xref: /reactos/dll/3rdparty/libjpeg/jquant2.c (revision c2c66aff)
1 /*
2  * jquant2.c
3  *
4  * Copyright (C) 1991-1996, Thomas G. Lane.
5  * Modified 2011 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains 2-pass color quantization (color mapping) routines.
10  * These routines provide selection of a custom color map for an image,
11  * followed by mapping of the image to that color map, with optional
12  * Floyd-Steinberg dithering.
13  * It is also possible to use just the second pass to map to an arbitrary
14  * externally-given color map.
15  *
16  * Note: ordered dithering is not supported, since there isn't any fast
17  * way to compute intercolor distances; it's unclear that ordered dither's
18  * fundamental assumptions even hold with an irregularly spaced color map.
19  */
20 
21 #define JPEG_INTERNALS
22 #include "jinclude.h"
23 #include "jpeglib.h"
24 
25 #ifdef QUANT_2PASS_SUPPORTED
26 
27 
28 /*
29  * This module implements the well-known Heckbert paradigm for color
30  * quantization.  Most of the ideas used here can be traced back to
31  * Heckbert's seminal paper
32  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
33  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
34  *
35  * In the first pass over the image, we accumulate a histogram showing the
36  * usage count of each possible color.  To keep the histogram to a reasonable
37  * size, we reduce the precision of the input; typical practice is to retain
38  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
39  * in the same histogram cell.
40  *
41  * Next, the color-selection step begins with a box representing the whole
42  * color space, and repeatedly splits the "largest" remaining box until we
43  * have as many boxes as desired colors.  Then the mean color in each
44  * remaining box becomes one of the possible output colors.
45  *
46  * The second pass over the image maps each input pixel to the closest output
47  * color (optionally after applying a Floyd-Steinberg dithering correction).
48  * This mapping is logically trivial, but making it go fast enough requires
49  * considerable care.
50  *
51  * Heckbert-style quantizers vary a good deal in their policies for choosing
52  * the "largest" box and deciding where to cut it.  The particular policies
53  * used here have proved out well in experimental comparisons, but better ones
54  * may yet be found.
55  *
56  * In earlier versions of the IJG code, this module quantized in YCbCr color
57  * space, processing the raw upsampled data without a color conversion step.
58  * This allowed the color conversion math to be done only once per colormap
59  * entry, not once per pixel.  However, that optimization precluded other
60  * useful optimizations (such as merging color conversion with upsampling)
61  * and it also interfered with desired capabilities such as quantizing to an
62  * externally-supplied colormap.  We have therefore abandoned that approach.
63  * The present code works in the post-conversion color space, typically RGB.
64  *
65  * To improve the visual quality of the results, we actually work in scaled
66  * RGB space, giving G distances more weight than R, and R in turn more than
67  * B.  To do everything in integer math, we must use integer scale factors.
68  * The 2/3/1 scale factors used here correspond loosely to the relative
69  * weights of the colors in the NTSC grayscale equation.
70  * If you want to use this code to quantize a non-RGB color space, you'll
71  * probably need to change these scale factors.
72  */
73 
74 #define R_SCALE 2		/* scale R distances by this much */
75 #define G_SCALE 3		/* scale G distances by this much */
76 #define B_SCALE 1		/* and B by this much */
77 
78 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
79  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
80  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
81  * you'll get compile errors until you extend this logic.  In that case
82  * you'll probably want to tweak the histogram sizes too.
83  */
84 
85 #if RGB_RED == 0
86 #define C0_SCALE R_SCALE
87 #endif
88 #if RGB_BLUE == 0
89 #define C0_SCALE B_SCALE
90 #endif
91 #if RGB_GREEN == 1
92 #define C1_SCALE G_SCALE
93 #endif
94 #if RGB_RED == 2
95 #define C2_SCALE R_SCALE
96 #endif
97 #if RGB_BLUE == 2
98 #define C2_SCALE B_SCALE
99 #endif
100 
101 
102 /*
103  * First we have the histogram data structure and routines for creating it.
104  *
105  * The number of bits of precision can be adjusted by changing these symbols.
106  * We recommend keeping 6 bits for G and 5 each for R and B.
107  * If you have plenty of memory and cycles, 6 bits all around gives marginally
108  * better results; if you are short of memory, 5 bits all around will save
109  * some space but degrade the results.
110  * To maintain a fully accurate histogram, we'd need to allocate a "long"
111  * (preferably unsigned long) for each cell.  In practice this is overkill;
112  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
113  * and clamping those that do overflow to the maximum value will give close-
114  * enough results.  This reduces the recommended histogram size from 256Kb
115  * to 128Kb, which is a useful savings on PC-class machines.
116  * (In the second pass the histogram space is re-used for pixel mapping data;
117  * in that capacity, each cell must be able to store zero to the number of
118  * desired colors.  16 bits/cell is plenty for that too.)
119  * Since the JPEG code is intended to run in small memory model on 80x86
120  * machines, we can't just allocate the histogram in one chunk.  Instead
121  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
122  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
123  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
124  * on 80x86 machines, the pointer row is in near memory but the actual
125  * arrays are in far memory (same arrangement as we use for image arrays).
126  */
127 
128 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
129 
130 /* These will do the right thing for either R,G,B or B,G,R color order,
131  * but you may not like the results for other color orders.
132  */
133 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
134 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
135 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
136 
137 /* Number of elements along histogram axes. */
138 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
139 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
140 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
141 
142 /* These are the amounts to shift an input value to get a histogram index. */
143 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
144 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
145 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
146 
147 
148 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
149 
150 typedef histcell FAR * histptr;	/* for pointers to histogram cells */
151 
152 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
153 typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
154 typedef hist2d * hist3d;	/* type for top-level pointer */
155 
156 
157 /* Declarations for Floyd-Steinberg dithering.
