);
241 qatomic_set(&pending_cpus, 0);
242 qemu_cond_broadcast(&exclusive_resume);
243 qemu_mutex_unlock(&qemu_cpu_list_lock);
244 }
245
246 /* Wait for exclusive ops to finish, and begin cpu execution. */
cpu_exec_start(CPUState * cpu)247 void cpu_exec_start(CPUState *cpu)
248 {
249 qatomic_set(&cpu->running, true);
250
251 /* Write cpu->running before reading pending_cpus. */
252 smp_mb();
253
254 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
255 * After taking the lock we'll see cpu->has_waiter == true and run---not
256 * for long because start_exclusive kicked us. cpu_exec_end will
257 * decrement pending_cpus and signal the waiter.
258 *
259 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
260 * This includes the case when an exclusive item is running now.
261 * Then we'll see cpu->has_waiter == false and wait for the item to
262 * complete.
263 *
264 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
265 * see cpu->running == true, and it will kick the CPU.
266 */
267 if (unlikely(qatomic_read(&pending_cpus))) {
268 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
269 if (!cpu->has_waiter) {
270 /* Not counted in pending_cpus, let the exclusive item
271 * run. Since we have the lock, just set cpu->running to true
272 * while holding it; no need to check pending_cpus again.
273 */
274 qatomic_set(&cpu->running, false);
275 exclusive_idle();
276 /* Now pending_cpus is zero. */
277 qatomic_set(&cpu->running, true);
278 } else {
279 /* Counted in pending_cpus, go ahead and release the
280 * waiter at cpu_exec_end.
281 */
282 }
283 }
284 }
285
286 /* Mark cpu as not executing, and release pending exclusive ops. */
cpu_exec_end(CPUState * cpu)287 void cpu_exec_end(CPUState *cpu)
288 {
289 qatomic_set(&cpu->running, false);
290
291 /* Write cpu->running before reading pending_cpus. */
292 smp_mb();
293
294 /* 1. start_exclusive saw cpu->running == true. Then it will increment
295 * pending_cpus and wait for exclusive_cond. After taking the lock
296 * we'll see cpu->has_waiter == true.
297 *
298 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
299 * This includes the case when an exclusive item started after setting
300 * cpu->running to false and before we read pending_cpus. Then we'll see
301 * cpu->has_waiter == false and not touch pending_cpus. The next call to
302 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
303 * for the item to complete.
304 *
305 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
306 * see cpu->running == false, and it can ignore this CPU until the
307 * next cpu_exec_start.
308 */
309 if (unlikely(qatomic_read(&pending_cpus))) {
310 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
311 if (cpu->has_waiter) {
312 cpu->has_waiter = false;
313 qatomic_set(&pending_cpus, pending_cpus - 1);
314 if (pending_cpus == 1) {
315 qemu_cond_signal(&exclusive_cond);
316 }
317 }
318 }
319 }
320
async_safe_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)321 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
322 run_on_cpu_data data)
323 {
324 struct qemu_work_item *wi;
325
326 wi = g_new0(struct qemu_work_item, 1);
327 wi->func = func;
328 wi->data = data;
329 wi->free = true;
330 wi->exclusive = true;
331
332 queue_work_on_cpu(cpu, wi);
333 }
334
free_queued_cpu_work(CPUState * cpu)335 void free_queued_cpu_work(CPUState *cpu)
336 {
337 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
338 struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list);
339 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
340 if (wi->free) {
341 g_free(wi);
342 }
343 }
344 }
345
process_queued_cpu_work(CPUState * cpu)346 void process_queued_cpu_work(CPUState *cpu)
347 {
348 struct qemu_work_item *wi;
349
350 qemu_mutex_lock(&cpu->work_mutex);
351 if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
352 qemu_mutex_unlock(&cpu->work_mutex);
353 return;
354 }
355 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
356 wi = QSIMPLEQ_FIRST(&cpu->work_list);
357 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
358 qemu_mutex_unlock(&cpu->work_mutex);
359 if (wi->exclusive) {
360 /* Running work items outside the BQL avoids the following deadlock:
361 * 1) start_exclusive() is called with the BQL taken while another
362 * CPU is running; 2) cpu_exec in the other CPU tries to takes the
363 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
364 * neither CPU can proceed.
365 */
366 bql_unlock();
367 start_exclusive();
368 wi->func(cpu, wi->data);
369 end_exclusive();
370 bql_lock();
371 } else {
372 wi->func(cpu, wi->data);
373 }
374 qemu_mutex_lock(&cpu->work_mutex);
375 if (wi->free) {
376 g_free(wi);
377 } else {
378 qatomic_store_release(&wi->done, true);
379 }
380 }
381 qemu_mutex_unlock(&cpu->work_mutex);
382 qemu_cond_broadcast(&qemu_work_cond);
383 }
384
385 /* Add a breakpoint. */
cpu_breakpoint_insert(CPUState * cpu,vaddr pc,int flags,CPUBreakpoint ** breakpoint)386 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
387 CPUBreakpoint **breakpoint)
388 {
389 CPUClass *cc = CPU_GET_CLASS(cpu);
390 CPUBreakpoint *bp;
391
392 if (cc->gdb_adjust_breakpoint) {
393 pc = cc->gdb_adjust_breakpoint(cpu, pc);
394 }
395
396 bp = g_malloc(sizeof(*bp));
397
398 bp->pc = pc;
399 bp->flags = flags;
400
401 /* keep all GDB-injected breakpoints in front */
402 if (flags & BP_GDB) {
403 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
404 } else {
405 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
406 }
407
408 if (breakpoint) {
409 *breakpoint = bp;
410 }
411
412 trace_breakpoint_insert(cpu->cpu_index, pc, flags);
413 return 0;
414 }
415
416 /* Remove a specific breakpoint. */
cpu_breakpoint_remove(CPUState * cpu,vaddr pc,int flags)417 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
418 {
419 CPUClass *cc = CPU_GET_CLASS(cpu);
420 CPUBreakpoint *bp;
421
422 if (cc->gdb_adjust_breakpoint) {
423 pc = cc->gdb_adjust_breakpoint(cpu, pc);
424 }
425
426 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
427 if (bp->pc == pc && bp->flags == flags) {
428 cpu_breakpoint_remove_by_ref(cpu, bp);
429 return 0;
430 }
431 }
432 return -ENOENT;
433 }
434
435 /* Remove a specific breakpoint by reference. */
cpu_breakpoint_remove_by_ref(CPUState * cpu,CPUBreakpoint * bp)436 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
437 {
438 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
439
440 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
441 g_free(bp);
442 }
443
444 /* Remove all matching breakpoints. */
cpu_breakpoint_remove_all(CPUState * cpu,int mask)445 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
446 {
447 CPUBreakpoint *bp, *next;
448
449 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
450 if (bp->flags & mask) {
451 cpu_breakpoint_remove_by_ref(cpu, bp);
452 }
453 }
454 }
455