158  *
159  * Errors are accumulated into the array fserrors[], at a resolution of
160  * 1/16th of a pixel count.  The error at a given pixel is propagated
161  * to its not-yet-processed neighbors using the standard F-S fractions,
162  *		...	(here)	7/16
163  *		3/16	5/16	1/16
164  * We work left-to-right on even rows, right-to-left on odd rows.
165  *
166  * We can get away with a single array (holding one row's worth of errors)
167  * by using it to store the current row's errors at pixel columns not yet
168  * processed, but the next row's errors at columns already processed.  We
169  * need only a few extra variables to hold the errors immediately around the
170  * current column.  (If we are lucky, those variables are in registers, but
171  * even if not, they're probably cheaper to access than array elements are.)
172  *
173  * The fserrors[] array has (#columns + 2) entries; the extra entry at
174  * each end saves us from special-casing the first and last pixels.
175  * Each entry is three values long, one value for each color component.
176  *
177  * Note: on a wide image, we might not have enough room in a PC's near data
178  * segment to hold the error array; so it is allocated with alloc_large.
179  */
180 
181 #if BITS_IN_JSAMPLE == 8
182 typedef INT16 FSERROR;		/* 16 bits should be enough */
183 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
184 #else
185 typedef INT32 FSERROR;		/* may need more than 16 bits */
186 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
187 #endif
188 
189 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
190 
191 
192 /* Private subobject */
193 
194 typedef struct {
195   struct jpeg_color_quantizer pub; /* public fields */
196 
197   /* Space for the eventually created colormap is stashed here */
198   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
199   int desired;			/* desired # of colors = size of colormap */
200 
201   /* Variables for accumulating image statistics */
202   hist3d histogram;		/* pointer to the histogram */
203 
204   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
205 
206   /* Variables for Floyd-Steinberg dithering */
207   FSERRPTR fserrors;		/* accumulated errors */
208   boolean on_odd_row;		/* flag to remember which row we are on */
209   int * error_limiter;		/* table for clamping the applied error */
210 } my_cquantizer;
211 
212 typedef my_cquantizer * my_cquantize_ptr;
213 
214 
215 /*
216  * Prescan some rows of pixels.
217  * In this module the prescan simply updates the histogram, which has been
218  * initialized to zeroes by start_pass.
219  * An output_buf parameter is required by the method signature, but no data
220  * is actually output (in fact the buffer controller is probably passing a
221  * NULL pointer).
222  */
223 
224 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)225 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
226 		  JSAMPARRAY output_buf, int num_rows)
227 {
228   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
229   register JSAMPROW ptr;
230   register histptr histp;
231   register hist3d histogram = cquantize->histogram;
232   int row;
233   JDIMENSION col;
234   JDIMENSION width = cinfo->output_width;
235 
236   for (row = 0; row < num_rows; row++) {
237     ptr = input_buf[row];
238     for (col = width; col > 0; col--) {
239       /* get pixel value and index into the histogram */
240       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
241 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
242 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
243       /* increment, check for overflow and undo increment if so. */
244       if (++(*histp) <= 0)
245 	(*histp)--;
246       ptr += 3;
247     }
248   }
249 }
250 
251 
252 /*
253  * Next we have the really interesting routines: selection of a colormap
254  * given the completed histogram.
255  * These routines work with a list of "boxes", each representing a rectangular
256  * subset of the input color space (to histogram precision).
257  */
258 
259 typedef struct {
260   /* The bounds of the box (inclusive); expressed as histogram indexes */
261   int c0min, c0max;
262   int c1min, c1max;
263   int c2min, c2max;
264   /* The volume (actually 2-norm) of the box */
265   INT32 volume;
266   /* The number of nonzero histogram cells within this box */
267   long colorcount;
268 } box;
269 
270 typedef box * boxptr;
271 
272 
273 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)274 find_biggest_color_pop (boxptr boxlist, int numboxes)
275 /* Find the splittable box with the largest color population */
276 /* Returns NULL if no splittable boxes remain */
277 {
278   register boxptr boxp;
279   register int i;
280   register long maxc = 0;
281   boxptr which = NULL;
282 
283   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
284     if (boxp->colorcount > maxc && boxp->volume > 0) {
285       which = boxp;
286       maxc = boxp->colorcount;
287     }
288   }
289   return which;
290 }
291 
292 
293 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)294 find_biggest_volume (boxptr boxlist, int numboxes)
295 /* Find the splittable box with the largest (scaled) volume */
296 /* Returns NULL if no splittable boxes remain */
297 {
298   register boxptr boxp;
299   register int i;
300   register INT32 maxv = 0;
301   boxptr which = NULL;
302 
303   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
304     if (boxp->volume > maxv) {
305       which = boxp;
306       maxv = boxp->volume;
307     }
308   }
309   return which;
310 }
311 
312 
313 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)314 update_box (j_decompress_ptr cinfo, boxptr boxp)
315 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
316 /* and recompute its volume and population */
317 {
318   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
319   hist3d histogram = cquantize->histogram;
320   histptr histp;
321   int c0,c1,c2;
322   int c0min,c0max,c1min,c1max,c2min,c2max;
323   INT32 dist0,dist1,dist2;
324   long ccount;
325 
326   c0min = boxp->c0min;  c0max = boxp->c0max;
327   c1min = boxp->c1min;  c1max = boxp->c1max;
328   c2min = boxp->c2min;  c2max = boxp->c2max;
329 
330   if (c0max > c0min)
331     for (c0 = c0min; c0 <= c0max; c0++)
332       for (c1 = c1min; c1 <= c1max; c1++) {
333 	histp = & histogram[c0][c1][c2min];
334 	for (c2 = c2min; c2 <= c2max; c2++)
335 	  if (*histp++ != 0) {
336 	    boxp->c0min = c0min = c0;
337 	    goto have_c0min;
338 	  }
339       }
340  have_c0min:
341   if (c0max > c0min)
342     for (c0 = c0max; c0 >= c0min; c0--)
343       for (c1 = c1min; c1 <= c1max; c1++) {
344 	histp = & histogram[c0][c1][c2min];
345 	for (c2 = c2min; c2 <= c2max; c2++)
346 	  if (*histp++ != 0) {
347 	    boxp->c0max = c0max = c0;
348 	    goto have_c0max;
349 	  }
350       }
351  have_c0max:
352   if (c1max > c1min)
353     for (c1 = c1min; c1 <= c1max; c1++)
354       for (c0 = c0min; c0 <= c0max; c0++) {
355 	histp = & histogram[c0][c1][c2min];
356 	for (c2 = c2min; c2 <= c2max; c2++)
357 	  if (*histp++ != 0) {
358 	    boxp->c1min = c1min = c1;
359 	    goto have_c1min;
360 	  }
361       }
362  have_c1min:
363   if (c1max > c1min)
364     for (c1 = c1max; c1 >= c1min; c1--)
365       for (c0 = c0min; c0 <= c0max; c0++) {
366 	histp = & histogram[c0][c1][c2min];
367 	for (c2 = c2min; c2 <= c2max; c2++)
368 	  if (*histp++ != 0) {
369 	    boxp->c1max = c1max = c1;
370 	    goto have_c1max;
371 	  }
372       }
373  have_c1max:
374   if (c2max > c2min)
375     for (c2 = c2min; c2 <= c2max; c2++)
376       for (c0 = c0min; c0 <= c0max; c0++) {
377 	histp = & histogram[c0][c1min][c2];
378 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
379 	  if (*histp != 0) {
380 	    boxp->c2min = c2min = c2;
381 	    goto have_c2min;
382 	  }
383       }
384  have_c2min:
385   if (c2max > c2min)
386     for (c2 = c2max; c2 >= c2min; c2--)
387       for (c0 = c0min; c0 <= c0max; c0++) {
388 	histp = & histogram[c0][c1min][c2];
389 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
390 	  if (*histp != 0) {
391 	    boxp->c2max = c2max = c2;
392 	    goto have_c2max;
393 	  }
394       }
395  have_c2max:
396 
397   /* Update box volume.
398    * We use 2-norm rather than real volume here; this biases the method
399    * against making long narrow boxes, and it has the side benefit that
400    * a box is splittable iff norm > 0.
401    * Since the differences are expressed in histogram-cell units,
402    * we have to shift back to JSAMPLE units to get consistent distances;
403    * after which, we scale according to the selected distance scale factors.
404    */
405   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
406   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
407   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
408   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
409 
410   /* Now scan remaining volume of box and compute population */
411   ccount = 0;
412   for (c0 = c0min; c0 <= c0max; c0++)
413     for (c1 = c1min; c1 <= c1max; c1++) {
414       histp = & histogram[c0][c1][c2min];
415       for (c2 = c2min; c2 <= c2max; c2++, histp++)
416 	if (*histp != 0) {
417 	  ccount++;
418 	}
419     }
420   boxp->colorcount = ccount;
421 }
422 
423 
424 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)425 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
426 	    int desired_colors)
427 /* Repeatedly select and split the largest box until we have enough boxes */
428 {
429   int n,lb;
430   int c0,c1,c2,cmax;
431   register boxptr b1,b2;
432 
433   while (numboxes < desired_colors) {
434     /* Select box to split.
435      * Current algorithm: by population for first half, then by volume.
436      */
437     if (numboxes*2 <= desired_colors) {
438       b1 = find_biggest_color_pop(boxlist, numboxes);
439     } else {
440       b1 = find_biggest_volume(boxlist, numboxes);
441     }
442     if (b1 == NULL)		/* no splittable boxes left! */
443       break;
444     b2 = &boxlist[numboxes];	/* where new box will go */
445     /* Copy the color bounds to the new box. */
446     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
447     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
448     /* Choose which axis to split the box on.
449      * Current algorithm: longest scaled axis.
450      * See notes in update_box about scaling distances.
451      */
452     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
453     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
454     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
455     /* We want to break any ties in favor of green, then red, blue last.
456      * This code does the right thing for R,G,B or B,G,R color orders only.
457      */
458 #if RGB_RED == 0
459     cmax = c1; n = 1;
460     if (c0 > cmax) { cmax = c0; n = 0; }
461     if (c2 > cmax) { n = 2; }
462 #else
463     cmax = c1; n = 1;
464     if (c2 > cmax) { cmax = c2; n = 2; }
465     if (c0 > cmax) { n = 0; }
466 #endif
467     /* Choose split point along selected axis, and update box bounds.
468      * Current algorithm: split at halfway point.
469      * (Since the box has been shrunk to minimum volume,
470      * any split will produce two nonempty subboxes.)
471      * Note that lb value is max for lower box, so must be < old max.
472      */
473     switch (n) {
474     case 0:
475       lb = (b1->c0max + b1->c0min) / 2;
476       b1->c0max = lb;
477       b2->c0min = lb+1;
478       break;
479     case 1:
480       lb = (b1->c1max + b1->c1min) / 2;
481       b1->c1max = lb;
482       b2->c1min = lb+1;
483       break;
484     case 2:
485       lb = (b1->c2max + b1->c2min) / 2;
486       b1->c2max = lb;
487       b2->c2min = lb+1;
488       break;
489     }
490     /* Update stats for boxes */
491     update_box(cinfo, b1);
492     update_box(cinfo, b2);
493     numboxes++;
494   }
495   return numboxes;
496 }
497 
498 
499 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)500 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
501 /* Compute representative color for a box, put it in colormap[icolor] */
502 {
503   /* Current algorithm: mean weighted by pixels (not colors) */
504   /* Note it is important to get the rounding correct! */
505   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
506   hist3d histogram = cquantize->histogram;
507   histptr histp;
508   int c0,c1,c2;
509   int c0min,c0max,c1min,c1max,c2min,c2max;
510   long count;
511   long total = 0;
512   long c0total = 0;
513   long c1total = 0;
514   long c2total = 0;
515 
516   c0min = boxp->c0min;  c0max = boxp->c0max;
517   c1min = boxp->c1min;  c1max = boxp->c1max;
518   c2min = boxp->c2min;  c2max = boxp->c2max;
519 
520   for (c0 = c0min; c0 <= c0max; c0++)
521     for (c1 = c1min; c1 <= c1max; c1++) {
522       histp = & histogram[c0][c1][c2min];
523       for (c2 = c2min; c2 <= c2max; c2++) {
524 	if ((count = *histp++) != 0) {
525 	  total += count;
526 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
527 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
528 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
529 	}
530       }
531     }
532 
533   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
534   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
535   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
536 }
537 
538 
539 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)540 select_colors (j_decompress_ptr cinfo, int desired_colors)
541 /* Master routine for color selection */
542 {
543   boxptr boxlist;
544   int numboxes;
545   int i;
546 
547   /* Allocate workspace for box list */
548   boxlist = (boxptr) (*cinfo->mem->alloc_small)
549     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
550   /* Initialize one box containing whole space */
551   numboxes = 1;
552   boxlist[0].c0min = 0;
553   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
554   boxlist[0].c1min = 0;
555   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
556   boxlist[0].c2min = 0;
557   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
558   /* Shrink it to actually-used volume and set its statistics */
559   update_box(cinfo, & boxlist[0]);
560   /* Perform median-cut to produce final box list */
561   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
562   /* Compute the representative color for each box, fill colormap */
563   for (i = 0; i < numboxes; i++)
564     compute_color(cinfo, & boxlist[i], i);
565   cinfo->actual_number_of_colors = numboxes;
566   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
567 }
568 
569 
570 /*
571  * These routines are concerned with the time-critical task of mapping input
572  * colors to the nearest color in the selected colormap.
573  *
574  * We re-use the histogram space as an "inverse color map", essentially a
575  * cache for the results of nearest-color searches.  All colors within a
576  * histogram cell will be mapped to the same colormap entry, namely the one
577  * closest to the cell's center.  This may not be quite the closest entry to
578  * the actual input color, but it's almost as good.  A zero in the cache
579  * indicates we haven't found the nearest color for that cell yet; the array
580  * is cleared to zeroes before starting the mapping pass.  When we find the
581  * nearest color for a cell, its colormap index plus one is recorded in the
582  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
583  * when they need to use an unfilled entry in the cache.
584  *
585  * Our method of efficiently finding nearest colors is based on the "locally
586  * sorted search" idea described by Heckbert and on the incremental distance
587  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
588  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
589  * the distances from a given colormap entry to each cell of the histogram can
590  * be computed quickly using an incremental method: the differences between
591  * distances to adjacent cells themselves differ by a constant.  This allows a
592  * fairly fast implementation of the "brute force" approach of computing the
593  * distance from every colormap entry to every histogram cell.  Unfortunately,
594  * it needs a work array to hold the best-distance-so-far for each histogram
595  * cell (because the inner loop has to be over cells, not colormap entries).
596  * The work array elements have to be INT32s, so the work array would need
597  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
598  *
599  * To get around these problems, we apply Thomas' method to compute the
600  * nearest colors for only the cells within a small subbox of the histogram.
601  * The work array need be only as big as the subbox, so the memory usage
602  * problem is solved.  Furthermore, we need not fill subboxes that are never
603  * referenced in pass2; many images use only part of the color gamut, so a
604  * fair amount of work is saved.  An additional advantage of this
605  * approach is that we can apply Heckbert's locality criterion to quickly
606  * eliminate colormap entries that are far away from the subbox; typically
607  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
608  * and we need not compute their distances to individual cells in the subbox.
609  * The speed of this approach is heavily influenced by the subbox size: too
610  * small means too much overhead, too big loses because Heckbert's criterion
611  * can't eliminate as many colormap entries.  Empirically the best subbox
612  * size seems to be about 1/512th of the histogram (1/8th in each direction).
613  *
614  * Thomas' article also describes a refined method which is asymptotically
615  * faster than the brute-force method, but it is also far more complex and
616  * cannot efficiently be applied to small subboxes.  It is therefore not
617  * useful for programs intended to be portable to DOS machines.  On machines
618  * with plenty of memory, filling the whole histogram in one shot with Thomas'
619  * refined method might be faster than the present code --- but then again,
620  * it might not be any faster, and it's certainly more complicated.
621  */
622 
623 
624 /* log2(histogram cells in update box) for each axis; this can be adjusted */
625 #define BOX_C0_LOG  (HIST_C0_BITS-3)
626 #define BOX_C1_LOG  (HIST_C1_BITS-3)
627 #define BOX_C2_LOG  (HIST_C2_BITS-3)
628 
629 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
630 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
631 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
632 
633 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
634 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
635 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
636 
637 
638 /*
639  * The next three routines implement inverse colormap filling.  They could
640  * all be folded into one big routine, but splitting them up this way saves
641  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
642  * and may allow some compilers to produce better code by registerizing more
643  * inner-loop variables.
644  */
645 
646 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])647 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
648 		    JSAMPLE colorlist[])
649 /* Locate the colormap entries close enough to an update box to be candidates
650  * for the nearest entry to some cell(s) in the update box.  The update box
651  * is specified by the center coordinates of its first cell.  The number of
652  * candidate colormap entries is returned, and their colormap indexes are
653  * placed in colorlist[].
654  * This routine uses Heckbert's "locally sorted search" criterion to select
655  * the colors that need further consideration.
656  */
657 {
658   int numcolors = cinfo->actual_number_of_colors;
659   int maxc0, maxc1, maxc2;
660   int centerc0, centerc1, centerc2;
661   int i, x, ncolors;
662   INT32 minmaxdist, min_dist, max_dist, tdist;
663   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
664 
665   /* Compute true coordinates of update box's upper corner and center.
666    * Actually we compute the coordinates of the center of the upper-corner
667    * histogram cell, which are the upper bounds of the volume we care about.
668    * Note that since ">>" rounds down, the "center" values may be closer to
669    * min than to max; hence comparisons to them must be "<=", not "<".
670    */
671   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
672   centerc0 = (minc0 + maxc0) >> 1;
673   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
674   centerc1 = (minc1 + maxc1) >> 1;
675   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
676   centerc2 = (minc2 + maxc2) >> 1;
677 
678   /* For each color in colormap, find:
679    *  1. its minimum squared-distance to any point in the update box
680    *     (zero if color is within update box);
681    *  2. its maximum squared-distance to any point in the update box.
682    * Both of these can be found by considering only the corners of the box.
683    * We save the minimum distance for each color in mindist[];
684    * only the smallest maximum distance is of interest.
685    */
686   minmaxdist = 0x7FFFFFFFL;
687 
688   for (i = 0; i < numcolors; i++) {
689     /* We compute the squared-c0-distance term, then add in the other two. */
690     x = GETJSAMPLE(cinfo->colormap[0][i]);
691     if (x < minc0) {
692       tdist = (x - minc0) * C0_SCALE;
693       min_dist = tdist*tdist;
694       tdist = (x - maxc0) * C0_SCALE;
695       max_dist = tdist*tdist;
696     } else if (x > maxc0) {
697       tdist = (x - maxc0) * C0_SCALE;
698       min_dist = tdist*tdist;
699       tdist = (x - minc0) * C0_SCALE;
700       max_dist = tdist*tdist;
701     } else {
702       /* within cell range so no contribution to min_dist */
703       min_dist = 0;
704       if (x <= centerc0) {
705 	tdist = (x - maxc0) * C0_SCALE;
706 	max_dist = tdist*tdist;
707       } else {
708 	tdist = (x - minc0) * C0_SCALE;
709 	max_dist = tdist*tdist;
710       }
711     }
712 
713     x = GETJSAMPLE(cinfo->colormap[1][i]);
714     if (x < minc1) {
715       tdist = (x - minc1) * C1_SCALE;
716       min_dist += tdist*tdist;
717       tdist = (x - maxc1) * C1_SCALE;
718       max_dist += tdist*tdist;
719     } else if (x > maxc1) {
720       tdist = (x - maxc1) * C1_SCALE;
721       min_dist += tdist*tdist;
722       tdist = (x - minc1) * C1_SCALE;
723       max_dist += tdist*tdist;
724     } else {
725       /* within cell range so no contribution to min_dist */
726       if (x <= centerc1) {
727 	tdist = (x - maxc1) * C1_SCALE;
728 	max_dist += tdist*tdist;
729       } else {
730 	tdist = (x - minc1) * C1_SCALE;
731 	max_dist += tdist*tdist;
732       }
733     }
734 
735     x = GETJSAMPLE(cinfo->colormap[2][i]);
736     if (x < minc2) {
737       tdist = (x - minc2) * C2_SCALE;
738       min_dist += tdist*tdist;
739       tdist = (x - maxc2) * C2_SCALE;
740       max_dist += tdist*tdist;
741     } else if (x > maxc2) {
742       tdist = (x - maxc2) * C2_SCALE;
743       min_dist += tdist*tdist;
744       tdist = (x - minc2) * C2_SCALE;
745       max_dist += tdist*tdist;
746     } else {
747       /* within cell range so no contribution to min_dist */
748       if (x <= centerc2) {
749 	tdist = (x - maxc2) * C2_SCALE;
750 	max_dist += tdist*tdist;
751       } else {
752 	tdist = (x - minc2) * C2_SCALE;
753 	max_dist += tdist*tdist;
754       }
755     }
756 
757     mindist[i] = min_dist;	/* save away the results */
758     if (max_dist < minmaxdist)
759       minmaxdist = max_dist;
760   }
761 
762   /* Now we know that no cell in the update box is more than minmaxdist
763    * away from some colormap entry.  Therefore, only colors that are
764    * within minmaxdist of some part of the box need be considered.
765    */
766   ncolors = 0;
767   for (i = 0; i < numcolors; i++) {
768     if (mindist[i] <= minmaxdist)
769       colorlist[ncolors++] = (JSAMPLE) i;
770   }
771   return ncolors;
772 }
773 
774 
775 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])776 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
777 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
778 /* Find the closest colormap entry for each cell in the update box,
779  * given the list of candidate colors prepared by find_nearby_colors.
780  * Return the indexes of the closest entries in the bestcolor[] array.
781  * This routine uses Thomas' incremental distance calculation method to
782  * find the distance from a colormap entry to successive cells in the box.
783  */
784 {
785   int ic0, ic1, ic2;
786   int i, icolor;
787   register INT32 * bptr;	/* pointer into bestdist[] array */
788   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
789   INT32 dist0, dist1;		/* initial distance values */
790   register INT32 dist2;		/* current distance in inner loop */
791   INT32 xx0, xx1;		/* distance increments */
792   register INT32 xx2;
793   INT32 inc0, inc1, inc2;	/* initial values for increments */
794   /* This array holds the distance to the nearest-so-far color for each cell */
795   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
796 
797   /* Initialize best-distance for each cell of the update box */
798   bptr = bestdist;
799   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
800     *bptr++ = 0x7FFFFFFFL;
801 
802   /* For each color selected by find_nearby_colors,
803    * compute its distance to the center of each cell in the box.
804    * If that's less than best-so-far, update best distance and color number.
805    */
806 
807   /* Nominal steps between cell centers ("x" in Thomas article) */
808 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
809 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
810 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
811 
812   for (i = 0; i < numcolors; i++) {
813     icolor = GETJSAMPLE(colorlist[i]);
814     /* Compute (square of) distance from minc0/c1/c2 to this color */
815     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
816     dist0 = inc0*inc0;
817     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
818     dist0 += inc1*inc1;
819     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
820     dist0 += inc2*inc2;
821     /* Form the initial difference increments */
822     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
823     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
824     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
825     /* Now loop over all cells in box, updating distance per Thomas method */
826     bptr = bestdist;
827     cptr = bestcolor;
828     xx0 = inc0;
829     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
830       dist1 = dist0;
831       xx1 = inc1;
832       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
833 	dist2 = dist1;
834 	xx2 = inc2;
835 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
836 	  if (dist2 < *bptr) {
837 	    *bptr = dist2;
838 	    *cptr = (JSAMPLE) icolor;
839 	  }
840 	  dist2 += xx2;
841 	  xx2 += 2 * STEP_C2 * STEP_C2;
842 	  bptr++;
843 	  cptr++;
844 	}
845 	dist1 += xx1;
846 	xx1 += 2 * STEP_C1 * STEP_C1;
847       }
848       dist0 += xx0;
849       xx0 += 2 * STEP_C0 * STEP_C0;
850     }
851   }
852 }
853 
854 
855 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)856 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
857 /* Fill the inverse-colormap entries in the update box that contains */
858 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
859 /* we can fill as many others as we wish.) */
860 {
861   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
862   hist3d histogram = cquantize->histogram;
863   int minc0, minc1, minc2;	/* lower left corner of update box */
864   int ic0, ic1, ic2;
865   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
866   register histptr cachep;	/* pointer into main cache array */
867   /* This array lists the candidate colormap indexes. */
868   JSAMPLE colorlist[MAXNUMCOLORS];
869   int numcolors;		/* number of candidate colors */
870   /* This array holds the actually closest colormap index for each cell. */
871   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
872 
873   /* Convert cell coordinates to update box ID */
874   c0 >>= BOX_C0_LOG;
875   c1 >>= BOX_C1_LOG;
876   c2 >>= BOX_C2_LOG;
877 
878   /* Compute true coordinates of update box's origin corner.
879    * Actually we compute the coordinates of the center of the corner
880    * histogram cell, which are the lower bounds of the volume we care about.
881    */
882   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
883   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
884   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
885 
886   /* Determine which colormap entries are close enough to be candidates
887    * for the nearest entry to some cell in the update box.
888    */
889   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
890 
891   /* Determine the actually nearest colors. */
892   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
893 		   bestcolor);
894 
895   /* Save the best color numbers (plus 1) in the main cache array */
896   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
897   c1 <<= BOX_C1_LOG;
898   c2 <<= BOX_C2_LOG;
899   cptr = bestcolor;
900   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
901     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
902       cachep = & histogram[c0+ic0][c1+ic1][c2];
903       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
904 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
905       }
906     }
907   }
908 }
909 
910 
911 /*
912  * Map some rows of pixels to the output colormapped representation.
913  */
914 
915 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)916 pass2_no_dither (j_decompress_ptr cinfo,
917 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
918 /* This version performs no dithering */
919 {
920   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
921   hist3d histogram = cquantize->histogram;
922   register JSAMPROW inptr, outptr;
923   register histptr cachep;
924   register int c0, c1, c2;
925   int row;
926   JDIMENSION col;
927   JDIMENSION width = cinfo->output_width;
928 
929   for (row = 0; row < num_rows; row++) {
930     inptr = input_buf[row];
931     outptr = output_buf[row];
932     for (col = width; col > 0; col--) {
933       /* get pixel value and index into the cache */
934       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
935       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
936       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
937       cachep = & histogram[c0][c1][c2];
938       /* If we have not seen this color before, find nearest colormap entry */
939       /* and update the cache */
940       if (*cachep == 0)
941 	fill_inverse_cmap(cinfo, c0,c1,c2);
942       /* Now emit the colormap index for this cell */
943       *outptr++ = (JSAMPLE) (*cachep - 1);
944     }
945   }
946 }
947 
948 
949 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)950 pass2_fs_dither (j_decompress_ptr cinfo,
951 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
952 /* This version performs Floyd-Steinberg dithering */
953 {
954   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
955   hist3d histogram = cquantize->histogram;
956   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
957   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
958   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
959   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
960   JSAMPROW inptr;		/* => current input pixel */
961   JSAMPROW outptr;		/* => current output pixel */
962   histptr cachep;
963   int dir;			/* +1 or -1 depending on direction */
964   int dir3;			/* 3*dir, for advancing inptr & errorptr */
965   int row;
966   JDIMENSION col;
967   JDIMENSION width = cinfo->output_width;
968   JSAMPLE *range_limit = cinfo->sample_range_limit;
969   int *error_limit = cquantize->error_limiter;
970   JSAMPROW colormap0 = cinfo->colormap[0];
971   JSAMPROW colormap1 = cinfo->colormap[1];
972   JSAMPROW colormap2 = cinfo->colormap[2];
973   SHIFT_TEMPS
974 
975   for (row = 0; row < num_rows; row++) {
976     inptr = input_buf[row];
977     outptr = output_buf[row];
978     if (cquantize->on_odd_row) {
979       /* work right to left in this row */
980       inptr += (width-1) * 3;	/* so point to rightmost pixel */
981       outptr += width-1;
982       dir = -1;
983       dir3 = -3;
984       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
985       cquantize->on_odd_row = FALSE; /* flip for next time */
986     } else {
987       /* work left to right in this row */
988       dir = 1;
989       dir3 = 3;
990       errorptr = cquantize->fserrors; /* => entry before first real column */
991       cquantize->on_odd_row = TRUE; /* flip for next time */
992     }
993     /* Preset error values: no error propagated to first pixel from left */
994     cur0 = cur1 = cur2 = 0;
995     /* and no error propagated to row below yet */
996     belowerr0 = belowerr1 = belowerr2 = 0;
997     bpreverr0 = bpreverr1 = bpreverr2 = 0;
998 
999     for (col = width; col > 0; col--) {
1000       /* curN holds the error propagated from the previous pixel on the
1001        * current line.  Add the error propagated from the previous line
1002        * to form the complete error correction term for this pixel, and
1003        * round the error term (which is expressed * 16) to an integer.
1004        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1005        * for either sign of the error value.
1006        * Note: errorptr points to *previous* column's array entry.
1007        */
1008       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1009       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1010       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1011       /* Limit the error using transfer function set by init_error_limit.
1012        * See comments with init_error_limit for rationale.
1013        */
1014       cur0 = error_limit[cur0];
1015       cur1 = error_limit[cur1];
1016       cur2 = error_limit[cur2];
1017       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1018        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1019        * this sets the required size of the range_limit array.
1020        */
1021       cur0 += GETJSAMPLE(inptr[0]);
1022       cur1 += GETJSAMPLE(inptr[1]);
1023       cur2 += GETJSAMPLE(inptr[2]);
1024       cur0 = GETJSAMPLE(range_limit[cur0]);
1025       cur1 = GETJSAMPLE(range_limit[cur1]);
1026       cur2 = GETJSAMPLE(range_limit[cur2]);
1027       /* Index into the cache with adjusted pixel value */
1028       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1029       /* If we have not seen this color before, find nearest colormap */
1030       /* entry and update the cache */
1031       if (*cachep == 0)
1032 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1033       /* Now emit the colormap index for this cell */
1034       { register int pixcode = *cachep - 1;
1035 	*outptr = (JSAMPLE) pixcode;
1036 	/* Compute representation error for this pixel */
1037 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
1038 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
1039 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
1040       }
1041       /* Compute error fractions to be propagated to adjacent pixels.
1042        * Add these into the running sums, and simultaneously shift the
1043        * next-line error sums left by 1 column.
1044        */
1045       { register LOCFSERROR bnexterr, delta;
1046 
1047 	bnexterr = cur0;	/* Process component 0 */
1048 	delta = cur0 * 2;
1049 	cur0 += delta;		/* form error * 3 */
1050 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1051 	cur0 += delta;		/* form error * 5 */
1052 	bpreverr0 = belowerr0 + cur0;
1053 	belowerr0 = bnexterr;
1054 	cur0 += delta;		/* form error * 7 */
1055 	bnexterr = cur1;	/* Process component 1 */
1056 	delta = cur1 * 2;
1057 	cur1 += delta;		/* form error * 3 */
1058 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1059 	cur1 += delta;		/* form error * 5 */
1060 	bpreverr1 = belowerr1 + cur1;
1061 	belowerr1 = bnexterr;
1062 	cur1 += delta;		/* form error * 7 */
1063 	bnexterr = cur2;	/* Process component 2 */
1064 	delta = cur2 * 2;
1065 	cur2 += delta;		/* form error * 3 */
1066 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1067 	cur2 += delta;		/* form error * 5 */
1068 	bpreverr2 = belowerr2 + cur2;
1069 	belowerr2 = bnexterr;
1070 	cur2 += delta;		/* form error * 7 */
1071       }
1072       /* At this point curN contains the 7/16 error value to be propagated
1073        * to the next pixel on the current line, and all the errors for the
1074        * next line have been shifted over.  We are therefore ready to move on.
1075        */
1076       inptr += dir3;		/* Advance pixel pointers to next column */
1077       outptr += dir;
1078       errorptr += dir3;		/* advance errorptr to current column */
1079     }
1080     /* Post-loop cleanup: we must unload the final error values into the
1081      * final fserrors[] entry.  Note we need not unload belowerrN because
1082      * it is for the dummy column before or after the actual array.
1083      */
1084     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1085     errorptr[1] = (FSERROR) bpreverr1;
1086     errorptr[2] = (FSERROR) bpreverr2;
1087   }
1088 }
1089 
1090 
1091 /*
1092  * Initialize the error-limiting transfer function (lookup table).
1093  * The raw F-S error computation can potentially compute error values of up to
1094  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1095  * much less, otherwise obviously wrong pixels will be created.  (Typical
1096  * effects include weird fringes at color-area boundaries, isolated bright
1097  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1098  * is to ensure that the "corners" of the color cube are allocated as output
1099  * colors; then repeated errors in the same direction cannot cause cascading
1100  * error buildup.  However, that only prevents the error from getting
1101  * completely out of hand; Aaron Giles reports that error limiting improves
1102  * the results even with corner colors allocated.
1103  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1104  * well, but the smoother transfer function used below is even better.  Thanks
1105  * to Aaron Giles for this idea.
1106  */
1107 
1108 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1109 init_error_limit (j_decompress_ptr cinfo)
1110 /* Allocate and fill in the error_limiter table */
1111 {
1112   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1113   int * table;
1114   int in, out;
1115 
1116   table = (int *) (*cinfo->mem->alloc_small)
1117     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1118   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1119   cquantize->error_limiter = table;
1120 
1121 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1122   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1123   out = 0;
1124   for (in = 0; in < STEPSIZE; in++, out++) {
1125     table[in] = out; table[-in] = -out;
1126   }
1127   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1128   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1129     table[in] = out; table[-in] = -out;
1130   }
1131   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1132   for (; in <= MAXJSAMPLE; in++) {
1133     table[in] = out; table[-in] = -out;
1134   }
1135 #undef STEPSIZE
1136 }
1137 
1138 
1139 /*
1140  * Finish up at the end of each pass.
1141  */
1142 
1143 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1144 finish_pass1 (j_decompress_ptr cinfo)
1145 {
1146   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1147 
1148   /* Select the representative colors and fill in cinfo->colormap */
1149   cinfo->colormap = cquantize->sv_colormap;
1150   select_colors(cinfo, cquantize->desired);
1151   /* Force next pass to zero the color index table */
1152   cquantize->needs_zeroed = TRUE;
1153 }
1154 
1155 
1156 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1157 finish_pass2 (j_decompress_ptr cinfo)
1158 {
1159   /* no work */
1160 }
1161 
1162 
1163 /*
1164  * Initialize for each processing pass.
1165  */
1166 
1167 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1168 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1169 {
1170   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1171   hist3d histogram = cquantize->histogram;
1172   int i;
1173 
1174   /* Only F-S dithering or no dithering is supported. */
1175   /* If user asks for ordered dither, give him F-S. */
1176   if (cinfo->dither_mode != JDITHER_NONE)
1177     cinfo->dither_mode = JDITHER_FS;
1178 
1179   if (is_pre_scan) {
1180     /* Set up method pointers */
1181     cquantize->pub.color_quantize = prescan_quantize;
1182     cquantize->pub.finish_pass = finish_pass1;
1183     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1184   } else {
1185     /* Set up method pointers */
1186     if (cinfo->dither_mode == JDITHER_FS)
1187       cquantize->pub.color_quantize = pass2_fs_dither;
1188     else
1189       cquantize->pub.color_quantize = pass2_no_dither;
1190     cquantize->pub.finish_pass = finish_pass2;
1191 
1192     /* Make sure color count is acceptable */
1193     i = cinfo->actual_number_of_colors;
1194     if (i < 1)
1195       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1196     if (i > MAXNUMCOLORS)
1197       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1198 
1199     if (cinfo->dither_mode == JDITHER_FS) {
1200       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1201 				   (3 * SIZEOF(FSERROR)));
1202       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1203       if (cquantize->fserrors == NULL)
1204 	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1205 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1206       /* Initialize the propagated errors to zero. */
1207       FMEMZERO((void FAR *) cquantize->fserrors, arraysize);
1208       /* Make the error-limit table if we didn't already. */
1209       if (cquantize->error_limiter == NULL)
1210 	init_error_limit(cinfo);
1211       cquantize->on_odd_row = FALSE;
1212     }
1213 
1214   }
1215   /* Zero the histogram or inverse color map, if necessary */
1216   if (cquantize->needs_zeroed) {
1217     for (i = 0; i < HIST_C0_ELEMS; i++) {
1218       FMEMZERO((void FAR *) histogram[i],
1219 	       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1220     }
1221     cquantize->needs_zeroed = FALSE;
1222   }
1223 }
1224 
1225 
1226 /*
1227  * Switch to a new external colormap between output passes.
1228  */
1229 
1230 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1231 new_color_map_2_quant (j_decompress_ptr cinfo)
1232 {
1233   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1234 
1235   /* Reset the inverse color map */
1236   cquantize->needs_zeroed = TRUE;
1237 }
1238 
1239 
1240 /*
1241  * Module initialization routine for 2-pass color quantization.
1242  */
1243 
1244 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1245 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1246 {
1247   my_cquantize_ptr cquantize;
1248   int i;
1249 
1250   cquantize = (my_cquantize_ptr)
1251     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1252 				SIZEOF(my_cquantizer));
1253   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1254   cquantize->pub.start_pass = start_pass_2_quant;
1255   cquantize->pub.new_color_map = new_color_map_2_quant;
1256   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
1257   cquantize->error_limiter = NULL;
1258 
1259   /* Make sure jdmaster didn't give me a case I can't handle */
1260   if (cinfo->out_color_components != 3)
1261     ERREXIT(cinfo, JERR_NOTIMPL);
1262 
1263   /* Allocate the histogram/inverse colormap storage */
1264   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1265     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1266   for (i = 0; i < HIST_C0_ELEMS; i++) {
1267     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1268       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1269        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1270   }
1271   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1272 
1273   /* Allocate storage for the completed colormap, if required.
1274    * We do this now since it is FAR storage and may affect
1275    * the memory manager's space calculations.
1276    */
1277   if (cinfo->enable_2pass_quant) {
1278     /* Make sure color count is acceptable */
1279     int desired = cinfo->desired_number_of_colors;
1280     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1281     if (desired < 8)
1282       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1283     /* Make sure colormap indexes can be represented by JSAMPLEs */
1284     if (desired > MAXNUMCOLORS)
1285       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1286     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1287       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1288     cquantize->desired = desired;
1289   } else
1290     cquantize->sv_colormap = NULL;
1291 
1292   /* Only F-S dithering or no dithering is supported. */
1293   /* If user asks for ordered dither, give him F-S. */
1294   if (cinfo->dither_mode != JDITHER_NONE)
1295     cinfo->dither_mode = JDITHER_FS;
1296 
1297   /* Allocate Floyd-Steinberg workspace if necessary.
1298    * This isn't really needed until pass 2, but again it is FAR storage.
1299    * Although we will cope with a later change in dither_mode,
1300    * we do not promise to honor max_memory_to_use if dither_mode changes.
1301    */
1302   if (cinfo->dither_mode == JDITHER_FS) {
1303     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1304       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1305        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1306     /* Might as well create the error-limiting table too. */
1307     init_error_limit(cinfo);
1308   }
1309 }
1310 
1311 #endif /* QUANT_2PASS_SUPPORTED */
1312